US010552339B2

a2y United States Patent (10) Patent No.: US 10,552,339 B2

Basu et al. 45) Date of Patent: Feb. 4, 2020
(54) DYNAMICALLY ADAPTING MECHANISM (36) References Cited
FOR TRANSLATION LOOKASIDE BUFFER |
SHOOTDOWNS U.S. PATENT DOCUMENTS
2006/0259732 Al1l* 11/2006 Traut GO6F 12/1036
(71) Applicant: ADVANCED MICRO DEVICES, 7117173
INC., Santa Clara, CA (US) 2008/0140897 Al* 6/2008 Ganguly GOGF 12/1027
" " 710/268
2014/0075151 Al* 3/2014 Cain, III GO6F 12/1027
(72) Inventors: Arkaprava Basu, Austin, TX (US); 711/207
Joseph L. Greathouse, Austin, TX 2014/0115297 Al* 4/2014 Cain, III GOGF 12/1027
(US) " " 711/207
2015/0100753 Al1* 4/2015 Shenovvvvnnn GO6F 12/1027
711/207
(73) Assignee: Advanced Micro Devices, Inc., Santa 2016/0371196 AL™ 12/2016 K_Oh ******************** GO6F 12/1009
2017/0337256 Al* 11/2017 Ihiopoulos GO6F 12/1027

Clara, CA (US)

_ _ L _ OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Amit, Nadav, “Optimizing the TLB Shootdown Algorithm with

U.S.C. 154(b) by 0 days. Page Access Tracking”, Proceedings of the 2017 USENIX Annual
Technical Conference, Jul. 12-14, 2017, Santa Clara, CA, 15 pages.
(21) Appl. No.: 16/005,882 * cited by examiner
| Primary Examiner — Kevin Verbrugge

(22) Filed: Jun. 12, 2018 (57) ABSTRACT
_ o An operating system (OS) of a processing system having a
(65) Prior Publication Data plurality of processor cores determines a cost associated
US 2019/0377688 A1 Dec. 12. 2019 with different mechanisms for performing a translation

lookaside bufler (ILB) shootdown in response to, for
example, a virtual address being remapped to a new physical

(51) Int. CL. address, and selects a TL.B shootdown mechanism to purge
GOGF 12/10 (2016.01) outdated or inv:.-zilid address translations fron:1 the TLB based

GO6F 12/1027 (2016.01) on the determmed cost. .In some embodiments, the OS
GOGF 9/48 (2006.01) selects an inter-processor mterrupt (IPI) as the TLB shoot-

o down mechanism 1f the cost associated with sending an IPI

(52) U.S. ClL 1s less than a threshold cost. In some embodiments, the OS
CPC e GO6F 12/1027 (2013.01); GO6F 974812 compares the cost of using an IPI as the TLB shootdown

(2013.01), GO6F 2212/682 (2013.01); GO6F mechanism versus the cost of sending a hardware broadcast
2212/683 (2013.01) to all processor cores of the processing system as the

(58) Field of Classification Search shootdown mechanism and selects the shootdown mecha-
nism having the lower cost.

None
See application file for complete search history. 20 Claims, 4 Drawing Sheets
_________________ 100
[e
PROCESSOR PROCESSOR | | PROCESSOR PROCESSOR PROCESSOR
CORE 235 CORE 245 | CORE 235 CORE 265 CORE 273

TL8 | TLB TLB TLB
237 247 207 267 207

FIRST SUBSET OF PROCESSOR CORES
260

- TLR
COST SHOGTDOWN
g 1 >
sz:;g.fm CALCULATOR MECHANISM
210 215 SELECTOR
230

I FIRST
| THRESHOLD
220

SECOND
THRESHOL D
225

KERMEL
470

01
0er | (TANY3MN) SO

HO103713s | G/l

NSINVHO AN d0LV INO VO
NMOULOOH 1500
gl _

US 10,552,339 B2

GCl

L1 4400 "H055400dd G0l YOI HOSSIAO0Hd

Sheet 1 of 4

Feb. 4, 2020

G111 AHOW3AW

001

U.S. Patent

US 10,552,339 B2

.4
-~
&
< ¥0L103713S
> NSINVHOIN
- NMOQLOOH
d71L
—
g
—
g
.4-.;
=
W
ey

g1l d1l

G/¢ 340D G9¢ 3H0D
d0S554004d d0S5300dd

U.S. Patent

001

¢ OId

0Ll
T3NS IM

0ce
ATOHSTUH
IRNIE

0l¢
d4AI403d

dOLV 1IN0 WO
1500

54400 a0855300dd 40 135dNS 15di

AT ” AL I€C |
g1l g1l all

GGC YOO | Gy¢ 340D GEC U0
d055400d4d d08534004d d055300dd

552,339 B2

2

US 10

Sheet 3 of 4

Feb. 4, 2020

U.S. Patent

1500 41 WA

Gle
da01v N0 WO
1500

- bee YAMOTSI LSOO 41 Idl ONIANIS
dOLO4145) A8 NMOGQLOOHS 911 IWHO443d

WSINVHOIW - [====~—_ 0] 3400 ¥0SSIO0Hd TYNOIS
NMOQLOOH -

HIMOT St a1
OIS Ig1L ONILSYOQYodE .

-

Ad NMOC

[

|

|

19€ |
g1l oo |
|

|

|

|

G9¢ YOO
ONISS400dd

LOOHS 1L _\,_mou_mmn_x...xxxx

N 092

d1l

G¢E 3400
ONISS300dd

ali

G¥E€ IH0D
d0SS300dd

Gee 3H0D
d0SS300dd

00}

U.S. Patent Feb. 4, 2020 Sheet 4 of 4 US 10,552,339 B2

RECEIVE INDICATION THAT ACCESS TO ONE OR MORE PAGES OF SHARED
MEMORY IS RESTRICTED
402

DETERMINE COST OF PERFORMING TLB SHOOTDOWN BY SENDING [Pl TO A
SUBSET OF PROCESSOR CORES VERSUS BROADCASTING A TLB SHOOTDOWN

INSTRUCTION TO ALL PROCESSOR CORES
404

|S COST OF S

—“NDING TARGED |

IGHER THAN COST OF BROADCASTING
TLBI7
406

NO YES

SEND [Pl TO SUBS
PROCESSOR CO

BROADCAST TLBI TO ALL
PROCESSOR CORES

408 408

US 10,552,339 B2

1

DYNAMICALLY ADAPTING MECHANISM
FOR TRANSLATION LOOKASIDE BUFFER
SHOOTDOWNS

This invention was made with government support under
the PathForward Project with Lawrence Livermore National

Security (Prime Contract No. DE-AC52-07NA27344, Sub-
contract No. B620717) awarded by Department of Energy

(DOE). The Government has certain rights 1n this invention.

BACKGROUND

Many processing systems use virtual memory for han-
dling data accesses by executing programs (e.g., applica-
tions, operating systems, device drivers, etc.). In such a
processing system, programs access memory using “virtual
addresses” 1 ‘““virtual address spaces,” which are local
address spaces that are specific to corresponding programs,
instead of accessing memory using addresses based on the
physical locations (or “physical addresses™) of blocks of
memory (or “pages”). Thus, to support memory accesses,
the processing system typically employs address translation
circuitry to translate the virtual addresses to corresponding
physical addresses. The address translation circuitry
employs one or more translation lookaside buflers (TLBs) to
cache virtual-to-physical address translations for ethicient
lookup by processor cores. To maintain coherency, when-
ever virtual addresses are remapped to a new physical
address, or permission bits are changed, etc., an operating
system must perform a TLB shootdown to purge outdated or
invalid translations. TLB shootdown latency can signifi-
cantly aflect application performance in large multicore
systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled 1n the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings
indicates similar or identical items.

FIG. 1 1s a block diagram of a processing system that
dynamically selects a TLB shootdown mechanism based on
relative costs of a plurality of available TLB shootdown
mechanisms according to some embodiments.

FI1G. 2 1s a block diagram of a kernel configured to select
a TLB shootdown mechanism based on a cost of sending an
inter-processor interrupt to a subset of processor cores of the
processing system according to some embodiments.

FIG. 3 1s a block diagram of a processing system config-
ured to dynamically select a TLB shootdown mechanism
according to some embodiments.

FIG. 4 1s a flow diagram of a method of dynamically
selecting a TLB shootdown mechanism according to some
embodiments.

DETAILED DESCRIPTION

FIGS. 1-4 illustrate techniques for dynamically selecting
a TLB shootdown mechanism based on the relative costs
associated different available mechanisms. In some embodi-
ments, the available mechanisms include performing a TLB
shootdown using an inter-processor interrupt (IPI) to a
subset of processor cores of the processing system and using
a broadcast signal to all processor cores of the processing
system, 1n response to an indication that a processor core 1s
restricting access to one or more pages ol shared memory.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

An operating system (OS) of the processing system deter-
mines a cost associated with each mechanism for performing
the TLB shootdown and selects a TLB shootdown mecha-
nism based on the determined cost. In some embodiments,
the OS selects an IPI as the TLB shootdown mechanism if
the cost associated with sending an IPI 1s less than a
threshold cost. In some embodiments, the OS compares the
cost of using an IPI as the TLB shootdown mechanism
versus the cost of sending a hardware broadcast to all
processor cores of the processing system as the shootdown
mechanism and selects the shootdown mechanism having
the lower cost.

The OS implements a heuristic for determining the cost
associated with a TLB shootdown mechanism based on a
variety of factors such as, for example, the number of
processor cores having a TLB that includes one or more
entries corresponding to the one or more pages for which
access 1s restricted versus the total number of processor
cores of the processing system; the topology of the shared
memory and processing system; the number of processor
cores that are awake; the number of pages for which access
1s restricted; and the amount of time estimated to complete
the TLB shootdown using each of the TLB shootdown
mechanisms.

Processor cores 1n the processing system keep track of the
physical locations of the pages for the programs so that
programs are not required to keep track of the physical
locations of pages in memory. Programs access memory
using virtual addresses i virtual address spaces, which are
local address spaces that are specific to corresponding
programs, instead of accessing memory using addresses
based on the physical addresses of pages. As part ol man-
aging the physical locations of pages, the processors trans-
late the virtual addresses used by the programs in memory
access requests into the physical addresses where the data 1s
actually located. The processors then use the physical
addresses to perform the memory accesses for the programs.

In order to enable the virtual address to physical address
translation, the computing device includes a page table,
which 1s a record stored in a memory of the computing
device that includes an entry, or a “page table entry,” with
virtual address to physical address translation information
for pages of data that are stored 1n the main memory. Upon
receiving a request from a program to access memory at a
grven virtual address, a processor acquires corresponding
physical address information from the page table by per-
forming a page table walk, during which the page table 1s
searched, possibly entry-by-entry, for a page table entry that
provides the physical address associated with the virtual
address.

Because the above-described page table walks are rela-
tively slow, the processing system includes TLBs, which are
local caches 1n each processor that are used by the processor
core for storing a limited number of copies of page table
entries acquired during page table walks (or information
based on page table entries). During operation, processor
cores first attempt to acquire cached page table entries from
the corresponding TLB for performing virtual address to
physical address translations. When the copy of the corre-
sponding page table entry 1s not present 1n the TLB (1.e.,
when a “miss” occurs), the processor cores perform a page
table walk to acquire the desired page table entry—and
cache a copy of the acquired page table entry in the TLB.

During operation, processor cores in the processing sys-
tem may modily page table entries in the page table (e.g.,
change virtual address to physical address translation infor-
mation for the page table entries, change a read/write

US 10,552,339 B2

3

property for page table entries, etc.). In order to avoid
inconsistencies between the page table and copies of page
table entries held in TLBs 1n other processors 1n the com-
puting device, a processor core that initiated the modifica-
tion of the page table entry (or an “imtiating processor”)
performs an operation called a “TLB shootdown.” Gener-
ally, during a TLB shootdown, a processor core that 1s to
modily a page table entry causes other processor cores that
may hold a cached copy of the page table entry to invalidate
the cached copy, thereby avoiding the inconsistencies.

When performing a TLB shootdown to enable modifying
a page table entry, the mnitiating processor core (e.g., a
memory management unit 1n the mitiating processor core, an
operating system executing on the initiating processor core,
ctc.) modifies the page table entry. If an IPI 1s used to
perform the TLB shootdown, the initiating processor core
determines other processor cores that may have copies of the
information from the page table entry cached in their TLBs,
and sends the other processor cores an IPI that indicates the
page table entry being modified. Upon receiving the IPI,
cach of the other processor cores invalidates an entry in the
corresponding TLB containing the page table entry, if such
an entry exists in the corresponding TLB. Each other pro-
cessor core also returns, to the mitiating processor core, an
acknowledgement. The 1nitiating processor core collects the
acknowledgements and, when an acknowledgement has
been received from each of the other processor cores, the
initiating processor core proceeds with subsequent opera-
tions. During these operations, the processor core may
switch between kernel-mode and user-mode.

Because the above-described operations for performing a
TLB shootdown are long latency, performing the TLB
shootdown using an IPI typically requires a significant
amount of time to complete (e.g., tens of thousands of cycles
of a clock 1n the processor core). Compounding this prob-
lem, the latency of these operations increases as the number
of processor cores 1n the computing device increases. For
example, when central processor cores (CPUs) and graphics
processor cores (GPUs) share an address space 1mn a com-
puting device, both the CPUs and the GPUs must participate
in TLB shootdowns. Thus, if a large number of processor
cores have copies of the information from the page table
entry that 1s being modified cached 1n their TLBs, sending a
TLB1 mstruction via hardware to all of the processor cores
of the processing system will be more eflicient than per-
forming a TLB shootdown using an IPI.

This TLB1 imstruction causes the hardware of the nitiat-
ing processor core to broadcast a TLB invalidation signal to
all other processor cores 1n the processing system. When the
other processor cores receive the TLB ivalidation signal,
they will micro-interrupt and invalidate the appropriate TLB
entries without needing to enter the OS or run kernel code.
Thus, using the TLB1 mstruction to perform the TLB shoot-
down 1s 1n many cases more eflicient than sending an IPI and
loading a heavyweight kernel IPI handler in certain cases.

However, the TLB1 mechanism broadcasts the TLB
invalidation signal to every processor core in the system,
because the initiating processor hardware does not know
which processor cores could have translations of the affected
page or pages cached 1n their TLBs. The OS kernel accesses
this information by monitoring access bits in the page tables
or by keeping track of which processor cores a process has
run on, so an IPI-based shootdown mechanism only sends
IPIs to processor cores that could potentially have a cached
translation. I1 there are only a few processor cores that have
a cached translation and therefore require a TLB shootdown,
a targeted IPI may be more eflicient than a broadcast TLBAi.

10

15

20

25

30

35

40

45

50

55

60

65

4

Accordingly, the OS kernel employs a heuristic to determine
whether 1t 1s more eflicient to perform the TLB shootdown
using an IPI or by broadcasting a TLB1 instruction, and
selects the more eflicient mechanism for performing the
TLB shootdown.

FIG. 1 1s a block diagram of a processing system 100
according to some embodiments. The processing system 100
includes a plurality of processor cores, including processor
cores 105, 110, that execute instructions stored in corre-
sponding memories 115, 120, which store the instructions
and data used by the processor cores 105, 110, and results
produced by the processor cores 105, 110. The processor
cores 105, 110 are implemented as central processor unit
cores (CPUs), graphics processor unit cores (GPUs), spe-
cialized processor cores or accelerators, application-specific
integrated circuits (ASICs), field programmable gate arrays
(FPGAs), and the like. Some embodiments of the processor
cores 105, 110 are a CPU and an accelerator, respectively.
However, 1n other embodiments, the processor cores 105,
110 represent the processor cores 1n a multi-socket system or
processor cores that are interconnected by scalable net-
works. The processor cores 105, 110 are generically referred
to as “‘processors.”

The memories 115, 120 are mmplemented as locally
attached memories according to non-uniform memory
access (NUMA) principles. For example, the processor core
105 accesses the memory 115 directly on the basis of virtual
addresses that are mapped to physical addresses in the
memory 113. For another example, the processor core 110
accesses the memory 120 directly on the basis of virtual
addresses that are mapped to the physical addresses in the
memory 120. Some embodiments of the processor cores
105, 110 are able to access information stored in the non-
local memories. However, the processor cores 1035, 110 are
not able to directly access the non-local memories. Instead,
the processor cores 105, 110 transmit requests to the other
processor core over an interface 125. For example, memory
access requests from the processor core 105 to the memory
120 pass through the processor core 110 via the interface
125. For another example, memory access requests from the
processor core 110 to the memory 115 pass through the
processor core 105 via the interface 125.

Translations of virtual addresses to physical addresses are
stored 1n page tables 130, 135. Each process that 1s executing,
in the processing system 100 has a corresponding page table.
The page table for a process translates the virtual addresses
that are being used by the process to physical addresses in
one or more of the memories 115, 120. In some embodi-
ments, the entirety of the page table for a process is stored
in one of the memories 115, 120. For example, 11 a process
1s executing on the processor core 103, the page table 130
maps virtual addresses used by the process to physical
addresses 1n one or more of the memories 115, 120. In some
embodiments, the page table for a process 1s stored across a
plurality of memories 115, 120. For example, 11 a process 1s
executing on the processor core 105, a portion of the page
table content 1s stored in the page table 130 while the
remaining portion of the page table content 1s stored in the
page table 135. Both portlons of the page table 130, 135 are
used to provide mapping from virtual addresses used by the
process to physical addresses in one or more of the memo-
ries 115, 120. The page tables 130, 135 are not constrained
to map virtual addresses used by a process executing on one
of the processor cores 105, 110 to physical addresses 1n a
corresponding one of the memories 115, 120. For example,
the page table for a process executing on one of the
processor cores 1035, 110 may map the virtual address space

US 10,552,339 B2

S

of the process to physical addresses 1n both of the memories
115, 120. If multiple processes are executing concurrently
on one or more of the processor cores 105, 110, the pro-
cessing system 100 generates and maintains multiple page
tables to map the virtual address spaces of the concurrent
processes to physical addresses i one or more of the
memories 115, 120.

Translations that are frequently used by the processor
cores 105, 110 are stored in translation lookaside buflers
(TLBs) 140, 145 that are implemented in the corresponding
processor cores 105, 110. The TLBs 140, 145 are used to
cache frequently requested virtual-to-physical address trans-
lations. Entries including frequently used address transla-
tions are written from the page tables 130, 135 into the
corresponding TLBs 140, 145. The processor cores 105, 110
are therefore able to retrieve the address translations from
the TLBs 140, 145 without the overhead of searching for the
translation 1n the page tables 130, 135. Entries are evicted
from the TLBs 140, 145 to make room for new entries
according to a TLB replacement policy.

Pages are migrated between the memories 115, 120 or
duplicated in the memories 115, 120 by conveying copies of
the pages over the mterface 125. In the illustrated embodi-
ment, a page 150 1s copied from the memory 120 to the
memory 115. The page 150 1s duplicated 1f the page 1350
remains 1n the memory 120 after the operation. In some
embodiments, a write to the migrated page 150 triggers the
invalidation of the page in the destination memory 115, at
which point the original copy of the page 150 1s removed
from memory 120 and 1ts page table entry 1s updated to refer
to the new physical page 150 1n the destination memory 115.

In response to migration or duplication of pages, the
processor cores 105, 110 insert entries into the correspond-
ing TLBs 140, 145 to map a virtual address of the migrated
or duplicated page to a physical address in the destination
memory location and modifies a corresponding entry 1n one
or more of the page tables 130, 135. For example, processor
core 105 adds an entry to the TLB 140 that maps a virtual
address of the page 150 to the physical address of the page
150 1n the memory 115 and updates the page table 135. In
addition, TLB 145 of processor core 110 may contain a copy
of the page table 135 entry that maps the virtual address of
the page 150 to the physical address of the page 150 1n the
memory 120.

In response to a processor core 105, 110 remapping a
virtual address to a new physical address, or changing
permission bits for a mapped address, an operating system

(OS) (1n some embodiments, an OS kernel) 170 must purge
stale or outdated address translations. A TLB shootdown 1s
used to invalidate stale or outdated address translations in
the TLBs 140, 145. As discussed herein, duplicate copies of
a page and the corresponding address translations must be
invalidated 1n response to the translation entry for the
original page being invalidated. Thus, the TLBs 140, 145 are
searched 1n response to a TLB shootdown using the virtual
page address or the original physical page address and not
the physical page address of the duplicate or migrated page.
Entries 1in the TLBs 140, 145 include the physical address of
the original page and the physical address of the migrated or
duplicated page, which supports searching the TLBs 140,
145 using the original physical address 1n response to a TLB
shootdown.

To determine the more eflicient mechanism for perform-
ing the TLB shootdown, the OS (1in some embodiments, the
OS kernel) 170 includes a cost calculator 175 and a TLB
shootdown mechanism selector 180. In response to recerv-
ing an indication from an mnitiating processor core 105 that

10

15

20

25

30

35

40

45

50

55

60

65

6

the page 150 1s invalid due to, for example, a write access,
the cost calculator 175 determines a cost of performing a
TLB shootdown to a subset of the processor cores having
TLBs that include an entry corresponding to the page 150
using an IPI. If the cost 1s above a threshold, the TLB

shootdown mechanism selector 180 signals the processor
core 105 to broadcast a TLB1 mstruction to all of the
processor cores of the processing system 100. On the other
hand, i1t the cost calculator 175 determines that the cost of
performing the TLB shootdown to the subset of the proces-
sor cores having TLBs that include an entry corresponding,
to the page 150 using an IPI 1s not above the threshold, the
TLB shootdown mechanism selector 180 signals the pro-
cessor core 105 to send an IPI to the subset of processor
cores.

FIG. 2 1llustrates the kernel 170 of the processing system
100 of FIG. 1 configured to select a TLB shootdown
mechanism based on a cost of sending an inter-processor
interrupt to a subset of processor cores of the processing

system according to some embodiments. The kernel 170
includes a receiver 210, a cost calculator 215, a first thresh-
old 220, a second threshold 225, and a TLB shootdown
mechanism selector 230. In the example depicted in FIG. 2,
the processing system 100 includes a plurality of processor
cores, including processor cores 235, 245, 255, 265, and
275, each of which includes a TLB 237, 247, 257, 267, and
277, respectively.

The recerver 210 1s configured to gather information from
cach of the plurality of processor cores 235, 245, 255, 265,
and 275 to determine whether a processor has a stale entry
in 1ts TLB after the data corresponding to the entry has been
moved, or after other threads or the OS determines that the
permission bits should deny access. In some embodiments,
the recerver 210 determines which processors have stale
entries 1n their TLBs based on which processor cores the
process invoking the remapped virtual address has been
scheduled to run on. Once the receiver 210 receives such
information, a thread running on an out-of-date processor
core could access incorrect data, data the out-of-date pro-
cessor core should not have access to, or memory-mapped
IO to a device that no longer exists.

In order to prevent any threads or processor cores from
using stale translations, the kernel 170 coordinates TLB
shootdowns across the processing system 100. In some
embodiments, the kernel 170 applies a lock associated with
a region ol memory. In other embodiments, the kernel 170
removes access permissions from the page containing the
data so that any processor cores without cached TLB entries
will fault and see that a shootdown 1s 1n progress for this
page.

The cost calculator 215 1s configured to determine a cost
associated with performing the TLB shootdown by signaling
the 1mitiating processor core to send an IPI to a subset of
processor cores of the processing system 100 that have TLB
entries including the virtual address whose translation 1s to
be 1nvalidated. In some embodiments, the cost calculator
215 identifies the subset 260 of processor cores of the
processing system 100 that have TLB entries including the
virtual address whose translation 1s to be invalidated by
monitoring access bits of entries of a page table maintained
at the shared memory (not shown). In some embodiments,
for a multi-threaded process, 11 the access bit of an entry has
been set, the cost calculator 2135 assumes that all processor
cores of the processing system are included 1n the subset 260
and require a TLB shootdown. In some embodiments, the
cost calculator 215 identifies the subset 260 of processor
cores that have TLB entries including the virtual address

US 10,552,339 B2

7

whose translation 1s to be invalidated by determining at
which processor cores a process accessing the wvirtual
address has been run or scheduled.

In some embodiments, the cost calculator 215 determines
the cost associated with performing a TLB shootdown using

an IPI by comparing the number of processor cores in the
subset 260 to a first threshold 220. In some embodiments,
the first threshold 220 1s set based on the number of
processor cores 1n the processing system 100. If the number
of processor cores in the subset 260 1s less than the first
threshold 220, the cost calculator 215 determines that an IP]
will be a cost-effective TLB shootdown mechanism. For
example, 11 the processing system 100 1s a system-on-a-chip
(SoC) that includes 32 processor cores, the first threshold
220 may be set to 8. If the cost calculator 215 1dentifies the
subset 260 as including only two processor cores that have
run a process accessing the virtual address whose translation
1s to be 1invalidated, the cost calculator 215 determines that
the number of processor cores 1n the subset 260 1s less than

the first threshold 220, and thus an IPI will be a cost-
ellective TLB shootdown mechanism.

Rather than using a simple threshold of processor core
counts, 1n some embodiments, the cost calculator 215 further
considers the mapping, or topology, of those processor
cores. In a NUMA architecture (e.g. multiple sockets), TLB1
or IPIs that cross socket boundaries may have different
overheads than those that do not; this may change the
decision of which one to use depending on if the mapping
cores that must receive the shootdown mnvolves cross-socket
(or some other topology-based) communication.

In some embodiments, the cost calculator 215 determines
the cost associated with performing a TLB shootdown using
a TLB1 broadcast. In some embodiments, the TLLB1 broad-
cast mechanism 1s optimized to not cause heavyweight
soltware interrupts, not pollute caches and branch predic-
tors, etc. Nonetheless, 11 a process has only run on two
processor cores ol a processing system 100 having 32
processor cores, using a TLB1 broadcast mechanism to send
micro-interrupts to 32 separate cores (or more, 1f there are
multiple sockets) would consume more time and resources
than sending an IPI to the two aflected processor cores.

In some embodiments, the cost calculator 215 calculates
a cost for one or both TLB shootdown mechanisms (1.e., IPI
and TLB1) based on how ellicient TLB1 1s compared to IPIs.
In some embodiments, the cost calculator 215 calculates a
cost for each TLB shootdown mechanism based on how
many processor cores are currently awake. For example, i
many of the processor cores 1n the processing system 100 are
in sleep state (e.g., CC6 mode, with caches flushed), then the
TLB1 1nstruction would not need to wake them up, thus
reducing the cumulative overhead of the TLB1 shootdown
mechanism such that the cost of the TLB1 shootdown
mechanism may be lower than the cost of the IPI shootdown
mechanism. Alternately, if the TLB1 shootdown mechanism
implementation does wake up cores, the cost calculator 215
may put greater emphasis on using IPIs i order to not
needlessly wake up cores too often and raise overall power
and energy usage.

In some embodiments, the cost calculator 215 considers
the number of pages mvolved 1n a series of TLB shoot-
downs. If a very large number of pages are being updated,
the TLB1 shootdown mechamism may broadcast a signal to
tully flush the target TLBs. If only one page 1s being
updated, the TLB1 may include the virtual address of that
page as part of the TLBi1 broadcast. Depending on the
number of pages being updated and the locations 1n memory

of the pages, the kernel 170 may batch a series of TLB

10

15

20

25

30

35

40

45

50

55

60

65

8

shootdown requests as part of an IPI rather than sending
multiple single-page-targeted IPIs or a single “flush the
whole TLB” TLB1 broadcast. In some embodiments, the cost
calculator 215 includes a second threshold 225 based on a
number of pages. In such embodiments, the cost calculator
215 compares the number of pages being updated to the
second threshold 225.

In some embodiments, the cost calculator 215 considers
an estimate of the amount of time each processor core of the
subset 260 of processor cores will require to invalidate the
aflected entries of their TLBs. In some embodiments, the
cost calculator 215 determines a cost associated with send-
ing a TLB1 broadcast to only the subset 260 of processor
cores (a “targeted TLB1 broadcast”). In such embodiments,
the cost calculator 215 estimates how long the kernel 170
would take to set a mask to broadcast the TLB1 instruction
to only the processor cores of the subset 260 and how much
time each processor core of the subset 260 of processor cores
will require to ivalidate the aflected entries of their TLBs.

The TLB shootdown mechanism selector 230 1s config-
ured to select a TLB shootdown mechanism based on a
comparison of the cost estimated by the cost calculator 215
for performing the TLB shootdown using an IPI to the first
threshold 220. In some embodiments, the TLB shootdown
mechanism selector 230 selects a TLB shootdown mecha-
nism based on a comparison of the cost estimated by the cost
calculator 215 for performing the TLB shootdown using an
IPI to the cost estimated by the cost calculator 215 for
performing the TLB shootdown using a TLB1 broadcast. By
applying the heuristic of the cost calculator 215, the TLB
shootdown mechanism selector 230 dynamically selects a
TLB shootdown mechanism for each TLB shootdown that
will result 1n higher efliciency and/or lower latency.

FIG. 3 1llustrates the processing system 100 dynamically
selecting a TLB shootdown mechanism according to some
embodiments. Processing core 325 initiates the modification
of a page table entry, triggering a TLB shootdown. The cost
calculator 2135 determines the cost of performing the TLB
shootdown by sending an IPI to the subset of processor cores
360 having TLBs with virtual addresses corresponding to
the page table entry and the cost of performing the TLB
shootdown by broadcasting a TLB1 instruction signal to all
of the processing cores of the processing system 100. In the
example of FIG. 3, processor cores 335, 345, and 355
include TLBs 337, 347, and 357, respectively, that each
contain the virtual address corresponding to the page table
entry, and are therefore included in the first subset of
processor cores 360.

If the cost calculator 215 determines that the cost asso-
ciated with performing the TLB shootdown by sending an
IPI to the first subset of processor cores 360 1s lower than the
cost associated with performing the TLB shootdown by
broadcasting a TLB1 signal to all of the processor cores of
the processing system 100, the TLB shootdown mechanism
selector 230 signals the 1nitiating processor core 325 to send
an IPI to the first subset of processor cores 360. On the other
hand, if the cost calculator 215 determines that the cost
associated with performing the TLB shootdown by broad-
casting a TLB1 signal to all of the processor cores of the
processing system 100 1s lower than the cost associated with
performing the TLB shootdown by sending an IPI to the first
subset of processor cores 360, the TLB shootdown mecha-
nism selector 230 broadcasts the TLB1 signal to all of the
processor cores of the processing system 100.

FIG. 4 15 a flow diagram of a method 400 of dynamically
selecting a TLB shootdown mechanism according to some
embodiments. At block 402, the receiver 210 receives an

US 10,552,339 B2

9

indication from a processor core that access to one or more
pages of shared memory 1s restricted. At block 404, the cost
calculator 215 determines a cost associated with performing
a TLB shootdown by sending an IPI to a subset of processor
cores having TLBs with the virtual address(es) of the one or
more pages versus broadcasting a TLB1 shootdown 1nstruc-

tion to all of the processor cores of the processing system
100. At block 406, the TLB shootdown mechanism selector
230 determines whether the cost of sending a targeted IPI to
the subset of processor cores i1s higher than the cost of
broadcasting a TLB1 shootdown instruction to all of the
Processor cores.

At block 408, 1f the TLB shootdown mechanism selector
230 determines that the cost of sending a targeted IPI to the
subset of processor cores 1s not higher than the cost of
broadcasting a TLB1 shootdown instruction to all of the
processor cores, the TLB shootdown mechanism selector
230 signals the mitiating processor core to send an IPI to the
subset of processor cores that include TLBs with the virtual
address(es) of the one or more pages. At block 410, if the
TLB shootdown mechanism selector 230 determines that the
cost of sending a targeted IPI to the subset of processor cores
1s higher than the cost of broadcasting a TLB1 shootdown
instruction to all of the processor cores, the TLB shootdown
mechanism selector 230 broadcasts the TLB1 shootdown
instruction to all of the processor cores.

In some embodiments, the apparatus and techniques
described above are implemented 1n a system including one
or more 1ntegrated circuit (IC) devices (also referred to as
integrated circuit packages or microchips), such as the
processing system 100 described above with reference to
FIGS. 1-4. Electronic design automation (EDA) and com-
puter aided design (CAD) software tools may be used 1n the
design and fabrication of these IC devices. These design
tools typically are represented as one or more software
programs. The one or more software programs include code
executable by a computer system to manipulate the com-
puter system to operate on code representative of circuitry of
one or more IC devices so as to perform at least a portion of
a process to design or adapt a manufacturing system to
tabricate the circuitry. This code includes instructions, data,
or a combination of instructions and data. The software
instructions representing a design tool or fabrication tool
typically are stored 1n a computer readable storage medium
accessible to the computing system. Likewise, the code
representative ol one or more phases of the design or
tabrication of an IC device may be stored 1n and accessed
from the same computer readable storage medium or a
different computer readable storage medium.

A computer readable storage medium may include any
non-transitory storage medium, or combination of non-
transitory storage media, accessible by a computer system
during use to provide instructions and/or data to the com-
puter system. Such storage media can include, but i1s not
limited to, optical media (e.g., compact disc (CD), digital
versatile disc (DVD), Blu-Ray disc), magnetic media (e.g.,
floppy disc, magnetic tape, or magnetic hard drive), volatile
memory (e.g., random access memory (RAM) or cache),
non-volatile memory (e.g., read-only memory (ROM) or
Flash memory), or microelectromechanical systems
(MEMS)-based storage media. The computer readable stor-
age medium may be embedded in the computing system
(e.g., system RAM or ROM), fixedly attached to the com-
puting system (e.g., a magnetic hard drive), removably
attached to the computing system (e.g., an optical disc or

Universal Serial Bus (USB)-based Flash memory), or

5

10

15

20

25

30

35

40

45

50

55

60

65

10

coupled to the computer system via a wired or wireless
network (e.g., network accessible storage (NAS)).

In some embodiments, certain aspects of the techniques
described above may implemented by one or more proces-
sors of a processing system executing software. The soft-
ware includes one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other
non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be 1n source code,
assembly language code, object code, or other instruction
format that 1s interpreted or otherwise executable by one or
more processors.

Note that not all of the activities or elements described
above 1n the general description are required, that a portion
of a specific activity or device may not be required, and that
one or more further activities may be performed, or elements
included, 1n addition to those described. Still further, the
order 1n which activities are listed are not necessarily the
order in which they are performed. Also, the concepts have
been described with reference to specific embodiments.
However, one of ordinary skill in the art appreciates that
vartous modifications and changes can be made without
departing from the scope of the present disclosure as set
forth 1n the claims below. Accordingly, the specification and
figures are to be regarded in an 1illustrative rather than a
restrictive sense, and all such modifications are intended to
be mcluded within the scope of the present disclosure.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any feature(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
of any or all the claims. Moreover, the particular embodi-
ments disclosed above are illustrative only, as the disclosed
subject matter may be modified and practiced in different but
equivalent manners apparent to those skilled in the art
having the benefit of the teachings herein. No limitations are
intended to the details of construction or design herein
shown, other than as described in the claims below. It 1s
therefore evident that the particular embodiments disclosed
above may be altered or modified and all such variations are
considered within the scope of the disclosed subject matter.
Accordingly, the protection sought herein 1s as set forth in
the claims below.

What 1s claimed 1s:

1. A method comprising:

receiving, at an operating system, an indication that a first

processor core of a computing system comprising a
plurality of processor cores 1s restricting access to one
or more pages of a shared memory of the plurality of
processor cores and that entries of translation lookaside
buflers (TLBs) corresponding to the one or more pages
are to be invalidated;

determining, at the operating system, a first cost for

invalidating entries of TLBs corresponding to the one
or more pages associated with sending an inter-proces-
sor interrupt to a first subset of the processor cores of

US 10,552,339 B2

11

the computing system, the first subset comprising pro-
cessor cores comprising a TLB that includes one or
more entries corresponding to the one or more pages;
invalidating one or more TLB entries corresponding to the
one or more pages by sending an inter-processor inter-
rupt to the processor cores comprising the first subset in

response to determining that the first cost 1s below a

threshold; and

invalidating one or more TLB entries corresponding to the

one or more pages by broadcasting a TLB 1nvalidation

signal to the plurality of processor cores of the com-
puting system in response to determining that the first
cost exceeds the threshold.

2. The method of claim 1, wherein the first cost 1s based
on a number of processor cores comprising the first subset
and a number of processor cores comprising the plurality of
Processor cores.

3. The method of claim 1, wherein the first cost 1s based
on an estimate of an amount of time each processor core of
the first subset will take to invalidate the entries.

4. The method of claim 1, turther comprising;:

determining a second cost associated with broadcasting

the TLB invalidation signal; and

invalidating one or more TLB entries corresponding to the

one or more pages by broadcasting a TLB 1nvalidation

signal to the plurality of processor cores of the com-
puting system in response to determining that the first
cost exceeds the second cost,

wherein broadcasting the TLB invalidation signal com-
prises setting a mask to send a hardware broadcast
instruction to only the processor cores comprising
the first subset and

wherein the second cost 1s based on an estimate of an
amount of time completing a TLB shootdown in
response to broadcasting the TLB invalidation signal
will take.

5. The method of claim 1, further comprising identifying,
at the operating system, the processor cores comprising the
first subset based on one of:

monitoring an access bit at an entry of a page table

maintained at the shared memory, the entry correspond-

ing to the one or more pages and mapping a virtual

memory address to a physical memory address; or
tracking on which processor cores a process using the

virtual memory address has been scheduled to run.

6. The method of claim 1, wheremn validating TLB
entries corresponding to the one or more pages by broad-
casting the TLB invalidation signal comprises instructing
the processor cores to fully flush the TLBs associated with
cach processor core 1n response to determining that a
number of pages for which access 1s restricted exceeds a
threshold number of pages.

7. A method, comprising:

at an operating system of a processing system comprising,

a plurality of processor cores, and in response to

receiving an indication from a processor core that a

mapping of a virtual memory address to a physical

memory address 1s invalid, determining;:

a first cost associated with performing a translation
lookaside bufler (TLB) shootdown by sending an
inter-processor mterrupt to a first subset of the pro-
cessor cores of the processing system, the first subset
comprising processor cores having a TLB that
includes one or more entries corresponding to the
virtual memory address; and

10

15

20

25

30

35

40

45

50

55

60

65

12

a second cost associated with performing a TLB shoot-
down by broadcasting a TLB shootdown signal to
cach of the processor cores; and

performing the TLB shootdown by sending the inter-

processor 1terrupt to the first subset of the processor

cores 1n response to determining that the second cost
exceeds the first cost.

8. The method of claim 7, further comprising;:

performing the TLB shootdown by broadcasting a TLB

shootdown signal to the plurality of processor cores of
the processing system in response to determining that
the second cost does not exceed the first cost.

9. The method of claim 8, wherein broadcasting the TLB
shootdown signal comprises setting a mask to send a hard-
ware broadcast 1nstruction to only the processor cores com-
prising the first subset and

wherein the second cost 1s based on an estimate of an

amount of time performing the TLB shootdown by

broadcasting the TLB shootdown signal will take.

10. The method of claim 7, wherein the first cost 1s based
on a number of processor cores comprising the first subset
and a number of processor cores comprising the plurality of
Processor cores.

11. The method of claim 7, wherein the first cost 1s based
on an estimate ol an amount of time each processor core of
the first subset will take to invalidate the entries.

12. The method of claim 7, further comprising 1dentity-
ing, at the operating system, the processor cores comprising
the first subset based on one of:

monitoring an access bit at an entry ol a page table

maintained at a memory shared by the processor cores

of the processing system, the entry corresponding to a

page of the memory comprising an invalid address

mapping; or

tracking on which processor cores a process using the

virtual memory address has been scheduled to run.

13. The method of claim 7, wherein broadcasting the TLB
shootdown signal comprises instructing the processor cores
to fully flush the TLBs associated with each processor in
response to determining that a number of mmvalid address
mappings exceeds a threshold.

14. The method of claim 7, wherein the first cost 1s based
on a topology of the processing system.

15. The method of claim 7, wherein the first cost 1s based
on how many processor cores are awake.

16. A processing system, comprising,

a shared memory;

a plurality of processor cores, each processor core com-

prising a translation lookaside butler (TLB) comprising

a plurality of entries indicating mappings of virtual

memory address to physical memory addresses; and

an operating system comprising;:

a receiver configured to recerve an indication that a first
processor core 1s restricting access to one or more
pages of the shared memory;

a cost calculator configured to determine:

a first cost for mvalidating entries of TLBs corre-
sponding to the one or more pages, the first cost
associated with sending an inter-processor inter-
rupt to a first subset of the processor cores of the

processing system, the first subset comprising
processors comprising a TLB that includes one or
more entries corresponding to the one or more
pages; and

US 10,552,339 B2

13

a second cost for mnvalidating entries of TLBs, the
second cost associated with broadcasting a TLB
invalidation signal to processor cores of the pro-
cessing system; and

a TLB shootdown selector configured to signal the first
processor core to send an inter-processor interrupt to
the first subset of the processor cores in response to
determining that the second cost exceeds the first

COst.

17. The processing system of claim 16, wherein the TLB
shootdown selector 1s further configured to broadcast the
TLB 1nvalidation signal in response to determining that the
second cost does not exceed the first cost.

18. The processing system of claim 16, wherein the first
cost 1s based on a number of processor cores comprising the
first subset and a number of processor cores comprising the
plurality of processor cores.

19. The processing system of claim 16, wherein the first
cost 1s based on an estimate of an amount of time each
processor core of the first subset will take to invalidate the
entries.

20. The processing system of claim 16, wherein the first
cost 1s based on a topology of the processing system.

% ex *H & o

10

15

20

14

	Front Page
	Drawings
	Specification
	Claims

