US010545764B2

12 United States Patent (10) Patent No.: US 10,545,764 B2
Scalabrino et al. 45) Date of Patent: Jan. 28, 2020

(54) AVAILABLE REGISTER CONTROL FOR (56) References Cited

REGISTER RENAMING |
U.S. PATENT DOCUMENTS

(71) Applicant: ARM LIMITED, Cambridge (GB) 5,559,988 A * 9/1996 Durante ... GOG6F 3/0601
711/100
(72) Inventors: Luca Scalabrino, Villeneuve Loubet 6,090,156 A * 772000 MacLeodcc..... GOOF 8/441
| ; . 717/157
(FR); Frederic Jean Denis Arsanto, Le 2003/0065910 AL* 4/2003 Samra GOGF 9/3836
Rouret (FR); Thomas Gilles Tarridec, T19/217
Juan-les-Pins (FR); Cedric Denis 2003/0135713 Al 7/2003 Rychlik et al.
Robert Aifﬂ“dj Saint Laurent du Var 2004/0133766 Al 7/2004 Abraham et al.
2005/0283588 Al* 12/2005 Yamashita GO6F 9/3808
(FR)
712/217
2008/0114966 Al 5/2008 Begon et al.
(73) Assignee: ARM Limited, Cambridge (GB) 2008/0177983 Al™ 7/2008 Piryccceeiine, GO6F 9/30072
712/217
N _ _ _ _ _ 2012/0278596 Al 11/2012 Tran
(*) Notice: Subject to any disclaimer, the term of this 2015/0154022 Al* 6/2015 Khot GO6F 9/30123
patent 1s extended or adjusted under 35 712/217
(21) Appl. No.: 15/082,601 OTHER PUBLICATIONS
_ Moudgill et al. (Register Renaming and Dynamic Speculation: An
(22) Filed: Mar. 28, 2016 Alternative Approach, Dec. 1993, pp. 202-213) (Year: 1993).*
(Continued)
(65) Prior Publication Data Primary Examiner — George Giroux
US 2016/03335088 Al Nov. 17, 2016 (74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
(57) ABSTRACT
(30) Foreign Application Priority Data A data processing apparatus comprises register rename
circuitry for mapping architectural register specifiers speci-
May 11,J 2015 (GB) 15079627 ﬁed by ins‘[ruc‘[ions to physical regis‘[ers to be accessed in

response to the instructions. Available register control cir-
cuitry controls which physical registers are available for

(51) Int. CI. mapping to an architectural register specifier by the register

GO6F 9/38 (2018.01) T
rename circuitry. For at least one group of two or more
(52) U.S. CL physical registers, the available register control circuitry
CPC e, GO6F 9/384 (2013.01) controls availability of the registers based on a group
(58) Field of Classification Search tracking 1indication indicative of whether there 1s at least one
None pending access to any of the physical registers in the group.
See application file for complete search history. 18 Claims, 7 Drawing Sheets
Avaiebe registercontrol + C
50~ 12718125124 3 2 1§
resned [0} 1{0f0f - [r]r]efo
52 52 52 52 60
62~ 127126125124 321§
oed o] 1fojof - [ofe]efo
G4~ 127128125124 3 2 1§
maid oftfojo] o JoJofofo)
' reqisier
| release
66 127125125124 5210 | oo
Resery 5
mivwstoed] 1 1 C1 ISR (1 1 0 O
HFO
68~ 127128125124 3 2 1§

g 11]1f0] o [ofofefo

70

70 70
group I—Ll
counters | . m
74 30

Ter124

US 10,545,764 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2016/0055833 Al* 2/2016 Havlir GQ09G 5/399
345/536

OTHER PUBLICATIONS

Search Report for GB 1507962.7, dated Oct. 16, 2015, 4 pages.
Monreal et al., “Dynamic Register Renaming Through Virtual-
Physical Registers™, Journal of Instruction-Level Parallelism, 2000,
20 pages.

Sima, “The Design Space of Register Renaming Techniques in

Superscalar Procesors™, IEEE Micro, vol. 20, 1ssue 5, Sep. 2000, pp.
70-83.

* cited by examiner

L ODid

* + *+ + + + + +F F F FFFFFFFFEFEFFEFFEEFEEFEFEEFEEEE T

* + F F F o+ FFFFFFFFFFEFEFFEFEFFEFEFEFEFEFFEEFEEFFE

US 10,545,764 B2

SI815108.

10100
Jalsibal

* + + F F FF o FFFFFFFFEFFEFEFFEFEFEFEFFFEFEFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEFEFFEFEFFFFFF

* + F F F o+ FFFFFFFFFFEFEFFEFEFFEFEFEFEFEFFEEFEEFFE

l S

* + F F F o+ FFFFFFFFFFEFEFFEFEFFEFEFEFEFEFFEEFEEFFE

I
I 3|qe|RAR

+* + + + + + ¥ F + F F FFFFFFFAF

+ + + + + + + + + + + + + + Sttt ottt ettt ottt

Sheet 1 of 7

+ + + F+ + + F F FF FFFFFFEFFFEFEFEFEFFEFEFFE T

+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*

m] L] [
+* - +* ¥ "
+ + + F o
+ +
+
+
+
+ H + H H + H +
+ + + + + + +
+*
+ +
+
+* +*
+
+ +
+*
+ +
+
+ +
+
+ +
H +
+ +
+
+* +*
+
+ +
+*
+ H +
- + .
L +* + + +* + + +* * +
+ + + &+ ot + F o+ + + +_+ ¥+ + + + + +
-+ + + + + +
+*
+ +
+
+ +
+
+ +
+*
+ +
+
+* +*
+
+ +
+*
+ +
+
+* +*
+
+ +
+
+ + "
L N N B N L N N L B L L N N N L O I D D B L D L L L L N I I D B N L N L L .—..—..—..—..—..—..—..—..—..—..—..—..—..—..—..—..—.+.—.++.—.++.—.+++.—.++.—.++.—.++.—.++ LI N L B L L D N O L B L LI I L N N N O D D L B

* +

+ + *+ + + F F +F FFFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFE + + + + + + + + + ¥ + + & F + & F F F F A FF A FAFEAFFAFEAFFE A+

+

Jan. 28, 2020

SAUd

+ + + + + F + F F A+ FFFEFFFEFEFFEFFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEEFETE
+ + + + + F + + + + F F F FFFFFFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFF

+ + + + + + + F F F F FFFFFFFEFEFFEFFEFEFEFFEFEFFEFEFFE A FFEFEF A F
AL NN NN NN R NS EBEEEBEEBEEBENEBENEENEBEEMNIEIEZIIENIIIZIEIEZSEJISENZS,

Yy |
(414 UORASIKI 3108 SteUSH

+

U.S. Patent

* ¥ +F F F FFFFFFFFFFFFFFEF

S. Patent

Jan. 28, 2020 Sheet 2 of 7

b er Con '

* ko kot F

"\ N ! N 53 W
+ + + + + + +
+ * +
+ + + *
+ * +
* + * *
+ * +
* + * *
+ * +
* + * *
+ * +
* + * *
+ * [] +
! * + * *
+ * +
. + + + *
+ + +
* + * *
+ + +
* + * *
+ * +
* + * *
+ * +
* + * * -
L R R R R N A A N N A A R R N A N A A N NN NN
// “
"\ N ¢ N W
* + 3 + * * +
+ * +
* + * *
+ * +
* + * *
+ * +
* + * *
+ + +
+ + + +
+ * +
[] [] * + I * * I_’
+ * +
* + * *
Ly + * +
* + * *
+ * +
* + * *
+ * +
* + * *
* + * * * * - *
A R R A R N R A A A R A R A N A N R R A R A A A A A A
"\ . ! " u
* + + + * * -
+ * +
* + * *
+ * +
* + * *
* + * * * * *
r [n + + +
[] * + * *
nn * + * * * * *
+ * +
'L : : ' : N
[N] + + +
* + * *
[l] H + * +
* + * *
+ * +
* + * *
+ * +
* + * *
+ * +
* + * * -
N N A R A N R N R R R R R R R R R R R R S R R R R R R R R R R R R R S R R R R R R R R R R R R S R R R R R R R R R R R R R S R S R R R R R R R R A A R)
N ¢ N W
* + 3 + * * +
+ * +
[| * + * *
+ * +
* + * *
+ * +
* + * *
[] + * +
* + * *
[] + + +
tl" * + * *
L] + * +
* + I * * |
+ * +
* + * *
+ * +
'L * + * *
+ * +
|3 + + + +
+ * +
[] * + * *
[] * + * * * * - *
u N, R N A R N R A R N N R R N A N NN NN N
‘\ I E N u
* + 3 + * * +
+ * +
* + * *
+ * +
* + * *
+ * +
* + * *
n] n + + +
[]] [] + + + +
. . . .
[]] * + * *
+ + [] +
[] * + * *
+ * +
* + * *
" + * +
* + * *
+ * +
* + * *
+ * +
* + * *
+ * +
* + * *
+

+*
+ + + + + + + + + + + + + F + F FF A FFAFFAFEAFAFEAFEAFEFAFEAFAFEAFEAFEFAFEAFEAFEAFEAFAFEAFEAFAFEAFEAFEAFEAFEAFEAFEAFEAFEAFEAFEAFAFEAFEAFAFEAFEAFEAFEAFEAFAFEAFEFFEAFEAFEAFEAFEAFAFEAFEFEFEAFEAFEAFEAFEFEFEAFEFEAFEAFEAFAFEAFEFAFEAEFEFEAEFEFEFEFE

* + + + + + + + + + F + & F F o+ FFEFFFF

+ + + + + + + + + + + + + + +

groLip
UNIErS

™,

+ + + + + + + + + + + +
[+]

A
4

S 10,545,764 B2

+
+++++1-1-1-+++++++++++++++++++++++++++

I+
+

+ + + ¥+ + + ¥ + + ¥ + +

o

+ * +
*
*
*
*
*
*
+
+
*
[] * *
T N
[] * * +
*
*
*
*
*
*
*
*
*
+ *
4+ 4+ okt kbt + +
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
o) .
0 *
A *
*
'i.il' +
*
*
+ *
*
*
*
*
*
*
*
*
*
[] + +
+ kbt
[] * * +
*
*
*
*
*
* *
+ + | | A
d . A
ko ko ok k4 * 0
. i
: L L
+ E
* ‘J‘
*
*
*
*
*
*
*
*
*
*
. N
*
Fa) :
0 *
i *] d
. N Yy
L¥) . N
+] l
*
+ * . "J
*
*
*
*
*
*
*
*
*
[] * *
AL
[] + + +
*
*
*
*
*
*
*
*
*
+ *
ok ko ko ok *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
r\ +
0 *
0 *
*
'l.il' +
*
*
+ *
*
*
*
*
*
*
*
*
*
[] *
LAl
[] *
*
*
*
*
*
*
*
*
*
+ * -
Ok ok ok ko ko ko N R R R R R R S S i R S S S R R R N R

+ + + + + + + + o+

S. Patent

Unread
68

Jan. 28, 2020 Sheet 3 of 7 S 10,545,764 B2

+ + + + + + + + + + +F F o FFFEFEFEFEFEFEFEFEEEE+ I@gist@l
+
+-I-+++++++++++++++++++++++++

+ * + + *+ + + + + +++++ ottt ettt ottt ottt

ISSLe
queue

+ +
+ +
+

+* + + + + + + + + + + + + F +F FF FFFFFFFFEFFEFFFEFEFFEFEFFFEFFEFF
* bk ko kbbbt

+ F + F FFFFF A FFFF A FEFFEFFEFFFEFFFEFFEFEFEFEFFE A FFFFFFEFEFFE R+

FiG. 3

+ + + +F + F F F o+ FF A FEFFFEFFEFEFEE +

+ + + + + F + + F o+ FFFFF 1 ;; O

+
+
+
+
+
+
+
+
+
+
+ +* + F + + F F FFFFFFFFFFFFFFF -
+
+
. H 4
+
+
+
+

+ +

+ + + +

* One O .
. H H H L]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

* + + ko
* ko

+

pinary -

L I B B DO B B)
* + +

+

decode e
count Z/(5-1 70

+ 4+ + + + + + + + + +F + + F + +F FFFFFFFEFEFEFEFEEFEEEEE+

+ +
+++

* + + ko

* + + F F FF o FFFFFEFFEFEFFFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFEFFEFEFEFEEFFEFFEFFF

84
FIG. 4

127-120 23-16 - -

LI B B N N N R S BB R BB EEBEEEEEEBEEBEEEBEEREBEERBEEREEEBEREBEEEBEBEEEBEERBEBEERBRBERBEREBEBEEBEBEBEREBEBEEREBREREREEBEREBERERBEBEBEBEEBEEBEEREBEEEBEERBEELEBEBEBEBEBEEEBEERBEEBEBEREBEEBEBEBEEBEBEBEEREBEEBEREBEBERBEREBEBEIEBIEIBIENELN.]I
+

+ + + + + + + + + +
+ + + + ¥ + + ¥+ + +

+

+
+ + + + + + + + + + F

* ko kot

+ + + F F FFFFFFFFFFFEFFEAFFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFFEEFFEFFEEFEFEEFFFFF

+
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+

+ + *+ + + F + + + + +F F

coun

+ + + ¥ + + *F +F + F 4+ttt

+ + + + + + + + + + + + + + + + + + +

COUnN

+ + + ¥ + + *F + + Ft+

+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*

coun

+ + + + + F t+ T

+
+
+
+
+
+
+
+
+
+
+
+

L N N B B B N

P
-
-
—
—t

+
+
+
+
+
+
+
+
+
+
+
+

L L I B DL DO IO DAL BOL BN DO B)
L L I B DL DO IO DAL BOL BN DO B)

+ + + + + F + ++

127-120 23-16 - 7-0
IG5

S. Patent Jan. 28, 2020 Sheet 4 of 7 S 10.545.764 B2

* + F + F FFFFFFFFFFEFEFFEFEFEFEFFFEFEFFFEFEFEFEFEFEEFEFEFEEFEEFEFEFEFEFEFEFFEFEFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEFFEFEEFEFEEFFF

nstruction referencing
register X aliocated

{0 issuUe queus

100

+* + + + + F ¥ FFFFFEFFFEFFFEFFFEAFFEFEAFFEFEF
+ + + + + F F FFFFFEFFFEFFFEFFFEAFFFEAFFEF

+ + + + + + F F F At FFFFFFFFEFFFEFFFEFEFEFEFEFEFEFEFEFEFFEEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE

+*

* b kot

incremeant group countar
for groun including
register A

+ + + + + + + ¥ F F F FFFFAFFFAFFFFFEFEFEFFE A

G, 6

LA B N NS RSB EEBEEBE BB EEBEEBEBEEBEEBEBEBEBEEBEEEBEEEBEEEBEBELERBELEBEBEEBEREBEEBEBREREIEBIEEIBEIEENEEIEIMNIEIEZMSIEINEZIRJIEDZIEZEZS.

instruction referencing

register X leaves ~104

SSuUe gueus

+ + F ¥ + F F FFFFFFFFEFEFFEFFFEFEFFFFFFF

+*

* kot

+
* + + + + F F F FFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEEFEFEFEEFEFEFEFEEEEFEFEFEFEFEFEFEFEEEEFEFEFEFEFEFEEFEEEEFEEFE

 decrement group counter |
for group inciuging e

register X

L N R N L D I I D L B L L I R D L O R L R I I

G, 7

L L L I I D I L O L L L O D N O O

countar for
group Y ~110
= (}7

* ok ok kb ko ko ko ko ko ko ko ko ko k ko F

+ + +
+ +
+
+*
* + + ¥ F + F FFFFFFFFEFFEFEFFAFFFEFEFFEFEFFEAFEFFEFEFFEAFEFEFFEFFEFEFEFEFEFEFEFEEFEFEFEFEFFEFEFFFFF +* + + + F + F FFFFFFFFFEFFEFFFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEEFFEEFFFFF

clear unread bt
for all registers

set unread bit
for all registers

ngroup Y ngroup Y

+ + + + + + + + F F F o+ FFEFFFEFFFEFFFEFFEAFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE A F + + + + + + + + + + + + + F + + + +F F FF A FAFAFFAFAFFAFEAFFAFEAFEFAFEAFEFEAFEAFEFAFEFEFEAFEAFEFEAFEAFEFEAFEFEFEFEFEFEAFEFEFFF

FiG. 8

L L I I DO DO DL DAL DOL DN DO DOL DL DOE DOL DN DO DOL DL DO BOL DAL DON BOLBOE DO BOL DAL BN B
L L I I DO DO DL DAL DOL DN DO DOL DL DOE DOL DN DO DOL DL DO BOL DAL DON BOLBOE DO BOL DAL BN B

* + A
* + + + + + + F F o+

U.S. Patent

Jan. 28, 2020 Sheet 5 of 7

nhysical regisier {0 be seiecled at
rename stage

seiect physical register, for
which reserved bit clear,
update rename table+exception FIFO

sef reserved bit for selected
register

++

set allocated bit for selected
register

+

+++

set exception FIFQ bit and
clear allocated bit for physical
register previousty mapped {o
the architectural register

+++

set invalid bit for selected
physical register

FiG. 9

write to registeri | 140

complete

+

clear invalid bit 142

for register |

120

122

124

126

128

~130

US 10,545,764 B2

S. Patent Jan. 28, 2020 Sheet 6 of 7 S 10.545.764 B2

LI N L L D N L L L R L R O L R L N L D B O B L D L R L N L L L R L D L

entry invalidated in exception FIFO

+ + + + + ++ ++ + ++++ Attt ottt ottt ottt ottt ottt o+

+
+ + + + + + + + + +

+*

clear reserved for exception FIFQ

it {or physical register in entry

+ + F + + F F FFFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEF A FF

FiG. 11

LA I NN N BN B BB B EBEEEBEEBEEERBEEREEELEBEEBNEEBIELERIEBIEIBEIEIBEIEIEZIMIEIMEIREIEILEIEZS-:S.

+

+*

+
+
+*
+
+
+*
+
+
+*
+
+
+*

L L N B L B L L I L D N L L D D D D L D R L L L T D L L

aliocated, invalid,
reserved for exception FIFO 16
and unread bits
ail clear for register i

* ok ok ok ok ok ok ok ko kb bk kb ko kb ok ko ko ok ko kb bk kb ko ok ko kb kk ok ok kb kb ok ko bk kb kb ko k kb ko ko ko kb kb
+

+
+ + + + + + + + + + + + + + + +

+

+ + + F+ + + + + F F F FFFFFEFFFEFFFEFFFEFFFEFEFEFEFFEFEFEFEFEFFEFEFFFEFEFEFEFFEFEFFFEFFEFEFFFEFEFEFEFFFEFFFEFFFEFFEFEFFEFEFFFEFFFEFEFE A+

Clear reserved bit B2

for register |

+ + + + + A F

+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*

L B L N L N R L I D N L L L R L L D L L L L D D L L L D

G, 12

U.S. Patent Jan. 28, 2020 Sheet 7 of 7 US 10,545,764 B2

S8UB (ueus
_ 184 184 184 184

A
“d
.
E+
o

L N NN N N N N N N N R N N NN NN NN NN N NN N NN NN NN NN NN NN NN NN NN NN

l-..\hh

+ +F+ + F +F+FF
l a
+
+
+

10-

* + + + + F ¥+ F F FFFFFEFFFEFFEFEFEFFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEEEFEFEFEFEFEFEFEFEFEFEEEEFEEEEEEFEEEEEE

+ + + + + + + + + + + + + + + + F + + F + + F F FFF A FFAFAFAFEAFFAFAFFAFEAFFAFFEFAFAFFAFEAFFFEFEFAFEFFEAFEFEFEFEFEFEAFEFEFEFEFEFFEFEFEAFEFEFEFEFEFEAFEAFEFEAFEFEFEFEFEFEAFEFEFEFEFEFEAFEFFEEF

FiG. 13

0-49 23-16 196 7

* kb ko F
* + + F ¥ + ¥ ¥ + +
* + + F ¥ + ¥ ¥ + +

* + + F ¥ + F F + ¥+

+ + + F F F FFFFFFFEFFFEFEFFFEFEFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFEEFEFEFFEFFFFF

202 202
e

+ + + F F F FFFFFFFEFFFEFEFFFEFEFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFEEFEFEFFEFFFFF

+
+
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+

+
+

* + + F ¥ + ¥ ¥ + +
* + + F ¥ + ¥ ¥ + +
* + + F ¥ + F F + ¥+

+ + + F F F FFFFFFFEFFFEFEFFFEFEFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFEEFEFEFFEFFFFF

—.+ +

L I B L R R D D D O L L D D I L R L B O L B L D D R L B L L B

FiG. 14

510

+ + + + ¥+ + ¥+ ¥ + +
+ + + + ¥+ + ¥+ ¥ + +

+ + + F ¥ + F ¥+ F o+

slot 2 slot 1 slo

-

ﬁ + + + F F F FFFFFFFEFFFEFEFFFEFEFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFEEFEFEFFEFFFFF

* + + F ¥ + F ¥+ FFF

-.
+*

+ + + *+ + + F + +F + F F FFFFEFFFEFFEFEFFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFEEFEFEFEFEFEFEFEFEFEEFEEFEFEEEFEFEEEEEEFEEAEEEFEFEEEEEFEFEEEFEEEEEEEEFEEEE

206 206 206

+ + + F ¥ + F ¥+ F o+
+ + + F ¥ + F ¥+ F o+
+ + + F ¥ + F ¥+ F o+

ﬁ * + * * *
] + + + +
] * * * *
] * * * *
o + + + +
"l; * * * *
L * * * *
f [] + + + + +

* * * *

. [+] + + + + ++
* * * *
* '+ * * *

+ + + *+ + + F + +F + F FFFFFEFFFEFFEFEFFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFEEFEFEEFEFEFEFEFEEFEEFEFEFEEEFEFEFEFEEEFEFEEFEAEEEFEFEFEEFEEEEAFEFEEEFEEEEEEEEFEEEE H

+ + + + ¥+ + ¥+ ¥ + +
+ + + + ¥+ + ¥+ ¥ + +

——
R

....:.(g%
-

+ + +
+
+
+*
+
+
+*
+
+
+*
+
+ + +
+ +
+

L I N N BN N N BN N A LI N N B N BB BB B EBEBEEBEBEBEEEBEBEEBEEBEEBEBEBEEBEEBEEEBEEEELEEBEEREBELEBEBEBEEBEREBEBREEEBEEEBEEBEEIEMNEBIEIEIBEIEIEIBEIEIEZIEZIEZSEJIEZIEZSMIM,.

US 10,545,764 B2

1

AVAILABLE REGISTER CONTROL FOR
REGISTER RENAMING

BACKGROUND

Technical Field

The present techmique relates to the field of data process-
ing. More particularly, it relates to register renaming.

Technical Background

A data processing apparatus may support register renam-
ing 1n which architectural register specifiers specified by
istructions are mapped to physical registers to be accessed
in response to the instructions.

10

SUMMARY 15

At least some examples may provide a data processing
apparatus comprising;

register rename circuitry configured to map architectural
register specifiers specified by instructions to physical reg-
isters to be accessed in response to the instructions; and

available register control circuitry configured to control
which physical registers are available for mapping to an
architectural register specifier by the register rename cir-
cultry;

wherein for at least one group of two or more physical
registers, the available register control circuitry 1s config-
ured to control whether the physical registers of said group
are available 1n dependence on a group tracking indication
indicative of whether there 1s at least one pending access to
any of the physical registers 1n said group.

At least some examples may provide a data processing
apparatus comprising;

means for mapping architectural register specifiers speci-
fied by 1nstructions to physical registers to be accessed 1n
response to the instructions; and

means for controlling which physical registers are avail-
able for mapping to an architectural register specifier by the
means for mapping;

wherein for at least one group of two or more physical
registers, the means for controlling 1s configured to control
whether the physical registers of said group are available in
dependence on a group tracking indication indicative of
whether there 1s at least one pending access to any of the
physical registers 1n said group.

At least some examples may provide a data processing
method comprising:

mapping architectural register specifiers specified by
instructions to physical registers to be accessed 1n response
to the instructions; and

for at least one group of physical registers:

maintaining a group tracking indication indicative of
whether there 1s at least one pending access to any of the
physical registers 1n the group; and

controlling, 1n dependence on said group tracking indi-
cation, whether the physical registers of the group are
available for mapping to architectural register specifiers 1n
the mapping step.

The above, and other objects, features and advantages will
be apparent from the following detailed description of 60
illustrative embodiments which 1s to be read in connection
with the accompanying drawings.

20

25

30

35

40

45

50

55

BRIEF DESCRIPTION OF THE DRAWINGS

63
Further aspects, features and advantages of the present
technique will be apparent from the following description of

2

examples, which 1s to be read i conjunction with the
accompanying drawings, in which:

FIG. 1 schematically illustrates a portion of a data pro-
cessing apparatus comprising register rename circuitry;

FIG. 2 shows an example of available register control
circuitry for controlling which physical registers are avail-
able for renaming;

FIG. 3 shows an example of an 1ssue queue for queuing
instructions awaiting 1ssuing for execution;

FIG. 4 shows an example of decode logic for decoding a
physical register specifier to generate signals for increment-
ing or decrementing counters;

FIG. 5 shows another example for tracking physical
registers which are still be read by pending instructions;

FIGS. 6 and 7 show a method of tracking pending
references to a group of physical registers using a group
counter;

FIG. 8 shows a method of using the group counter to
control whether the group of registers are available for
renaming;

FIG. 9 shows a method of generating a new register
mapping between an architectural register specifier and a
physical register;

FIG. 10 shows a method of tracking completion of
outstanding register writes;

FIG. 11 shows a method of tracking which physical
registers may still be required for restoring previous state
following cancellation of a speculative instruction;

FIG. 12 shows a method of controlling which registers are
available for renaming:

FIG. 13 shows an example of an 1ssue queue with slots for
pending 1nstructions;

FIGS. 14 and 135 show other examples of tracking 1ndi-
cations for tracking pending accesses to corresponding
groups ol registers.

DESCRIPTION OF EXAMPLES

Some examples of the present technique will now be
described below.

A data processing apparatus may have register renaming
circuitry for mapping architectural register specifiers speci-
fied by 1nstructions to physical registers to be accessed 1n
response to the instructions. While from a programmer’s
point of view, the instructions may be able to specily a
certain number of architectural register specifiers, the appa-
ratus may actually have a larger number of physical regis-

ters. Without register renaming two instructions which write
to the same architectural register would have to be executed
in order to ensure subsequent instructions use the correct
value of the architectural register. However, by using reg-
ister renaming to map the same architectural register to
different physical registers for the two instructions, this can
allow the two instructions to be executed 1n parallel or out
ol order, which can help to improve performance.

Once a physical register has been mapped to an architec-
tural register specifier, 1t may be desirable to prevent that
physical register being remapped to a different architectural
register specifier until instructions which require the current
mapping of that physical register have accessed the register,
and 1n some cases for a time after this. Hence, available
register control circuitry may be provided to control which
physical registers are available for mapping to an architec-
tural register specifier by the register renaming circuitry.

The control of which physical registers are available for
renaming can be relatively complex. There may be some
overhead associated with the control circuitry for monitoring

US 10,545,764 B2

3

whether certain physical registers are still required or should
be made available for remapping to other architectural
register specifiers. A more precise approach may be able to
track which allocated physical registers are still required
with a higher degree of accuracy to enable physical registers
to be reclaimed sooner, which can help to improve perfor-
mance, but this may be at the cost of additional circuit area
and greater leakage 1n implementing the more precise con-
trol logic. On the other hand, a less precise technique may
be less costly to implement 1n terms of circuit area and
power consumption (leakage), but if 1t 1s more conservative
in making allocated physical registers available for renam-
ing again, then this may either require a larger pool of
physical registers to maintain a given level of performance,
or for a given number of registers may limit performance if
physical registers cannot be made available soon enough
alter renaming and there are not enough physical registers to
handle a particular set of instructions. Hence, there i1s a
balance to be achieved between performance and energy
ciliciency.

There may be various factors which may be considered
when determining whether physical registers are made avail-
able for mapping to an architectural register specifier by the
register renaming circuitry. One example may be whether
there are any pending accesses to physical registers. For
example, the pending access may be a read operation to read
a data value from a physical register 1n response to an
instruction.

One approach may be to detect whether accesses are
pending for each individual physical register and to control
the availability of that physical register according to whether
an access 1s pending. However, some systems may have a
relatively large number of physical registers (e.g. 128 reg-
isters) and may support a relatively large number of out-
standing register accesses, and so checking whether each
register has a pending access can be very expensive 1in terms
of logic, area and power consumption.

Instead, the available register control circuitry may have
at least one group tracking indication indicative of whether
there 1s at least one pending access to any of a corresponding,
group ol two or more registers. Hence, accesses to any of the
physical registers i the group are tracked with a common
group indication, which can be less expensive in terms of
circuit area and power consumption than providing indi-
vidual tracking for each register as 1t 1s not necessary to
distinguish which particular register in the group has the
pending access.

For example, the available register control circuitry may
prevent an unavailable physical register becoming available
when the group tracking indication for a group of physical
registers that includes the unavailable physical register indi-
cates that there 1s at least one pending access to any of the
physical registers in the group. The unavailable register may
be prevented from being made available even if the pending,
access 1s to a diflerent register in the same group as the
unavailable physical register.

It may seem counter intuitive to prevent a physical
register becoming available 11 there 1s pending access to any
register in the same group, as this would seem to limit
performance since 1t may unnecessarily prevent a register
being reclaimed even 1 there 1s no access pending to that
register. However, the mventors found that in practice the
grouping of tracking of pending accesses to registers does
not in fact limit performance significantly. While the group
tracking indication may prevent unavailable registers
becoming available 11 the group tracking indication indicates
that there 1s a pending access to one of the registers 1n the

10

15

20

25

30

35

40

45

50

55

60

65

4

group, this does not prevent already available registers in the
same group being selected for renaming and mapped to a
new architectural register specifier by the register rename
circuitry. Therefore, in practice, the performance impact
would arise only if all the registers in the group become
unavailable before the last pending access to any of the
registers in the group 1s complete, which does not happen
often 1n practice. In many cases, the pending read for an
allocated register may be completed before another register
in the same group 1s allocated by the rename circuitry, so 1t
can be more eflicient to eflectively share a single counter
between a group of registers, no that the additional overhead
ol counting pending accesses to each register may not be
Justified.

There may be various ways of tracking the pending
accesses to the registers 1n the group. One possibility may be
to provide a tracking value which takes a first value 11 there
1s a pending access to any register n the corresponding
group, and a second value if there 1s no pending access. In
this case, the tracking indication may simply indicate a
binary yes/no indication of whether there 1s at least one
pending access to the corresponding group of registers, and
need not distinguish how many accesses are pending other
than whether there 1s at least one pending access.

However, other examples may provide a group counter
for counting a total number of pending accesses to any of the
physical registers in the group. This approach may be more
eilicient to implement 1n practice since 1t may not require
decoding circuitry for decoding the register specifier speci-
fied by every pending access.

For example, the group tracking indication may track the
register accesses pending in a certain part of a processing
pipeline. In some cases the apparatus may include a register
reading unit at which read accesses to registers take place for
at least some 1nstructions. A group counter may be provided
which indicates the number of references to any of the
physical registers 1n the corresponding group of registers by
pending 1nstructions in the register reading unit. When the
group counter indicates that there 1s a pending istruction 1n
the register reading unit which references one of the regis-
ters 1n the group, then the available register control circuitry
may prevent that group of registers becoming available for
renaming. For example, 1n some systems data values may be
read from registers while istructions are pending within an
1ssue queue for queuing nstructions awaiting execution. In
this case, the register reading unit may be the 1ssue queue.
In other systems, the register reads may not take place until
an execute stage of the pipeline, and so the register reading
unit may be an execute unit for executing instructions.

One approach for tracking the number of outstanding
accesses may be to decode references to physical registers
within each instruction pending within the register reading
umit. However, 1n practice the register reading unit may
support a relatively large number of pending instructions
and each 1nstructions may refer to multiple registers, and so
this could result 1n a relatively large amount of decoding
logic, which can increase circuit area and power consump-
tion.

Where the group tracking indication 1s a group counter, a
more eflicient approach can be to detect references to
physical registers by pending instructions entering or leav-
ing the register reading unit, which may require fewer
register references to be decoded per cycle. For example,
when an instruction referencing any register of a given
group 1s provided to the register reading unit, the corre-
sponding group counter for that group may be imncremented.
When an 1nstruction referencing one of the group of physical

US 10,545,764 B2

S

registers 1s removed from the register reading unit or com-
pletes processing in the register reading unit, then the
corresponding group counter may be decremented. An
instruction may be removed from the register reading unit
either because it successtully completes processing 1n the
register reading unit, or because the instruction has been
cancelled (for example, due to a branch misprediction, load
misspeculation, load/store abort or other event which means
that the instruction should not be executed). Some 1nstruc-
tions may specily multiple registers and so may cause
several group counters to be imncremented or decremented
when the instruction 1s provided to, or removed from, the
register reading unit. The group counter may be 1nitialised at
a predetermined value when there are no pending instruc-
tions 1n the register reading unit which require one of the
corresponding group of physical registers. For example the
predetermined value may be zero (although other values
could also be used). The available register control circuitry
may prevent an unavailable physical register becoming
available for remapping to a different architectural register
specifier when the group counter for a group of physical
registers including that unavailable physical register has any
value other than the predetermined value.

The terms “increment” and “decrement” are used herein
to refer to an adjustment of the group count value by a
predetermined amount, with one of the “increment” and
“decrement” corresponding to adding the predetermined
amount to the count value and the other of “increment” and
“decrement” corresponding to subtracting the predetermined
amount from the count value. Often, the predetermined
amount may be 1, “incrementing” may correspond to adding
1 to the count value, and “decrementing” may correspond to
subtracting 1 from the count value. However, other values
could be used as the predetermined amount, or in some cases
the counter may start at a higher value with “incrementing”
corresponding to a subtraction and “decrementing” to an
addition.

In another example, the register reading unit may have a
number of slots for storing indications of pending register
reads, and the group tracking indication could be an indi-
cation of which slots hold pending register reads specitying
a register from the corresponding group. An unavailable
register could then be prevented from becoming available
for renaming when the group tracking indication indicates
that there 1s at least one slot of the register reading unit
which stores an indication of a pending register read to any
of the physical registers in the corresponding group.

The number of registers 1n each group can be selected to
balance performance against circuit area or energy efli-
ciency. Larger or smaller groups can be selected depending
on the needs of a particular implementation.

At one extreme the group of registers may comprise all of
the physical registers, so that only one group of registers 1s
provided and a single group tracking indication tracks
pending accesses to any of the registers 1n the group. In this
case, release of a previously allocated physical register may
be prevented 1f there 1s a pending access to any physical
register at all. This may seem counter intuitive, but as
mentioned above this may still permit available physical
registers to be allocated, and 1t 1s only once all the registers
have become unavailable that releasing the registers would
be prevented by the group tracking indication 11 there are any
pending accesses outstanding, which may not happen often
if 1t takes some time to allocate all the registers. An
occasional stall to clear a backlog of uncompleted register
accesses before starting to reallocate registers again may be
justified 1n some 1mplementations given that this approach

10

15

20

25

30

35

40

45

50

55

60

65

6

has the smallest area and leakage overhead associated with
the group tracking indication and associated logic.

In other embodiments, however, there may be two or
more groups of registers with each group having a corre-
sponding group tracking indication and the available register
control circuitry controlling whether the physical registers of
the group are available 1n dependence on the corresponding
group counter.

For example, with the group counter example, 11 there are
7. physical registers and each group comprises G physical
registers, where 2=G=7, and the register reading unit 1s
capable of handling up to M pending register reads, then Z/G

group counters may be provided and each group counter
may have at least N bits, where N 1s the smallest integer
greater than or equal to log,(MxG+1). An N-bit counter 1s
suflicient to count pending register reads to the group of
physical registers, even 1f every pending register read 1n the
register reading unit specifies a register 1 the same group.
In contrast, 1f each register had an individual counter then
this would require Z counters of log,(M+1) bits or more,
which would require more power hungry circuitry, not just
in having more counters, but also in having more complex
logic for decoding register specifiers within instructions and
mapping these to corresponding control signals for incre-
menting or decrementing the counters.

One advantage of tracking accesses to registers 1n groups
1s that fewer bits of register specifiers may need to be
considered when updating the at least one group tracking
indication to update. For example, if physical registers are
identified using R-bit register specifiers, where R 1s an
integer, the available register control circuitry may select
which group tracking indication 1s to be updated 1n response
to detecting a particular register reference based on fewer
than R bits of the register specifier. This can reduce the
amount of decoding circuitry required for decoding the
register specifiers and updating the group tracking indica-
tion. For example, if registers are grouped in groups of 8,
then 1t may not be necessary to consider the least significant
3 bits of the register specifiers.

The available register control circuitry may consider other
factors 1n addition to whether there are any pending accesses
to groups of physical registers, when determining which
registers are available for selection by the register rename
circuitry. Therefore, the group tracking indication may not
be the only information considered when determiming
whether registers can be made available for renaming.
Hence, while a register may be prevented from being made
available 1f the corresponding group tracking indication
indicates that there 1s a pending access to a register in the
corresponding group, the converse 1s not necessarily true—
even 1f the group tracking indication indicates that there are
no pending accesses to the corresponding group of registers
this does not necessarily mean that the register can be made
available. There may be other reasons for reserving registers
to protect them from reallocation.

For example, 1 addition to the group tracking
indication(s), any of the following parameters could also be
considered when determining whether a register can be
made available for renaming:

an mdication of whether the physical register 1s currently
mapped to an architectural register specifier;

I a physical register 1s currently mapped to an architec-
tural register specifier; the data value stored in the
physical register represents the current architectural
state, which could be lost 1f a subsequent instruction
was allowed to write to the same register. This can be

US 10,545,764 B2

7

prevented by indicating the physical registers currently
mapped to architectural register specifiers as unavail-
able for renaming.

an indication of whether there 1s an uncompleted write to
the physical register; By preventing a physical register
becoming available for renaming until after any pend-
ing write to that register 1s complete, this can protect
against write-after-write (WAW) hazards where two
write operations complete 1 the wrong order which
could cause other instructions to access the wrong
value,

an 1ndication of whether there 1s an unresolved specula-
tive mstruction which specifies an architectural register
specifier which was previously mapped to the physical
register.

Some systems may support speculative execution of some
istructions. For example, the outcome of a branch may
be predicted using a branch predictor and some 1nstruc-
tions may be executed speculatively following the
branch depending on whether the branch 1s predicted
taken or not taken. Other speculative mstructions may
include load/store mstructions which may be executed
speculatively assuming that there 1s no abort due to
isuilicient access permissions for example. An mstruc-
tion may also be considered speculative if 1t follows
another speculative instruction. If the speculation for a
given instruction turns out to be correct, performance 1s
improved since the delay in determining whether the
instruction should have executed or not has not delayed
the actual execution of the instruction. However, 1f 1t 1s
determined that the speculation 1s wrong and the
instruction should not have executed or a result of the
instruction 1s 1ncorrect, then the execution of the
istruction may be cancelled and it may be required to
restore previous register state. Therefore, when gener-
ating a new register mapping for an architectural reg-
ister specified by a speculative instruction, an 1ndica-
tion of the physical register which was previously
mapped to the same architectural register may be
retained and this physical register may be made
unavailable for selection by the register rename cir-
cuitry so that the data value within that physical register
can be used to restore the previous register state it the
speculative instruction has to be cancelled.

In some cases an availability register may be provided
which includes a number of bits with each bit indicating
whether a corresponding physical register 1s available or
unavailable. The group tracking indication(s) and the param-
eters described above may be used to control whether a bit
in the availability register for a given physical register may
be changed from a first value indicating that the register 1s
unavailable to a second value indicating that the register 1s
available. Hence, a bit of the availability register may be
changed to the second value if the group tracking indication
for the group mcluding the corresponding register indicates
that there are no pending accesses to any registers in the
group, and 11 the other parameters also indicate that there 1s
no other reason for reserving the physical register. The
register rename circuitry may, when selecting a physical
register to map to an architectural register, select one of the
registers for which the corresponding bit in the availability
register has the second value.

FIG. 1 schematically illustrates a portion of a processing,
pipeline 1 a data processing apparatus 2. The pipeline
includes a number of stages including a fetch stage 4, a
decode stage 6, a rename stage 8, an 1ssue stage 10, an
execute stage 12 and a write back stage 14. Instructions to

10

15

20

25

30

35

40

45

50

55

60

65

8

be processed move from stage to stage, and one instruction
may be pending at one stage of the pipeline while another
instruction 1s pending at a different stage. It will be appre-
ciated that this 1s just one example of a possible pipeline and
other examples may have other stages or arrangements.

The fetch stage 4 fetches program instructions from an
instruction cache or memory. The decode stage 6 decodes
the fetched instructions to generate decoded instructions
which are passed to the rest of the pipeline for processing.
For some instructions, a single instruction fetched from
memory may be decoded into a single decoded instruction
passed down the pipeline. However, for other more complex
istructions, a single fetched instruction may be decoded
into multiple decoded nstructions known as “micro-opera-
tions”. For example, an instruction for triggering a series of
operations to be performed (such as a load multiple mstruc-
tion) may be decoded 1nto individual micro-operations each
corresponding to one ol the operations. Therefore, the
“instructions™ as seen by the later stages 8, 10, 12, 14 of the
pipeline may be different from the instructions fetched from
memory and the term “instruction” should be interpreted as
encompassing a micro-operation.

The apparatus 2 has a number of physical registers 20
available for storing data values. A register renaming stage
8 performs register renaming for the decoded instructions
(or micro operations) to map architectural register specifiers
specified by the instructions to physical register specifiers
identifying one of the physical registers 20. The instruction
set architecture may support a certain number of architec-
tural registers which are visible to the programmer. For
example, a 4- or 3-bit register field 1n the instruction
encoding may specily one of 16 or 32 different architectural
register specifiers. However, to allow hazards between
instructions speciiying the same architectural register speci-
fier to be resolved or to permit out of order or parallel
processing ol instructions, a greater number ol physical
registers may be provided, and the register rename stage 8
may map the architectural register specifiers in the decoded
instructions to corresponding physical registers.

The renamed instructions now specitying physical regis-
ter specifiers are passed to the 1ssue queue 10 where they are
queued while awaiting execution. Instructions remain 1n the
1ssue queue until their operands are available, at which point
the 1nstruction 1s 1ssued to the execute stage 12 for execu-
tion. Instructions may be 1ssued for execution 1n a different
order to the original program order in which they were
fetched by the fetch stage 4. For example, while one
instruction 1s stalled because its operands are not yet avail-
able, a later mstruction whose operands are available may be
1ssued {first.

The execute stage 12 may include various processing
units for executing processing operations in response 1o
istructions. For example, the processing units may include
an arithmetic/logic unit (ALU) for performing arithmetic or
logical operations, a load/store unit to perform load opera-
tions for loading a data value from memory and placing it in
a physical register or store operations for storing to memory
a data value currently stored in a physical register, a vector
processing unit for performing vector operations on data
values comprising multiple data elements, tloating-point

circuitry for performing operations on tloating-point values,
or any other type of processing circuitry. In some cases the
execute stage 12 may include a number of parallel execute
pipelines for processing different kinds of instructions.

US 10,545,764 B2

9

When execution of the instruction i1s complete in the
execute stage 12, the instruction 1s passed to the write back
stage 14, which writes a result of the mstruction to a physical
register 20.

In the example shown 1n FIG. 1, for renamed 1nstructions
which specily one or more physical registers from which
data values are to be read, the reading of the physical register
takes place while the instruction i1s pending in the issue
queue 10. However, other embodiments may read the physi-
cal registers 20 at the execute stage 12 1nstead, as shown by
the dotted line i FIG. 1.

Available register control circuitry 30 1s provided for
controlling which of the physical registers can be selected by
the rename stage 8 for mapping to an architectural register
specifier. The available register control logic 30 will be
described 1n more detail below but in general the available
register control circuitry 30 may provide the rename stage 8
with an indication of which physical registers are available
or unavailable for selection. When an instruction which
writes to a register 1s received from the decode stage 6, the
rename stage 8 generates a new register mapping for the
architectural register specified as the destination register for
the instruction. The rename stage 8 selects a physical
register which 1s indicated as available by the available
register control circuitry 30 and updates a rename table 32
to include a rename entry mapping the destination architec-
tural specifier to the selected physical register.

The pipeline 2 supports speculative execution of instruc-
tions. Some 1nstructions may be executed speculatively
betore i1t 1s known whether the instruction should be
executed, or before it 1s certain that the result of the
istruction will be valid. For example, following a branch
instruction, some instructions may be executed speculatively
based on a prediction of whether the branch is taken or not
taken, before the actual branch outcome 1s known. When the
speculation 1s correct, speculative execution can improve
performance by eliminating a delay which would arise if the
instruction was not executed until after 1t 1s known that the
instruction should have executed or that its result will be
valid. However, 1f the speculation turns out to be incorrect,
then execution of the mstruction may need to be cancelled
and architectural state may need to be restored to the last
valid state.

An exception memory 34 1s provided for tracking previ-
ous register state which can be restored in the event of a
misspeculation. When a new register mapping 1s generated
by the rename stage 8 for a given architectural register
specifier, the previous mapping 1s written to the exception
memory 34. For instance, 1n the example of FIG. 1, when a
new mapping of archutectural register Al to physical register
P102 1s generated in the rename table 32, the physical
register P48 which was previously mapped to architectural
register Al 1s written to the exception FIFO. The previous
physical register P48 continues to store the data value which
was associated with architectural register A1 at the point just
before execution of the instruction. Hence, 1f there 1s a
misspeculation for the instruction specitying architectural
register Al, then the current mapping for architectural
register Al 1n the rename table 32 1s updated based on the
corresponding mapping in the exception memory 34, so that
architectural register A1 now maps to physical register P48
again. It 1s not necessary to transier data between registers
in order to restore the architectural state, since simply
updating the register mapping 1n the rename table 32 1s
enough to cause subsequent instructions which read archi-
tectural register Al to access the previous data in the
restored physical register P48.

10

15

20

25

30

35

40

45

50

55

60

65

10

Entries may be removed from the exception memory 34
once the corresponding instruction has been resolved. When
a speculative nstruction 1s committed (1.e. 1t 1s known that
the mstruction should have executed and the result of the
speculative instruction will be valid), then the corresponding
entry can be removed from the exception memory 34 since
it will no longer be required for restoring mapping in the
rename table 32. Similarly, when a speculative instruction 1s
cancelled, then once the rename table 32 has been updated
based on the mapping indicated 1n the corresponding entry
in the exception memory 34, then the corresponding entry
can be removed. Whether a particular speculative instruction
should be committed or cancelled will depend on an out-
come of one or more earlier instructions, and this could be
resolved either before or after the actual execution of the
speculative instruction. The exception memory 34 may be
managed as a first 1n, first out (FIFO) memory so that the
entries are removed in the same order that they were
allocated to the register. Hence, even i an 1nstruction has
already been committed or cancelled, 1ts corresponding
entry may not be removed from the exception FIFO 34 until
any earlier instructions have been resolved,

FIG. 2 shows a portion of the available register control
circuitry 30. A reserved register 50 indicates which physical
registers 20 are currently available for selection by the
rename stage 8 or unavailable (reserved). The reserved
register 50 includes a number of bitfields 52 each corre-
sponding to one of the physical registers 20. When a bitfield
has a value of 1 then the corresponding register 1s reserved
and 1s not available for renaming, while 11 the bitfield for a
particular register has a value of 0 then the register 1s
available for renaming. When the rename stage 8 needs to
generate a new register mapping, the reading stage 8 selects
one ol the physical registers 20 whose bitfield 52 in the
reserved register 50 1s equal to 0. Various techniques may be
used to control which physical register 1s selected when
there are multiple physical registers 20 available for renam-
ing. For example, a random or round robin selection policy
could be used.

When the rename stage 8 selects a physical register for
renaming, the corresponding bit field 52 m the reserved
register 1s set to 1 to indicate that the register 1s reserved. The
physical register then remains unavailable for renaming until
the corresponding bitfield 52 1n the reserved register 50 1s
cleared. Register release control logic 60 controls when a
particular register can be made available again, based on a
number of status registers 62, 64, 66, 68. Each of the status
registers 62, 64, 66, 68 corresponds to a particular condition
which may prevent an allocated physical register from being
released.

In this example the status registers include an allocated
register 62 which indicates whether physical registers are
currently allocated to an architectural register specifier in the
rename table 32, an invalid register 64 which indicates
whether registers are still to be written to by a pending
instruction which has not yet completed at the write back
stage 14 1n the pipeline, an exception FIFO status register 66
which indicates whether physical registers are currently
indicated 1n one of the entries of the exception FIFO 34, and
an unread register 68 which indicates whether any registers
could potentially be the subject of an outstanding read
operation.

Each of the status registers includes a number of bit fields
cach corresponding to a respective physical register 20.
When the bitfield for a given physical register 1s 1 1n any of
the status registers 62, 64, 66, 68 then the corresponding
bitfield 52 of the reserved register 50 cannot be cleared to O.

US 10,545,764 B2

11

The register release control logic 60 clears a bitfield in the
reserved register 50 11 the corresponding bitfields in each of
the status registers 62, 64, 66, 68 arc all 0. For example a
logical OR operation may combine the corresponding bit-
ficlds of registers 62, 64, 66, 68 by a logical OR operation
and the corresponding bitfield 52 in the reserved register 50
may be cleared 1f the OR result 1s zero. Hence an allocated
physical register can only be released to make 1t available for
renaming again 1f 1t 1s not currently allocated in the rename
table 32, there are no pending writes to that register as
indicated by the ivalid register 64, 1t 1s not currently
indicated 1n the exception FIFO as indicated by the excep-
tion FIFO register 66, and there 1s no potential read out-
standing to the register as indicated by the unread register
68.

The unread register 68 1s associated with a number of
register group counters 70 each corresponding to a group of
physical registers 20. In the example of FIG. 2, each group
comprises 4 registers so that one counter 70 1s provided for
registers O to 3, another counter 1s provided for registers 4
to 7, and so on. The count value of each counter 70 indicates
how many of the pending register reads 1n the issue queue
10 specily one of the corresponding group of registers. The
count value of a given counter 70 1s zero if there are no
pending reads to any of the corresponding group of registers.
If the count value has a value of zero, then the bitfields in the
unread register 68 for the corresponding group of registers
are all set to O so that these registers could potentially be
released for renaming, depending on the contents of the
other status registers 62, 64, 66. If the count value has any
value other than zero, then the bitfields 1n the unread register
68 for each registers of the corresponding group are set to 1
to prevent these registers being released for renaming.
Hence, even if there 1s an outstanding read pending to only
one of the registers 1n the group, this may still prevent all of
the corresponding group of registers being released for
renaming. Nevertheless, when the unread bits for a group of
registers are set to 1, while this prevents a register which 1s
already unavailable (1.e. 1t has a reserved bit of 1 1n reserved
register 50) being released, 1t does not prevent an available
register within that group (a register with a reserved bit of O
in reserved register 50) being selected for renaming.

For example, in FIG. 2 the physical register 126 1s
currently unavailable as indicated by the corresponding
bitfield 1 the reserved register 50. The counter 70 for the
group of registers 127-124 1s 1, so there 1s a pending read to
one of these registers outstanding 1n the issue queue 10. This
means that the corresponding bit fields in the unread register
68 for registers 127-124 are net to 1. Therefore, physical
register 126 cannot be reclaimed and made available for
renaming until the corresponding bit in the unread register
68 1s cleared, which will not happen until the group counter
70 for register group 127-124 becomes 0 again when the
outstanding read has completed. Nevertheless, physical reg-
1sters 124, 125 and 127 are still indicated as available 1n the
reserved register 50 and so can be selected for renaming by
the rename stage 8, but once selected would not be able to
be released until the corresponding group counter 70
becomes zero again.

In contrast, for physical register 2 1n the example of FIG.
2 the register 1s currently indicated as unavailable in the
reserved register 30 but now the corresponding bit fields in
cach of the status registers 62, 64, 66, 68 arc zero (since the
corresponding group counter 70 for registers 3 to 0 1s zero),
and no the register release control logic 60 can release this
register by clearing the bat field 52 for physical register 2 in
the reserved register 50. On the other hand, even though the

10

15

20

25

30

35

40

45

50

55

60

65

12

group counter 70 for registers 3 to O has a value of 0,
physical register 3 1s unavailable and cannot be released
because 1t 1s still specified 1n the exception FIFO 34 as
indicated by the corresponding bit i the exception FIFO
status register 66.

FIGS. 3 and 4 show examples of updating the group
counters based on 1nstructions being provided to, and
removed from, the 1ssue queue 10. As shown 1n FIG. 3, the
1ssue queue 10 may receive a certain number of istructions

per cycle, and a certain number of instructions per cycle may
be 1ssued to the execute unit 12. In FIG. 3, two instructions
are received by the 1ssue queue 10 per cycle and two
instructions are 1ssued to the execute unit per cycle, but other
examples may have diflerent numbers, and i1t will be appre-
ciated that the number of instructions 1ssued for execution
per cycle does not necessarily need to be the same as the
number of mstructions provided to the 1ssue queue per cycle.
Each instruction may specity multiple registers to be read.
For example, 1n FIG. 3, each instruction may contain up to
4 references to physical registers to be read, so that in each
cycle up to 8 register references may be added to the 1ssue
queue and up to 8 register references may be removed from
the 1ssue queue. Each of these register references may be
decoded 1n order to increment or decrement the correspond-
ing group counters 70.

FIG. 4 shows an example of decode logic 80 for decoding
a particular register reference. The decode logic 80 com-
prises binary-to-one hot decoding logic for decoding a
register reference specified as a binary number into a one hot
signal 82 comprising a group of bits 84, where at any one
time only one of the bits 84 can be 1 and the other bits are
0. Which signal 1s set to 1 depends on the value of the binary
register specifier. Each bit 84 of the one hot signal 82
corresponds to one of the group counters 70 and will be set
to 1 11 the binary register specifier R has a value correspond-
ing to any of the registers in the corresponding register
group. For example, if the registers are grouped 1nto groups
of 4 as 1 FIG. 2, the least significant bit 84 may be set 11 the
register specifier R indicates one of registers 0 to 3, the next
bit 84 may be set 1t the register specifier R indicates one of
registers 4 to 7, and so on.

For each register reference entering the issue queue 10,
the decode logic 80 1s provided to convert the register
reference into the one hot signal 82, and each group counter
70 1s incremented 1n response to the corresponding bit 84 of
the one hot signal 82. For each register reference leaving the
1ssue queue, the decode logic 80 1s provided to convert the
register reference into the one hot signal 82, and each group
counter 70 1s decremented 1n response to the corresponding
bit 84 of the one hot signal 82.

While the amount of decode logic 80 required will scale
with the number of register references entering or leaving
the 1ssue queue 10 per cycle, this typically will require much
less circuitry than if every register reference pending in the
1ssue queue 10 was tracked. For example, 1t the 1ssue queue
10 includes entries for 16 pending instructions, each of
which may specity up to 4 registers, then this would require
64 register references to be decoded per cycle rather than the
16 register references as in the example of FIGS. 3 and 4.

The amount of decode logic 80 1s also dependent on the
number of counters 70 provided. Hence, the larger the
number of registers 1 each group, the less decode logic 80
1s required. By tracking the number of pending register reads
in groups, rather than tracking the reads to each register
individually, the complexity of the one hot decoding logic 80
can be reduced significantly, as well as requiring fewer

US 10,545,764 B2

13

counters 70 and less logic for reading the count value and
controlling the corresponding bits of the unread register 68.

FIG. 5 shows an alternative example of the unread register
68. In this example, rather than having separate bit fields for
cach physical register 20, the unread register 68 may com-
prise a bitfield for each group of registers so that all of the
registers within the same group are represented by a single
bit which has a first value 1f there 1s at least one pending
access to the corresponding group of registers and a second
value 1 there 1s no pending access to any register of that
group. The register release control control logic 60 can
control whether the corresponding bitficlds 52 1n the
reserved register 530 for each of the corresponding group of
registers are cleared, based on the single bitfield 1n the
unread register 68 for that group. Also 1n the example of

FIG. 5, each group of registers comprises 8 registers rather
than 4 as 1n FIG. 2.

More generally, 1f there are Z addressable physical reg-
isters 20 and a maximum of M pending register references
in the 1ssue queue 10 (corresponding to the number of
registers specified per instruction multiplied by the maxi-
mum number of issue entries), then i1f the registers are
grouped 1n groups of G registers (where GG 1s 2 or more), then
all the register references can be tracked using 7Z/G counters
70 of N bits, where N 1s the smallest integer greater than or
equal to log,(MxG+1). In contrast, i1f register references
were tracked for individual registers (1.e. G=1), then this
would require Z counters of log,(M+1) bits.

Applying this to a real example with an 1ssue queue size
of 16 entries, 4 read registers per instruction and 128
addressable physical registers, 1.e. M=64, 7=128:

If each register was counted individually (G=1), then
N=upper(log 2(65))=7 bits, and 128 counters ol 7 bits each
would requires a huge amount of decode logic 80 and other
control circuitry.

In contrast, an acceptable less precise solution with G=8
may have N=upper(log 2(64*8+1))=10 bits and 128/8=16
counters. 16 counters of 10 bits each requires much less
circuit area not only in reducing the number of counter bits
(160 bits rather than 896 bits), but also 1n greatly reducing
the corresponding decode logic.

In the extreme case where there 1s only one group
(G=128), then N=upper(log 2(64*128+1))=14 bits, so there
1s only 1 counter of 14 bits which provides the smallest
circuit area and leakage overhead for the particular example
given above.

Hence, the group size G can be selected to trade off
performance against power consumption and circuit area
depending on the needs for a particular implementation.

In previous implementations, counting of individual reg-
isters has been considered too expensive for implementing
in a practical system, so that other techniques for protecting
physical registers still to be read against reallocation by the
rename stage 8 have been used. For example, some tech-
niques have prevented entries of the exception FIFO 34
being removed until the corresponding 1nstruction has been
executed (rather than being able to remove entries from the
exception FIFO 34 when the instruction 1s committed, which
may occur before actual execution of the mnstruction). How-
ever, blocking popping of entries from the exception FIFO
34 can result 1in the exception FIFO 34 becoming full earlier,
which can result in additional stalls to the pipeline and harm
performance. Instead, by counting the pending register reads
in groups of registers, the control overhead of the counters
70 and decode logic 80 can be made less expensive so that
it 1s not necessary to block the exception FIFO until reads

5

10

15

20

25

30

35

40

45

50

55

60

65

14

are complete, providing a better balance between pertor-
mance and power consumption.

FIGS. 6 to 12 show methods for tracking which registers
are available for renaming. Each of these methods may be
performed 1n parallel.

FIG. 6 shows a method of incrementing the group counter
70 for a given register group. At step 100 an instruction
referencing a particular register X 1s allocated to the 1ssue
queue 10. The decode logic 80 decodes the register reference
and at step 102 triggers incrementing of the group counter 70
for the group of registers that includes register X.

FIG. 7 shows a method of decrementing the group counter
for a given register group. At step 104, an 1instruction
referencing register X leaves the 1ssue queue 10, indicating,
that the pending read to register X has completed. The
decode logic 80 decodes the register reference and at step
106 triggers decrementing of the group counter 70 for the
group of registers that includes register X.

FIG. 8 shows a method of controlling the unread status
register 68. At step 110 1t 1s detected whether the group
counter 70 for a register group Y 1s O. If so, then at step 112
the unread bits are cleared (set to 0) for each of the physical
registers 1n register group Y. If the group counter 70 1s not
0, then at step 114 the unread bits are set (to 1) for each of
the registers 1n register group Y. When the unread bits are set
then this will prevent the corresponding registers becoming
available for renaming 1if they are currently unavailable as
indicated by the reserved register 50, but they will not
prevent an already available register being selected by the
rename stage 8.

FIG. 9 shows a method of selecting physical registers for
renaming at the rename stage 8. At step 120 the rename stage
8 encounters an nstruction which specifies an architectural
register specifier as a destination register, and so a physical
register 1s to be selected for mapping to this architectural
register specifier. At step 122, the rename stage 8 adds an
entry to the exception FIFO 34 specitying the current
mapping in the rename table 32 for the specified architec-
tural register specifier, selects a physical register 20 for
which the reserved bitfield 52 1n the reserved register 50 1s
clear (=0), and updates the rename table 32 so that the
speciflied architectural register specifier 1s now mapped to
the selected physical register 20. At step 124, the reserved bit
52 1n the reserved register 50 for the selected register 1s set
to 1 to indicate that this register 1s now unavailable for
renaming. At step 126, the allocated bit in the allocated
register 62 corresponding to the selected physical register 1s
set to 1. At step 128, the allocated bit 1n the allocated register
62 1s cleared for the physical register which was previously
mapped to the same architectural register, and the exception
FIFO bit in exception FIFO register 66 1s set for this register
to indicate that this physical register 1s now indicated 1n the
exception FIFO 34, not the rename table 32. At step 130 the
invalid bit for the physical register selected at step 122 1s set
in the invalid register 64 to indicate that there 1s a pending
write outstanding for this physical register.

FIG. 10 shows a method of controlling the invalid register
64. At step 140 a write to a physical register 1 1s completed
at the write back stage 14. At step 142, the invalid bit for
register 11s cleared 1n the invalid register 64. By keeping the
invalid bit set until the write to register 1 1s complete, this
protects against write aiter write hazards.

FIG. 11 shows a method of controlling the exception
FIFO status register 66. At step 154 an entry 1s ivalidated
in the exception FIFO 34, which may take place once the
corresponding speculative instruction 1s resolved (commiut-
ted or cancelled). When the speculative mstruction 1s com-

US 10,545,764 B2

15

mitted, 1t 1s known that the physical register in the corre-
sponding exception FIFO will no longer be required, since
the register mapping indicated in the rename table 32 wall
now represent the valid contents of the specified architec-
tural register. When the mstruction 1s cancelled, after restor-
ing the exception FIFO mapping to the rename table, the
exception FIFO entry 1s no longer required. To track which
istruction corresponds to which exception FIFO entry, the
exception FIFO entries may be tagged with an indication of
the corresponding instruction, or 1nstructions in the pipeline
2 may be tagged with an indication of the corresponding
exception FIFO entry. In response to an entry being invali-
dated 1n the exception FIFO 34 at step 154, at step 156 the
bit of the exception FIFO status register 66 corresponding to
the physical register specified 1n the invalidated entry 1s
cleared to indicate that this physical register 1s no longer
required by the exception FIFO 34.

FIG. 12 shows a method of controlling releasing of
previously allocated physical registers. At step 160, the
register release control logic 60 determines whether the
control bits for a particular register 1 are clear (=0) 1n each
of the allocated register 62, the invalid register 64, the
exception FIFO register 66 and the unread register 68. If not
then the corresponding bit 32 in the reserved register 30
remains the same, so if the register j 1s already reserved, it
will remain reserved. If all of the bits for register 1 are clear
in the status registers 62, 64, 66, 68, then at step 162 register
release control logic 60 clears the corresponding bit in
reserved register 50 to indicate that this register can now be
selected again by the rename stage 8. In this way, a register
cannot be remapped to a different architectural register
specifier until 1t 1s no longer required by a current mapping
in the rename table 32, there are no outstanding writes to the
register, there 1s no need for the register to be preserved in
case a speculative nstruction 1s cancelled, and there 1s no
pending read to that register or any of the other registers
within the same group.

While FIG. 2 shows an example in which reserved
registers are indicated with bit field values of 1 and available
registers are indicated with bit fields of 0, other examples
could use the opposite mapping. In this case, the reserved
register 50 could instead be interpreted as an “available
register” where registers indicated with a batfield of 1 are
available and registers indicated with a baitfield of O are not
available. The status registers 62, 64, 66, 68 could also use
the opposite mapping with values of O indicating that
registers should remain unavailable. In this case, the register
release control logic 60 could comprise AND gates for
combining each of the status bits for a given register using
a logical AND operation, so that the availability bit 1s set to
1 only if each of the status registers 62, 64, 66, 68 indicate
that the register can be made available.

Also, while FIG. 3 shows an example of counting the
register references entering and leaving the 1ssue queue 10,
if another unit such as the execute unit 12 carries out register
reads, then register references entering and leaving this unit
could be counted in a similar way.

The information provided by the group counters 70 could
in some examples be used for other purposes, 1n addition to
controlling releasing of allocated registers for renaming. For
example, they could be used to track the progress of certain
instructions through the pipeline 2. For example, in an
apparatus including more than one pipeline 2, the group
counters 70 1n one pipeline 2 may provide an indication of
progress ol instructions accessing a group of registers,
which could be used by the other pipeline 2 to correlate its
execution of 1nstructions with that of the first pipeline 2. For

10

15

20

25

30

35

40

45

50

55

60

65

16

example, some systems may have a data engine pipeline for
executing one or more specific types of instructions, and a
general purpose pipeline for executing other types of
instructions, with the group counters 70 allowing some
tracking of progress in the other pipeline.

FIG. 13 shows an example of the 1ssue queue 10 which
comprises a number of 1ssue slots 180 for holding i1ndica-
tions of pending instructions awaiting 1ssue. Each slot 180
comprises an 1ndication (e.g. an opcode) 182 of the type of
istruction, and zero, one or more register specifiers 184
identifying physical registers (renamed Ifollowing the
rename stage 8) which are to be read in response to the
instruction. In the example of FIG. 13 each 1ssue slot 180
may specily up to 4 physical register specifiers. The desti-
nation register of the instruction may also be specified, as
well as any other control information associated with the
istruction (these are not shown 1n FIG. 13 for conciseness).

FIGS. 14 and 15 show further examples of group tracking
indications provided by the available register control cir-
cuitry 30 for tracking pending register accesses in the 1ssue
queue 10 to any of a corresponding group of physical
registers. These may be provided istead of the group
counters 70, with registers 50, 62, 64, 66, 68 being used 1n
a similar way to the examples discussed above.

In FIGS. 14 and 15, the group tracking indications indi-
cate which issue slots 180 hold 1nstructions requiring access
to any register in the corresponding group of registers. In the
example of FIG. 14, a number of 1ssue slot status registers
200 are provided. Each 1ssue slot status register 200 corre-
sponds to one of the slots 180 of the 1ssue queue and
comprises a number of bitfields 202 with each batfield 202
corresponding to a respective group of two or more physical
registers. For instance, 1n this example each group comprises
8 registers no there 1s one bitfield 202 for registers O to 7,
another bitfield for registers 8 to 15, and so on. Each batfield
202 takes a first value (e.g. 1) if the instruction in the
corresponding 1ssue slot 180 refers to a register 1 the
corresponding group of registers, and takes a second value
(e.g. 0) otherwise. For example, in FIG. 13 the instruction 1n
slot 0 specifies registers R7, R12, R54 and so the bitfields
202 1n that slot’s status register 200-0 for register groups
0-7, 8-15 and 49-55 are set to 1 and the other bitfields 202
in register 200-0 are set to 0. The available register control
circuitry 30 may prevent a given register becoming available
for renaming (1.¢. prevent clearing of the corresponding
bitfield 1n reserved status register 50) if any of the bitfields
202 corresponding to the group of registers including the
given register are set to 1 1 any of the slot status registers
200. While FIG. 14 shows an example where there 1s one
slot status register 200 for each 1ssue slot 180, 1n other
examples there could be one status register 200 for each
register reference specified 1n the 1ssue queue. In practice,
the amount of decoding logic may be similar since in order
to determine the bitfields 202 for each slot 180, each of the
register specifiers 184 1n that slot may need to be decoded.

FIG. 15 shows another example in which each register
group has a corresponding status register 204, and each
status register 204 has a number of bitfields 206 each
corresponding to one of the 1ssue slots 180 to indicate
whether the corresponding issue slot 180 contains a register
reference to any register within the group corresponding to
that status register 204. Unavailable registers within a par-
ticular group of registers can be made available if the
bitfields 206 within the status register 204 corresponding to
that group of registers are all set to O to indicate that there
1s no pending reference in any of the issue slots 206 to that
group of registers. Note that the information shown in FIG.

US 10,545,764 B2

17

15 1s really the same information that 1s shown 1n FIG. 14,
but with the bitfields 206 grouped by register group instead
of by 1ssue slot 180. Again, other examples could have
bitfields 206 provided for each register specifier 184 1n the
1ssue queue rather than each issue slot 180.

Hence, the group tracking indications 200, 204 shown in
FIG. 14 or 15 could be used to set or clear the corresponding
bitfields of unread status register 68 shown 1n FIG. 2 or FIG.
5, and then the unread status register 68 could influence the
clearing of the reserved status register 50 1n a similar way to
discussed above.

The counter 70 embodiment may be more eflicient in
many cases because only register references entering and
leaving the 1ssue queue need to be decoded as shown 1n FIG.
3, rather than requiring the references in each 1ssue slot to be
decoded. However, 1n examples with smaller 1ssue queues
10 with fewer pending register references, the examples of
FIGS. 14 and 15 may be preferred. In any case, the approach
shown 1n FIGS. 14 and 15 may still require significantly less
decoding logic than would be required 11 accesses to each
individual register were tracked, rather than tracking
accesses to groups of registers as shown i FIGS. 14 and 15.
One reason 1s that when tracking registers in groups rather
than individually, fewer bits of the register specifiers need to
be considered 1n order to determine which tracking indica-
tion to update.

In the present application, the words “configured to . . . ™
are used to mean that an element of an apparatus has a
configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the
apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device
may be programmed to perform the function. “Configured
to” does not imply that the apparatus element needs to be
changed 1n any way 1n order to provide the defined opera-
tion.

Although illustrative embodiments have been described
in detail herein with reference to the accompanying draw-
ings, 1t 1s to be understood that the invention 1s not limited
to those precise embodiments, and that various changes and
modifications can be eflected therein by one skilled in the art
without departing from the scope of the appended claims.

e

We claim:

1. A data processing apparatus comprising;:

register rename circuitry configured to map architectural
register specifiers specified by instructions to physical
registers to be accessed 1n response to the instructions;
and

available register control circuitry configured to control
which physical registers are available for mapping to an
architectural register specifier by the register rename
circuitry;

wherein for at least one group of two or more physical
registers, the available register control circuitry 1s con-
figured to control whether the physical registers of said
group are available 1n dependence on a group tracking
indication indicative of whether there i1s at least one
pending register read to any of the physical registers in
said group;

wherein the group tracking indication comprises a group
counter for counting a number of pending register reads
to any of the physical registers 1n said group; and

a number of said group counters are provided each
corresponding to a respective group of physical regis-
ters, where the number of group counters 1s less than a

10

15

20

25

30

35

40

45

50

55

60

65

18

number of physical registers available for mapping to
architectural register specifiers by the register rename
circuitry;

wherein when the group tracking indication indicates that

there 1s no pending register read to any of the physical
registers 1 said group, the available register control
circuitry 1s configured to determine whether an unavail-
able register of said group can become available inde-
pendently from other registers of said group.

2. The data processing apparatus according to claim 1,
wherein the available register control circuitry 1s configured
to prevent an unavailable physical register becoming avail-
able when the group tracking indication for a group of
physical registers including the unavailable physical register
indicates that there 1s at least one pending register read to
any of the physical registers 1n the group.

3. The data processing apparatus according to claim 1,
wherein the group tracking indication comprises a group
pending 1indication having one of a first value indicating that
there 1s a pending register read to any of the physical
registers 1n said group and a second value indicating that
there 1s no pending register read to any of the physical
registers 1n said group.

4. The data processing apparatus according to claim 1,
comprising a register reading unit configured to read a value
from a physical register 1n response to at least some 1nstruc-
tions.

5. The data processing apparatus according to claim 4,
wherein the register reading unit comprises an issue queue
configured to queue 1nstructions to be 1ssued for execution.

6. The data processing apparatus according to claim 4,
wherein the register reading unit comprises at least part of an
execute unit configured to execute instructions.

7. The data processing apparatus according to claim 4,
wherein the group tracking indication comprises a group
counter indicative of the number of references to any of the
physical registers in the group by pending instructions in the
register reading unit.

8. The data processing apparatus according to claim 7,
wherein the available register control circuitry i1s configured
to increment the group counter 1n response to an instruction
referencing any of the group of physical registers being
provided to the register reading unait.

9. The data processing apparatus according to claim 7,
wherein the available register control circuitry i1s configured
to decrement the group counter in response to an mstruction
referencing any of the group of physical registers being
removed from, or completing processing in, the register
reading unit.

10. The data processing apparatus according to claim 7,
wherein the available register control circuitry 1s configured
to prevent an unavailable physical register becoming avail-
able when the group counter for a group of physical registers
including the unavailable physical register has a value other
than a predetermined value.

11. The data processing apparatus according to claim 10,
wherein the predetermined value 1s zero.

12. The data processing apparatus according to claim 4,
wherein the register reading unit comprises a plurality of
register reading slots to store indications of pending register
reads; and

the group tracking indication comprises an indication of

which of the register reading slots store an indication of
a pending register read specifying any of the physical
registers 1n said group.

US 10,545,764 B2

19

13. The data processing apparatus according to claim 1,
comprising a plurality of group tracking indications each
corresponding to a respective group of two or more physical
registers;

wherein for each group, the available register control

circuitry 1s configured to control whether the physical
registers of the group are available 1n dependence on
the corresponding group tracking indications.

14. The data processing apparatus according to claim 7,
wherein the apparatus comprises Z physical registers;

cach group of physical registers comprises G physical

registers, where 2=G=/;

the register reading umit 1s capable of handling up to M

pending register reads; and

the apparatus comprises 7Z/G group counters, each group

counter comprising at least N bits, where N 1s the
smallest integer greater than or equal to log, (MxG+1).

15. The data processing apparatus according to claim 1,
wherein for each physical register of the group, the available
register control circuitry 1s configured to control whether the
physical register 1s available 1n dependence on the group
tracking indication and at least one further parameter.

16. The data processing apparatus according to claim 15,
wherein the at least one further parameter comprises one or
more of:

a parameter indicating whether the physical register 1s

currently mapped to an architectural register specifier;

a parameter indicating whether there 1s an uncompleted

write to the physical register; and

a parameter indicating whether there 1s an unresolved

speculative instruction which specifies an architectural
register specifier which was previously mapped to the
physical register.

17. A data processing apparatus comprising:

means for mapping architectural register specifiers speci-

fied by 1nstructions to physical registers to be accessed
in response to the mstructions; and

means for controlling which physical registers are avail-

able for mapping to an architectural register specifier
by the means for mapping;

wherein for at least one group of two or more physical

registers, the means for controlling 1s configured to
control whether the physical registers of said group are
available 1n dependence on a group tracking indication

10

15

20

25

30

35

40

20

indicative of whether there 1s at least one register read
to any of the physical registers 1n said group;

wherein the group tracking indication comprises a group
counter for counting a number of pending register reads
to any of the physical registers 1n said group; and

a number of said group counters are provided each
corresponding to a respective group of physical regis-
ters, where the number of group counters 1s less than a
number of physical registers available for mapping to
architectural register specifiers by the means for map-
ping;

wherein when the group tracking indication indicates that
there 1s no pending register read to any of the physical
registers 1n said group, the means for controlling 1s
configured to determine whether an unavailable regis-
ter of said group can become available independently
from other registers of said group.

18. A data processing method comprising:

mapping architectural register specifiers specified by
istructions to physical registers to be accessed 1n
response to the instructions; and

for at least one group of physical registers:

maintaining a group tracking indication indicative of
whether there 1s at least one register read to any of the
physical registers 1n the group; and

controlling, in dependence on said group tracking indi-
cation, whether the physical registers of the group are
available for mapping to architectural register specifi-
ers 1n the mapping step;

wherein the group tracking indication comprises a group
counter for counting a number of pending register reads
to any of the physical registers 1n said group; and

a number of said group counters are provided each
corresponding to a respective group of physical regis-
ters, where the number of group counters 1s less than a
number of physical registers available for mapping to
architectural register specifiers; and

wherein when the group tracking indication indicates that
there 1s no pending register read to any of the physical
registers 1n said group, the controlling comprises deter-
mining whether an unavailable register of said group
can become available independently from other regis-
ters of said group.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

