12 United States Patent

Gstoettenbauer

US010536168B2

US 10,536,168 B2
Jan. 14, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

PROGRAM FLOW MONITORING FOR
DETERMINISTIC FIRMWARE FUNCTIONS

Applicant: Infineon Technologies AG, Neubiberg

(DE)

Inventor: Bernhard Gstoettenbauer,
Engerwitzdort (AT)

Assignee: Infineon Technologies AG, Neubiberg
(DE)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 232 days.

Appl. No.: 15/344,926

Filed: Nov. 7, 2016

Prior Publication Data

US 2018/0131387 A1 May 10, 2018

Int. Cl.

HO3M 13/00 (2006.01)

HO3M 13/09 (2006.01)

GO6F 9/30 (2018.01)

GOGF 21/00 (2013.01)

GOGF 9/38 (2018.01)

GIIB 20/18 (2006.01)

U.S. CL

CPC ... HO3M 13/09 (2013.01); GO6F 9/30021

(2013.01); HO3M 13/6569 (2013.01); GO6F
9/3861 (2013.01); GOGF 21/00 (2013.01);
GI1B 2020/1843 (2013.01)

Field of Classification Search
CPC GO6F 9/30021; GO6F 21/00; GO6F 9/3861;
GO6F 11/30; HO3M 13/09; HO3M
13/6569; G11B 2020/1843
USPC 7147704, 705, 758, 807
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,974,529 A * 10/1999 Zumkehr GO6F 9/3005
712/239

9,323,920 B2 4/2016 Wenzel
2004/0015747 Al* 172004 Dwyerccccoeevvnnenn. GOoF 8/54
714/47.1

(Continued)

OTHER PUBLICATTONS

Understanding and Using Cyclic Redundancy Checks with Maxim
1-Wire and 1Button Products. https://www.maximintegrated.com/
en/app-notes/index.mvp/1d/27. 15 pages.

(Continued)

Primary Examiner — Albert Decady

Assistant Examiner — Osman M Alshack

(74) Attorney, Agent, or Firm — Eschweiler & Potashnik,
LLC

(57) ABSTRACT

The present disclosure relates to a safety system having a
memory unit configured to store a series ol executable
instructions. In some embodiments, the executable instruc-
tions are grouped into code parts, and each code part 1s
assigned a predefined code value. A processor 1s configured
to execute the series of executable instructions, and to output
the predefined code values respectively as the code parts are
executed. A program flow monitoring (PFM) unit 1s config-
ured to respectively receive the predefined code values from
the processor, such that the PFM unit generates an error-
checking value from the predefined code values. A verifi-
cation unit 1s configured to compare the error-checking
value to an expected return value to determine whether the
series of executable instructions executed properly.

20 Claims, 6 Drawing Sheets

140
A ~112 ,-114
uuuuuuuu e e e e e e e
r;:_":“ - F aipelpldyedylyd .
a Sroet, | Program Flow
S ; - L Sot) Mmﬁi‘tmmg Linit
Coniroller | 51 Ly Processor 104 g | 108
142 - L= —=
;
I R RO I IR
| ; Sw-“‘,_ Error-checking a1 122
| AA A A A A
I s - AL K e == ?ﬁguﬁ
I ?_.; E%‘ ;T: EE’ 35 F.’
Ly Sl e S| |d
B Memory Unit 1 ‘
: ; 106 Verification
L o ———T— — } init
| § (| Gode || Code Code | aj;m
: ! i vahie | | Value Valus i L1
| 18 || 216 | | 116 "
: 1 ; Code || Code Code |y 124 I
| i 11 Fart Hart Part |y \ 4
| e || 418 | | 418y ||
; =5 =
:_i — d

US 10,536,168 B2
Page 2

(56)

2008/0120492
2009/0089644
2010/0192052
2011/0184716
2011/0307758

2012/0246452
2012/0272104

2013/0019231
2013/0145219

2015/0331745

References Cited

U.S. PATENT DOCUMENTS

Al* 5/2008 Dye ...ooovviviiinnnnnnn,
Al* 4/2009 Mead
Al* 7/2010 Jang
Al* 7/2011 Mangold
Al* 12/2011 Fillingim

Al 9/2012 Gammel et al.
Al®

Al 1/2013 Mangard et al.
6/2013 Dalal

Al*

Al*

OTHER PUBLICATIONS

10/2012 Jacobi ...oovvvvnvvinnn.,

11/2015 Zastrow

GO6F 9/3005

712/225

HO3M 13/09

714/758

GOO6F 11/0739

714/807

GO6F 11/3612

703/22

GOO6F 11/1048

714/758

FO2D 41/22

714/47.1

GO6F 11/302

714/47.1

GOO6F 11/1048

714/764

Nahmsuk Oh et al.; “Control-Flow Checking by Software Signa-
tures”; IEEE Transactions on Reliability; vol. 51, No. 2; Mar. 2002.

pp. 111-122.

* cited by examiner

U.S. Patent Jan. 14, 2020 Sheet 1 of 6 US 10,536,168 B2

1004 - 112 114

”“““:Z:Ziii“&:ﬁi:i:i:?“““‘i ““““““““““““““ |

| Srﬁ%‘i’ |

— Program Flow |

: | Sov. Monitoring Unit 1

Controller | S Processor 104 Q. 108 ' :

:@ ; v, 2 AL :
Sev | Error-checking |y 122

iiiiiiiiiiiiiiiiiiiiiiiiiiii

Vearification
Linit
110

~ 124

—
1)
5
{3

kbbb bbb kbbb kbbb kbbb bbbk G e -kl

200 4
ﬁ — Program Flow Monitoring Unit
viemory Unit Frocessor (PEMU)
208 204 208
Code Value Code Value o
216 216 Code Value || | PFMU Value
Code FPart LOde Part 218, : | 22L

218, 218 T
Code Value Lode Value

l I
_,_Zf_f@z_ | ____.2_1@2 B FEMU Value : B : MEMU Value Verification
2 || Code Part | Code Part 299, N 292 Unit
218;2 = / 210
. l ;
: g : Expectad
Code Value | Code Value - Error- Fi(eium
216 216 PFMU Value] ¢ Checking ;2*?
Code Part Code Part 2220 | YValue ——
218n 2184 b 224

ﬂ'smg_ |

2

Fig.

U.S. Patent Jan. 14, 2020 Sheet 2 of 6 US 10,536,168 B2

300~
/“312 ”~ 314
mmmmmmmmmmmmmmmmmmmmm e s v s e m— — — — —— — — —
r—— — — — ™ ™ - — — ™ - o ___l E
| Sresel Program Flow |
. 3, Verification Unit | Sy 1 Manitor n |
Controller €+ 310 | o . on tiéégg L E
| ov,2 L=A A L —
_3;{-;}_2 31 e] e e e RERREEE | 322
Sen | Error-checking /EV'
- ' value -l
1T T =Tz | EE z
3 |
|
|
|
|
PR —— |
1| Cods |
: Yalue HITONN N
: W i —] . 7 32&-
| (0de .
| Part
: 318
400 ¢
- 412 ,-414 422
—— o ____ L e e e A
| | === e g |
| g e | reset KRR |
| Verf;iits@n | i : St - Error-checking :
| 410 e Processor 404 S, , e, value :
— | - Register ,
| | Sov 426 l
| Controller 402 AR AR AK_ | — :
T — 11 & Bl | & 5| | & Frogram Flow Monitoring |
W |w all|le ol | it ,
s _ '
Memory Unit 408 |
406 - l
uuuuuuuuuuuuuuuu !
Code || Code :
Value | | Vaiug | |
416, 416, :
Code | | Code |
Part Part :
418, 418 |
mmmmmmmmmmmmmmmm ;
|

U.S. Patent Jan. 14, 2020 Sheet 3 of 6 US 10,536,168 B2

Spffﬁu in

Sﬁiﬂck

U.S. Patent Jan. 14, 2020 Sheet 4 of 6 US 10,536,168 B2

6004 614
e 82 S L
i
| |
X Mf}ﬁigng Monitored
Controiler | || | Processor (< > Ui Device
602 % 804 | 820 622
| | L
| |
| | A
| |
| Memory Unit
i 606
| |
: : : Code | | Code Code 1l
Ol vaige || vaiue |- vaiue |! FProgram
| . . . 1I1', 624 o _—
: : | 816, | [818 | [£16n | 4 Flow Verification
11[}] Code | [Code Code || Monitoring L nit
: : | Part Part |--| Part : Linit g10
: : : 218, £18- 91dy |, 508
|

dsajg

U.S. Patent Jan. 14, 2020 Sheet 5 of 6 US 10,536,168 B2

f00—~
START
- Receive a trigger signal from a controlier to begin execution of a series of 1z
instructions
784
Heset state storing unils of a program How monitoring unit
Provide a first predefined code value 1o the program fiow monioring unit 706
________________ Generate afirstPFMUvalve 7%
.. Provide a first bit of the first code valus to an input of a first stage__ r{ 14
T T T WM UM T T TR U™ Y, —5_t_——— * “““““““““““““““““““““““““ i
. ~rovide a stored bit of the first stage 10 a second stage, and V F 712
y concurrently provide a second bit of the first code value to the input of ¥
: the first stage !
716
Executs a first code part of the series of instructions
-§18
Provide a predefined second code vale {o the program flow monitoring unit
enerate an error-checking value 720
' Provide a first bit of the second code value {o the input of the first | _{-722
;_ stage f
R
"7 Provide a stored bit of fhe first stage to a second stage, and | | 724
' concurrently provide a second bit of the second code value to the inputy
| of the first stage :
o
T£8

Execute g second code part of the series of instructions

TO Fig. 8

Fig. 7

U.S. Patent Jan. 14, 2020

800

Sheet 6 of 6

US 10,536,168 B2

From Fig. 7

Frovide the error-checking vaiue (o a verification unit

(-ompare the error-checking value 1o an expected refurn value

If the code values were nput INtG

B34 o)
the program flow monitoring unit
| in a predefined sequence, the
error-checking vaiug will match
the expected return value
836a

| Generate an output signaling the
error-checking vaiue maiched the
axpected return value

N

834
832
if the code values were not input
into the program fiow monitoring 834D
unit in a predefined sequence, the
error-chacking value will NOT
match the expected return value
836b

(zenerate an ouiput signaling the
error-checking value did not
maich the sxpected return value

END

US 10,536,168 B2

1

PROGRAM FLOW MONITORING FOR
DETERMINISTIC FIRMWARE FUNCTIONS

FIELD

The present disclosure relates to systems and methods for
program flow monitoring of functions using code values.

BACKGROUND

Processors are designed to execute programs comprised
of mstructions. When a program 1s executed, it 1s expected
that the instructions are executed 1n an intended sequence.
However, 1n some situations, the sequence with which the
instructions are executed may deviate from the intended
sequence. Such deviations may be caused by, for example,
hardware errors, electromagnetic radiation, or malicious
interference. For some applications, 1t’s suflicient that the
istructions execute according to the intended sequence
most of the time. However, for certain other applications, it’s
important that the instructions always execute according to
the mtended sequence. For example, 1n some automotive
object-detection systems, such as radar, 1t’s important that
the 1nstructions always execute according to the intended
sequence.

Some automotive radar systems are employed to ensure
the safety of drivers and passengers by, for example, pro-
viding blind spot momtoring and/or automatic breaking.
Due to the safety importance of such automotive radar
systems, safety monitoring units and safety controllers may
be employed to monitor devices or components of the
automotive radar systems. The safety monitoring units are
hardware devices configured to perform tests on the devices
or components. For example, a safety monitoring unit may
be configured to input a radio frequency (RF) signal into a
receive chain and to compare an output of the receive chain
to an expected output. The safety controllers are program-
mable devices comprising memory configured to store pro-
grams, as well as, processors configured to execute the
programs to trigger the tests and, i some embodiments,
cvaluate results of the test. As such, 1t’s important that
instructions of the programs are executed in the intended
sequences.

One approach for reducing the likelithood of program
instructions being executed out of sequence 1s to design the
processors to higher standards. For example, whereas pro-
cessors 1n the automotive industry are often designed to
meet the quality management standard of ISO 16949, the
processors may be designed to meet the higher safety
standard of ISO 26262. However, designing the processors
to meet higher standards 1s challenging and costly given the
complexity of the processors.

SUMMARY

The present disclosure provides systems and methods for
program tlow monitoring using code values. As a processor
executes a set of instructions, the processor fetches the
istructions from a memory. The instructions include code
parts and code values. For example, the instructions may
comprise a first code part, a first code value, a second code
part, and a second code value. As each code part 1s respec-
tively executed by a processor, the processor outputs each
respective code value to a program tlow monitoring (PFM)
unit. The PFM unit receives the respective code values and
generates an error-checking value based on a sequence 1n
which the respective code values were mput into the PEM

10

15

20

25

30

35

40

45

50

55

60

65

2

umt. For example, the error-checking value may be gener-
ated by a cyclic redundancy check (CRC). After executing
the instructions, the error-checking value 1s compared to an
expected return value to determine whether the istructions
were executed 1n the intended sequence. If the error-check-
ing value matches the expected return value, there 1s a high
likelihood that the 1nstructions were executed 1n the intended
sequence. Otherwise, warnings may be flagged and/or cor-
rective measures may be taken.

In some embodiments, the PFM unit 1s implemented 1n
hardware and 1s independent of the processor. In some of
such embodiments, the PFM unit 1s designed and/or devel-
oped according to a more demanding standard than the
processor. For example, the processor may be designed
and/or developed according to a quality management stan-
dard, such as ISO 16949, whereas the PFM unit may be
designed and/or developed according to a higher standard,
such as ISO 26262.

Further, 1n some embodiments, the PFM unit 1s employed
within a safety system configured to monitor a device or
component, such as, for example, a device or component of
an automotive radar system. In some of such embodiments,
the safety system comprises a salety monitoring unit, a
satety controller, the PFM unit, and a verification unit. The
safety momitoring umt 1s a hardware device configured to
perform a test on the monitored device or component. The
safety controller 1s a programmable device comprising a
memory configured to store a set of instructions, as well as
a processor configured to execute the instructions to trigger
the test and, 1n some embodiments, evaluate a result of the
test. In some embodiments, before executing the instruc-
tions, the controller 1s configured to reset the PFM unit. The
verification unit 1s a hardware device or software configured
to verity that an error-checking value generated by the PEFM
unit matches an expected return value.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates a block diagram of some embodiments
of a programmable system using code values for program
flow monitoring.

FIG. 2 illustrates a block diagram of some more detailed
embodiments of a programmable system executing a series
of instructions, generating an error-checking value, and
comparing the error-checking value to an expected return
value.

FIG. 3 illustrates a block diagram of some variations of
some embodiments of the programmable system of FIG. 1.

FIG. 4 illustrates a block diagram of some variations of
some embodiments of the programmable system of FIG. 1.

FIG. 5 illustrates a block diagram of some more detailed
embodiments of a program flow momitoring (PFM) unat.

FIG. 6 illustrates a block diagram of some embodiments
of an object-detection system in which the program tlow
monitoring system ol FIG. 1 may be disposed.

FIG. 7 1llustrates a first part of a flow diagram of some
embodiments of a method for generating an output signal
that signals an error-checking value either matched or did
not match an expected return value.

FIG. 8 1llustrates a second part of a flow diagram, con-
tinued from the first part of the flow diagram in FIG. 7, of
some embodiments of a method for generating an output
signal that signals an error-checking value either matched or
did not match an expected return value.

DETAILED DESCRIPTION

The following detailed description makes reference to the
accompanying drawings which constitute a part of the

US 10,536,168 B2

3

disclosure and 1n which, for purposes of illustration, special
example embodiments are shown, whereby the disclosure
can be practically realized. It 1s understood that other
example embodiments may be employed, and that structural
and other changes may be implemented, without going
beyond the scope of protection of the present disclosure.
Thus, the following detailed description should not be
regarded as being limitative. Rather, the scope of protection
of the present disclosure 1s defined only by the accompany-
ing patent claims.

FIG. 1 1s a block diagram 100 of some embodiments of a
programmable system using code values for program flow
monitoring (PFM). As illustrated, a memory unit 106 1s
configured to store a series of instructions 124. The series of
instructions 124 may comprise a plurality of code parts 118,;,
118,, 118, and a plurality of respective code values 116,
116,, 116,. For example, a first code part 118, may be
associated with a first code value 116,. The series of
istructions 124 1s a set of instructions that are configured
for execution 1n a predefined sequence to carry out a task or
function. Further, the code parts 118,, 118,, 118,, may be a
program, a function of a program, or a segment of a function
or program. Also, the code values 116,, 116,, 116,, may be
a predefined value of M bits, wherein M 1s an integer greater
than or equal to 1. For example, the code values 116,, 116,
116, may be pseudo-randomly generated numbers compris-
ing M bits. The code values may be independent of the code
parts in that they are not derived from the code parts. The
memory unit 106 may be, for example, a read-only memory
(ROM) device and/or a flash memory device or other
non-volatile memory device(s).

A processor 104 1s configured to execute the series of
instructions 124 by fetching and executing the series of
instructions 124 from the memory unit 106 1n a predefined
sequence. For example, the processor 104 1s configured to
tetch a first code value 116, via a first code value signal S_,
from the memory unit 106, and fetch a first code part 118,
via a first code part signal S_, | from the memory unit 106.
The processor outputs the first code value 116, via a first
prime code value signal S_ |, and executes the first code
part 118, . In some embodiments, the processor 1s configured
to output a reset signal S____ prior to outputting the first code
value 116, via a first prime code value signal S_, ;.. In some
embodiments, the processor 104 begins the execution of the
series of instructions 124 1n response to a signal S, from a
controller 102. The controller 102 may be so configured that
it meets requirements for sale operation. For example, the
controller 102 may be trusted and/or meet a high safety
standard, such as ISO 26262.

Next, the processor fetches a second code value 116, via
a second code value signal S_, , from the memory unit 106,
and fetches a second code part 118, via a second code part
signal S_,, from the memory unit 106. The processor
outputs the second code value 116, via a second prime code
value signal S_, ,., and executes the second code part 118,,.
The processor 104 continues this fetching, outputting, and
executing until an Nth code value 116,,1s fetched via an Nth
code value signal S_, »; from the memory unit 106, and an
Nth code part 118, 1s fetched via an Nth code part signal
S., ~ from the memory unit 106. The processor outputs the
Nth code value 116,, via an Nth prime code value signal
S., ~» and executes the Nth code part 118,. The processor
104 may be, for example, a microprocessor, and/or may be,
for example, integrated with the memory unit 106 1n a
microcontroller 112.

While the processor 104 ideally executes the series of
instructions 124 according to a predefined sequence, there

10

15

20

25

30

35

40

45

50

55

60

65

4

may be deviations between the executed sequence and the
predefined sequence. Such deviations may be caused by, for
example, hardware errors, electromagnetic radiation, or
malicious interference. Therefore, a PFM unit 108 1s con-
figured to respectively recerve the code values 116, 116,
116,, via their respective prime code value signals S_, |,
S.van S, N and generate an error-checking value 122 based
on the code values 116,, 116,, 116,. For example, the
error-checking value 122 may be generated by a cyclic
redundancy check (CRC). In some embodiments, the error-
checking value 122 1s generated with L bits, whereas the
code values 116, 116, 116,, cach comprise M bits. L and M
are mteger values greater than zero and may, for example, be
the same or different. For example, L may be 16, whereas M
may be 32. Further, 1n some embodiments, the PFM unit 10
first recerves the first code value 116,. In some embodi-
ments, the PFM unit 108 1s reset via a reset signal S, prior
to recerving the first code value 116,. Next, the PFM umit
108 recerves the second code value 116,. The PFM unit 108
continues receiving code values until the PFM unit 108
receives the Nth code value 116,,. Once the Nth code value
116, 1s recerved, the PFM generates the error-checking
value 122. In some embodiments, the PFM unit 108 outputs
the error-checking value 122 via an error-checking value
signal S_..

A verification unit 110 1s configured to receive the error-
checking value 122 via the error-checking signal S_ , and to
compare the error-checking value 122 to an expected return
value to determine 1f the series of instructions 124 were
executed properly. I the error-checking value 122 matches
the expected return value, there 1s a high likelihood that the
series of 1structions 124 were executed in the predefined
sequence. In contrast, if the error-checking value 122 does
not match the expected return value, there 1s a high likeli-
hood that the series of mstructions 124 were not executed in
accordance with the predefined sequence. In some embodi-
ments, the verification unit 110 further tracks the length of
time 1t takes for the series of executable instructions 124 to
complete, and compares the actual run time to an expected
or maximum time internal. If the series of executable
instructions 124 took longer to run than the expected or
maximum time internal, an error may be triggered.

In some embodiments, the foregoing i1s repeated for one
or more additional series of instructions 124. Each series of
instructions 124 has a corresponding expected return value.
For example, a first series of instruction 124, has a corre-
sponding {irst expected return value, and a second series of
instructions 124, has a corresponding second expected
return value, which may or may not be different than the first
expected return value. Further, each series of instructions
124 may comprise N number of checkpoints, wherein N 1s
an nteger greater than or equal to 1. For example, the first
series ol instructions 124, may comprise, for example, six
checkpoints. The second series of instructions 124, may
comprise, for example, eleven checkpoints. In some
embodiments, the PFM unit 108, the verification unit 110,
and the controller 102 may be programmed to monitor the
individual checkpoints of each series of instructions 124.

The expected return value may be a predefined value for
cach series of mstructions 124 and stored in non-volatile
memory, such as, for example, a ROM device and/or a flash
memory device. For example, a manufacturer may program
a first expected return value for a first series of instructions
124, and a second expected return value for a second series
of instructions 124 ,, which may or may not be different from
the first expected return value. In some embodiments, the
expected return value 1s defined (e.g., by the manufacturer)

US 10,536,168 B2

S

independently of the code values 116,, 116, 116,,. In some
of such embodiments, at least one, but not all, of the code
values 116,, 116, 116N 1s/are randomly generated, and the
one or more remaining code values 1s/are selected so the
error-checking value 122 from the PFM unit 108 matches
the expected return value. For example, the first N-1 code
values 116, 116.,, 116,, , may be randomly generated, and
the Nth code value 116, may be selected so the error-
checking value 122 from the PFM unit 108 matches the
expected return value. In some other embodiments, the
expected return value 1s defined (e.g., by the manufacture)
based on the code values 116, 116, 116.,.. For example, the
code values 116,, 116,, 116, may be randomly generated,
and the expected return value may be calculated from the
code values 116,, 116,, 116,..

After comparing the error-checking value 122 to the
expected return value, the verification unit 110 may output
a response signal S, .. An appropriate response/action may
be taken based on the response signal S, . For example, 1f
the response signal S, indicates the errer-eheekmg value
122 did not match the expected return value, warnings may
be flagged and/or corrective measures may be taken. The
processor 104, memory unit 106, PFM unit 108, and the
verification umit 110 may be, for example, integrated
together on an integrated chip 114. Further, 1n some embodi-
ments, rather than the processor 104 transmitting the code
values 116,, 116,, 116, to the PFM umit 108, a direct
memory access (DMA) block can transfer the code values
116, 116,, 116, to the PFM unit 108 under the direction of
the processor 104.

In some embodiments, some of the units and/or circuits 1n
FIG. 1 can be implemented in hardware, while other units of
FIG. 1 can be implemented 1n software, firmware, etc. For
example, 1n some embodiments, the PFM unit 108, verifi-
cation umt 110, processor 104, and memory unit 106 may be
hardware integrated together on a single integrated circuit
(IC), while the controller 102 may be hardware integrated on
a separate IC. In other embodiments, the PFM unit 108
and/or the verification unit 110 may be implemented as
instructions stored in semiconductor memory and executed
on a processor, such as a microprocessor, microcontroller,
baseband processor, or digital signal processor. In still other
embodiments, all components can be integrated on a single
monolithic IC, or 1n a three dimensional packaged 1C made
up ol multiple dies stacked over one another i an IC
package.

FIG. 2 1s a block diagram 200 of some more detailed
embodiments of the programmable system executing a
series ol instructions, generating an error-checking value,
and comparing the error-checking value to an expected
return value. As illustrated, a memory unit 206 1s configured
to store a plurality of code values 216,, 216,, 216,, and a
plurality of respective code parts 218,, 218, 218.... The code
parts 218,, 218,, 218,, may be a program, a function of a
program, or a segment of a function or program. Also, the
code values 216,, 216,, 216,, may be a predetined value of
M bits, wherein M 1s an integer greater than or equal to 1.
In some embodiments, at least one, but not all, of the code
values 216,, 216,, 216,, are pseudo-randomly generated
numbers comprising M bits, and the one or more remaining,
code values (e.g., code value 216,) are defined 1n such a
manner that it program flow monitoring (PFM) unit 208
receives the code values 216, 216,, 216,, 1n a predefined
sequence, the PFM umt 208 will generate an error-checking
value 224 that matches the expected return value 226. For
example, 1n order to generate an expected return value 226,
at least one code value 216, 216,, 216,, cannot be randomly

10

15

20

25

30

35

40

45

50

55

60

65

6

chosen. In contrast, 1f the PFM unit 208 receives the code
values 216,, 216,, 216,,1n a sequence that deviates from the
predefined sequence, the PFM unit 208 will generate an
error-checking value 224 that does not match the expected
return value 226.

In some embodiments, at a first time interval T,, a
processor 204 fetches a first code value 216, and a first code
part 218,. After fetching the first code value 216, and the
first code part 218, , the processor outputs the first code value
216, to the PFM umt 208 and executes the first code part
218, . After receiving the first code value 216, the PFM unait
208 generates a first PEMU value 222, that 1s based on the
input of the first code value 216, into the PFM unit 208.

In some embodiments, at a second time interval T,, the
processor 204 fetches a second code value 216, and a second
code part 218,. After fetching the second code value 216,
and the second code part 218,, the processor outputs the
second code value 216, to the PFM unit 208 and executes
the second code part 218,,. After recerving the second code
value 216,, the PFM unit 208 generates a second PFMU
value 222, that 1s based on the first PFMU value 222, and
the input of the second code value 216, into the PFM umit
208.

In some embodiments, at an Nth time interval T,, the
processor 204 fetches an Nth code value 216, and an Nth
code part 218,,. After fetching the Nth code value 216,; and
the Nth code part 218, the processor outputs the Nth code
value 216,; to the PFM unit 208 and executes the Nth code
part 218.,. After receiving the Nth code value 216, the PFM
unit 208 generates an error-checking value 224 that 1s based

on the most recently generated PFMU value, for example
PFMU value 222 .y, and the mput of the Nth code value
216, into the PFM unit 208.

In some embodiments, the verification unit 210 fetches
the error-checking value from the PFM umt 224, and com-
pares the error-checking value with an expected return value
226. For example, 1f the error-checking value 224 matches
the expected return value 226, there 1s a high likelihood that
the plurality of code parts 218,, 218, 218, were executed in
a predefined sequence. In contrast, 11 the error-checking
value 224 does not match the expected return value 226,
there 1s a high likelihood that the plurality of code parts
218,, 218,, 218,, were not executed in the predefined
sequence. In some embodiments, after comparing the error-
checking value 224 to the expected return value 226, the
verification unit 210 outputs a response signal S . An
appropriate response/action may be taken based on the
response signal S, . For example, 1t the response signal
S,esp Idicates the error-checking value 224 did not match

the expected return value, warnings may be triggered and/or
corrective measures may be taken. In some embodiments,
the plurality of code values 216, 216,, 216,, the plurality
of generated PFMU values 222,, 222,, 222.. the error-
checking value 224, and the expected return value 226 may
comprise M bits.

FIG. 3 1s a block diagram 300 of some variations of some
embodiments of the programmable system of FIG. 1. As
illustrated, a processor 304 i1s configured to implement a
verification unit 310 through software. For example, the
processor 1s provided an error-checking value 322 that was
generated by a program flow monitoring (PFM) umt 308.
The processor 304 compares the error-checking value 322 to
an expected return value to determine if the series of
istructions 324 were executed 1n a predefined sequence.
For example, 1f the error-checking value 322 matches the
expected return value, there 1s a high likelihood that the
series of instructions 324 were executed 1mn a predefined

US 10,536,168 B2

7

sequence. In contrast, 1f the error-checking value 322 does
not match the expected return value, there 1s a high likeli-
hood that the series of instructions 324 were not executed in
the predefined sequence. In some embodiments, aiter com-
paring the error-checking value 322 to the expected return
value, the processor 304 outputs a response signal S, to a
controller 302. An appropriate response/action may be taken
based on the response signal S,. For example, i1 the response
signal S, indicates the error-checking value 322 did not
match the expected return value, the controller 302 may take
corrective measures and/or warnings may be taken.
Although FIG. 3 depicts the controller 302 receiving the
response signal S, and taking appropriate action, 1t should be
appreciated that the processor 304 may take appropriate
actions and may output the response signal S, anywhere 1n
the system.

FI1G. 4 15 a block diagram 400 of some variations of some
embodiments of the programmable system of FIG. 1. As
illustrated, a controller 402 1s configured to read a register
426 that was provided an error-checking value 422 from a
program flow momitoring (PFM) unit 408. For example, the
PFM unit generates an error-checking value 422 based on
the 1nput sequence of a plurality of code values 416, 416,
416,,. While generating the error-checking value 422, the
PFM unit 408 provides the error-checking value to the
register 426. The register 426 stores the error-checking value
422. In some embodiments, the controller 402 1s provided
the error-checking value 422 by reading the register 426.
The controller 402 then compares the error-checking value
422 to an expected return value to determine 11 the series of
istructions 424 were executed 1 a predefined sequence.
For example, 1f the error-checking value 422 matches the
expected return value, there 1s a high likelihood that the
series of 1structions 424 were executed in the predefined
sequence. In contrast, if the error-checking value 422 does
not match the expected return value, there 1s a hugh likeli-
hood that the series of mstructions 424 were not executed in
the predefined sequence. In some embodiments, the control-
ler 402 may take corrective measures and/or warnings may
be taken.

FIG. 5 1s a block diagram 500 of some more detailed
embodiments of a program flow monitoring (PFM) unait. It
1s to be understood that this 1s just an example of the PFM
unit and that other embodiments of the PFM unit are
amenable.

As 1llustrated, the program flow monitoring (PFM) unit
comprises a plurality of stages 506,, 506,, 506,, 506,
connected 1n series, however 1in other embodiments the
plurality of stages 506,, 506,, 506,, 506, may be connected
in parallel. In some embodiments, each stage 506,, 506,
506,, 506, comprises a respective state storing unit 502,
502,, 502,, 502,, for example, a flip-flop or a latch. In
various embodiments, a stage 506,, 506,, 506,, 506, may
additionally comprise a logic gate 504,, 504,, 504, for
example, a XOR gate, NAND gate, AND gate, OR gate, etc.
In some embodiments, the stages 506,-506, may all be
identical to one another, but more often at least some of the
stages 506,-506, are different—ifor example 1 FIG. 5 the
third stage 506 lacks a logic gate 504, 504, as 1s present 1n
the first and second stages 306, 5062, respectlvely The first
stage 506, 1s configured to recertve a PFMU mput signal
S a clock signal S_, ., and a PFMU reset signal
S The PFM unit 500 may be configured to output a

pfmu,reset’

concatenated series of bits that are output from each stage
506,, 506,, 506,, 506, to generate a PFMU output signal
S In some embodiments, the PFMU output signal

pfmu.out®
S 1s the error-checking value. A feedback path 508

pfmuout

pfmein

10

15

20

25

30

35

40

45

50

55

60

65

8

couples an output of the Lth stage back to an input of each
stage 506,, 506,, 506,, 506, that comprises a gate 504,
504,, 504, .

For example, the PFM unit 500 may be configured to
receive an M-bit string of data from a processor via the
PFMU input signal S ., over a given time 1nterval, and
generate a Smgle L- blt error-checking value that will be
transmitted via the PFMU output signal S pfnsour AL the end
of the time interval, wherein M and L are integers greater
than or equal to 1. In some embodiments, a PFMU reset
signal S 18 provided to the PFM unit S00 to reset
cach state storing unit 502,, 502,, 502,, 502, before receiv-
ing a first bit of the string of M-bits. After receiving the
PFMU reset signal S, . . a first stage 506, receives a
first bit of the M-bait Strlng of data 1n a first clock cycle. The
first stage 506, then XORs the first bit with an Lth stage
output value 510, provided by the Lth stage 506, from the
teedback path 508. Based on timing parameters of the state
storing units 502,, 502,, 502,, 502,, for example, rising-
edge or falling-edge, and the frequency of the clock signal
S ;... for example, 2.4 GHz, the first stage 506, will
provide a first stage output value 510, to the second stage
506, 1n a second clock cycle.

The second stage 506, may comprise a second gate 504,
and/or a second state storing unit 502,. During the second
clock cycle, the second stage 506, receives the first stage
output value 510,, and XORs the first stage output value
510, with the Lth stage output value 510, 1n the second
clock cycle. Based on timing parameters of the state storing
units 502,, 502, 502,, 502, and the frequency of the clock
signal S_, ., the second stage 506, will provide a second
stage output value 510, to a third stage 506, in the next clock
cycle. The third stage 506, and additional stages up to an Lth
stage 506, process an output value of the previous stage (and
optionally the bit provided by the Lth stage 506, and/or
other values) to provide their respective output values.

The PFM unit 500 will continue to receive bits of data
from the M-bit string of data 1n successive clock cycles until
all bits have been processed. At the end of the time interval
during which the M-bit string of data 1s received, an L-bit
output value S 5 . .. 1s delivered. The L-bit output value 1s
a concatenation of the first stage output value 510,, second
stage output value 510,, third stage output value
510, . . ., and Lth stage output value 510, at the end of the
time 111terval In some embodiments, this S L muowe Value at
the end of the time 1nterval 1s stored 1n a register, latched, or
otherwise retained. In some embodiments, after the first
stage 506, receives the Mth bit of the M-bit string of data,
the processor provides a second M-bit string of data via the
PFMU mput signal S, .., and this second M-bit string ot
data 1s used to generate a second S, .. signal in similar
fashion. For example, a predefined number of separate M-bit
strings of data may be provided to the PFM unit. The PFM
unmit will continue to receive and process each mdividual bit
ol data until the first stage 506, receives the Mth bit of the
final predefined M-bit string of data.

In some embodiments, a verification unit 1s provided an
error-checking value comprising L-bits via the PFMU out-
put signal S The verification unit may compare the
error-checking value to an expected return value. If the
error-checking value matches the expected return value,
there 1s a high likelthood that the PFM unit received the
multiple strings of M-bits of data 1n the predefined sequence.
In contrast, 1f the error-checking value does not match the
expected return value, there 1s a high likelihood that the
PFM unit did not recerve the multiple strings of M-bits of
data 1n the predefined sequence.

US 10,536,168 B2

9

In some embodiments, some of the units and/or circuits 1n
FIG. 5§ can be implemented 1n hardware, while other units of
FIG. 5§ can be implemented 1n software, firmware, etc. For
example, 1n some embodiments, the stages 506,, 506,, 506,
506, may be comprised of hardware devices integrated on
an 1ntegrated circuit (IC). In other embodiments, the stages
506,, 506,, 506,, 506, may be implemented as instructions
stored 1n semiconductor memory and executed on a proces-
sor, such as a microprocessor, microcontroller, baseband
processor, or digital signal processor. In still other embodi-
ments, all components can be mtegrated on a single mono-
lithic IC, or 1n a three dimensional packaged IC made up of
multiple dies stacked over one another 1n an IC package.

FIG. 6 1s a block diagram 600 of some embodiments of an
object-detection system 1n which the program tlow moni-
toring system of FIGS. 1, 3, and/or 4 may find application.
As 1llustrated, one or more safety monitoring units 620 are
respectively configured to perform tests on one or more
monitored devices 622 by executing a series ol mnstructions
624. For example, a safety monitoring unit 620 may be
configured to input a radio frequency (RF) signal into a
receive chain of an object-detection system and to compare
an output of the receive chain to an expected output. Further,
the safety monitoring unit(s) 620 are hardware devices, as
opposed to software, and, 1in some embodiments, are
designed to a safety standard, for example, ISO 26262.

In some embodiments, a processor 604 1s configured to
fetch and execute code parts 618,, 618,, 618, 1n a pre-
defined sequence that are configured to perform a test on a
monitored device(s) 622 by a safety monitoring unit(s) 620.
Further, the processor 604 1s configured to fetch the respec-
tive code values 616,, 616, 616, that correspond with their
respective code parts 618,, 618,, 618,, and output the
respective code values 616,, 616,, 616, in a predefined
sequence to a program flow monitoring (PFM) unit 608. For
example, the processor 604 fetches a first code value 616,
and a first code part 618, . In addition, the processor outputs
the first code part 618, to the PFM unit 608, and executes the
first code part 618, configured to perform a test on the
monitored device(s) 622 by the safety monitoring unit(s)
620. The processor continues this fetching, outputting, and
executing until an Nth code value 616,, and an Nth code part
618, are fetched from the memory unit 606. The processor
outputs the Nth code value 616,; to the PFM unit 608, and
executes the Nth code value 618,; configured to perform a
test on the monitored device(s) 622 by the satety monitoring
unit(s) 620. The processor 604 may be, for example, a
microprocessor, and/or may be, for example, integrated with
the memory unit 606 in a microcontroller 612.

While the processor 604 1deally executes the code parts
618,, 618, 618, according to the predefined sequence, there
may be deviations between the executed sequence and the
predefined sequence. Therefore, the PFM umt 608 1s con-
figured to receive the code values 616,, 616,, 616, as their
respective code parts 618,, 618,, 618,, are executed, and
generate an error-checking value that 1s based on the 1nput
sequence of the code values 616,, 616, 616,

In some embodiments, a verification unit 610 1s config-
ured to fetch the error-checking value generated by the PEM
unit 608 and compare the error-checking value to an
expected return value. IT the error-checking value matches
the expected return value, there 1s a high likelihood that the
series of instructions 624 were executed in the predefined
sequence. In contrast, if the error-checking value does not
match the predefined expected return value, there 1s a high
likelithood that the series of structions 624 were not
executed 1n the predefined sequence. After comparing the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

error-checking value to the predefined expected return
value, the verification unit 610 may output a response signal
S, .sp- Al appropriate response/action may be taken based on
the response signal S, . For example, 1t the response signal
S,.sp 1ndicates the error-checking value did not match the
expected return value, warnings may be flagged and/or
corrective measures may be taken. The processor 604,
memory unit 606, PFM unit 608, safety momtoring unit(s)
620, monitored device(s) 622, and the verification unit 610
may be, for example, integrated together on an integrated
chip 614.

FIG. 7 1s a first part of a flow diagram of some embodi-
ments of a method 700 for generating an output signal that
signals an error-checking value either matched or did not
match an expected return value.

It will be appreciated that while method 700 1s illustrated
and described below as a series of acts or events, the
illustrated ordering of such acts or events are not to be
interpreted 1n a limiting sense. For example, some acts may
occur 1n different orders and/or concurrently with other acts
or events apart from those illustrated and/or described
herein. In addition, not all illustrated acts or events may be
required to implement one or more aspects or embodiments
disclosure herein. Also, one or more of the acts depicted
herein may be carried out 1n one or more separate acts and/or
phases.

At 702, in some embodiments, a trigger signal 1s received
from a controller to begin execution of a series of instruc-
tions. The signal may be received by a processor. In some
embodiments, the processor may be, for example, a micro-
processor, and/or may be, for example, integrated with a
memory unit 1n a microcontroller.

At 704, 1n some embodiments, state storing units of a
program flow monitoring (PFM) unit are reset. The state
storing units are reset by a reset signal. The processor may
provide the reset signal to the PFM umit. In some embodi-
ments, the reset signal may be provided by the controller.
The reset signal may be, for example, an edge-triggered
signal, a state-driven signal, or an inverse logic signal.

At 706, 1n some embodiments, a first predefined code
value 1s provided to the PFM unit. The processor may
provide the first predefined code value to the PFM unit. For
example, the processor may fetch a first predefined code
value from a memory unit and provide the first predefined
code value to the PFM unut.

At 708, in some embodiments, a first PFMU wvalue 1s
generated. The PFMU value 1s generated by the PFM unat.
As 1llustrated in 710, the PFMU value 1s generated by
providing a first bit of data of the first code value to a first
stage of the PFM unait. The first stage comprises a first state
storing unit, which may, for example, store a XOR between
the first bit and an output of a last stage of the PFM unit. As
illustrated 1n 712, after the first bit of data of the first code
value 1s provided to the first stage, a stored bit of the first
stage 1s provided to a second stage of the PFM unit. The
second stage comprises a second state storing unit, which
may, for example, store a XOR between the stored bit and
the output of the last stage of the PFM unit. Further,
concurrently therewith, a second bit of data of the first code
value 1s provided to the first stage, and the first state storing
unit may, for example, store a XOR between the second bit
and the output of the last stage. This process of shifting and
XORing bits of data to a subsequent stage may be continued
until an Mth bit of data of the first code value 1s provided to
the first stage, wherein M 1s an mteger greater than or equal
to 1. In other embodiments, the bits of data may be input into

the state storing units in a parallel manner.

US 10,536,168 B2

11

At 716, 1n some embodiments, a first code part of the
series of instructions 1s executed. In some embodiments, the
processor executes the first code part by fetching the first
code part from a memory unit. By executing the first code
part, the processor may configure and/or trigger one or more
safety monitoring unit(s) to perform a test on one or more
monitored hardware device(s). In other embodiments, the
processor performs the test on a monitored hardware device.

At 718, in some embodiments, a second predefined code
value 1s provided to the PFM umit. The processor may
provide the second predefined code value to the PFM unat.
For example, the processor may fetch a second predefined
code value from a memory unit and provide the second
predefined code value to the PFM unit.

At 720, 1n some embodiments, an error-checking value 1s
generated. The error-checking value 1s based on the first
PFMU value stored in the PFM unit, which 1s an amalga-
mation of outputs of the state storing units. The error-
checking value 1s generated in a similar manner as to the
PFMU value. As 1llustrated i 722, the error-checking value
1s generated by providing a first bit of data of a second code
value to the first stage of the PFM unit, where the first state
storing unit may, for example, store a XOR between the first
bit and an output of a last stage of the PFM unit. As
illustrated 1n 724, after the first bit of data of the second code
value 1s recerved by the first state storing unit, the first bit of
data of the second code value 1s provided to the second state
storing umit. As illustrated 1n 726, after the first bit of data of
the second code value 1s provided to the first stage, a stored
bit of the first stage 1s provided to the second stage of the
PFM unit, where the second state storing unit may, for
example, store a XOR between the stored bit and the output
of the last stage of the PFM umnit. Further, concurrently
therewith, a second bit of data of the second code value 1s
provided to the first stage, and the first state storing unit may,
for example, store a XOR between the second bit and the
output of the last stage. This process of shifting and XORing
bits of data to a subsequent state storing device may be
continued until an Mth bit of data of the second code value
1s provided to the first state storing device, wherein M 1s an
integer greater than or equal to 1. Further, in some embodi-
ments, an N-1 number of PFMU values may be generated
prior to the error-checking value being generated. In other
embodiments, the bits of data may be 1put into the state
storing units 1n a parallel manner.

At 728, in some embodiments, a second code part of the
series of mstructions 1s executed. The processor may execute
the second code part by fetching the second code part from
a memory umt, and provide the fetched code part to a safety
monitoring unit(s) which are configured to perform a test on
a monitored hardware device(s). In other embodiments, the
processor performs the test on a monitored hardware device.

FIG. 8 1s a second part, continued from the first part of the
flow diagram 1n FIG. 7, of a flow diagram of some embodi-
ments of a method 800 for generating an output signal that
signals an error-checking value either matched or did not
match an expected return value.

It will be appreciated that while method 800 1s illustrated
and described below as a series of acts or events, the
illustrated ordering of such acts or events are not to be
interpreted 1n a limiting sense. For example, some acts may
occur 1n different orders and/or concurrently with other acts
or events apart from those illustrated and/or described
herein. In addition, not all illustrated acts or events may be
required to implement one or more aspects or embodiments

10

15

20

25

30

35

40

45

50

55

60

65

12

of the disclosure herein. Also, one or more of the acts
depicted herein may be carried out 1n one or more separate
acts and/or phases.

At 830, in some embodiments, the error-checking value
generated by the PFM unit 1s provided to a verification unit.
The error-checking value 1s an amalgamation of outputs of
the state storing units of the PFM unit. For example, the
PFM unit may comprise L state storing units, wherein L 1s
an integer greater than or equal to 1. Therefore, an amalga-
mation ol the outputs of each of the L state storing umit
comprises the error-checking value. The verification unit
may be, for example, a separate hardware unit or may be, for
example, implemented 1n software, firmware, etc. In some
embodiments, the verification unit 1s implemented through
soltware on the processor. In other embodiments, the veri-
fication unit 1s implemented through software on the con-
troller.

At 832, 1n some embodiments, the verification unit com-
pares the error-checking value to an expected return value.
In some embodiments, the expected return value comprises
the same number of bits as the predefined code values that
were provided to the PFM unit. For example, the predefined
code values may comprise M bits, and the expected return
value will comprise M bits. In other embodiments, the
expected return value may comprise a different number of
bits than the predefined code values. For example, each of
the code values may comprise M bits (e.g., 32 bits) and the
error checking value may comprise L bits (e.g., 16 bits),
where M and L are different.

In some embodiments, after the error-checking value 1s
compared to an expected return value 832, one of two
possibilities may occur.

The first possibility, as illustrated in 834a, 1s the error-
checking value matching the expected return value. The
error-checking value will match the expected return value
only 1f the code values were input into the PFM unit 1n a
predefined sequence. It the error-checking value matches the
expected return value, there 1s a high likelihood the series of
instructions were executed in the predefined sequence.

If the error-checking value matches the expected return
value 834a, the verification until may generate an output that
signals the error-checking value matched the expected return
value 836a. For example, in some embodiments, the veri-
fication unit provides the controller with the error-checking
value. Because the error-checking value 1s based on the
input of the first code value and the second code value, the
first code value and second code value can be predefined 1n
such a manner, for example, pseudo-random number gen-
cration, to generate an error-checking value that the con-
troller 1s expected to receive only 1f no deviation in the
execution of the series of istructions occurred. The con-
troller may take appropriate action based on recerving the
error-checking value that 1s identical to the value the con-
troller 1s expected to receive once execution of the series of
instructions 1s completed. For example, the controller may
output a signal to an automotive electronic control unit
(ECU) indicating that the series of executions were executed
in the predefined sequence.

The second possibility, as illustrated 1n 8345H, 1s the
error-checking value not matching the expected return
value. The error-checking value will not match the expected
return value 1f a deviation from the predefined sequence
occurred during the mnput of the code values to the PFM unat.
If the error-checking value does not match the expected
return value, there 1s a high likelihood the series of mstruc-
tions were not executed 1n the predefined sequence.

US 10,536,168 B2

13

If the error-checking value does not match the expected
return value 834b, the verification umit may generate an
output that signals the error-checking value did not match
the expected return value 836b6. As noted above, the error-
checking value 1s generated 1n such a way that it matches the
expected return value only 1f no deviation 1n the execution
of the series of instructions occurred. If the controller
receives an error-checking value that 1s not identical to the
expected return value, the controller may take appropriate
action based on recerving the error. For example, the con-

troller may take corrective measures and/or warnings may
be taken.

What 1s claimed 1s:

1. A safety system, comprising:

a memory circuit configured to store a series of executable
instructions, wherein the series of executable instruc-
tions 1s grouped 1nto code parts, and wherein each code
part 1s assigned a code value and each code value 1s
derived independent of the assigned code part;

a processor circuit configured to execute the series of
executable instructions, and to output the code values
as the code parts are executed, respectively;

a program flow monitoring (PFM) unit configured to
receive the code values from the processor circuit, such
that the PFM unit generates a first PEMU value based
on a first of the code values and generates an error-
checking value based on the first PEMU value and a
second of the code values; and

a verification unit configured to compare the error-check-
ing value to an expected return value to determine
whether the series of executable instructions 1s
executed properly, wherein 11 the error-checking value
does not match the expected return value, the verifica-
tion umt outputs an electrical signal indicating the
series ol executable instructions were not executed
properly, and wherein the first of the code values and
the second of the code values are pseudo-randomly
selected, such that the error-checking value matches the
expected return value only 1f the first of the code values
and the second of the code values are input into the
PFM unit in an expected sequence.

2. The safety system of claim 1, wherein the expected

return value 1s predefined and fixed.

3. The safety system of claim 2, wherein the first of the
code values 1s randomly generated, and wherein the second
of the code values 1s selected such that the error-checking
value matches the expected return value only if the first of
the code values and the second of the code values are input
into the PFM unit 1n the expected sequence.

4. The safety system of claim 3, wherein the verification
unit outputs the electrical signal to a controller, and wherein
the controller 1s 1integrated on a different integrated circuit
(IC) than both the processor circuit and the PFM unat.

5. The safety system of claim 1, wherein the verification
unit 1s configured to further compare a run time of the series
ol executable instructions to a maximum time interval to
determine whether the series of executable instructions 1s
executed properly.

6. The safety system of claim 1, wherein the PFM unait
comprises a plurality of state storing units that store the
error-checking value, and wherein the processor circuit is
configured to reset the plurality of state storing units imme-
diately before executing the series ol executable instruc-
tions.

7. The safety system of claim 6, wherein both the first of
the code values and the second of the code values comprise

5

10

15

20

25

30

35

40

45

50

55

60

65

14

M bits, wherein the PFM unit comprises at least L stages,
and wherein L. and M are integers greater than one.

8. The safety system of claim 7, wherein the error-
checking value comprises L baits.

9. The safety system of claim 8, wherein:

the stages are connected 1n series;

cach bit of the first of the code values 1s successively input
into a first stage of the L stages; and

after all of the bits of the first of the code values are input
into the first stage, each bit of the second of the code
values 1s successively mput into the first stage.

10. The safety system to claim 9, wherein the error-
checking value 1s a concatenation of outputs of each of the
L stages.

11. The safety system according to claim 1, wherein the
PFM unit 1s configured to generate the error-checking value
as a cyclic redundancy check (CRC) on a concatenation of
the first of the code values and the second of the code values.

12. A safety system, comprising:

a hardware monitoring unit configured to perform a first
test and a second test on a monitored hardware device:

a memory circuit configured to store a plurality of series
of executable instructions, wherein:

a first series of executable 1nstructions of the plurality
of series of executable mstructions comprises a first
plurality of code parts and a first plurality of code
values that correspond to the first plurality of code
parts, respectively; and

a second series of executable instructions of the plu-
rality of series of executable instructions comprises
a second plurality of code parts and a second plu-
rality of code values that correspond to the second
plurality of code parts, respectively;
a processor circuit configured to execute the first series of
executable instructions and the second series of execut-
able 1nstructions, wherein:
executing the first series of executable instructions
comprises providing a first plurality of electrical
signals based on the first plurality of code parts to the
hardware monitoring unit, such that the hardware
monitoring unmt performs the first test, and wherein
the first plurality of code values are output as the first
plurality of electrical signals are provided to the
hardware monitoring unit, respectively; and

executing the second series of executable instructions
comprises providing a second plurality of electrical
signals based on the second plurality of code parts to
the hardware monitoring unit, such that the hardware
monitoring unit performs the second test, and
wherein the second plurality of code values are
output as the second plurality of electrical signals are
provided to the hardware monitoring unit, respec-
tively;

a program flow monitoring (PFM) unit configured to
receive the first plurality of code values and the second
plurality of code values from the processor circuit, such
that the PFM unit generates a first error-checking value
from the first plurality of code values and a second
error-checking value from the second plurality of code
values, wherein the second error-checking value 1s
different than the first error-checking value, and
wherein both the PFM unit and the processor circuit are
discrete from the hardware monitoring unit; and

a verification umt configured to receive the first error-
checking value from the PFM unit, and to compare the
first error-checking value to an expected return value to
determine whether the processor circuit provided the

US 10,536,168 B2

15

first plurality of electrical signals to the hardware
monitoring unit 1 a predefined sequence, wherein 1t
the first error-checking value does not match the
expected return value, the vernfication unit outputs an
clectrical signal indicating the processor circuit did not s
provide the first plurality of electrical signals to the
hardware monitoring unit in the predefined sequence.
13. The safety system of claim 12, further comprising:
an 1ntegrated chip comprising the hardware monitoring
unit, the memory circuit, the processor circuit, and the
PFM unat.

14. The safety system of claim 13, wherein the monitored
hardware device comprises a component of an object-
detection system, and wherein the monitored hardware unit
1s discrete from the processor circuit, the PEM unit, and the |
hardware monitoring unit.

15. The safety system of claim 14, wherein the object-
detection system 1s configured to detect a presence of a
physical object that 1s discrete from the integrated chip.

16. The safety system of claim 12, wherein: 50

the first plurality of code values are derived independent

of the corresponding first plurality of code parts,
respectively; and

the second plurality of code values are derived indepen-

dent of the corresponding second plurality ot code ,;
parts, respectively.

17. A method for monitoring the flow of a program,
comprising:

providing a first electrical signal to an electronic proces-

sor unit to trigger the electronic processor to execute a
series of executable instructions, wherein the electronic
processor 1s disposed on a first integrated chip and
receives the first electrical signal from a controller that
1s disposed on a second integrated chip different than
the first mtegrated chip, wherein the series of execut- 5
able instructions comprise a plurality of code parts and
a plurality of predefined code values that correspond to
the plurality of code parts, respectively, and wherein
the plurality of predefined code values are derived
independent of the plurality of code parts, respectively; ,,
executing the series of executable instructions on the
clectronic processor, wherein executing the series of
executable 1nstructions comprises providing a plurality
of electrical signals based on the plurality of code parts
to a hardware monitoring unit, such that the hardware
monitoring unit may perform a test on a monitored
hardware device;

16

as the plurality of electrical signals are provided to the
hardware monitoring unit, mputting the plurality of
predefined code values 1nto a program flow monitoring
(PFM) umit, respectively;

generating an error-checking value from the plurality of
predefined code values, wherein the error-checking
value 1s generated by the PFM unit, and wherein the
error-checking value 1s based on an order in which the
plurality of predefined code values are mput into the
PFM unat;

comparing the error-checking value to an expected return
value to determine whether the series of executable
instructions executed properly, wherein the plurality of
predefined code values are pseudo-randomly selected,
such that the error-checking wvalue matches the
expected return value only 1f the plurality of predefined
code values are input 1nto the PFM unit 1n a predefined
sequence;

i1 the error-checking value does not match the expected
return value, determining the series of executable
instructions did not execute properly; and

upon determining the series of executable mstructions did
not execute properly, triggering a warning to idicate
the series of executable instructions did not execute
properly, wherein the controller triggers the warning
via a second electrical signal.

18. The method of claim 17, further comprising:

resetting a plurality of state storing units of the PFM unait
immediately before executing the series of executable
instructions, wherein the plurality of state storing units
store the error-checking value.

19. The method of claim 18, wherein generating the

error-checking value comprises:

in response to receiving a first predefined code value of
the plurality of predefined code values, generating a
first PFMU value and storing the first PFMU value 1n
the plurality of state storing unmits of the PFM unit; and

in response to receiving a second predefined code value of
the plurality of predefined code values, generating a
second PFMU value different than the first PFMU
value, wherein the second PFMU value 1s an amalga-
mation of the first PFMU value and the second pre-
defined code value.

20. The method of claim 17, wherein the expected return

value 1s predefined and fixed.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

