US010552194B2

a2 United States Patent (10) Patent No.: US 10,552,194 B2
Hoppert 45) Date of Patent: Feb. 4, 2020

(54) VIRTUALIZATION OPERATIONS FOR (56) References Cited

DIRECTLY ASSIGNED DEVICES |
U.S. PATENT DOCUMENTS

(71) Applicant: gﬁ;m“g \T;I:h(![lj‘i’;gy Licensing, LLC, 8.464.019 B2* 6/2013 Oshida ovvovvr GOGF 9/5077
camond, 711/173
8,856,782 B2* 10/2014 Ghosh GO6F 9/45533
(72) Inventor: Hadden Mark Hoppert, Bellevue, WA _ 718/1
(US) 8,984,123 B2* 3/2015 Machida GO6F 11/1438
700/216
9,069,591 B1* 6/2015 Beloussov GO6F 9/45558
(73) Assignee: MICROSOFT TECHNOLOGY (Continued)
LICENSING, LLC, Redmond, WA
(US) FOREIGN PATENT DOCUMENTS
e e : : : : WO 2015095427 Al 6/2015
(*) Notice: Subject to any disclaimer, the term of this WO 5016035857 Al 39016

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 47 days.
OTHER PUBLICATIONS

(21) Appl. No.: 15/790,598 Microsoft, “Processor Compatibility Mode in Hyper-V”, 2016,
Published by Microsoft Docs (Year: 2016).*

(22) Filed: Oct. 23, 2017 (Con‘[inued)

(65) Prior Publication Data Primary Examiner — Hossain M Morshed

(57) ABSTRACT

Embodiments relate to enabling state manipulation of virtual
machines (VMs) that have directly assigned hardware

US 2019/0121656 Al Apr. 25, 2019

(51) Imt. CL. devices. A hypervisor manages execution of a VM with a
GOoE 9/455 (2018.01) guest operating system. The hypervisor directly assigns a
GO6l 1/3287 (2019.01) physical (non-virtual) hardware device to the VM, such that
GO6F 1/3246 (2019.01) the VM has exclusive use of the hardware device and the
Gool" 9/4401 (2018.01) guest operating system uses the hardware without needing

(52) U.S. CL virtualization abstraction/mapping by the hypervisor. When
CPC ... GO6I 9/45558 (2013.01); GO6F 1/3246 the VM needs to be pauses, suspended, restored, or similarly

(2013.01); GO6F 1/3287 (2013.01); GO6F manipulated, the hypervisor communicates with the VM to
9/4418 (2013.01); GO6F 2009/45575 (2013.01) cause the guest operating system to perform whatever opera-

(58) Field of Classification Search tions might be necessary by the hardware device. The
None hypervisor and VM/guest may communicate with a variety
See application file for complete search history. (Continued)

DIRECT DEVICE
ASSIGNMENT f OPERATION)
select hardware device to SIGNAL/REQUEST | _—AAAA
assign; (E.G. PAUSE,
SAVE, RESUME}
record 1D of devica n \ . p
tahle; '
pass assignment dsata to |H\
VM via communication \\\
channel A SE—
ane kS \, VIRTUALIZATION tAYER Jf
N
Eﬁ * FLEXIBLE
§ ks ez g;ﬁgggggﬂ

MANAGER
receive or select VM state ﬁ/ N —
operation; I'f ¢

/| VM « DEV MAP
parform varous state- f
related operations; i yd) ' VM ID DEV ID\ 162
consult VMeDEV map to / VM1 123
ﬂ:‘:;ID of DEY assigned to I VM2 534 - 164
pass II_:r of DEV am:_i 166
indication of operation type CHANMNEL
through communication
channel to Vi
169
VM STATE
OPERATION
CHANNEL
ADD BDIRECT
DEVICE
ot et e P ronn vt oo
device ID and device state GUEST 08 ﬁ:fﬂjna:r;egtév D:
operation to be performed; |
—= - i i

perform state operation an S = T ::r;?tp;zavt:;e;mﬁal
tevice; ,.x/‘/ VM S \ bus connection,
refum indication of Sﬂ \ e
success or failure via 118 guest software
channel;

acgesses device
directly without
@ DEVICE STATE g
MANIPULATION virtualization layer;

US 10,552,194 B2
Page 2

of mechanisms, such as a host driver communicating with a
guest driver, a virtual bus service backed by a hardware bus
of the computer, a virtual bus channel, or the like.

20 Claims, 7 Drawing Sheets

(56) References Cited
U.S. PATENT DOCUMENTS

9,361,145 B1* 6/2016 Wilson GOO6F 9/45558
2005/0198633 Al* 9/2005 Lantz GOO6F 9/45558
2011/0179414 A1* 7/2011 Gogginc....... GOOF g/lOgﬁ/i}
2012/0151483 Al* 6/2012 Belay GOOF 9/4751585%
2012/0254862 Al* 10/2012 Dongcevvvevnnn, GO6F 9741885/é
2013/0174151 Al* 7/2013 Nakajima GOOF ;/1486/}

718/1

2014/0245294 Al* 82014 Kaul GOO6F 9/45558
718/1
2015/0067681 Al* 3/2015 Naseh HO4L 41/0803
718/1
2016/0350244 Al* 12/2016 Tsirkinoovvvinne, GOO6F 13/28

OTHER PUBLICAITONS

Veritas, “Veritas NetBackup™ for Hyper-V Administrator’s Guide”,
Sep. 2017, Veritas.com (Year: 2017).*

Mike, “Hyper-V: What will happen with my VMs when I restart
Hyper-V host”, http://mikerodionov.com/2013/01/hyper-v-what-will-
happen-with-my-vms-when-1-restart-hyper-v-host/, Published on: Jan.
22, 20135, 2 pages.

Ober, Mike, “Is it better to save VM state or shutdown the Guest OS
when restarting the host?”, https://community.spiceworks.com/topic/
144695-1s-1t-better-to-save-vm-state-or-shutdown-the-guest-os-when-
restarting-the-host, Published on: Jun. 22, 2011, 1 page.
“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2018/055758”, dated Jan. 22, 2019, 13
Pages (MS# 402524-WO-PCT).

Zhai, et al., “Live Migration with Pass-through Device for Linux

VM?”, In Proceedings of the Linux Symposium, vol. Two, Jul. 1,
2008, pp. 261-269.

* cited by examiner

U.S. Patent Feb. 4, 2020 Sheet 1 of 7 US 10,552,194 B2

102

114 116

VIRTUAL MACHINE PRIVILEGED
VIRTUAL MACHINE

GUEST OS HOST OS 120

’
100 HYPERVISOR 100

STORAGE D
AN
104 106 408 110 112

FIG. 1

U.S. Patent

Feb. 4, 2020 Sheet 2 of 7

virtualization layer directly assigns
hardware device to VM

VM guest incorporates assigned
hardware device

virtualization layer instructs VM to
perform state operation on assigned
device

VM guest signals hardware device
to perform relevant state operation

FIG. 2

US 10,552,194 B2

U.S. Patent Feb. 4, 2020 Sheet 3 of 7 US 10,552,194 B2

DIRECT DEVICE FIG. 3
ASSIGNMENT
= OPERATION
select hardware device to SIGNAL/REQUEST | —AAAA
- assign; (E.G. PAUSE,
‘ o SAVE, RESUME)
record ID of device in \ o 160
table;
pass assignment data to \
VM via communication
channel 1
o . " VIRTUALIZATION LAYER 166
165 172
109 FLEXIBLE 1 HARDWARE
DEVICE 234"— DEVICE 234
MANAGER
T3

receive or select VM state
operation;

VM < DEV MAP

consult VM«DEV map to //

perform various state-
related operations; ya

77,
2

get ID of DEV assigned to 164
VM:; /

pass ID of DEV and 166
indication of operation type CHANNEL

through communication
channel to VM

s /1
@vm STATE

OPERATION
ADD DIRECT
DEVICE
receive direct device
assignment,

including DEV ID;

receive request, via VM

and channel, indication of
device ID and device state
operation to be performed;

Incorporate device
— (e.q., drivers, virtual
bus connection,
etc.);

perform state operation on
device;

retum indication of
success or fallure via
channel

@ DEVICE STATE
MANIPULATION

guest software

accesses device
directly without
traversing

virtualization layer;

U.S. Patent Feb. 4, 2020 Sheet 4 of 7 US 10,552,194 B2

I
HOST | GUESTA/M
I
I
I
I
I
VM WORKER |
PROCESS l
I
I
I
I
I
I
y :
CUSER__ | oo L
KE RNEL :
I
I
I
| 208
o VPCl : HARDWARE
X SERVICE . SCHEDULER
I
®! S O
@) forward request SUCCESS ause sianal
.through VMbus | forward PatSE 519
I
I W,
204—1 — PCI | 206
HARDWARE I VPl I
I
I
I
I
I
I
I
I
@ | 166
_ ASSIGN. _ _ 5] HARDWARE 166

DEVICE

~ B)f

® pause or change
power state

FIG. 4

U.S. Patent

Feb. 4, 2020 Sheet 5 of 7

virtualization layer assigns hardware
device directly to VM

as part of VM pause procedure,
virtualization layer determines
presence of directly attached device
and sends VM request to suspend
attached device

hardware scheduler of guest

operating system in VM recelves
request, sends device-specific
request to attached hardware device

attached hardware device
suspends, pauses, enters sleep or
power state, efc.

hardware scheduler sends
INdication of success/failure via VM
bus to virtualization layer

FIG. 5

US 10,552,194 B2

U.S. Patent Feb. 4, 2020 Sheet 6 of 7 US 10,552,194 B2

HOST GUESTVM

200

VM WORKER

PROCESS

request save (dev
@ 1D, buffer ptr)

KERNEL (Dreturn status

d e

FLEXIBLE
DEVICE

N

IHV DRIVER 242

MANAGER

©request save

v
request save return status
4 » a Drequest save

G return status

|
|

et
I

2401 |4y DRIVER i 206
|
|
|
. @return status
l
|
I
| HARDWARE
04— t— i i DEVICE 166
I
|
I
: 2441 save delvice state to
bufter:;
®

pause device;

FIG. 6 return success/

failure;

U.S. Patent Feb. 4, 2020 Sheet 7 of 7 US 10,552,194 B2

FIG. 7

US 10,552,194 B2

1

VIRTUALIZATION OPERATIONS FOR
DIRECTLY ASSIGNED DEVICES

BACKGROUND

Among the many forms of computer virtualization,
machine or system virtualization has become common due
to many known advantages. System virtualization involves
abstracting the hardware resources of a computer and pre-
senting the computer as virtual machines. A layer of soft-
ware referred to as a hypervisor or virtual machine monitor
(VMM) runs directly on the hardware of a computer. The
hypervisor manages access to the hardware of the computer
by virtual machines (VMs), which are also known as par-
titions, domains, or guests. Each VM 1s a software environ-
ment or construct capable of hosting 1ts own guest operating,
system. The hypervisor manages sharing of the computer’s
hardware, 1n particular processing hardware and memory, by
the VMs. The presence of a layer of software—the hyper-
visor—between the guest operating system and the com-
puter hardware 1s mostly transparent to the guest operating,
system.

A developing technology for machine virtualization 1s the
ability to directly assign hardware devices to VMs. This
technology, referred to as direct device assignment (DDA),
allows a wvirtualization layer (a term discussed 1n the
Detailed Description) to hand over a hardware device to a
VM and then the VM uses the hardware device directly
without requiring substantial (if any) mvolvement of the
virtualization layer to access and use the hardware device.
That 1s, the hardware device 1s used by the VM without
requiring virtualization abstraction or mapping by the vir-
tualization layer, and, 1n some cases, neither the host nor
other VMs use the hardware device, even when the virtu-
alization layer has paused the VM or has not scheduled CPU
time for the VM.

While DDA offers fast performance for the VM, there are
disadvantages that only the mstant inventor has appreciated.
Most machine virtualization systems have functionality to
control the execution state of VMs. Typical operations to
control a VM’s state include pausing, saving, restoring,
migrating, and the like. Such operations are particularly
usetul 1n cloud environments. A cloud provider might need
to alter the state of a VM transparently to the tenant or
customer. For instance, a host machine might require a
security update to the host/virtualization software. As only
the mnventor has appreciated, rather than informing a tenant
or customer that a VM needs to be saved or shut down to
allow a reboot of the host, the cloud provider would prefer
to be able to suspend a tenant’s VM transparently so that the
host can be updated and rebooted without significantly
interfering with operations of the tenant’s VM and without
requiring action by the tenant. Although 1t 1s theoretically
possible for a virtualization system to preserve or pause the
hardware state of a VM that 1s virtualized by the hypervisor
(see, e.g., US patent publication 2014/0157264), 1t has not
been possible for a virtualization system to perform such
operations on hardware directly assigned to a VM and out of
the purview of the hypervisor. That 1s, operations to control
a VM’s state have not been able to be performed on VMs
with directly assigned hardware since the directly assigned
device 1s owned by the VM.

There 1s a need to enable a machine virtualization system
to control the state of a VM that takes into account the

presence ol hardware directly assigned to the VM.

SUMMARY

The following summary 1s included only to introduce
some concepts discussed 1n the Detailed Description below.

10

15

20

25

30

35

40

45

50

55

60

65

2

This summary 1s not comprehensive and 1s not intended to
delineate the scope of the claimed subject matter, which 1s
set forth by the claims presented at the end.

Embodiments relate to enabling state manipulation of
virtual machines (VMs) that have directly assigned hard-
ware devices. A hypervisor manages execution of a VM with
a guest operating system. The hypervisor directly assigns a
physical (non-virtual) hardware device to the VM, such that
the VM has exclusive use of the hardware device and the
guest operating system uses the physical hardware device
without needing virtualization abstraction/mapping by the
hypervisor. When the VM needs to be paused, suspended,
restored, or similarly manipulated, the hypervisor commu-
nicates with the VM to cause the guest operating system to
perform whatever operations might be necessary by the
hardware device. The hypervisor and VM/guest may com-
municate with a variety of mechanisms, such as a host driver
communicating with a guest driver, a virtual bus service
backed by a hardware bus of the computer, a virtual bus
channel, or the like.

Many of the attendant features will be explained below
with reference to the following detailed description consid-
ered 1n connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read 1n light of the accompa-
nying drawings, wherein like reference numerals are used to
designate like parts 1n the accompanying description.

FIG. 1 shows an example virtualization environment that
includes a known type of hypervisor.

FIG. 2 shows a general process for facilitating state
operations on VMs that have directly assigned hardware
devices.

FIG. 3 shows how a VM and virtualization layer coop-
crate to enable state operations on the VM to be carried out
on directly assigned hardware.

FIG. 4 shows an embodiment suitable for some types of
hardware devices.

FIG. 5§ shows a process corresponding to FIG. 4.

FIG. 6 shows an example of a pause operation performed
by driver-to-driver communication.

FIG. 7 shows details of the computing device on which
embodiments described above may be implemented.

DETAILED DESCRIPTION

FIG. 1 shows an example virtualization environment that
includes a known type of hypervisor 100. A computer 102
has hardware 104, including a central processing unit (CPU)
106, memory 108, a network interface card (NIC) 110,
non-volatile storage 112, and other components not shown,
such as a bus, a display and/or display adapter, etc. The
hypervisor 100 manages and facilitates execution of virtual
machines (VMs) 114, 116. Each virtual machine 114, 116
typically has virtualized devices including a virtual disk
within which a guest/host operating system 118, 120 1s
stored. Machine or system virtualization 1s provided by the
hypervisor 100 cooperating with a host operating system
120 that executes 1n a privileged VM 116.

The tasks of virtualization may be distributed between the
hypervisor 100 and the host operating system 120 1n known
ways. In some cases, the host operating system 120 might
consist of only minimal virtualization elements such as tools
and user interfaces for managing the hypervisor 100. In
other cases, the host operating system 120 might include one

US 10,552,194 B2

3

or more of: device virtualization management, inter-VM
communication facilities, runmng device drivers, starting, or
stopping other VMs. In some embodiments, virtualization
may mostly take place within the hypervisor kernel (or a
virtualization module that plugs into a stock kernel) and
there 1s no privileged VM 116.

FIG. 2 shows a general process for facilitating execution-
state operations on VMs that have directly assigned hard-
ware devices. It 1s assumed that a host computer has a
virtualization layer (“hypervisor” hereafter), a VM 114, and
a hardware device directly assignable to the VM. The
hardware device may be any type of device, including a
graphics processing unit (GPU), a storage device such as a
solid state drive (SSD), a NIC, or others. The hardware
device may be a device locally attached to a physical bus of
the host 102 (e.g., peripheral connect interface (PCI) or
PClI-e), a device accessible via a data network, etc.

At step 140 the hypervisor 100 directly assigns a hard-
ware device to the VM 114. As described below with
reference to FIG. 3, this may 1involve steps such as providing
the VM 114 with an 1dentifier of the device, and registering,
an association of the device with the VM 114. At step 142
the guest operating system 118 of the VM 114 responds to
the device assignment by incorporating the device into its
device management stack, for instance connecting the
C
C
C

levice to 1ts virtual bus. At step 144, after the hardware
levice has been attached to the VM 114 and the VM 114 1s
lirectly using the hardware device, the virtualization layer
instructs the VM to perform a state operation such as pause,
save, restore, or the like. The request can be presented and
implemented 1n different ways that are described below. For
example, an appropriate signal can be sent to the VM on a
virtual bus that provides communication between the hyper-
visor and VMs. At step 146 the VM’s guest operating system
responds to the signal from the virtualization layer by
performing the relevant state operation on the directly
assigned hardware device.

FIG. 3 shows how the VM 114 and virtualization layer
160 cooperate to enable state operations on the VM 114 to
be carried out on directly assigned hardware. The virtual-
ization layer 160 1s any combination of type-I hypervisor or
virtualization kernel module and possibly other privileged
components such as a host operating system 120. The
virtualization layer may include a tlexible device manager
162. I present, the flexible device manager 162 handles and
tracks direct assignment of hardware devices to VMs.
Although directly assigned hardware devices are used by a
VM and not the host, the host or virtualization layer 160 still
needs to know what hardware has been directly assigned so
that 1t can avoid conflicts with the VM to which 1t has been
assigned. Therefore, the flexible device manager 162 may
maintain a device map 164 to keep track of which hardware
devices have been assigned to which VMs.

Initially, the virtualization layer 160 assigns a hardware
device 166 to the VM 114. An assignment process 165 (stage
A) 1s performed. The hardware device 166 1s selected and a
device 1dentifier (ID) 1s obtained from the hardware device
166. The flexible device manager 162 adds an entry 168 to
the device map 164. The new entry 168 includes the device
ID and an ID of the VM 114. The entry 168 indicates that the
hardware device 166 1s directly assigned and indicates
which VM 1t 1s assigned to. As part of the assignment
process 166, the flexible device manager 162 communicates
with the VM 114 via a channel 169 of a virtual bus that
handles hypervisor-VM and VM-VM communications. The
flexible device manager 162 sends the device ID to the VM.
The virtualization layer 160 also takes steps to assign the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

hardware device 166 to the VM, for instance signaling a
virtual computer bus of the VM that a new device 1s
available, which allows the guest operating system to add
the hardware device 166.

In response to the direct-assignment signal or message
from the virtualization layer, the VM 114 performs an
attachment process 170 (stage B). In eflect, the VM and the
guest operating system add the hardware device in the
normal way that devices are added; adding the device to a
virtual computer bus (e.g., a virtual Peripheral Connect
Interface (PCI)) device tree, setting up a device driver if
needed, etc. The guest operating system i1s then able to
directly and exclusively access and use the hardware device
166.

Once the VM and guest operating system have begun
using the directly assigned hardware device 166, VM state
managing operations will be needed for various reasons.
Execution state operations such as pausing, saving, restor-
ing, and migrating VMs are well known and critical to the
role that VMs play 1n managing computing resources. How-
ever, as discussed 1n the Background, such operations have
not been practical for VMs with directly assigned devices.

When a VM state operation 1s needed, a state operation
process 172 (stage C) 1s started at the virtualization layer.
The state operation may be nitiated 1n a number of ways. A
network controller or cloud fabric might send a message to
the host indicating which operation 1s to be performed on
which VM. The host might initiate the operation based on a
user command or a trigger event. In any case, the virtual-
ization layer may 1tself perform various functions as part of
the VM state operation. Such previously-known functions
for hardware virtualized for the target VM 1nclude saving or
hydrating memory of the target VM and capturing or restor-
ing CPU state of the target, to name a few. A new state-
management function performed by the virtualization layer
1s checking whether the target VM has a directly assigned
device. The ID of the target VM can be searched for in the
device map 164; its presence indicates that the target VM
has directly assigned hardware and therefore further steps
are to be performed. The virtualization layer then sends a
message via the virtual bus channel 169 to the VM. At the
least, the message 1indicates what type of operation 1s to be
performed; e.g., save state, restore/load state, pause, change
power state, etc. Optionally, the message (or a related
message) mcludes an 1dentifier from the device map 164 of
any hardware device associated with the target VM. Whether
the directly attached hardware device needs to be 1dentified
to the VM may depend on whether the VM or guest
operating system 1s able to i1dentify directly attached
devices. It the guest 1s able to do so, 1t will be suilicient for
the virtualization layer to merely indicate the type of state
operation that 1s to be executed.

The target VM responds to a state operation signal from
the virtualization layer and the channel 169 by performing a
device state altering process 174. If the message from the
virtualization layer includes the ID of the hardware device
then the guest operating system can use that ID to i1dentify
the device. If the guest operating system 1s able to 1dentily
directly attached hardware then the device ID from the
virtualization layer may be omitted. The guest operating
system might recognize a directly assigned hardware device
by the way 1t 1s connected, how 1t was 1nstalled, or other
signs. The guest operating system communicates with the
target hardware device through the same commumnication
path used for ordinary cooperation with the hardware device,
for instance through a device/storage stack that includes a
device driver, a virtual PCI connection, etc.

US 10,552,194 B2

S

The functionality of the hardware device that 1s invoked
by the guest operating system will depend on the individual
device and the type of operation to be performed. Some
types of hardware devices may have virtualization support
and may readily perform functions such as pausing execu-
tion, dumping state to a memory buller, restoring state from
memory, syncing to a known state, syncing multiple parts of
a device, etc. For instance, devices that conform with
virtualization standards such as Intel VI-D™ will be con-
venient to use. Devices that comply with power standards
such as ACPI (Advanced Configuration and Power Inter-
face) may also be convenient, as certain power states may be
entered to accommodate virtualization operations such as
pausing or suspending a VM. The availability and nature of
such support may dictate the communication path and
content of requests passed from the virtualization layer to
the target VM. New devices with new execution-state func-
tionality are emerging and may also be used. Directly
assignable devices may also include physical portions of a
physical device that are individually assignable. For
example, some network interfaces can be divided into mul-
tiple sub-devices each of which may be directly assigned.

FIG. 4 shows an embodiment suitable for some types of
hardware devices. A VM worker process 200 1s managed by
the virtualization layer (e.g., as a hypervisor thread or a
thread in a host operating system). The VM worker process
200 could be any type of object that a virtualization system
uses to represent VMs. Inmitially, a device driver on the host
side reports to the virtualization layer the availability of the
directly assignable hardware device 166. A virtual PCI
(vPCI) service 202 manages virtualization mapping between
PCI hardware 204 and a vPCI device 206. Accessibility to
the PCI hardware 204 via the vPCI service 202 enables the
VM worker process 200 to inject PCI communications 1into
the vPCI device 206. When the VM worker process 200
determines that a state operation 1s needed for the target VM,
the worker process 200 formulates a message for the vPCI
service 202, which, given its PCI-vPCI mapping role, 1s able
to mnject PCI communications into the vPCI device 206. To
the vPCI device 206, the request appears like any other PCI
message. In one embodiment, the request 1s addressed to the
hardware device 166 by the vPCI service 202 and/or the VM
worker process 200 using information from a record of the
hardware device 166. In another embodiment, the request 1s
passed through the PCI/vPCI channel to a hardware sched-
uler 208 which 1s 1n charge of scheduling operations of the
hardware device 166. The hardware scheduler 208 may be
helptul for avoiding conflicts with use of the hardware
device 166 by the guest operating system. In either case, the
request that 1s passed to the hardware device 166 1dentifies
the type of operation to be performed (e.g., a change to a
particular power state such as a hot or cold state).

The hardware device 166 receives the request, attempts to
perform the requested state operation, and then outputs a
return value (e.g., a success/failure code) and possibly other
return data through the same communication pathway. If the
VM worker process 200 recerves back an indication of
success, then the VM worker process 200 might continue
with other operations directed to execution state of the VM,
for instance, capturing or restoring memory, virtual CPU
state, performing a live migration, or others. Although the
hardware device 166 1s opaque to the virtualization layer
when 1t has been directly assigned, the awareness of the
hardware device 166 and the ability to communicate with it
via a virtualized bus enables the virtualization layer to send
instructions to the hardware device 166.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 5 shows a process corresponding to FIG. 4. As an
example, the hardware device 166 will be presumed to be a
GPU. At step 220 the virtualization layer assigns the physi-
cal GPU device directly to the VM. As noted above, direct
assignment may be implemented using the host’s hardware
bus (e.g., PCI) and the virtualization system’s virtual bus
(e.g., vPCI). To the target VM and guest operating system,
the assigned GPU 1is just another PCI device.

At step 222, the virtualization layer, perhaps at the ini-
tiative of the VM worker process, performs a VM state
operation, 1n this example, a pause operation. In one
embodiment, the virtualization layer retains an indication of
the assignment of the GPU to the VM and on that basis the
virtualization layer uses the PCI/vPCI pathway to inject a
request to the guest/VM. In another embodiment, the virtu-
alization layer does not know whether the target VM has
directly assigned hardware, assumes 1t 1s possible, and sends
a blind request to the target VM. The VM/guest receives the
blind generic operation request (e.g., pause), 1gnores it i
mapplicable, or 1f applicable translates it to a vPCI request
to the GPU and returns feedback about whether the request
was honored by the VM/guest.

At step 224 the hardware scheduler (e.g., a graphics
scheduler) acts on the request by issuing a power state
change for the GPU on the vPCI of the target VM. The
graphics hardware scheduler may also use 1ts scheduling
functionality to pause graphics work that 1s being fed to the
GPU. At step 226 the GPU changes power state to eflectuate
a pause and returns a success or failure code that the
hardware scheduler can push, at step 228, onto the VM’s
vPCI where 1t 1s itercepted by the vPCI service in the
virtualization layer and passed to the VM worker process
which can then decide whether the overall pause operation
should proceed, be considered successiully completed, or
reversed due to failure.

A guest hardware scheduler, for instance a kernel module
or service, that schedules guest use of virtual and/or physical
hardware 1s a useful point of host intervention in the guest
because a scheduler 1s a point of asynchronous control; the
scheduler 1s the arbiter of access, likely already has a queue
for queuing requests, etc. A scheduler can therefore do
things like hide the absence of a directly assigned device that
has been paused, depowered (hot or cold) or otherwise avoid
fallures due to perhaps temporary unavailability of the
relevant hardware device.

FIG. 6 shows an example of a pause operation performed
by driver-to-driver communication. The drivers may com-
municate using the virtual bus channel 169 (not to be
confused with a virtual bus device of a VM) for VM-to-
hypervisor communication. In this example, the VM state
operation to be performed on the target VM 1s saving state
of the VM to a bufler. The VM state operation may require,
among other things, saving state of the directly attached
hardware device, which may be connected to the vPCI
device 206 of the target VM. Similar to the state operations
above, the VM worker process 200 or an equivalent hyper-
visor representation of a VM 1ssues a save request to the
flexible device manager 162. The request indicates the type
of the request, and may also i1dentify the target directly
attached hardware device 166. The request may include a
memory location pointer or storage address where the target
VM will store the hardware state of the hardware device
166.

In this example, there 1s a host driver 240 on the host
(virtualization) side that may be configured to drive the
hardware device 166 (although not actually driving 1t when
the device 1s directly attached to the VM). The same driver

US 10,552,194 B2

7

or another guest driver 242 compatible with the hardware
device 166 communicates with the guest operating system
through the vPCI device 206. The drivers are designed to
communicate with each other via the virtual bus channel
169. When the host driver 240 receives a request to save
state of the hardware device, the host driver 240 signals the
guest driver 242. The guest driver 242 sends a request,
including perhaps the bufler location received from the
virtualization layer, via the vPCI device 206 to the hardware
device 166. At step 244, the hardware device 166 performs
the requested save operation by storing 1ts hardware state to
the provided bufler and providing a return value which
traverses back along the same communication pathway.
Other types of VM state operations may be implemented
using the same technique. For instance, a state restore
operation can be performed by passing to the VM/guest the
location of the previously stored state of the hardware device
166, which the hardware device 166 uses to restore its
previously restored state and resume execution.

It should be noted that a virtual bus 1s a general-purpose
messaging system provided by the virtualization layer to
cnable flexible message passing per defined commands
(perhaps at both the host and the guest sides). Examples
include Microsoft’s VM Bus, Xen’s XenBus, VMWare’s
VMCI Sockets, to name a few. The virtual bus should not be
confused with a virtual bus device of a VM/guest. A virtual
bus device (e.g., a vPCI device) 1s a simulated bus device
that resides within a guest. A virtual bus device might rely
on the virtualization layer’s virtual bus to exchange mes-
sages with the host. Furthermore, although a virtual bus may
be convenient, any host-guest communication pathway may
be leveraged, including network pathways (the host may
transmit packets to the guest and an agent in the guest may
handle the requests discussed above received via network
packets), a private hardware doorbell, a shared memory page
directly accessible to host and guest, or others.

Further regarding terminology, the term “virtual machine”™
1s used herein for convenience. The term 1s considered to
also refer to virtualization “partitions” and other equivalents
to VMs.

There are other types of operations that a hypervisor may
control given a channel to the VM or guest operating system.
In most cases, even though a device may be directly
assigned, the host may still have the ability to access the
device 1tsell. However, doing so without constraint could
interfere with the guest’s interactions with the device. Even
simple polling of the device by the host could create
problems. It the host were able to assure that the guest could
not be affected, then host interaction with the device would
be less problematic. For example, i1 the host were to put the
relevant VM 1n a sufliciently idle state (not powered down),
such as pausing the VM’s virtual CPUs, then the host would
likely be able to interact with the device without concern for
contlict.

FIG. 7 shows details of the computing device 102 on
which embodiments described above may be implemented.
The technical disclosures herein will suflice for program-
mers to write software, and/or configure reconfigurable
processing hardware (e.g., field-programmable gate arrays
(FPGASs)), and/or design application-specific integrated cir-
cuits (ASICs), etc., to run on the computing device 220 to
implement any of the features or embodiments described
herein.

The computing device 102 may have one or more displays
322, a network imterface 324 (or several), as well as storage
hardware 326 and processing hardware 328, which may be
a combination of any one or more: central processing units,

10

15

20

25

30

35

40

45

50

55

60

65

8

graphics processing units, analog-to-digital converters, bus
chips, FPGAs, ASICs, Application-specific Standard Prod-
ucts (ASSPs), or Complex Programmable Logic Devices
(CPLDs), etc. The storage hardware 326 may be any com-
bination of magnetic storage, static memory, volatile
memory, non-volatile memory, optically or magnetically
readable matter, etc. The meaning of the term “storage™, as
used herein does not refer to signals or energy per se, but
rather refers to physical apparatuses and states of matter. The
hardware elements of the computing device 102 may coop-
crate 1n ways well understood 1n the art of machine com-
puting. In addition, input devices may be integrated with or
in communication with the computing device 102. The
computing device 102 may have any form-factor or may be
used 1 any type ol encompassing device. The computing
device 102 may be in the form of a handheld device such as
a smartphone, a tablet computer, a gaming device, a server,
a rack-mounted or backplaned computer-on-a-board, a sys-
tem-on-a-chip, or others.
Embodiments and features discussed above can be real-
ized 1n the form of information stored in volatile or non-
volatile computer or device readable storage hardware. This
1s deemed to include at least hardware such as optical
storage (e.g., compact-disk read-only memory (CD-ROM)),
magnetic media, flash read-only memory (ROM), or any
means of storing digital information 1n to be readily avail-
able for the processing hardware 228. The stored informa-
tion can be 1n the form of machine executable 1nstructions
(e.g., compiled executable binary code), source code, byte-
code, or any other information that can be used to enable or
configure computing devices to perform the various embodi-
ments discussed above. This 1s also considered to include at
least volatile memory such as random-access memory
(RAM) and/or virtual memory storing information such as
central processing unit (CPU) instructions during execution
of a program carrying out an embodiment, as well as
non-volatile media storing information that allows a pro-
gram or executable to be loaded and executed. The embodi-
ments and features can be performed on any type of com-
puting device, including portable devices, workstations,
servers, mobile wireless devices, and so on.
The mnvention claimed 1s:
1. A method performed by a computer comprising pro-
cessing hardware, storage hardware, and a hardware device,
the method comprising:
providing a virtualization layer configured to directly
assign devices to virtual machines (VMs) managed by
the virtualization layer, the virtualization layer com-
prising a hypervisor, wherein the hardware device 1s
directly assigned to a VM such that the VM accesses
the hardware device directly and not through the vir-
tualization layer, the VM comprising a guest operating
system to which the hardware device 1s exclusively
attached;
receiving or generating, by the virtualization layer, a first
request to perform a state operation on the VM, the
state operation related to execution state of the VM;

establishing a communication channel between the virtu-
alization layer and the VM;

while the device remains directly assigned to the VM,
passing the first request through the commumnication
channel from the virtualization layer to the VM;

while the device remains directly assigned to the VM,
responding, by the guest operating system, to the first
request, by signaling the directly attached hardware
device, while so attached, to change state 1n correspon-
dence with the operation.

US 10,552,194 B2

9

2. A method according to claim 1, wherein the state
operation comprises suspending, saving, or restoring execu-
tion state of the VM.

3. A method according to claim 1, wherein the commu-
nication channel 1s established on a virtual machine bus that
provides communication channels between VMs and the
hypervisor and between VMs, wherein the signaling 1s
performed over a virtual bus device of the guest operating
system, wherein communications of the virtual bus device
are conveyed by the virtual machine bus, and wherein the
method further comprises providing an indication of success
or failure of the operation by the hardware device via the
communication channel, the virtual bus device mapped to a
physical bus by the virtualization layer.

4. A method according to claim 1, further comprising
maintaining, by the virtualization layer, assignment infor-
mation that indicates which hardware devices are directly
assigned to which VMs, the assignment imnformation com-
prising a record that the hardware device has been directly
assigned to the VM, and wherein the first request 1s directed
to the VM according to the record in the assignment infor-
mation.

5. A method according to claim 1, wherein the change
state operation signaled to the hardware device comprises a
power change state that causes the hardware device to at
least partly stop executing, and wherein the state operation
on the VM that 1s performed by the virtualization layer
comprises suspending or pausing the VM.

6. A method according to claim S, further comprising
saving state of the hardware device 1n accordance with the
changing state of the hardware device, rebooting the com-
puter, and then resuming execution of the VM by loading the
saved state of the hardware device back into the hardware
device.

7. A method performed by a computing device comprised
of processing hardware and storage hardware, the method
comprising;

executing a hypervisor that manages execution of virtual

machines (VMs) on the computing device, including a
VM to which a hardware device 1s directly assigned
such that the hardware device 1s directly mapped to the
VM and the VM accesses the hardware device directly
without intermediation by the hypervisor and while the
hypervisor 1s managing execution of the VM on the
processing hardware and storage hardware;

while the hardware device remains directly assigned to

the VM, receiving, by the hypervisor, a request to pause
and save state of the VM, and 1n response requesting
the VM to pause and save the state of the hardware
device; and

while the hardware device remains directly assigned to

the VM, responding, by the VM, to the request to pause
and save the VM, by a guest operating system of the
VM directly mstructing the hardware device to pause
and save the state of the hardware device.

8. A method according to claim 7, further comprising
restoring the VM by passing a location of the saved state
from the virtualization layer to the VM and the guest
operating system using the location to load the saved state
into the hardware device.

9. A method according to claim 7, wherein virtualization
layer comprises a first device dniver, the guest operating
system comprises a second device driver, and wherein the
requesting the VM to pause and save the state of the
hardware device 1s requested by the first device driver

10

15

20

25

30

35

40

45

50

55

60

10

communicating with the second device driver via a com-
munication channel between the virtualization layer and the

VM.

10. A method according to claim 7, wherein the second
device drniver instructs the hardware device to save its state
by sending a signal to the hardware device via a virtual bus
device of the VM.

11. A method according to claim 7, further comprising the
hypervisor saving state of a virtual device of the VM, and
wherein the VM 1s restored for execution using the saved
state of the virtual device and the saved state of the hardware
device.

12. A method according to claim 11, wherein the virtual
device comprises a virtual CPU.

13. A method according to claim 7, wherein the second
driver communicates with the hardware device via a virtual
bus device of the VM that 1s backed by a physical bus device
of the computing device as managed by the hypervisor.

14. A method according to claim 7, wherein the request to
pause comprises a buller location and a device i1dentifier of
the hardware device.

15. A computer comprising:

processing hardware;

storage hardware storing, for execution by the processing

hardware, a virtual machine (VM) and a virtualization
layer;
the VM comprising a guest operating system;
the virtualization layer comprising a hypervisor and a
communication channel configured to provide commu-
nication between the VM and the hypervisor, the vir-
tualization layer configured to directly assign a hard-
ware device to the VM such that the hardware device
1s used exclusively by the VM without going through
the hypervisor;
the virtualization layer configured to, while the hardware
device remains directly assigned to the VM, send a
request through the communication channel to the VM
while the hardware device 1s directly assigned to the
VM; and

the VM configured to, while the hardware device remains
directly assigned to the VM, respond to the request by
the guest operating system signaling the directly-as-
signed hardware device to pause execution, save its
state, load state, or resume execution.

16. A computer according to claim 15, wherein while the
hardware device 1s directly assigned to the VM the guest
operating system uses the hardware device without virtual-
1zation abstraction or without intermediation by the hyper-
V1SOr.

17. A computer according to claim 15, wherein the
operating system comprises a hardware scheduler or a
device driver that communicates with the hardware device to
signal the hardware device.

18. A computer according to claim 15, wherein the
virtualization layer comprises a virtual bus for arbitrary
communication between the hypervisor and arbitrary VMs
managed by the hypervisor.

19. A computer according to claim 135, wherein the
virtualization layer further comprises a device tracker con-
figured to track which VMs have hardware devices directly
assigned thereto.

20. A computer according to claam 15, wherein the
computer reboots while the directly-assigned hardware
device 1s paused or suspended.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

