12 United States Patent

Dusanapudi et al.

US010540249B2

US 10,540,249 B2
*Jan. 21, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

STRESS TESTING A PROCESSOR MEMORY
WITH A LINK STACK

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Manoj Dusanapudi, Bangalore (IN);
Shakti Kapoor, Austin, TX (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/804,512

Filed: Nov. 6, 2017

Prior Publication Data

US 2018/0267876 Al Sep. 20, 2018

Related U.S. Application Data

Continuation of application No. 15/438,118, filed on
Mar. 14, 2017.

Int. CI.

GoOol 11/00 (2006.01)

GoOol 11/263 (2006.01)

U.S. CL

CPC GooF 117263 (2013.01); GO6F 11/008
(2013.01)

Field of Classification Search

CPC GO6F 11/3466; GO6F 11/3644; GO6F

11/3664
U P e e 714/35

See application file for complete search history.

>
v

(56) References Cited

U.S. PATENT DOCUMENTS

11/1992 Sawai et al.
1/1994 Auvinen et al.
2/1994 Lin
4/1996 Nakamura
7/1996 Michelsen et al.

(Continued)

5,165,029 A
5,270,833 A
5,287,481 A
5,513,344 A
5,537,572 A

FOREIGN PATENT DOCUMENTS

6/2013
2/2003
12/2014

CN 103140828 A
EP 0805390 Bl
KR 101467623

OTHER PUBLICAITONS

Mutlu, Onur. 15-7 40/18-7 40 Computer Architecture Lecture 24:
Prefetching. Carnegie Melon University, 2011.

(Continued)

Primary Examiner — Sarai E Butler

(74) Attorney, Agent, or Firm — Martin & Associates,
LL.C; Bret J. Petersen

(57) ABSTRACT

A processor memory 1s stress tested with a variable link
stack depth using link stack test segments with non-naturally
aligned data boundaries. Link stack test segments are inter-
spersed 1nto test code of a processor memory tests to change
the link stack depth without changing results of the test code.
The link stack test segments are the same structure as the
segments of the test code and have non-naturally aligned
boundaries. The link stack test segments include branch to
target, push/pop, push and pop segments. The depth of the
link stack 1s varied independent of the memory test code by
changing the number to branches in the branch to target
segment and varying the number of the push/pop segments.

15 Claims, 9 Drawing Sheets

1400

Boundaries

Provide Test Code for Testing a Memory in
Segments With Non-Naturalty Alligned Data —"

1410

v

Segments

Flace a Plurality of Link Stack Test
Segments Interspersed into the Test Code —"

1420

v

Execute the Test Code With the

Interspersed Link Stack Test Segmentsto { -~

Change the Link Stack Depth Without
Changing Results of The Test Code

1430

v
oo)

US 10,540,249 B2
Page 2

(56)

5,539,878
5,671,231
5,704,035
5,745,508
5,831,987
0,012,125
6,044,478
6,070,238
0,192,515
0,594,731
0,658,534
0,754,857
7,133,975
7,203,872
7,254,509
7,647,539
7,609,083
7,725,292
7,743,305
7,752,499
7,788,610
7,925,866
7,992,059
8,015,362
8,101,432
8,101,440
8,645,609
8,720,044
8,924,786
9,317,460
9,612,929
9,665,486
9,892,039

2002/0040285
2003/0122584
2004/0078699
2005/0071817
2006/0248319
2008/0126771
2008/0168562

2008/0258749
2009/0024886
2009/0070570
2009/0070632
2009/0089564
2009/0070532

20
20
20

201

201
201
201
201
201
201
201
201
201
201
201
201
201
201

11/0078521
11/0213926
11/0276764
201
201
201
201

2/0079346
2/0102302
2/0221903
3/0007425

3/0047140

3/0339327
4/0032966
4/0129773
4/0157055
4/0195786
5/0026445
5/0134933
5/0143057
5/0221396
5/0234700
5/0347134
6/0162381
6/0349322
8/0146454

References Cited

U.S. PATENT DOCUMENTS

et g i

A A A A A A A A A A A AR A A A A A A A A A A AN A A A A A A A

1 =

1 =

1 =

7/1996
9/1997
12/1997
4/1998
11/1998
1/2000
3/2000
5/2000
2/2001
7/2003
12/2003
6/2004
11/2006
4/2007
8/2007
1/2010
2/201
5/201
6/201
7/201
8/201
4/2011
8/2011
9/2011
4/201
4/201
2/201
5/201
12/201
4/201
4/201
5/201
2/201
4/2002
7/2003
4/2004
3/2005
11/2006
5/2008
7/2008

s I e [s e

O ~1~1ON bbb

10/2008
1/2009
3/2009
3/2009
4/2009
5/2009
3/2011
9/2011

11/2011
3/201
4/201
8/201
1/201

2/201

w2 2 D Do

12/201
1/201
5/201
6/201
7/201
1/201
5/201
5/201
8/201
8/201

12/201
6/201

12/201
5/201

GO N Oy th L b bn Ln o I I I I

Kikinis

Cooper

Shipman
Prohotsky

Spilo

Tran

(reen

Feiste et al.
Doshi et al.
Hertwig et al.
White et al.
Liang

[saac et al.
Frodsham et al.
Johnson

Bussa et al.
Arora et al.
(ross et al.
Yamada
Choudhury et al.
Emek et al.
Greenhalgh et al.
Anvekar et al.
Alexander et al.
Wang et al.
Emek et al.
Alexander et al.
Hameed et al.
Menon et al.
(Greiner et al.
Dusanapudi et al.
Habermann et al.
[uttrell et al.
Boehm

Boehm
Thompson et al.
DeWitt et al.
Kadambi

Chen et al.

Haga

Yamada
Arora et al.
Choudhury et al.

Bag et al.
Brickell et al.

Bussa et al.
He et al.
[.edford

Alexander et al.
Fukuda

Bansal et al.
Ohnuma
Cantin et al.

Shann

Belmar et al.
Dusanapudi et al.
Habermann et al.
Mozak et al.
(ilkerson et al.
Bansal et al.
Holm et al.
Pavlou et al.

tttttttttttttttttttt

iiiiiiiiiiiiiiiii

.. GO6F 21/14

726/23

GOOF 11/3664
717/128

Subramaniam et al.

Qin et al.
Gschwind et al.

Hendrickson et al.

Shibahara et al.
Wang

iiiiiiiiiiiiiiiiiii

... HO4W 4/80

OTHER PUBLICATIONS

Jegou, Yvon, and Olivier Temam. “Speculative Prefetching”, Pro-
ceedings of the 7th International Conference on Supercomputing,

ACM, 1993.

Prefetch Distance. High Performance Computer Architectures: A
Historical Perspective. [retrieved on Mar. 19, 2018]. Retrieved from
the Internet <URL: http ://homepages.inf.ed.ac.uk/cgi/rni/comp-
arch.pl ?Stores/pref-dist.html,Stores/pref-dist-1.html,Stores/menu-
pre.html>, 1996.

Dusanapudi et al., “Replicating Test Case Data Into a Cache With
Non-Naturally Aligned Data Boundaries” U.S. Appl. No. 15/887,968,
filed Feb. 2, 2018.

IBM, Appendix P—List of IBM Patents or Patent Applications
Treated as Related, dated Mar. 2, 2018.

Eichenberger et al., Vectorization for SIMD Architectures with
Alignment Constraints. ACM, PLDI’04, p. 82-93, Jun. 2004.
Adir et al., Genesys-Pro: Innovations 1n Test Program Generation
for Functional Processor Verification. IEEE Design & Test of
Computers, p. 84-93, 2004,

English Abstract of Korean Patent No. 101467623.

Zhu et al., “Class-based Cache Management for Dynamic Web
Content.” Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Societies, IEEE Infocom 2001.
Lundqgvist, Thomas, Data Cache Timing Analysis with Unknown
Data Placement. vol. 9. Technical Report dated Feb. 2011, Depart-
ment of Computer Engineering, Chalmers University of Technol-

ogy, Goteborg, Sweden, 2002,
McKinney et al. “DECchip 21066: the Alpha AXP Chip for Cost-

Focused Systems.” Compcon Spring’94, IEEE, 1994.

Maman, et al. “Reusable On-Chip System Level Verification for

Simulation Emulation and Silicon.” 2006 IEEE International High-
Level Design Validation and Test Workshop, 2006.

Kadry et al. “Improving Post-silicon Validation Efficiency by Using
Pre-generated Data.” Hardware and Software: Verification and
Testing, Springer International Publishing, p. 166-181, 2013.

English Abstract for Chinese Patent CN103140828A, Jun. 5, 2013.
Lozano et al., A Deeply Embedded Processor for Smart Devices,

Smart Computing Workshops (Smartcomp 2014) p. 79-86, 2014.
IBM, “Method and apparatus for branch recovery in out of order
dispatch and out of order retire instruction stream environment”,
[PCOMO000125694D, Jun. 13, 2005.

Disclosed Anonymously, :Method and System for Defining a Stack
Model and Tracking Changes to a Test Execution Stack,
[PCOMO000199695D, Sep. 15, 2010.

Disclosed Anonymously, “Method and System for Controlling
Cache Interaction Among Arbitrary Hardware Verification Tools™,
[PCOMO00196688D, Jun. 11, 2010.

Gay et al., Stack Allocating Objects 1n Java, retrieved from:
citeseerx.ist.psu.edu, Jan. 1999,

Disclosed Anonymously, “A method and system to intelligently
evolve test cases”, IPCOMO000240119D, Jan. 5, 2015.
Dusanapudi et al., “Replicating Test Case Data Into a Cache With
Non-Naturally Aligned Data Boundaries™ U.S. Appl. No. 15/010,051,
filed Jan. 29, 2016.

Dusanapudi et al., “Replicating Test Case Data Into a Cache With
Non-Naturally Aligned Data Boundaries™ U.S. Appl. No. 15/065,279,
filed Mar. 9, 2016.

Dusanapudi et al., “Replicating Test Case Data Into a Cache With
Non-Naturally Aligned Data Boundaries™ U.S. Appl. No. 15/244,799,
filed Aug. 23, 2016.

Dusanapudi et al., “Replicating Test Code and Test Data Into a
Cache With Non-Naturally Aligned Data Boundaries” U.S. Appl.
No. 15/152,430, filed May 11, 2016.

Dusanapudi et al., “Replicating Test Case Data Into a Cache and
Cache Inhibited Memory” U.S. Appl. No. 15/207,669, filed Jul. 12,
2016.

Dusanapudi et al., “Testing Speculative Instruction Execution With
Test Cases Placed in Memory Segments With Non-Naturally Aligned
Data Boundaries” U.S. Appl. No. 15/344,768, filed Nov. 7, 2016.
Dusanapudi et al., “Stress Testing a Processor Memory With a Link
Stack™ U.S. Appl. No. 15/458,118, filed Mar. 14, 2017.

IBM, Appendix P—List of IBM Patents or Patent Applications
Treated as Related, dated Jan. 31, 2018.

* cited by examiner

U.S. Patent Jan. 21, 2020 Sheet 1 of 9 US 10,540,249 B2

Processor

120
2 L)
Main Memory

121 ——— Operating System

P g R U R W R R R R R M R R R R R S R R R D R R R S M R S M R R M R g
- g T T T g T T T i T T T g g g T i T T i T T T g T T Ty .

Link Stack Test
Segments

G e e e e o o o o o o i o o i i e ke i e o e ol e o i ol sl i s ol o i sl o i s o e i s ol i ol o o i e ol o i ol i i o o i sl ol i ol sl e i s e o i ol o i sl ol o i ol i i sl ol i i s o i sl o o i ol ol o ol o o sl sl o i sl ol i i o e i ol e o i ol ol i ol o o i ol om om o oh oa om

130 140 150

JL JL o JL/

Mass Storage F Display I/F Network I/F

<_=)

R S S SR T S R S S SR T S R S S SR T S SR S S SR T S i

Mass
Storage

S 175 175

U.S. Patent Jan. 21, 2020 Sheet 2 of 9 US 10,540,249 B2

200

MAVAY, Test Case Executor

___ ; b 214

Test Case Test

Code || Test Data
124 125

R S S SR S T SN S T S S S S e il o ek ey ol

\ e e e e e o e e

________________________ | 212 L ink Stack Test
E Segments 4126

210 |* 123 Test Ca

Processor 21

L1 Cache (spilit) —_— ,
L2 Cache 9o
L1 1 Cache (Unified) =

L1 D Cache Link Stack 599
218B | | T

FIG. 2

U.S. Patent Jan. 21, 2020 Sheet 3 of 9 US 10,540,249 B2

L1 I Cache 218A

| L2 Cache (Unified)
| z 220
instruction Cache Line 12 o

1.1 D Cache 2188 """" Cach e Lme2 348

Data Cache Line DR EE RN Test Data 195 -

CHZR I NP, | I E— 2] |

Test Data 42

R g R R R R R R S R R R S S R R R R R R R S SR R R S G R R R G R R S R R B S R S R R S R R R R R S S g R S S R S R R R R R R S S R S R R R R S R R R S S R S S R S S R S R R S R R R S R R S S R R S S R R S R R R R R R R R S R R R S g g

g g g g g e g g g g g g g g g g g g g e g g g g g g g g g g g gy g g g g g g g g g g g g g e g g g g g g g g g g g g g g g g e g g e g g g e g’

L1 Cache 218A

PSR SR S SR SO T SAR A SO T SN SR S S SN SO S U SO S S SO T S SU S T SU S SO S S S S S A SO S U SO S T SO S S SA SO S T A SO S S S S S SN SR S S SO S S SO S

-

f 20
Instruction Cache Line 31 e B

e el il pliee el il e il il el il el i il e il e il e e el lie e il ol plle il el il e el il e el il nle el

A Cache Line1 316
Test Code 124 Sl : =

L 1 D Cache 2188 f / /

Data Cache Line

g R R R L R R L R R R R R R R R R R S R N R S e S R S R R N S R S R R R S R G R R R R R S N R U S N R N R S N N R S R R R G R R R R R U S N R U N R R S R R R R R S R R R U R S R S R R U R R R R R R R R S R R R G R N R g g g

A%

obed

US 10,540,249 B2

Sheet 4 of 9

Jan. 21, 2020

U.S. Patent

Buissoin

" = = " = ®m oE N ®E E®E
B b b L L L L L L L

= = om " = = " ®m ®m E ®m E N ®E ®E E ®® =
L L L L . L L O L o L 8 C B 0 0 L 0 C b C 0 o o 0 C 0 0 o o 0 C .

S dr Jdpdp dr o dr e dpodp dr dp dpodp dr o dr dr e dpodp dr dr b e de ok g
O N RN N NN N NN NN N R NN NN N NN
X)
N N x)
s)
N X
) e NN N
e e T e e e e T
e N)

X d ok k d k kd ko kkdk k

Hﬁ&nﬁﬁﬁﬂ ﬁnﬁ%ﬂﬁﬁﬁﬁk
) w})
b T Ty T T F S)
PN P)
bar Tar Tar Tar e Ve Tl e Xy
L e o e

J dr ko b d ok d ok d k d ke k d d k k d k kd ko d kkd kkd kkdkk

HkH._,.HkH...HkaH#H&H.qH&H&H&H...H&H.qH&# -Hk... ityfn...n...ﬂk ...H.quHkH.quH...H&H.qH&H&H

kkkkkk#kkkkk#k#kmmw..{” o T T T T oy ar o e T

e e P

F A o P N N

b o Vo o Ty e T o o oo T T T Yo e ol arge x o e T T Y T ar T ar arara ar

F e a a I a a i P e e e

BT e IR
...H._..H...H.qH...H._..H...H._..H...H.qH...H...H.qH._,.H...H...H._,.H...H.qH...k._..k...#._..H...H...#...H._..._,..qH._...,_....H...H._,.H...H.qH...H...H#HkaH#H&H&H&H&H#H#H&H&H
.._..._..........._......._..._..........._..........._......._..._............N......%H#k#kk##k##k##k##k# .
N A N A N NN o oo T T T ar o e T T T T
e e Ay e o i .
L A e L L N N I I
e o o Vo T T Ty Ty o e T T ol o T T Y T ar T ar ar e e e T .
L I o aloa e e x R e e e arar arar ara
I -

” 1111” 111 111”1 11111 111 ” 111 111” HkHkH...H.qHkH..qHkH._,.H...HkHkH#H._,.HkH.,_.HkHkH...k._,.Hk.....qH._,.HkH...._...qHk._.....Hk.q._,.H...HkHkH...HkHkkkH&Hknknkﬂknknkﬂknknkﬂknk.
e e e e e e e e T e T e T e e e o e e e e e e e e e e e e il e Ty e)
N A A A A A NS e re e e e e e e e T e e T e Y e e e T T e e e e e T e e T e T e e e e T Ty T T T T T Ty
Fr P e e e e e e W Fror e e e e e de dy dp dr d e e e e e dr e e dr g %ﬁ#kk#kkkkk#k##k##k##.
N R A A e e e e e e e e T e e T Ty T e e T T e Tae e Ty Tae T e e e e e e ar e e e ey ey
R R R . e e ol e e X) 8
L A A re e e e e e e e BT e e T T T T T Tae T e Tae e g Tae Ve e Tae Vg e M T I e e e e a a
1l. l1l.l1l. l1l. l1l.l1l. l1l l1l l1l 1l. l1l. l1l.l1 .T....Tb..Tb-.T.l..Tb..T....T....Tb..'b-.'....fb..'....'b..'b..'b-.'...*b..'b-.'....f .T....Tb..Tb..T .T....Tb..Tb-.T....Tb..Tb-.T.l..Tb..Tb-.T....Tb..T....Tb..Tb..Tb-.T....Tb..Tb-.T....Tb..Tb-.T....Tb..Tb-u.

xE:

A
k|

|

i i b i i iy i I S T S S SR L R
pr e e e de e e e e de e
I
i

W i dr d i dr i A dr A A i A A i AR
) X &)
o
I T
[, U U U U U U e e o X X
) X & E N)
L e T e e e e ar o o X oa T T ae o Tae o T o e e o e e e e e e T

P B
ks

e) e e
P ok ke ki ke

o N e N N N N e e N

¥
i
Eals

Ll
Eals

Ll
Eals
¥

K xx
K xx

Jr dr O ar b dr O

L]
L)
L]
L]
L]
L)
L)

PN T
Fy

S i g, W, g i, g, B g B Mg, B B B S, B S, I

rrFrrrrrrrrrrrrrorror

.1 *H...Hu_.H.._.H.,_.Hu..H.,_.H.._.HkaH#H#H*H#H#H*H#H#H*H# ._,.}...
o el o

e e e s

e e e e e e e T

T e e e e e e e e e e e e e e e g i i i o i A ooty iy dr e i i i i
A e e e e e e Y e e i e e e e
" 1.11.1 et e e e e e e e e e o, e e o e e e e e o e e e g e e o U e e e e o e
et o *#kk#kkMk” MMWumk*#kk#kk#kk#kk#k*#k
S TS e T T A ol L I e al al Sa e e
et e o e T T T T ar T arar e e e Yo e T x i oo T T T T ar o e aar T T T T
L I I R e e e ey iy iy iy x L I I R T e P ey iy et
et L e A x Pl I N a a l a a a aaaa
Tl et e, L O I O I e e a a

[o

D o
i
)

X

RO

B
AN
X
¥
X ¥

i

N e i a a a a

)

i
X
IS
i
X
IS
i

)
)
X
)

¥
L N N
e e e o
Eals

x ENC e

)
)

i X

¥

Eals
s
Eals

)
e e e e

i
i
i

P

i
o
Eals

P

Pl Sl Sl S A S A S A S)
rrororor ¥ b X k ok kK
Xk kN kK

I
i
™
Pl
¥ kX
dr e e e g oy
E R Y X
EE k) Ea ks o N
A e e e e e e e e e e e I R e e e e e e e e e e e e e e e e
X Ll Al X

Ea s

ar

i
)

I

X
IS
i
X
IS
i
X
IS
i
L o
IS
i
X
IS
i
X
IS

NN N NN

i

E D)
Xl

L "
b “or

....
¥k kX
X e a Ea

¥k kK
Ea

Ea D)
E D)

Xl
Ea D)

E)

......

dr b X b b d ko d dr & ok X k¥
e e e e e e e e e
Eals

)

)
e e T T

i

X
¥
¥
X
¥
¥
X

Ny
¥
X
¥
¥
X
¥
¥
X

by
i

X ¥
X xx

S e

Sl S e e e
oo o

™
ol Al

b "oy
¥
b o

b
™

r i i i i A i i e i i e dr A e i A A dr dr e i o o o o i i d h hr d & ok ko k
**H#k*kk*#k*knkn*#f*# e e e e e e X

o H H N s ¥ g ...kk.,_.*u.....*u..H...HkH...H...H...HkHﬂ...HkH&H#H&*f#“

N N NN e S NN N] al %& L N NN N N N e S NN N

N N N) ¥ Xk : o N el
s ¥ o

EE
¥
Pl
¥ a o
EE
PN
¥ a
EE
s
EE
PN
¥ a
Eal

X
X

D e el el e e el) e el
e e T T T

i
N N N N N N N

A g e i g g g g B g g g g, g g g, g, g g iy, Iy e g g g g g g B g g g, g, g g g, g, g g, g g, g B g g i I iy

rrrrrErrFrEEPEREERE LR PR PR R P PR
e R R R R A A d dp Jdr dr dr dr dp dp dp dr dr dr & X X
L L N N ror_rar T N ..######################## X g ar#############k##########_
rrrrrrrrrrrrrrrrECrCETF r A T T N A_......._..............._.............................#k##k#####k#####k#####k# i ﬁ_...#####k#####k#####kk####._
e e e e e e e e e e e e e T e afe rrrrrrrrrrrrrrrrrrcr J b b b b drodr b dp dp b e &b &k b b & b X ¥ ¥ A drodr o dp e dp e de e b dp b dr e g &k
e e e e rror e e, .._..... U dr dr
e ro R R i ¥
rrrrrrrrrrrrrrrrrrrr X ¥

R R R R R R R R R R R R AR

o ol h e
i

oy, e e e e e e e e e e e U e e e e e e e e e e e e e e

X
A e e e e e T
e e e A e e e)
e e e e e e T T T o T e T L L

g i g g g, g, g, g e, g, g, g i, g i, g i B i, g, i, i i, g, i, g, g, i, g, g, i, S, i, i, S, i, iy

e e e T e T e T e T e T e e e e e e e e e e e e e e e e e e Ty

N N X

- PORIUQ SBOIIS eleq § -

O T B w

i W W B B
gt

N

H.._.H.__.H....H.._.H....H.,_.H....H...H.qH...H#H...H...H...H...H...H&H...H#... i
Elm-_.
o
Pl
Ll

ar T e ar a e ay a a a a ay
o e e

g g g g B g B B g B S g g B g, g g g, F g, g g B g g, g B g, g g g B g g g S B S g g B g, g g g, g, g I g g g, g B g, g S, g B I iy I,

T R T T T T T T T T o

T T T T
L]
Ll

s
e e e e e Ty o .,_.HkH#H.,_.HkH#H.,_.HkH#H#Hkﬂ#ﬂ#ﬂkﬂ#ﬂ#ﬂkﬂ#ﬂ#ﬁ
e e

¥
e e e
N N A NN N
¥

PRI By

LI N A O B O B O D D D B D B L D N N N N P N N P N P P P P
. T e e e e e e e T T e T e e o e e e T

Ve I)

w"“— d e e e e e A aU

- . e e T o o T o e T e T e e a a Ta o %ﬁ###k#k*#k*####kk#k*
re Pl e e e e e e e e e e e e e e e e e e e N A N

Ve vl e e e e e e e e e T e e T X ¥)

. rre N e e e el s e e sl el el sl s el el ot el e B o e e e e o e o T T e T T

el B NN N NN DNt D N M N N A M NN N NN N N

e

N N N N A A A A A
T T e e e o o e D e e e U D e e e e e e e o e
R R R T e o e o ey k#k%“k#k##kk#kk#kk#kk#kk
et e kk#k**k*#kk#k**k*#kw o T T T Ty ar e e e e T T T T
e e e B o o e aa ar arar ararar r aly e e o e arar
NN N e a ¥k N o
e e e e T o o e T T T T o o o o o T T T T x o o T T T ar oy o o T T T Ty
R R I N a l al al al oa oy ey U s P o e e e e e e
I Tt e e i P
N N A N N A
T e e e e e e e T e e T e T e e T e b o o o e D e e e T e o e e e e e e e e e .
r e .1.1.1.1...1.1.1.1.*#kk#kk#k##kk#kk#k##m#k L .
S v quq11q11111111111115... ¥ }ﬁkk*#kk#kk#kk#kk#kk#
Mm “w P e e e e e e e T e R e o e A e o iy e e
r S, R I I R 1 e el o e x L I I e e e e e
r e e e e T e e T e e e e e R e o e o e T T T o e o o T T T T Pl o e T T T T ar T ar e o ar ae Tar Te T
r e L I I A ol a al alf eplr epl oy ey U x O e A A
T L T
L L L L L LN L L LR LR L L LN,

L

A

N W .._.H....H.._.H.._.H....H...H.._.H...H...H...H...H...H...H...H...H...H...H...H...
}“”“W”wm#k...

A A e e e e e
) o g g Y
Eals o N
o oy T e e e e e e e e e e e e e e e

Piaatas

2

LeTel el riel : kH._,.H...HkH._,.H...HkH#H...HkH#H...HkH#H#H#H#H#H#H###H&H#H#* N u_....H._,.H#H#H._,.H#H#H#H#H#H#H#H#H#H#H#H&H#H#H
rrrrorr -, dp dp M 0 dr dp dp dp gy o dp dr o dr o dr o dp o dp o ap o Op o e gr ﬂ& P I
et T e e R T T e T e o T T o T T T e #lr‘# o A o e T o o e T o e T e e e T
et e ' e e A e T T e T e T e T e T P N)
et e R T e o T e o T T e e T o e T T e x oo o e Ty T g T g T T
e e e et R e e e e e e e e e

N A NN

25

L MO CMO

OMA | LAQA | OMO | LAQ | OMA

iariils

A4%°)

112131415

Slice8

. AOLS

¥

31131313133

-

e

-

2121213
71891011

Slice7

—— 001G

Slice?

—~ €015

2{314]15{5{6/7(8}9

P S Sl SR S Ty g Sy

1

Shce

~— VYOLSG

816G

U.S. Patent Jan. 21, 2020 Sheet 5 of 9 US 10,540,249 B2

312
318

316 B _ | |
DWO | DW1 | DWO | DW1 | DWO | DW1 | DWO | DW1 | DWO | DW1 |
QWO QW1 QW3 Qw4 |

J dr dr X dr dr b O dr ko b d dr dr X b dr b X b & b X d ok b ¥ k¥

a-:a-:a-:q-:a- :a-*a-: :Ar:lr* t:q-:a-*

Rt b o 0 A

a-:a-*a-*q-*a- i a-*a-*q-: *t*lr*
i PN

i
W e e e e e e ke

700

610A
610E
610C
610D

Qi
o
b

(17T

2

o
S EH D

L)

n

[

D Sl B O S Bt
3¢

DI BT O

~N PN NN~

<3
6o
o tolo
&R
o
3y

5 D QIO TN
>
9
-—mfﬂﬂlﬁ CT:QJ
- @ QO[T Q©

~h
—

il

- | @
s S IR
NN
O
0o
5 1@ |
F RN N N
{0
n
s S IR
o | O

U . B, §
-] L2
] =~

U.S. Patent Jan. 21, 2020 Sheet 6 of 9 US 10,540,249 B2

81 2\ __ push Segment __ \

-F'r.'
R R R R R R R R R R S SR R S S SRR U S S R S S U R S S U R S S S U S S SR S U S S S S S G S G U S g S S U S S SR S G G U S G G Sy S G S S S U S S S U R S G G U S S G U Sy S G S S U U S S S U S S S U S S G R U S G S U S S S S S U g S R U SR G U S SR S SR G S S G g S U S S S S U R S SR U S S G g S SR A g fom
i i P Pl P g Pl il Pl Pl Pl P Pl Pl Pl Pl P Pl Pl P Pl Pl Pl Pl Pl Pl Pl Pl Pl il Pl Pl Pl Pl Pl Tipl Pl Pl Pl Pl il Pipl Tipl Pl Pl Tl Pl il Pl Pl Pl Pl Pl Pl Pl Pl P il Tl Pl Pl Pl Pl il P Pl Pl Pl Pl Pl Pl Pl Pl Pl gl Pipl Pipl Pl Pl Tl Pl P Pl Pl Pl Pl Tl P Pl Pl il Pl Pl Pl Pl il Pl Pl Pl Pl Pl il Pl Pl P Pl Tl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl il Pl Pl Pl Pl il Pipl Pl Pl Pl Pl Pl Pl Pl Pl Pl Tl Pl Pipl Pl Pl Pl Pl Tl Pl Pl Pl il P Pl Pipl i Ll

814 b1 b2 | b3 b4 | b5 b6 b7
81 -6\\ Branch to Target Segment

Push/Pop Segment
c1 c2 | ¢3 ¢4 | b c6 c7
d1 d2 | d3 d4 | d5 d6 return
&1 e2 | &3 ed | eb eb &7
f1 2 1 13 M| 5 f6 return

816 g1 g2 | g3 gd | o5 g6 g7
N T ~> 196

h he | b3 4 | ns h6 |

1| i i3 4 | 5 6 | retum

FI1G. 8

814 Branch to Target Segment

~{ beitgt | beitgt | boltgt | nop | nop nop | be next

S _ o
910 914/ 912/

FIG. 9

316 Push/Pop Segment

R R R R R R R M R D R R R D M R R M g R g g R R R R R R R R R R R R R R M R R R M R R g R R R R R R R R R R R R R R R R R N g g R R R R R D R R R D R R R g R R R g N g g g R R R R R R R M R R R R R R R R R R R g g R R R R M R R R R R g g .
- N g g T T T T T T T T T Ty g T Tt g T T T T T T T T T T Ty g Ty e g g g T T T T g T T g Fg g gt T T g g g T T T T T g T T g T g T g g g g T T T T T g T T g T T T T T T T T T T T T gy

BLLALEH M e subcall | pop | unu
10107 1012 1016”1016~ 1018~ 1020 1014

FIG. 10

U.S. Patent Jan. 21, 2020 Sheet 7 of 9 US 10,540,249 B2

\ — meR r4 - Std r3, . 1 G(F‘i) nc}p ——— nOp thR r4 - i ngp blr

1110 1112} 1118~ 1114~ 1?16/

9192 Pop Segment
\ miLR 13 id r3 4(r3) I miir r3 nop nop NOP bir

...

810 | Row2 | b1 | b2 b3 b4
812,&\- Row 3 bel tat , DCHIGL .« RClIgl Wi nop),

|/ push . subecall | nop fj;?“gp | unused area

-

nop nop be next

)
.....
.

-
e
i
-_‘#

uln L]
''''''

Row11 | h1 <77 h2 h3 12 B e S L be +112
Row12 | i1 | R 3 4 | B | 6| retum

U.S. Patent Jan. 21, 2020 Sheet 8 of 9 US 10,540,249 B2

1400

Start 1

Provide Test Code for Testing a Memory in | 1410
Segments With Non-Naturally Alligned Data
Boundaries

e

Place a Plurality of Link Stack Test 1420
Segments Interspersed into the Test Code —
Segments

\ 4

Execute the Test Code With the 1430
Interspersed Link Stack Test Segmentsto |~
Change the Link Stack Depth Without

Changing Results of The Test Code

Done

FIG. 14

U.S. Patent Jan. 21, 2020 Sheet 9 of 9 US 10,540,249 B2

1500
(Start) ‘Z
Provide a Plurality of Branch to Target 1510
Segments each With One or More Push/Pop +—
Segments

v

Provide a Push Segment that Pushes a Copy | 1520
of a Link Register to a Link Register Save
Area within the Push/Pop Segment

v

Provide a Pop Segment that Loads a Copy of | 1530
the Link Register in the Push/Pop Segment, | _~
Stores it to the Link Register and Returns
Execution Via the Link Register

v
(Done >
FIG. 15

US 10,540,249 B2

1

STRESS TESTING A PROCESSOR MEMORY
WITH A LINK STACK

BACKGROUND

1. Technical Field

This disclosure generally relates to computer hardware
testing and development, and more specifically relates to a
system and method for stress testing a processor memory
with a link stack using link stack test segments with non-
naturally aligned data boundaries.

2. Background Art

Processor testing tools attempt to generate the most
stressful test case for a processor. In theory, the generated
test case should provide maximum test coverage and should
be able to stress various timing scenarios and operations on
the processor, including the coherency of cache memory.
Coherency i1n the cache memory involves insuring that
changes to data in the cache are accurately reflected to main
memory to keep the data consistent. Building test cases to
thoroughly test a processor can be extremely costly 1 time
and resources, thus building eflicient test cases that can reuse
test code 1s an important goal of processor testing.

Many processors have a link stack that stores return
addresses when executing a branch in the code. A link
register 1s typically used to access the last entry into the link
stack. The processor may make predictions of software
execution based on the content of the link stack to speed
execution. Also, there are often limits to the depth of the link
stack. Accommodations 1n the test software must be made to
deal with errors that may be generated when the link stack
depth 1s exceeded. It 1s very diflicult to generate test cases
for memory that can also test the different scenarios of the
link stack depth. Prior art test case generation was extremely
labor intensive to develop stress tests for memory with
different link stack depth scenarios.

BRIEF SUMMARY

A processor memory 1s stress tested with a variable link
stack depth using link stack test segments with non-naturally
aligned data boundaries. Link stack test segments are inter-
spersed 1nto test code of processor memory tests to change
the link stack depth without changing results of the test code.
The link stack test segments are the same structure as the

segments of the test code and have non-naturally aligned
boundaries. The link stack test segments include branch to
target, push/pop, push and pop segments. The depth of the
link stack 1s varied independent of the memory test code by
changing the number to branches in the branch to target
segment and varying the number of the push/pop segments.

The foregoing and other features and advantages will be
apparent from the following more particular description, as
illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

The disclosure will be described 1n conjunction with the
appended drawings, where like designations denote like
elements, and:

FIG. 1 1s a block diagram a computer system with a test
case generator as described herein to generate test code and
place it in segments of a data cache with non-naturally
aligned data boundaries;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 illustrates simplified block diagrams of a system
for testing a processor with test code and link stack test

segments placed 1n segments of a cache with non-naturally
aligned data boundaries;

FIG. 3 1s a simplified block diagram of a memory cache
system 1n a processor with test code and test data placed 1n
different cache lines 1n a level two memory cache;

FIG. 4 1s a simplified block diagram of a memory cache
system 1n a processor with test code and test data placed 1n
the same cache lines 1n a level two memory cache;

FIG. § illustrates successive slices of replicated test code
and test data stored 1n a memory cache with non-naturally
aligned data boundaries;

FIG. 6 further 1llustrates the test code segments 1n FIG. 5
having non-naturally aligned data boundaries;

FIG. 7 1llustrates a portion of the memory cache shown 1n
FIG. 5§ with a strand of memory shown as a single block;

FIG. 8 illustrates another view of the same strand of
memory shown in FIG. 7 modified to include link stack test
segments to stress test memory with varying stack depth;

FIG. 9 illustrates an example of a branch to target
segment;

FIG. 10 1llustrates an example of a push/pop segment;

FIG. 11 1llustrates an example of a push segment;

FIG. 12 1llustrates an example of a pop segment;

FIG. 13 illustrates an example of stress testing a processor
memory with a link stack using link stack test segments with
non-naturally aligned data boundaries;

FIG. 14 1s a tlow diagram of a method for stress testing
a processor memory cache with a variable link stack depth
using link stack test segments with non-naturally aligned
data boundaries; and

FIG. 15 1s a flow diagram of a specific method for step

1420 1n FIG. 14.

DETAILED DESCRIPTION

The disclosure and claims herein relate to a system and
method for stress testing a processor memory with a variable
link stack depth using link stack test segments with non-
naturally aligned data boundaries. Link stack test segments
are 1nterspersed into test code of processor memory tests to
change the link stack depth without changing results of the
test code. The link stack test segments are the same structure
as the segments of the test cases and also have non-naturally
aligned boundaries. The link stack test segments include
branch to target, push/pop, push and pop segments. The
depth of the link stack 1s varied independent of the memory
test code by changing the number to branches in the branch
to target segment and varying the number of the push/pop
segments.

Referring to FI1G. 1, a computer system 100 1s one suitable
implementation of a computer system that 1s capable of
performing the computer operations described herein
including a test case generator for generating test cases for
stress testing a processor memory and/or a test case executor
as described herein. Computer system 100 1s a computer
which can run multiple operating systems including the IBM
1 operating system. However, those skilled in the art will
appreciate that the disclosure herein applies equally to any
computer system, regardless of whether the computer sys-
tem 1s a complicated multi-user computing apparatus, a
single user workstation, laptop, phone or an embedded
control system. As shown 1n FIG. 1, computer system 100
comprises one or more processors 110. The computer system
100 further includes a main memory 120, a mass storage
interface 130, a display interface 140, and a network inter-

US 10,540,249 B2

3

face 150. These system components are interconnected
through the use of a system bus 160. Mass storage interface
130 15 used to connect mass storage devices with a computer
readable medium, such as mass storage 155, to computer
system 100. One specific type of mass storage 155 1s a
readable and writable CD-RW drive, which may store data
to and read data from a CD-RW 195. Some mass storage
devices may have a removable memory card or similar

instead of the CD-RW drive.

Main memory 120 preferably contains an operating sys-
tem 121. Operating system 121 1s a multitasking operating,
system known in the industry as IBM 1; however, those
skilled 1n the art will appreciate that the spirit and scope of
this disclosure 1s not limited to any one operating system.
The memory 120 further includes data 122 and a test case
generator 123. The memory 120 also includes test code 124
and test data 125 which 1s typically created by the test case
generator 123. The memory also includes link stack test
segments 126 for testing the memory with different link
stack scenarios as described herein.

Computer system 100 utilizes well known virtual address-
ing mechanisms that allow the programs of computer system
100 to behave as 11 they only have access to a large, single
storage entity instead of access to multiple, smaller storage
entities such as main memory 120 and mass storage 155.
Therefore, while operating system 121, data 122, test case
generator 123, test code 124, test data 125 and link stack test
segments 126 are shown to reside in main memory 120,
those skilled 1n the art will recognize that these items are not
necessarily all completely contained in main memory 120 at
the same time. It should also be noted that the term
“memory”” 1s used herein generically to refer to the entire
virtual memory of computer system 100, and may include
the virtual memory of other computer systems coupled to
computer system 100.

Processor 110 may be constructed from one or more
microprocessors and/or integrated circuits. Processor 110
executes program instructions stored 1in main memory 120.
Main memory 120 stores programs and data that processor
110 may access. When computer system 100 starts up,
processor 110 1nitially executes the program instructions that
make up operating system 121 and later executes the pro-
gram 1nstructions that make up the test case generator 123 to
generate the test code 124 and the test data 125 as directed
by a user.

Although computer system 100 1s shown to contain only
a single processor and a single system bus, those skilled 1n
the art will appreciate that the system may be practiced using,
a computer system that has multiple processors and/or
multiple buses. In addition, the interfaces that are used
preferably each include separate, fully programmed micro-
processors that are used to off-load compute-intensive pro-
cessing from processor 110. However, those skilled 1n the art
will appreciate that these functions may be performed using,
I/0 adapters as well.

Display interface 140 1s used to directly connect one or
more displays 165 to computer system 100. These displays
165, which may be non-intelligent (1.e., dumb) terminals or
tully programmable workstations, are used to provide sys-
tem administrators and users the ability to communicate
with computer system 100. Note, however, that while dis-
play interface 140 1s provided to support communication
with one or more displays 165, computer system 100 does
not necessarily require a display 1635, because all needed
interaction with users and other processes may occur via
network interface 150, e.g. web client based users.

10

15

20

25

30

35

40

45

50

55

60

65

4

Network intertace 150 1s used to connect computer sys-
tem 100 to other computer systems or workstations 175 via
network 170. Network interface 150 broadly represents any
suitable way to iterconnect electronic devices, regardless of
whether the network 170 comprises present-day analog
and/or digital techniques or via some networking mecha-
nism of the future. In addition, many different network
protocols can be used to mmplement a network. These
protocols are specialized computer programs that allow
computers to communicate across a network. TCP/IP
(Transmission Control Protocol/Internet Protocol) 1s an
example of a suitable network protocol.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and

US 10,540,249 B2

S

procedural programming languages, such as the “C” pro-
gramming language or stmilar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It

10

15

20

25

30

35

40

45

50

55

60

65

6

will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

FIG. 2 illustrates a simplified block diagram of a system
200 for reducing the time needed to generate test cases for
testing a processor by replicating test code and test data and
placing slices of the test code and test data into a memory
cache where the slices of the replicated test code and test
data have non-naturally aligned data boundaries. A user 210
or an operator uses the test case generator 123 to provide
tests cases 212 to a test case executor 214. The test case
generator 123 and the test case executor 214 operate 1n a
manner similar to the prior art except as described herein.
The test cases 212 include test code 124 and test data 125.
The test case executor 214 loads the test code 124, test data
124 and the link stack segments 126 1nto a processor 216 to
verily and validate the processor design.

Again referring to FIG. 2, the processor 216 has a typical
cache design with one or more caches. In the illustrated
example, the processor 216 has a split L1 cache 218 and a
unified L2 cache 220. The split L1 cache 218 means the L1
cache 218 1s split between an L1 mstruction cache 218A and
an L1 data cache 218B. When instructions and data are
needed by the processor, the processor first looks to the L1
cache 218 to load the instructions and data. If the needed
instructions and data are not in the L1 cache 218, then the
[.2 cache 1s searched for the needed instructions and data and
loaded into the L1 cache from the L2 cache 1if available. If
the needed 1nstructions and data are not in the L2 cache, then
they are loaded from main memory. Alternatively an addi-
tional level of cache (L3 cache) can be used but 1s not shown
here for simplicity. The test code 124 and test data 125 are
loaded into the L2 cache 220 and then to the L1 cache 218
as described further below. The test case executor 214
replicates the test code 124, placing multiple copies of the
test code into the .2 cache 220, and then the test code 1s
executed by the processor to test proper handling of data
coherency as described further below. The test case executor
214 may also replicate the test data 1235 mto the L2 cache
220. The processor 216 turther includes a link stack 222 or
call return stack that can be used to predict a target address
of a branch to improve performance.

FIG. 3 1llustrates an example of loading the L1 cache 218
from the L2 cache 220 of the processor 216 (shown in FIG.
2) where the test code and test data are initially placed 1n
different cache lines 1 the L2 memory cache. In this
example, the L1 instruction cache 218A has a single mstruc-
tion cache line 312. Similarly, the L1 data instruction cache
218B has a single data cache line 314. Those of ordinary
skill 1n the art will recognize that processors may have
multiple cache lines 1n the instruction cache and the data
cache. In such a case, the operation would be similar to the
described example. In this example, the test code 124 was
initially loaded into cache linel 316. When test code 124 1s
requested by the L1 instruction cache 218A, the L2 cache
220 provides a cache line containing the requested test code,
in this case test code 124 from cache linel 316. Similarly,
the test data 125 was 1nitially loaded 1nto cache line2 318.
When test data 125 1s requested by the L1 data cache 218B,
the L2 cache 220 provides a cache line contaiming the test
data 125 from cache line2 318. If the test code makes
changes to the test code 124 1n the instruction cache line 312
or makes changes to the test data 125 1n the data cache line

US 10,540,249 B2

7

314 then these changes need to be pushed back to the L2
cache 220 1n a manner known 1n the prior art. Since the test
code 124 and the test data 125 are on different cache lines,
this example 1llustrates the simple case of maintaining
memory coherency between the L1 and L2 caches. If the
processor or test code detects an error 1n data coherency
between the caches or main memory, the processor being
tested can be flagged as having a potential memory failure
in a manner known 1n the prior art.

FI1G. 4 1llustrates another example of loading the L1 cache
218 from the L2 cache 220 of the processor 216 (shown 1n
FIG. 2). In this example, the test code and test data are
iitially placed in the same cache line 1n the L2 memory
cache. As 1n the previous example, the L1 instruction cache
218A and the L1 data instruction cache 218B each have a
single cache line. In this example, the test code 124 was
iitially loaded into cache linel 316. When test code 124 1s
requested by the L1 instruction cache 218A, the L2 cache
220 provides the test code 124 from cache linel 316. The
test data 125 was 1mnitially loaded into the same cache linel
316. When test data 125 1s requested by the L1 data cache
218B, the L2 cache 220 provides the test data 125 from
cache linel 316. If the test code makes changes to the test
code 124 1n the instruction cache line 312, or if the test code
makes changes to the test data 125 in the data cache line 314
then these changes need to be reflected 1n the L1 cache and
pushed back to the L2 cache 220. This example illustrates
the case of maintaiming memory coherency between the L1
and .2 caches where test code 124 and the test data 125 are
loaded into the L1 cache 218 from the same cache lines 1n
the L2 cache 220.

FI1G. § 1llustrates additional detail of successive slices of
the L2 memory cache with replicated test cases (tc0-1, tc1-1,
etc.) placed i segments of memory with non-naturally
aligned data boundaries. Thus, FIG. 3 represents a simplified
representation of a portion of the level 2 cache 220 intro-
duced above. In the illustrated example, the cache 220
illustrates four replicated slices 510 that can contain test
code or test data (described further below). The table 512
above the cache data illustrates how the cache lines of the

cache are divided. A cache line in the cache 1s divided into
eight quad words 514. The quad words 514 are labeled QW0

through QW7. Each quad word 514 1s divided into two
double words 516. The double words for each quad word are
labeled DW0 and DW1. Each double word 516 1s further
divided 1nto two words 516 (not labeled). In this example,
cach word 1s four bytes of memory space. Thus each cache
line has eight quad words with 128 bytes of memory. Thus
the level 2 cache 220 1s divided into lines of memory 520
with 128 bytes 1n each line. In the 1llustrated portion of level
2 cache 220 shown 1n FIG. 5, lines 1-9 and 27-35 are shown
with the line number 520 shown for each line at the lett side
of the drawing.

Again referring to FIG. 5, the memory represented 1n the
level 2 cache 220 1s divided into slices 510 as shown. For
simplification of the drawing, only four slices of the memory
cache are actually shown. Slices 3 through 6 are omitted
from the drawing but follow the same pattern as the other
slices. Slicel 510A begins on linel of the cache and ends
near the middle of line 5. Line 5 1s shown twice at the left
of the drawings. This 1s done for 1llustration so that 1t can be
clearly seen where slicel S10A ends and slice2 510B begins.
In the cache there 1s actually only one line of memory
designated as line 5. Slice2 510B begins at the end of slicel
510A near the middle of line 5 and ends near the end of line
9. Slice7 510C begins at the end of slice6 (not shown) near
the middle of line 27 and ends near the end of line 31. Slice8

10

15

20

25

30

35

40

45

50

55

60

65

8

510D begins at the end of slicel 310C near the middle of line
31 and ends at the end of line 35.

Again referring to FIG. 5, each slice of memory 510
includes several strands of test cases. In this example, there
are five strands of test cases (tc0 through tc4) divided into
four segments each. The segments of each strand are shown
with the same shading in FIG. 5. The segment of the strand
1s 1ndicated by the number after the dash. Thus tc0-1 522 1s
the first segment of test case zero, tcl-1 524 1s the first
segment of test case one, tc2-1 526 1s the first segment of test
case 2, tc3-1 528 1s the first segment of test case 3 and tc4-1
530 1s the first segment of test case four. Test case zero (tc0)
includes tc0-1, tc0-2, tc0-3 and tc0-4. Similarly the other test
case strands include four segments. As can be seen using the
table 512 above the cache, each of the segments has a test
case that 1s seven words long. It 1s important to note that the
seven word length of the segments means that each of the
test cases are on non-naturally aligned word boundaries.
Non-naturally aligned means that when the segments of the
test cases are placed end-to-end the end of the segments does
not fall on a natural boundary that 1s a number of the form
2'. This 1s accomplished by having segments with an odd
number of words. In this example this means that the
beginning and end of each of the test case segments does not
line up with 32 byte, cache line (128 byte) and page crossing
boundaries. For example, the page crossing boundary 532 1s
within the test case tcl-1 at the boundary between line 31
and line 32 as shown in FIG. 5. Since the segments are
non-naturally aligned, after replication alignment boundar-
1ies change for tests on subsequent segments to allow more
robust testing of the processor using the same repeated test
code. In cases where alignment boundaries need to be
respected for a few 1nstructions, these mnstructions are placed
in sub-segments with special alignment locations so that
they preserve alignment even after replication and re-execu-
tion on new segments as described below.

FIG. 6 further illustrates a portion of the memory cache
shown 1n FIG. 5 having test cases with test code and test data
on non-naturally aligned data boundaries. FIG. 6 illustrates
the first two strands of the five strands of test cases shown
in FIG. 5, namely tc0 610 and tc1 612. Test case zero (tc0)
610 includes four segments 610A, 6108, 610C and 610D.
Similarly, test case one (tcl) 612 includes four segments
612A, 612B, 612C and 612D. As described above, each
segment of the cache has a test case that 1s seven words long.
The test case segment 1s divided 1nto three sub-segments. In
this example, the sub-segments include a quad word, a
double word and a single word for a total of seven words.
The order of the sub-segments changes for each segment 1n
the test case strand 1n order that the test cases within the
strings can observe word boundaries where needed. The first
segment 610A of test case zero (tc0) has a quad word
followed by a word and then a double word. In the next
segment of tc0 610B there 1s a word, a quad word and then
a double word. In the next segment of tc0 610C there 1s a
double word, a quad word and then a single word. In the final
segment of tc0 610D there 1s a single word, a double word
and then the quad word. Similarly the tcl alternates the
single word, double word and quad word in subsequent
segments as shown 1n 612A, 6128, 612C and 612D.

In the example described above, each segment of the test
cases has seven words to insure that the test case data has
non-naturally aligned data boundaries . By having non-
naturally aligned data boundaries for each segment of the
slice of test data, testing can be done on the replicated test
cases to test various boundaries. These boundaries include
32 byte boundaries, cache line boundaries (128 bytes) and

US 10,540,249 B2

9

page crossing boundaries. The test case segment 1s divided
into sub-segments of word, double word and quad word and
the order of the sub-segments changes for each segment in
the test case strand. Dividing into sub-segments and chang-
ing of the order of the sub-segments insures that the data for
test cases within the sub-strings can observe and preserve
double word and quad word boundaries where needed.
Using non-naturally aligned data boundaries with replicated
code insures that all types of segments will cross the
boundaries at some replication of the test data. This allows
testing of the boundaries without using special code to look
at the restrictions of a particular segment for each of the
boundaries.

The examples described above illustrate a preferred test
case segment with 7 words to achieve non-naturally aligned
data boundaries. Other non-naturally aligned data boundar-
1es could include other odd numbers such as 35, 9, 11, etc. A
combination of word, double word and quad word could be
chosen as sub-segments for these segments similar to the
described example. For example, for a segment with 9
words, a quad word, two double words and a word would
achieve the correct number of sub-segments for 9 words.
The sub-segments could be changed for each segment 1n a
strand as described above for the 7 word example.

FI1G. 7 illustrates a portion of the memory cache shown in
FIG. 5. The memory shown in FIG. 7 1s a sequence of
segments or a strand of memory 700 shown as a single
block. The strand of memory 700 may be modified to
include link stack scenarios to stress test memory and the
link stack as described herein. In this example, the strand of
memory 700 includes the strand segments 610 described in
FIG. 6. Each of the segments 1n this example includes seven
words of memory. Segment 610A includes seven words of
memory al through a7. Similarly, segments 6108, 610C and
610D ecach include seven words of memory. Additional
segments labeled as e, 1, g, h, and 1 are also shown 1n the
strand 700. These segments are not consecutive memory
locations, but are shown here as a block of memory that are
logically 1n the strand and used for testing the cache memory
of the processor 216 (FIG. 2). In this example, each segment
610 of the strand 700 1s loaded with a test case for testing
memory by the test case executor 214 as described above. In
addition, the test case executor 214 may load link stack test
blocks into the strand 700 as described below.

FIG. 8 illustrates another view of a portion of memory
used for stress tests as described herein. FIG. 8 includes the
same strand of memory 700 shown in FIG. 7 where the
strand 1s arranged as a single block. In FIG. 8, the strand of
memory 700 has been modified to include link stack test
segments to stress test memory. The link stack scenarios are
added to the test cases 1n the strand of memory 700 by
adding link stack test segments 126. The link stack test
segments 126 include a push segment 810 and a pop
segment 812. The push segment 810 and the pop segment
812 are may be located at a suitable known location 1n
memory and maybe outside the strand of memory 700. The
same push segment 810 and the pop segment 812 may be
used by multiple different test cases. The push segment 810
and the pop segment 812 are described further below. The
stack test segments 126 further include a branch to target
segment 814 with one or more corresponding push/pop
segments 816. In thus example, there are two push/pop
segments 816. Each of the link stack test segments 126 1s
described further below.

FI1G. 9 1llustrates an example of a branch to target segment
814 introduced 1n FIG. 8. Like the all the link stack test

segments 126, the branch to target segment 814 1s a single

10

15

20

25

30

35

40

45

50

55

60

65

10

segment. In the 1llustrated examples, the segments each have
seven words with data or mstructions. The branch to target
segment 814 has one or more branch conditional link to
target (bcl tgt) instructions 910. These bcl tgt istructions
can also be considered as a sub-routine call. Thus the bcl tgt
instructions 910 are branch instructions or subroutines calls
that call target segments 1n the strand as described 1n the
example below. In the illustrated example, all the bcl
sub-routine calls 910 branch to “tgt” for illustration. In an
actual implementation, these calls could have a unique target
name. The last word 912 1n the branch to target segment 814
1s a branch instruction that branches to the next strand of test
code shown 1n FIG. 5. Any unused words of the branch to
target segment 814 are filled with no operation (nop) instruc-
tions 914.

FIG. 10 illustrates an example of a push/pop segment 816
introduced 1n FIG. 8. The push/pop segment 816 serves to
increase the depth of the link stack to stress test the memory
as described above. A link register 1n the processor holds the
last entry of the link stack. Upon entry into the push/pop
segment 816, the link register holds the address of the
instruction following the call to the push/pop segment 816.
The first instruction, “miL.R r3” 1010, moves the contents of
the link register to register r3. The next mstruction 1012 1s
a sub-routine call to the push segment 810. The push
segment 810 stores the contents of the register r3 1n the LR
save arca 1014 as described below. The push/pop segment
816 then has one or two sub call instructions 1016. The sub
call instruction 1016 branches to a sub-routine 1n the
memory strand 700. Upon return from the sub-routine the
next mstruction 1s the pop mstruction 1018. The pop nstruc-
tion 1018 1s a branch to the pop segment 812. Branching to
the pop segment returns instruction flow to the address
stored 1 the LR save area 1014 as described below. The
push/pop segment may have an unused location 1020. The
push/pop segment 816 increases the stack depth by making
a call to the push segment. Any testing done after the call to
the push segment 816 has a stack depth increased by one.
Adding additional push/pop segments allows the test pro-
grammers to force the testing to be done at any desired stack
depth.

FIG. 11 1illustrates an example of a push segment 810
introduced in FIG. 8. The purpose of the push segment 1s to
store a return address for a corresponding pop segment 812.
The push segment 810 stores the return address 1 a link
register (LR) save area 1014 1n the push/pop segment 816
that called the push segment 810 as described above. When
the push segment 810 begins, register r3 already contains the
return address to be stored (see the first instruction of the
push/pop segment 816). The first mstruction of the push
segment 810 1s “miLR r4” 1110. This first instruction 1s a
“move from link register” instruction. The instruction thus
moves the contents of the link register to register r4 of the
processor. The link register holds a return address to con-
tinue execution following a branch. In this case, the link
register holds the address pointing to the next instruction
inside the push/pop segment that called the push segment.
Thus the link register holds the address to the “sub call”
instruction in the push/pop segment. The address of the LR
save area 1014 where the return address 1s to be stored 1s 16
bytes beyond this address 1n the link register. Thus, the store
istruction “std r3, 16(r4)” 1112 stores the contents of
register r3 at the address 1n register rd4 plus 16 bytes. The
move to link register instruction 1114 moves the contents of
register rd to the link register. This restores the link register
to point to the address just as 1t was prior to the mstruction
1110. The branch instruction 1116 then branches using the

US 10,540,249 B2

11

restored link register to branch back to the next instruction
in the push/pop segment that called the push segment 810.

FIG. 12 1illustrates an example of a pop segment 812
introduced 1n FIG. 8. The purpose of the pop segment 1s to
retrieve the return address from the LR save area 1016 and
then branch back to the 1nstruction subsequent to the branch
call that oniginally called the push/pop segment. Thus the
pop segment 812 does the mverse of the push segment 810.
The first instruction of the pop segment 812 15 “miLLR r3”
1210. This instruction moves the contents of the link register
to register r3 of the processor. The link register holds the
address pointing to the next instruction inside the push/pop
segment that called the pop segment 812. Thus the link
register holds the address to the “unused” instruction in the
push/pop segment. The address of the LR save area 1014
where the return address 1s stored 1s 4 bytes beyond this
address 1n the link register. Thus the load 1nstruction “Id r3,
4(r3)” 1212 loads register r3 with the address stored in
register r3 plus 4 bytes, which 1s the return address stored in
the LR save area 1016. The move to link register instruction
1214 moves the contents of register r3 to the link register.
This restores the link register to point to the address just as
it was prior to the mnstruction 1210. The branch instruction
1216 then branches using the restored link register to branch
back to the next instruction prior to branching to the push/
pop segment, which in some cases will be the next bcl target
instruction 1n the bel target segment 814. Any unused words
of the pop segment 812 may be filled with no operation
(nop) mstructions 1220.

FI1G. 13 illustrates an example of stress testing a processor
memory having a link stack using link stack test segments
with non-naturally aligned data boundarnies. FIG. 13 repre-
sents the strand of memory 700 as described in FIG. 8. Row
and column numbers have been added to allow reference to
cach memory location. In the example of FIG. 13, the strand
of memory 700 has been filled with a specific example of a
bcl target segment 810 and push/pop segments 812A and
812B. In this example, we assume execution of the tests
begin at instruction al (col. 1, row 1). The last instruction of
the first segment includes a branch instruction be+112 (col.
7, row 1). This mnstruction causes execution to advance 112
bytes forward to continue with the first instruction of the
next segment of this strand (col. 1, row 2). The second row
1s executed similar to the first row. Execution then advances
to the branch to target segment 810. The {irst mstruction 1s
a branch to target (col. 1, row 3). As used 1n this example,
branch to target (bcl tgt) means branch to the location
pointed to by the arrow.

Continuing with the example of FIG. 13, the first instruc-
tion 1n the branch to target segment 810 1ndicates to branch
to col. 1, row 4. The nstruction at this location moves the
contents of the link register to register r3. Register r3 will
now hold the address of col. 2, row 3, which 1s the next
address from the branch instruction. The next instruction 1s
the push call at col. 2, row 4. This 1s a branch nstruction to
the push segment 810 described above with reference to
FIG. 11. The push segment 810 stores the address 1n register
r3 1n the LR save area (col. 7, row 4) of this segment as
described above. After the push call, the subroutine call (col.
3, row 4) branches execution to ¢l (col. 1, row 5). Execution
continues through rows 5 and 6 until the return instruction
(col. 7, row 6) branches execution to the nop mnstruction (col.
4, row 4). The next instruction 1s then the pop branch
istruction (col. 5, row 4). The pop branch instruction
branches execution to the address stored 1n LR save area by
the push segment as described above. In this case, the pop
branch instruction causes execution to continue with the

10

15

20

25

30

35

40

45

50

55

60

65

12

second “bcl tgt” mstruction (col. 2, row 3). The second “bcl
tet” instruction (col. 2, row 3) causes execution to branch to
instruction €l (col. 1, row 7). Execution then continues from
¢l through instruction 16 and then returns to the third “bcl
tet” instruction (col. 3, row 3). The third “bcl tgt” mnstruc-
tion branches execution to instruction gl (col. 1, row 9).
After istruction g6, the branch (col. 7, row 9) sends
execution to the second push/pull segment 812B. This
push/pull segment 812B operates similar to the previous
one. After pushing the link register contents to the LR save
area (col. 7, row 7) execution continues with the test code 1n
rows 11 and 12. The return (col. 7, row 12) branches
execution to the nop instruction (col. 4, row 10) and then to
the pop branch mstruction (col. 5, row 10). The pop 1nstruc-
tion (col. 5, row 10) sends execution to the nop instruction
(col. 4, row 3) 1n the branch to target segment 810. Execu-
tion then continues 1n row 3 to the “bc next” instruction (col.
7, row 3) that branches to the next strand of the tests.

In the example described above with reference to FIG. 13,
it can be seen that the addition of the link stack segments,
including the branch to target segment 810 and the push/pull
segments 812A, 812B can be done such that they do not
aflect the execution of the original block of tests al-a6
through 11-16 as shown 1n FIG. 7. The addition of the link
stack segments 126 serve to modity the depth of the link
stack for stress testing the link stack hardware without
changing the results or requiring the substantive modifica-
tion of the general test software used for the memory cache
testing. The sequence of the test code stays the same but the
stack depth i1s increased. In the above example, the only
changes to the general test software were to change the final
instruction from a branch to the next segment (bc+112) to a
return 1nstruction to match the sub-routine calls in the
push/pop segment and the bel target instructions (subroutine
calls) in the branch to target segment 810. Changing the last
istruction to a “return” may be done pseudo randomly to
further randomize the stack depth of the test code. No
substantive changes were made to the general test software.
Thus, any number of branch to target segments 810 and
push/pull segments 812A, 812B can be added to put the
depth of the link stack to various values during testing
without substantive modification of the test code.

Retferring to FIG. 14, a method 1400 shows one suitable
example for an example of stress testing the link stack 1n a
processor memory cache using segments with non-naturally
aligned data boundaries. Portions of method 1400 are pret-
erably performed by the test case generator 123 shown 1n
FIG. 1 and the test case executor 214 shown 1n FI1G. 2. First,
provide test code for testing a memory 1 a strand of
non-consecutive memory segments with non-naturally
aligned data boundaries (step 1410). Next, place a plurality
of link stack test segments interspersed into the test code
segments (step 1420). Execute the test code to test the
memory while executing the interspersed push and pop
segments to vary the link stack depth without changing
results of the test code and independent of the test code (step
830). Method 1400 1s then done.

FIG. 15 shows one suitable example of a method 1500 to
place a plurality of link stack test segments interspersed nto
the test code segments. Method 1500 thus shows a suitable
method for performing step 1420 1n method 1400 in FIG. 14.
First, provide a plurality of branch to target segments each
with one or more push/pop segments (step 1510). Provide a
push segment that pushes a copy of a link register to a link
register save area within the push/pop segment (step 1520).
Provide a pop segment that loads a copy of the link register
from the link register save area in the push/pop segment and

US 10,540,249 B2

13

stores 1t to the link register, and then returns execution via
the link register (step 1530). The method 1500 1s then done.

The disclosure and claims herein relate to a system and
method for stress testing a memory with a variable link stack
depth using link stack test segments with non-naturally
aligned data boundaries. Link stack test segments are inter-
spersed 1nto test code of a processor memory tests to change
the link stack depth without changing results of the test code.
This allows the test code to be reused for different test
scenar1os including testing of the link stack.

One skilled 1n the art will appreciate that many variations
are possible within the scope of the claims. Thus, while the
disclosure 1s particularly shown and described above, 1t will
be understood by those skilled in the art that these and other
changes 1n form and details may be made therein without
departing from the spirit and scope of the claims.

The invention claimed 1s:

1. An apparatus for testing a computer processor coms-
prising:

a test case generator that allows a user to create test cases

with test code for testing the computer processor;

a test case executor that replicates the test code and loads
the replicated test code into non-naturally aligned seg-
ments of consecutive memory locations on the com-
puter processor;

wherein the test case executor further adds link stack test
segments interspersed in the test code in non-naturally
aligned segments that vary the depth of a link stack
without aflecting the test code results; and

wherein the computer processor executes the test code
with the link stack test segments to test the memory of
the computer processor with varying depth of the link
stack 1ndependent of the test code.

2. The apparatus of claam 1 wherein the replicated test
code 1n the non-naturally aligned segments comprise sub-
segments of test code that include word, double word and
quad word sub-segments.

3. The apparatus of claam 1 wherein the replicated test
code 1n the non-naturally aligned segments have seven
words of test code with one single word sub-segment, one
double word sub-segment and one quad word sub-segment.

4. The apparatus of claim 1 wherein the link stack test
segments comprise:

a branch to target segment that comprises a plurality of

branches to sub-routines of test code; and

a push/pop segment that branches to a push segment,
branches to a test segment, and then branches to a pop
segment.

5. The apparatus of claim 4 wherein the push segment
pushes a copy of a link register to a link register save area
within the push/pop segment.

6. The apparatus of claim 5 wherein the pop segment
loads the copy of the link register 1n the push/pop segment
and stores 1t to the link register and returns execution via the
link register.

7. The apparatus of claim 4 wherein the push segment and
the pop segment are located outside the test code and used
by a plurality of test cases.

10

15

20

25

30

35

40

45

50

55

14

8. The apparatus of claim 1 wherein the test case executor
turther modifies a last instruction of one or more test code
segments to change a branch location consistent with sub-
routine calls 1n the push/pop segment and the branch to
target segment.

9. An apparatus for testing a computer processor com-
prising:

a test case generator that allows a user to create test cases

with test code for testing the computer processor;

a test case executor that replicates the test code and loads
the replicated test code into non-naturally aligned seg-
ments of consecutive memory locations on the com-
puter processor wherein non-naturally aligned means
ends of the segments when placed end-to-end with
another segment do not fall on a natural boundary that
1s a number of the form 2”;

wherein the test case executor further adds link stack test
segments mterspersed 1n the test code 1n non-naturally
aligned segments that vary the depth of a link stack
without aflecting the test code results; and

wherein the computer processor executes the test code
with the link stack test segments to test the memory of
the computer processor with varying depth of the link
stack 1independent of the test code;

wherein the replicated test code in the non-naturally
aligned segments comprise sub-segments of test code
that include word, double word and quad word sub-
segments.

10. The apparatus of claim 9 wherein the replicated test
code 1n the non-naturally aligned segments have seven
words of test code with one single word sub-segment, one
double word sub-segment and one quad word sub-segment.

11. The apparatus of claim 9 wherein the link stack test
segments comprise:

a branch to target segment that comprises a plurality of

branches to sub-routines of test code; and

a push/pop segment that branches to a push segment,
branches to a test segment, and then branches to a pop
segment.

12. The apparatus of claim 11 wherein the push segment
pushes a copy of a link register to a link register save area
within the push/pop segment.

13. The apparatus of claim 12 wherein the pop segment
loads the copy of the link register in the push/pop segment
and stores 1t to the link register and returns execution via the
link register.

14. The apparatus of claim 11 wherein the push segment
and the pop segment are located outside the test code and
used by a plurality of test cases.

15. The apparatus of claim 9 wherein the test case
executor further modifies a last mstruction of one or more
test code segments to change a branch location consistent

with subroutine calls in the push/pop segment and the
branch to target segment.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

