12 United States Patent

Liu et al.

US010534694B2

US 10,534,694 B2
*Jan. 14, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(51)

(52)

(58)

PROBLEM DIAGNOSIS TECHNIQUE OF
MEMORY CORRUPTION BASED ON
REGULAR EXPRESSION GENERATED
DURING APPLICATION COMPILING

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Guan Jun Liu, Benjing (CN); Niao

Qing Liu, Beijing (CN); Ai Lian Mi,

Beijing (CN); Jing Jing Wen, Beiljing

(CN); Bei Chun Zhou, Beijing (CN)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/842,158

Filed: Dec. 14, 2017

Prior Publication Data
US 2018/0293149 Al Oct. 11, 2018
Related U.S. Application Data

Continuation of application No. 15/482,101, filed on
Apr. 7, 2017.

Int. CI.

GO6l 9/44 (2018.01)

GO6l 11/36 (2006.01)

U.S. CL

CPC GO6F 11/366 (2013.01); GO6F 11/3624

(2013.01)

Field of Classification Search

CPC GO6F 11/34-3696
See application file for complete search history.

200 '—\

(56) References Cited
U.S. PATENT DOCUMENTS
6,346,945 B1* 2/2002 Mansurov GOG6F 8/74
345/473
7,127,642 B2* 10/2006 Wang GO6F 11/073
714/45
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2016153586 Al 9/2016

OTHER PUBLICATTIONS

Cass, Stephen, “The 2016 Top Programming LLanguages C i1s No. 1,
but big data 1s still the big winner”, IEEE Spectrum, Posted Jul. 26,
2016, 2 pages, <http://spectrum.ieee.org/computing/software/the-
2016-top-programming-languages>.

(Continued)

Primary Examiner — Adam Lee
(74) Attorney, Agent, or Firm — Robert D. Bean

(57) ABSTRACT

According to one embodiment, a method, computer system,
and computer program product for memory corruption diag-
nosis 1s provided. The present invention may include gen-
crating a pattern expression (PE) header file, wherein a
plurality of common datatypes associated with a software
program are pre-defined. The invention may further include
generating a PE for each of the plurality of common
datatypes, and generating a PE table by merging the gener-
ated PEs for each of the plurality of common datatypes.
Upon discovery that memory corruption has occurred, the
invention may include transmitting a recorded state of the
soltware program as a core dump file to a server, and using,
a dump utility to 1dentity overlay content of the core dump
file. Lastly, the invention may include i1dentifying a possible
source program of the memory corruption by matching the
PE tables against the 1llegally-written overlay content.

7 Claims, 6 Drawing Sheets

(sTART)

:

Creating a pattern expression {PE) header file, where the pattern expressions
for the common data that is used by application programs ara pre-definad, 202

. 4

Modifying the application program to include the pre-defined PE header file and to
add annoctation symbals to the common data structures. 204

I

Generating a PE for each of the annotated data structures of the program, merging
the PEs into tables, and storing the PE tables in a library. 208

s 4

Dumping the recorded state of the program in working memory as a core dump file
upon detection of memaory corruption. 208

I

I2entifying the averlay content of the core dump file with a dump utility. 210

I

Converting the overlay content to its criginal value using the dump utility. 212

l

Revesling the possible source program of the cormuption by matching the illegally
written data in the converted overlay content against the data in the PE tables. 214

I

C

END)

US 10,534,694 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

7,376,804 B1*

7,913,115
8,117,605

8,839,200
8,900,312
9,223,679
9,792,114

2004/0054989

2004/0205399

2006/0036874
2007/0150509
2008/0270107

2009/0031166

2009/0327994

20
20

13/0268919
|5/0032988

20

15/0248564

Bl
B2

B2
N

> W

Al

> 22

Al

Al

> 22

1 *

%

3

%

1 =

%

%

%

1 =¥

5/2008
3/2011
2/2012

9/201
2/201
12/201
10/201
3/200

4
5
5
7
4
10/2004

2/2006
6/2007
10/2008

1/2009
12/2009
10/201

3
1/2015
9/2015

Hu .o, GO6F 11/366
714/25
Powers GO6F 11/0748
714/18
Lev i, GO6F 9/466
711/150
Kalra
Gupta
Ho oo, GO6F 11/362
Schaefer GO6F 8/71
Harrescooveven. GO6F 11/073
717/124
wang ..., GO6F 11/073
714/25
Cockerille
Lev i, GO6F 9/466
George .o, GO6F 11/3664
703/28
Kathail GO6F 11/0778
714/38.1
Christensen GO6F 8/10
717/106
Zagatta
Muft
Fengcoooooevviiiinnnnnn, GO6F 8/54
726/26

2015/0347129 Al 12/2015 Chittimalli

2015/0365385 Al* 12/2015 Horeoooevvvvvvinnns,s HO4L 63/06
713/152

2016/0313936 Al 10/2016 Jones

2016/0335021 Al 11/2016 Plonka

2017/0177463 Al 6/2017 Kleen

2017/0372094 Al* 12/2017 Hore HO4L 63/0428

OTHER PUBLICATTIONS

Mell, et al., ““The NIST Definition of Cloud Computing,” National
Institute of Standards and Technology, U.S. Department of Com-

merce, Special Publication 800-145, Sep. 2011, pp. 1-7.

IBM: List of IBM Patents or Patent Applications Treated As Related
(Appendix P), May 1, 2018, pp. 1-2.

Cooprider et al., “Eflicient Memory Safety for TinyOS”, SenSys’07,
Nov. 6-9, 2007, pp. 205-218.

Liu et al., “Problem Diagnosis Technique of Memory Corruption
Based on Regular Expression Generated During Application Com-
piling”, U.S. Appl. No. 15/482,101, filed Apr. 7, 2017, 33 pages.
Liu et al., “Problem Diagnosis Technique of Memory Corruption
Based on Regular Expression Generated During Application Com-
piling”, U.S. Appl. No. 15/902,161, filed Feb. 22, 2018, 29 pages.
Sezer et al., “MemSherlock: An Automated Debugger for Unknown
Memory Corruption Vulnerabilities”, CCS’07, Oct. 29-Nov. 2,
2007, pp. 562-572.

* cited by examiner

U.S. Patent Jan. 14, 2020 Sheet 1 of 6 US 10,534,694 B2

100

R

BUILD SERVER

102
DATA STORAGE COMPILER
DEVICE 104 112
SOFTWARE |
PROGRAM
PATTERN
EXPRESSION
LAYER
DATABASE 114

110A

NETWORK
116 .

PRODUCTION SERVER
120

DATABASE
110B

FIG. 1

U.S. Patent Jan. 14, 2020 Sheet 2 of 6 US 10,534,694 B2

200 ’\
START

Creating a pattern expression (PE) heder file, where the pattern expressions
for the common data that is used by application programs are pre-defined. 202

Modifying the application program to include the pre-defined PE header file and o

add annotation symbois to the common data structures. 204

Generating a PE for each of the annotated data structures of the program, merging
the PEs into tables, and storing the PE tables in a library. 2006

Dumping the recorded state of the progam in orking mmory as a core mp file
upon detection of memory corruption. 208

ldentifying the overlay content of the core dump file with a dump utility. 210

Converting the overlay content to its original value using the dump utility. 212

written data in the converted overlay content against the data in the PE tables. 214

END

FIG. 2

US 10,534,694 B2

Sheet 3 of 6

Jan. 14, 2020

U.S. Patent

¢ Old

Bee

H=A=NIDNA NOILVYHAdO

0T% oGl ¢it
NATHO0 Hd ALILN NV D0 dd
04104140 dNMd 1304dSNs
AAN
vie
AN gLe ol
80¢ “ | T SNOISHEA
AsvHal 1 dd SNOIEYA
HIANGIAS \rW_Oﬂ._.,.___wﬁOm.n_m_m =40 Sdd
NOILVOllddY H3dd
oS
it
7EE 44
HASANIONA 48V A4 ” HA=ANIONA AINd

9ct

coe

l B

bic

0ge
=== IOREIY={E

/\ 00¢

US 10,534,694 B2

Sheet 4 of 6

Jan. 14, 2020

U.S. Patent

LN Fr =W & Ex rE NN FEFEEEXE SN EENE, LNy = F e ¥ FX P rEN s AN BEFESEE SIS S LN e E Ry e EN s, I F X FELEE NS LA X AP AT A RN PN NS L LN = & ¥ Y Xy ryys .-_n.l..-....l. - LX) Ly
u.ﬂﬁ.m:;.ﬁm..h_ﬁﬂ1:xﬂ‘ﬂtﬂﬁ1q;ﬂ\. R R R R R R R e R R R R o e e R e_...1.1=x._...4~a........_n.4=x._n...h.._ﬁ..._m..iq..._ml_‘qm..-...;i......m:;._...quaxm..h:;..l\wq;......m:.......m“:1..1.11..1.: ..1.%1...1..1.:..1.11:
- r
.m - z .‘...W«%W n.u__ 7 <
. % mm Lm,na“h mmmw m
h Y % o “” 4
X + 2 et x . .
4 - O P LA F AL,
s A by A,
.._-.. « _-ﬁ_.. e o u.__‘q
i . v W ; - A
X v r “n“ i un y >
!.‘... A 1.. .‘\..H _H. 911
% s m” s ﬁ_
“_..“ # ____.hH.___.u....,.__.meu..__.\\u.,._..__.\.___.u.u..__..___.Hﬁﬁhﬂﬁﬁhﬁﬁﬂﬁﬁhﬂﬂﬂ\ﬂﬁh\ﬁh “
A . A
7 s W 7
A E .
% ¥ 7
v o 5
.q-.. - N
A, T &,
A A .
i o 7
o 7 2
4 . o
2 - %
i ¥ %
A, !
&) ﬁ
5 5 vy
W-“ .E-__.. -__.lil__..‘_...-__.-__.L.l__..:_...‘_.ﬂ“‘ﬁﬂ‘lﬂ“klﬂ“ﬁﬁ‘%ﬁﬁ‘kkﬂ%11-_:...‘_..-___..-_1-_.:...‘1.‘___..1.-._1. uu..__._“
4 ; : 5
5 7 r =
7 5 “ 3
: - o 7
ﬁ C PP B %
..u... I-l o 1 —_.."- ' * .—ﬁ u._l”
““ E ..__.___.._ o o ﬁ A :.% “ ..________
.-...) s) .H. .
2 ‘ r e rREl ALY u.,
; AT 14145 : o GEBLRSE Y
._-.. .H... y L H . -.‘. ¥ " R e L N K -—_ !N_.) -1. 1 .h_. “.
5 t RS S AL B VBT R % BEERM SR / m_.
“.) A R o A “ ¥ -
..u.“ r " - . -3 r r 4
i w m T LEL NI ET A 4 x : 7
2 . .u.{_,.{ﬁt_x_1,ai..m1_1,ai._\mF.i.H11&3113«111111111111&3& / i
L] A . il
._.q“.“ ._.__.._.ﬂ-.hl...n.. x .ﬂ- m m.q
u " o 7 3 ’ 2
; o, ot ; % :
m“ LT S L 4 u____ el
.q-... . ..-1
A + WH 'y
s » 7 A
2 : m o
m.. . TR BT m) “m
4 R .V .v. 3 ; .
+* L] - % a2
““ .__...“L... ...1_“.._..”.“._.... .-“....h._. ... ' Tr'a m ..l_-._l_...-lmsv_ Hm “ u.“_.
W..“ + ..._“.__.f“'”..H.,.Hq__...a.“. .”...“..1.“........_. ._ﬂn._ & r “-__..
.-t.. PR] e-..—....L W el |i‘. .1- ﬂ- .___
.q.-... i L r, 3 +.+....._.__..._.--. et -1_) ._..‘ “ uk_
““ R .””,.,....Hq”.....”q..__ N nn..i.thh&%&u.&%&h&h&%&%ﬁ&. TATA W . .:1:.\%.. .. ﬁ. “ “
; IS P - ' LA W
7 R ate el SR Sb el £ h « ; 3
. v el el tats Tl Tttt rd BTN - “ A
I + L I T o 1
““ . e +.r - .“.r”».n.” ”u.. - TR “ ﬁ “-.__ “ ““
7 A e e 4 4 2 % 7
E R PO e [£ _._-__.. - e
A, L .-t LPL i A i
i o R , % i A A 0 0 ; %
1; o et - i i . A
“ .__h . e __...”1... _.-..-.- .—_..h.s.u_ o “ ﬁ ﬂ‘ “ u“
nh... Ta LT .__t_- ” - “ ..1&- .!‘ ﬁ W“
. f, Tnatale L Iy ﬁﬂ\\h\%ﬁ&h& A :
1 T e .o m m A
: ”.._ . ”””1...., - F 4
: ; FREC : ;
.“ "__q.:+ m “
1.-_ -.... F . L I h
11.‘ . 1.1 +* H
o bt R _ﬂhhhﬂhhmhtﬁhﬂt.-mmﬁ.nxm NWW “
._, i

ok kW A ok ko - O A R Wt P, P

o & T i o & ko -

= ko

i h1-_1_+_-_l|_l-_-l._i_q_-._+_+_a._l|_l|-_i_-|.l-.I

<
¥
<
§

+ r = r v+ B0
[R L

+o .v._.u.,_,._..____._..“_______.__f W W, m %ﬁiﬁ%ﬁ%ﬁﬁwlﬁﬁﬁl

SiHAT Y

11

a4+ b d + 41 F b 4iddd bdd+bdF+FFhDrd -
[T R R T T T By Tt R e B R R R B R R R) '

i 14

!
5
qevoy

[D I R N I | L] L]
* + + 7 FFFEAFFFAA A

TE L -
* + 4 &+ 4+ 4

R Y N s

¥ 'Ol

l&&
& o
_m

% mmw .m

T T T T T T T T T P L A T R BT A S R, BT

8 P P B b B o B K BB 0 3 R A B K A

O

N T T S W L TN '_"5:.. LI T B :'-.""t. W I e O L I WS,

’ l"-..l-..-___...____.. W A o S A g o g g g o g o o g g T R g R, .-_-...__-_._.%lr

u..._._......-_.._
x___.nm._

GI)
C\l
<T

P R R O R R R R R R

-

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

.t._%twtqtqtu\t‘tntq.-w\t.ﬂtqiﬂ____.____1___1.._1_.__;_.____.____...___q..__.rn____._.-_._t_....___m__..____._.__._4-_3___.___..____.-_._ﬂﬂ\\ﬁﬂﬂ%&ﬁh&h&ﬂ%\%&qﬂﬁ%ﬁﬁﬂﬂéﬂt@ *

._._..__...v.._..u.%_m_.__.._-.h..tfn._._..‘__. S

S \,pt

m

qecov

IV iets

"q,
P
3
Ty
%

v"""‘v
$;.*$

e

2T w TE3AE NN 4
Ve . %

wﬁwﬁm& § ki
&

.i.__._-._..h.__u.
.......t-.l._qq_.:_"___:..___._.-__.l_-.“-l___l._ %I
T s AT

Fra e w d F

11

i P PITEAE AL IE S SELA NN LAI L LSPGO f 3
CEALLFPN
SELT P
o,
-._._-_____..

l
tﬂ
‘I
.-r
lr
‘ ﬁ...“.m}“_...,_. ._u A A E AL A A Al R LS LA AT LA
R
", - 4 2 m\.
. % o 7 AL &.““ ._.._.“__..__. i
.-
IR RRRTEEy *FER
‘1
.-1
4
' PP S SRR e
; TE e LT
N T,
S b,
l-l.u.
-_5.1 .l_\. -
o
£

et

o "-s."'*’.‘*"“

0cV

E gt o o 1-..1.....;1._1.\..1.-1..1..1._\..\..1.1.\..-..1..\1- Pl o Al ol ol o o

A,

..... 2 wv ;)
PRELIIELE 4 4
? a.ﬁhu &
%]
__..
-u.
m
&
&
3
&
&
%
& ‘._1 7, ",. - a
RERAE IR uxmwm &
: ai%s g
* A
m PP EP PR ERRD PO P PO EPP P PP xxxxxxxuxmxxxxxmxxxxmd
']
4 —
4
4
&
&
.‘.
¥ rerrsserars'ar s e s s r s s s r e s a s s e ey e e
A e e e e e e T e e e .
&
F

g
3
E
3

Yot 7

Hﬁ%ﬁﬁk&ﬁkﬁ.ﬁi&.ﬁ%ﬁ%

uBi Pl

111

O R N e M

RS "HEN.*.*5.'n'ﬂﬁﬁiﬂiﬂiﬂﬁtﬁﬁ;ﬂﬁﬂﬁﬂﬂtﬁhﬁi

e i e i T iy g I o g e e e R e e e e L T e i o e e e e e e e o M M M

n
%_ﬁ“

r
.,.ﬂ_.__..
Ya,

00

U.S. Patent Jan. 14, 2020 Sheet 5 of 6 US 10,534,694 B2

FIG. 5

it
n-"'"'-#
b
i
~

TE
1 E
ALY
-
. - Yy \ 7
~ \ /
\ I
7 AN N
2y \ »
T 7 \
\,. i
\
rd
7 \

9 'Old

09

- [

JdVML40S ANV JdVMAdVYH

US 10,534,694 B2

29 19
_—= _E g__ ")
m NOILVZITVNLHIA
= L/
; ==
08
_ INIWIDOVNYIN
g |
—
gl
=
y—
o~
p
SAVO IUOM

VAL LA

U.S. Patent

US 10,534,694 B2

1

PROBLEM DIAGNOSIS TECHNIQUE OF
MEMORY CORRUPTION BASED ON
REGULAR EXPRESSION GENERATED
DURING APPLICATION COMPILING

BACKGROUND

The present invention relates, generally, to the field of
computing, and more particularly to the field of memory
corruption diagnosis.

Memory, namely primary storage memory, allows com-
puter processors to store nstructions to be read and
executed, and its integrity 1s essential to the operation of any
modern computing technology. Memory may become cor-
rupted when 1t 1s umntentionally modified as a result of
programming errors, thereby breaking the continuity of the
stored 1nstructions. Memory corruption can occur when a
program writes into an illegal or invalid memory block. Any
program that subsequently attempts to read from the cor-
rupted memory blocks will either crash or behave in a
bizarre fashion.

SUMMARY

According to one embodiment, a method, computer sys-
tem, and computer program product for memory corruption
diagnosis 1s provided. The present invention may include
generating a pattern expression (PE) header file, wherein the
common datatypes associated with a software program are
pre-defined, and modifying the software program to both
include the PE header file and to add an annotation symbol
to selected common datatypes of the software program. The
invention may also include generating a PE for each of the
common datatypes based on the modified software program,
and generating a PE table by merging the generated PE for
cach of the common datatypes. Upon discovery that memory
corruption has occurred, the mvention may include trans-
mitting a recorded state of the software program as a core
dump file to a server, and using a dump utility to identity
overlay content of the core dump file. The invention may
turther include converting the identified overlay content to a
human-readable value. Lastly, the mvention may include
identifying a possible source program of the memory cor-
ruption by matching each PE stored in the generated table
for each of the common datatypes against the illegally
written data 1n the converted overlay content.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features and advantages of the
present mvention will become apparent from the following,
detailed description of illustrative embodiments thereof,
which 1s to be read 1n connection with the accompanying,
drawings. The various features of the drawings are not to
scale as the illustrations are for clarity in facilitating one
skilled 1n the art in understanding the invention in conjunc-
tion with the detailed description. In the drawings:

FI1G. 1 1llustrates an exemplary networked computer envi-
ronment according to at least one embodiment;

FIG. 2 1s an operational flowchart illustrating a memory
corruption detection process according to at least one
embodiment;

FIG. 3 1s an operational flowchart illustrating the work-
flow of a memory corruption detection process 1n a soltware
development and information technology operations (De-
vOps) environment according to at least one embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a block diagram of internal and external com-
ponents of computers and servers depicted 1n FIG. 1 accord-
ing to at least one embodiment;

FIG. 5 depicts a cloud computing environment according,
to an embodiment of the present invention; and

FIG. 6 depicts abstraction model layers according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Detailled embodiments of the claimed structures and
methods are disclosed herein; however, it can be understood
that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied 1n
various forms. This invention may, however, be embodied in
many different forms and should not be construed as limited
to the exemplary embodiments set forth herein. In the
description, details of well-known features and techniques
may be omitted to avoid unnecessarily obscuring the pre-
sented embodiments.

Embodiments of the present invention relate, generally, to
the field of computing, and more particularly to the field of
memory corruption diagnosis in computing devices. The
following described exemplary embodiments provide a sys-
tem, method, and program product to, among other things,
identify the location of memory corruption and identity the
program responsible by comparing crash data against data
recorded when the program compiled. Therefore, the present
embodiment has the capacity to improve the technical field
of memory corruption diagnosis by introducing a method of
memory diagnosis that may not impose any additional
performance overhead, may analyze and diagnose the cor-
ruption autonomously instead of requiring the software
programmer to 1dentily overlay content manually, and may
provide coverage of both the header and data sections of
cach memory block.

As previously described, memory allows computer pro-
cessors to store instructions to be read and executed, and its
integrity 1s essential to the operation of any modern com-
puting technology. Memory may become corrupted when 1t
1s unmintentionally modified as a result of programming
errors, thereby breaking the continuity of the stored instruc-
tions. Memory corruption can occur when a program writes
into an 1llegal or mvalid memory block, and happens
through a variety of mechanisms; for example, by programs
overwriting beyond the bounds of the memory block allo-
cated to them, writing to an uninitialized pointer, writing to
a pointer that previously pointed to a memory block but has
been deallocated, and other misuses of pointers. Once
memory corruption occurs, data can be lost and program
contents can be modified, resulting in further performance
degradation, a system crash, or other unpredictable undesir-
able behavior. Memory corruption 1s notoriously diflicult to
diagnose since the corruption could be from any code, and
the effect of the corruption does not manifest until well after
the corruption occurred. Furthermore, eflects appear under
unusual conditions, making reproduction of the error difli-
cult.

A variety of techniques exist 1n the art which attempt to
address the memory corruption issue 1n different ways, and
these fall mnto two general methods. The first method
attempts to use debugger programs to actively monitor the
system’s memory for signs ol memory corruption during
runtime. Some debuggers go about this by attempting to
detect memory corruption at the time when the memory 1s
being released, or rely on periodic evaluation of the memory
block. Another common debugging technique 1s to monitor

US 10,534,694 B2

3

specific memory locations and break the execution of the
program when the memory 1s changed. This 1s also known
as a “watchpoint” or “breakpoint” technique.

The second general method of memory corruption diag-
nosis 1s to wait until an error has occurred potentially as a
result of memory corruption and examine the memory dump
for evidence of memory corruption. If the offending code
could be spotted by analyzing the dump that was produced
when the error was detected, the need to run with a debugger
1s obviated. One of the more common methods of analyzing
the dump 1s to locate the corrupted memory, and let the
software programmer examine the overlay content and try to
determine where the data may have originated.

However, all of these techniques come with significant
drawbacks that impair their eflectiveness at diagnosing
memory corruption. The first general method calls for active
monitoring of the system’s memory, which imposes a per-
formance overhead on the system. Furthermore, those meth-
ods that attempt to diagnose memory corruption at the time
when the memory 1s being released sufler from the problem
that the offending code could have been overwritten by the
time of the scan. Those debug techniques that rely on
periodic evaluation of the memory block frequently perform
evaluations on header sections and omit data sections; as a
result, corruption of data sections can be missed. Lastly, the
“watchpoint” or “breakpoint” debug technique mvolves the
monitoring of a specific memory location which may be
legitimately used many times before becoming corrupted,
since memory 1s often reused. As a result, the whole system
may sufler particularly significant performance decline from
the debug overhead; most users could not aflord to run with
this kind of debugger.

Regarding the second approach of evaluating error reports
for diagnosing memory corruption, the current standard of
tasking the software programmer with examining the data 1s
flawed 1n that the process can be diflicult, time consuming,
and, even worse, inconclusive, since this approach relies
heavily on the skill and knowledge of the application staff.

Thus, 1t 1s desirable to have a more effective and eflicient
way to 1dentily the source of a memory corruption event. As
such, 1t may be advantageous to, among other things,
implement a system that does not impose any additional
performance overhead, 1dentifies the oflending code before
it 1s overwritten, analyzes and diagnoses the corruption
autonomously 1nstead of requiring the software programmer
to 1dentily overlay content manually, and provides coverage
of both the header and data sections of each memory block.

According to one embodiment, the invention 1s a method
that may equip the compiler with a new layer which may
generate a pattern expression (PE) on each datatype of the
soltware program when the software program 1s compiled.
Next, the PEs that associate with each datatype of the
software program may be stored 1n a library as tables. When
memory corruption 1s i1dentified, overlay content from the
generated dump file may be matched against the PE tables
to 1dentily the possible source program of the corruption.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an

10

15

20

25

30

35

40

45

50

55

60

65

4

clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a ﬁber—optlc cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or etther source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be

US 10,534,694 B2

S

understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

The following described exemplary embodiments provide
a system, method, and program product to compare an
application’s error reports against data gathered when the
application was compiled in order to diagnose memory
corruption.

Referring to FIG. 1, an exemplary networked computer
environment 100 1s depicted, according to at least one
embodiment. The networked computer environment 100
may 1include build server 102 and production server 120
interconnected via a communication network 116. Accord-
ing to at least one implementation, the networked computer
environment 100 may include a plurality of build servers
102 and production servers 120, of which only one of each
1s shown for illustrative brevity.

The communication network 116 may include various
types of communication networks, such as a wide area

10

15

20

25

30

35

40

45

50

55

60

65

6

network (WAN), local area network (LAN), a telecommu-
nication network, a wireless network, a public switched
network and/or a satellite network. The communication
network 116 may include connections, such as wire, wireless
communication links, or fiber optic cables. It may be appre-
ciated that FIG. 1 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments 1n which diflerent embodiments
may be implemented. Many modifications to the depicted
environments may be made based on design and implemen-
tation requirements.

Build server 102 may include a compiler 112 equipped
with a pattern expression layer 114, a data storage device
104 that 1s enabled to host and compile a software program
108, and a database 110A, and communicate with the
production server 120 via the communication network 116,
in accordance with one embodiment of the invention. Build
server 102 may be, for example, a mobile device, a tele-
phone, a personal digital assistant, a netbook, a laptop
computer, a tablet computer, a desktop computer, or any type
of computing device capable of hosting and running a
program and accessing a network. As will be discussed with
reference to FIG. 4 the build server 102 may include internal
components 402a and external components 404a, respec-
tively. The build server 102 may also operate in a cloud
computing service model, such as Software as a Service
(SaaS), Platform as a Service (PaaS), or Infrastructure as a
Service (IaaS). The build server 102 may also be located 1n
a cloud computing deployment model, such as a private
cloud, community cloud, public cloud, or hybrid cloud.

The production server 120 may be a laptop computer,
netbook computer, personal computer (PC), a desktop com-
puter, or any programmable electronic device or any net-
work of programmable electronic devices capable of hosting
and runmng a dump utility 106 and a database 110B and
communicating with the build server 102 via the commu-
nication network 116, 1in accordance with embodiments of
the invention. As will be discussed with reference to FIG. 4
the production server computer 120 may include internal
components 4025 and external components 4045, respec-
tively. The production server 120 may also operate 1n a cloud
computing service model, such as Software as a Service
(SaaS), Platform as a Service (PaaS), or Infrastructure as a
Service (IaaS). The production server 120 may also be
located 1n a cloud computing deployment model, such as a
private cloud, community cloud, public cloud, or hybnd
cloud.

The compiler 112 1s a known computer program capable
of transforming source code written in a human-readable
programming language, such as C++, Python® (Python®
and all Python® based trademarks and logos are trademarks
or registered trademarks of the Python Software Foundation
and/or its afhliates), Java® (Java® and all Java® based
trademarks and logos are trademarks or registered trade-
marks of Oracle Corporation and/or 1ts affiliates), etc., mto
a computer-readable machine language to create a program
that can be executed by the computer. According to the
present embodiment, the pattern expression layer 114 may
be an additional layer of the compiler 112 capable of
converting the datatypes of software program 108 1nto tables
of regular expressions, which are stored in a repository, such
as database 110A, 110B.

According to the present embodiment, the dump utility
106 may be a computer program capable of evaluating the
overlays ol memory dumps performed upon detection of a
tatal error, and comparing this data against the tables of
regular expressions generated by Pattern Expression Layer

US 10,534,694 B2

7

114 and stored in the database 110A, 110B to diagnose
memory corruption. The memory corruption diagnostic

method 1s explained 1n further detail below with respect to
FIG. 2.

Referring now to FIG. 2, an operational flowchart 1llus-
trating a memory corruption diagnostic process 200 1s
depicted according to at least one embodiment. At 202, the
PE layer 114 creates a PE header file, within which the PE
1s pre-defined for each of the common datatypes that are
used by software program 108. Pre-definition entails defin-
ing the mathematical process that will be employed to
convert the common datatypes of software program 108 into
PEs, and storing this process in the PE header file. As an
example, common datatypes char and string may be pre-
defined to use regular expressions to present their pattern;
numerical datatypes like int, long, tloat, etc. may be pre-
defined to either use the corresponding numerical value as
the PE criteria, or use regular expressions and convert the
numerical datatypes to the char type before comparing each
with the regular expressions.

Then, at 204, the software program 108 1s modified to
incorporate the pre-defined PE header file, and to indicate
which datatype in software program 108 will be converted
to the pre-defined PEs. In one embodiment, the process may
involve adding an annotation symbol (.e. /@) to the
datatype defimition where the PE layer will use the pre-
defined PEs. When compiling the software program, the
compiler may parse these annotations according to the PE
header file, and translate the source code 1nto a PE table. An
example of a software program, Library.h, incorporating the
PE header file and with annotated datatypes may appear as
follows:

Library.h

t#include<PE.h>

enum gender{male=1,female};
structure CustomerInfo{
char CardID[16]; /@CardID
gender gGender:;

int 1ChannellD; /(@ ChannellD
char PhoneNum|[12]; /@Phone
char address[32];

char mail[32]; /@Mail }

In this example, the PE header file, PE.h, 1s incorporated by

reference 1nto the software program wvia the line
tfinclude<PE.h>. Furthermore, the CardID, 1ChannellD,

PhoneNum, and mail datatypes of the software program are
selected to be included in the PE file, and are therefore
annotated with the /(@ symbol. The gender and address
datatypes are not selected, and are therefore not appended.

Next, at 206, each annotated datatype of software pro-

gram 108 may be converted by the compiler 112 into a PE,
which may contain a link to the software program 108.
These PEs may be merged together into PE tables, and
stored 1n a library which may be accessible to the production
server 120. The PE table for the sample pre-defined PE
structure from the previous example may appear as follows:

PE Table for structure customerlnfo:

Data
Offset Annotation Datatype Length/Byte PE
0 CardID char 16 RE:6226\d{12}
18 ChannellD nt 2 Integer: [0, 3]
20 PhoneNum char 12 RE: 1[314I51718]\d{9}
64 mail char 32 RE: ‘"wW*{@'\w*.\w*

10

15

20

25

30

35

40

45

50

55

60

8

Then, at 208, when a fatal error occurs as a potential result
of memory corruption, the recorded state of the software
program 108 1n working memory 1s then recorded 1n a core
dump file which 1s stored in database 110B of production
server 120. Fatal errors may occur when a program has
reached a point where 1t can no longer continue running, and
standard debugging practice may be to dump the entire state
of the program at the time of the error into secondary
memory to assist with debugging.

Next, at 210, the dump utility 106 1dentifies the overlay
content of the core dump file. The overlay content may be
known technology where a piece of storage 1s overwritten
(or overlaid) by segments ol other programs without the
permission of the storage owner. For example, where pro-
gram A owns a continuous 256 byte section of storage to
store 1ts 1nformation from address x°01000000° to
x‘01000100, and program B uses a wrong pointer
(x*01000080’) to write 1ts own data into the storage owned
by program A, the data written by program B may be
considered ‘overlay content.” One method of i1dentifying
overlay content may include the use of a front check zone
and a back check zone to mark the owner of any given block
of storage. The overlay content of the dump may appear as
follows:

+0 36323236 31323334 30303636 31323334
+16 00010002 31333930 31303231 32333420
+32 097F6LE32 1E642F12 143 A506C 324F344A
+48 293E4A5F 564E365D 3E4E102D 72314E6C
+64 6578616D 706C6540 6578616D 706C652E
+80 636F6D20 20202020 20202020 20202020

Here, the overlay content 1s written 1n hexadecimal and, as
the example demonstrates, 1s unreadable by a human. There-
fore, the hexadecimal overlay content must be converted
back to a human-readable language for ease of troubleshoot-
ing and to facilitate matching against the PE tables.

Then, at 212, the dump utility 106 converts the overlay
content of the core dump file to the original human-readable
values through the use of the PE tables stored in the library,
as well as the codepage of soiftware program 108. As an
example, the data presented in step 212 may be converted to
the following table according to the customerInio PE table
illustrated 1n step 206:

Offset Length Datatype Translated Content PE
0 16 char 6226123400661234 RE: 6226\d{12}
18 2 int 2 Integer: [0, 3]
20 12 char 13901021234 RE:
1[314151718\d{9}
64 32 char example@example. RE:

W@ W AW T

COIIl

Next, at 214, the dump utility 106 1dentifies the possible
source program of the corruption, which may be software
program 108, by matching the data illegally written 1nto the
corrupted memory against the data recorded 1n the PE tables.
As an example, program A may use a wild pointer to write
its data, consisting in this example of an email address, into
storage belonging to program B, which may not have any
variable or data related to email addresses. The ‘criminal’
program (1.e., program A) may be diflicult to locate since
there 1s no direct pointer to program A. However, dump
utility 106 may locate the criminal program by searching the
PE tables to identity which compiled programs the email

address type data originated from.

US 10,534,694 B2

9

FIG. 3 1s an operational tlowchart illustrating the work-
flow 1n a software development and information technology
operations (DevOps) environment. The developer 330 may
be tasked with writing source code as well as the PE header
file, PE.h, within the Integrated Development Environment
(IDE) 302. Once the developer 330 completes and unit-tests
the code, at 314, the developer 336 may commit the com-
pleted source code to the source control manager (SCM)
304. The SCM 304 1s a software utility that manages
changes to computer programs, tracking revisions and
allowing access to earlier versions of the program. The build
engineer 332 provides scripts to build the source code into
real binary modules. At 316, the build engineer may place
cach build into a build repository 306. The build repository
306 1s a storage location from which completed software
packages (or ‘builds’) can be retrieved and installed on a
computing device. At 318, the PE tables may be generated
from PE.h when each build 1s placed into a build repository
and stored in the SCM. At 320, the release engineer 334 may
then retrieve the completed application and the PE tables
from the build repository 306 and deploy them to the
application server 308 for execution. At 322 when a detected
problem 310 1s experienced, the dump utility 106 may scan
the overlay content to 1dentity the suspect program 312 that
associates with the PE. At 324, a notification may be sent to
the SCM 304. At 326, the SCM 304 may then provide some
functions to notity the developer 330 of the suspect program
312 so that the developer 330 can verily whether the
identified memory corruption 1s a bug. The operation engi-
neer 336 may maintain the systems, troubleshoot problems,
and evaluate memory dumps. The operation engineer 336
may also oversee the detection of problems and the opera-
tion of the dump utility 106.

It may be appreciated that FIGS. 2 and 3 provide only an
illustration of one 1mplementation and do not imply any
limitations with regard to how different embodiments may
be implemented. Many modifications to the depicted envi-
ronments may be made based on design and implementation
requirements.

FIG. 4 1s a block diagram 400 of internal and external
components of the build server 102 and the production
server 120 depicted in FIG. 1 1n accordance with an embodi-
ment of the present invention. It should be appreciated that
FIG. 4 provides only an illustration of one implementation
and does not imply any limitations with regard to the
environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ments may be made based on design and implementation
requirements.

The data processing system 402, 404 1s representative of
any electronic device capable of executing machine-read-
able program nstructions. The data processing system 402,
404 may be representative of a smart phone, a computer
system, PDA, or other electronic devices. Examples of
computing systems, environments, and/or configurations
that may represented by the data processing system 402, 404
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-
held or laptop devices, multiprocessor systems, micropro-
cessor-based systems, network PCs, minicomputer systems,
and distributed cloud computing environments that include
any of the above systems or devices.

The build server 102 and the production server 120 may
include respective sets of internal components 402 a,b and
external components 404 g, b illustrated 1n FIG. 3. Each of
the sets of internal components 402 include one or more
processors 420, one or more computer-readable RAMs 422,

10

15

20

25

30

35

40

45

50

55

60

65

10

and one or more computer-readable ROMs 424 on one or
more buses 426, and one or more operating systems 428 and
one or more computer-readable tangible storage devices
430. The one or more operating systems 428, the software
program 108 and the compiler 112 in the build server 102,
and the dump utility 106 in the production server 120 are
stored on one or more of the respective computer-readable
tangible storage devices 430 for execution by one or more of
the respective processors 420 via one or more of the respec-
tive RAMSs 422 (which typically include cache memory). In
the embodiment 1llustrated in FIG. 4, each of the computer-
readable tangible storage devices 430 1s a magnetic disk
storage device of an 1nternal hard drive. Alternatively, each
of the computer-readable tangible storage devices 430 1s a
semiconductor storage device such as ROM 424, EPROM,
flash memory or any other computer-readable tangible stor-
age device that can store a computer program and digital
information.

Each set of internal components 402 a,b also 1ncludes a
R/W drnive or interface 432 to read from and write to one or
more portable computer-readable tangible storage devices
438 such as a CD-ROM, DVD, memory stick, magnetic
tape, magnetic disk, optical disk or semiconductor storage
device. A software program 108 can be stored on one or
more of the respective portable computer-readable tangible
storage devices 438, read via the respective R/W drive or
interface 432, and loaded into the respective hard drive 430.

Each set of mternal components 402 a,b also includes
network adapters or intertaces 436 such as a TCP/IP adapter
cards, wireless Wi-F1 interface cards, or 3G or 4G wireless
interface cards or other wired or wireless communication
links. The software program 108 in the build server 102 and
the dump utility 106 1n the production server 120 can be
downloaded to the build server 102 and the production
server 120 from an external computer via a network (for
example, the Internet, a local area network or other, wide
area network) and respective network adapters or interfaces
436. From the network adapters or interfaces 436, the
software program 108 1n the build server 102 and the dump
utility 106 in the production server 120 are loaded into the
respective hard drive 430. The network may comprise
copper wires, optical fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers.

Each of the sets of external components 404 a,b can
include a computer display monitor 444, a keyboard 442,
and a computer mouse 434. External components 404 a,b
can also include touch screens, virtual keyboards, touch
pads, pointing devices, and other human interface devices.
Each of the sets of internal components 402 a,b also includes
device drivers 440 to interface to computer display monitor
444, keyboard 442, and computer mouse 434. The device
drivers 440, R/W drive or interface 432, and network adapter
or interface 436 comprise hardware and software (stored 1n
storage device 430 and/or ROM 424).

It 1s understood 1n advance that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management

US 10,534,694 B2

11

cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as Follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(c.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant

model, with different physical and virtual resources dynami-

cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as Follows:

Soltware as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as Follows:

Private cloud: the cloud inirastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

10

15

20

25

30

35

40

45

50

55

60

65

12

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 5, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 530 comprises one or more cloud computing
nodes 100 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 54A, desktop com-
puter 54B, laptop computer 54C, and/or automobile com-
puter system 54N may communicate. Nodes 100 may com-
municate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to ofler infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 34A-N shown in FIG. 5 are intended to be
illustrative only and that computing nodes 100 and cloud
computing environment 30 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 6, a set of functional abstraction
layers 600 provided by cloud computing environment 50 1s
shown. It should be understood 1n advance that the compo-
nents, layers, and functions shown in FIG. 6 are intended to
be 1llustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and cor-
responding functions are provided:

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82

US 10,534,694 B2

13

provide cost tracking as resources are utilized within the
cloud computing environment, and billing or mvoicing for
consumption ol these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system admimstrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provides pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 95; and memory corruption diag-
nosis 96. Memory corruption diagnosis 96 may relate to
evaluating the overlays of memory dumps performed upon
detection of a fatal error, and comparing this data against the
tables of regular expressions generated by pattern expression
layer 114 and stored in database 110A, 110B to diagnose
memory corruption.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope of the described
embodiments. The terminology used herein was chosen to
best explain the principles of the embodiments, the practical
application or technical improvement over technologies
found 1 the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

What 1s claimed 1s:

1. A processor-implemented method for memory corrup-
tion diagnosis, the method comprising:

10

15

20

25

30

35

40

14

generating a pattern expression (PE) header file, wherein
a plurality of common datatypes associated with a
soltware program are pre-defined;

moditying the software program to include the PE header
file;

modifying the software program to add an annotation
symbol of a plurality of annotation symbols to a
common datatype of the plurality of common

datatypes;
generating a PE for each of the plurality of common

datatypes based on the modified software program;
generating a PE table by merging the generated PE for

cach of the plurality of common datatypes;

on determining that a memory corruption has occurred,
transmitting a recorded state of the software program 1n
a working memory storage as a core dump file to a
Server;

identifying, by a dump utility, overlay content of the core

dump file;

converting, by the dump utility, the i1dentified overlay

content to a human-readable value, and;

identifying a possible source program of the memory

corruption by matching each PE stored 1n the generated
table for each of the plurality of common datatypes
against illegally written data 1n the converted overlay
content.

2. The method of claim 1, wherein the table represents a
char datatype and a string datatype of the software program
as a plurality of regular expressions.

3. The method of claim 1, wherein the table represents an
int datatype, a long datatype, and a float datatype of the
soltware program as a plurality of numerical values.

4. The method of claim 1, wherein the table represents an
int datatype, a long datatype, and a float datatype of the
soltware program as regular expressions.

5. The method of claim 1, wherein a PE for each of the
plurality of common datatypes 1s generated by a compiler.

6. The method of claim 1, wherein the core dump file 1s
transmitted to a production server.

7. The method of claim 1, wherein the method 1s 1mple-
mented on a computing device using a programming lan-
guage selected from a group consisting of C, COBOL,
Python®, C++, and C#.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

