United States Patent

US010528607B2

(12) 10) Patent No.: US 10,528,607 B2
Dinga et al. 45) Date of Patent: Jan. 7, 2020
(54) SYNTAX TEMPLATES FOR CODING 6,427,142 B1* 7/2002 Zachary GOG6F 8/34
706/11
(71) Applicant: SPLUNK INC., San Francisco, CA 6,658,646 Bl * 12/2003 Hernandez, III ... GO6F 9/45512
US 717/114
(US) 6,931,622 B1* 82005 Aldrich GO6N 5/025
(72) Inventors: Jindrich Dinga, San Francisco, CA _ 706/45
(US); Yuan Xie, San Francisco, CA (Continued)
(US); Katherine Kyle Feeney, San
Francisco, CA (US); Jesse Miller, OTHER PUBLICATIONS
Berkeley, CA (US)
| | Title:The Cornell program synthesizer: a syntax-directed program-
(73) Assignee: SPLUNK INC., San Francisco, CA ming environment author: T Teitelbaum, published on 1981.*
(US) .
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
%a§lg li’ SZ}Elg%nlf;dﬁl g ! dzgjsl:lswd under 35 Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Shook, Hardy & Bacon,
(21) Appl. No.: 15/223,598 L.L.P.
(22) Filed: Jul. 29, 2016
(37) ABSTRACT
(65) Prior Publication Data
US 2012/0032316 Al Feb. 1. 2018 Varlops appm:&}ches for autqmatmg code completion are
described herein. More particularly, approaches are pro-
(51) Int. CL vided that automatically generate coded commands of a
GO6F 9/44 (2018.01) coding language (1.e., code) that function and operate as
GO6F 16/33 (2019.01) intended by the user. As the user codes the commands, such
GO6F 8/33 (2018.01) approaches assist a user 1n various ways. For example, such
GO6F 11/30 (2006.01) automated assistance provides the user an understanding of
(52) U.S. CL various coding options available in the coding language. The
CPC ... GOG6F 16/334 (2019.01); GOGF 8/33 assistance also enforces the proper employment of the
(2013.01); GO6F 11/30 (2013.01) available coding options, as well as provides an understand-
(58) Field of Classification Search ing of the functionality of the generated code. Automating
CPC GO6F 8/33; GO6F 11/30; GO6F 16/334 code completion provides various benefits to the user, such
See application file for complete search history. as decreasing the time the user spends generating code,
_ increasing the likelihood that the generated code functions
(56) References Cited and operates on a system as intended, and reducing the

U.S. PATENT DOCUMENTS

5,603,021 A * 2/1997 Spencer GO6F 17/246
5,960,437 A * 9/1999 Krawchuk GO6F 16/9024
707/702

number of code versions required to be executed or com-
piled by the system.

30 Claims, 30 Drawing Sheets

CAUSE DISPLAY OF AN ARGUMENT
BLOCK.
2202

CAUSE DISPLAY OF A NESTED
ARGUMNET BLOCK WITHIN THE
ARGUMENT BLOCK.

2204

CAUSE DISPLAY OF A VALUE
RECEIVED FROM A USER OF THE
NESTED ARGUMENT BLOCK.
2206

CAUSE REMOVAL OF THE
DISPLAYED NESTED ARGUMENT
BLOCK FROM THE ARGUMENT
BLOCK.

2208

CAUSE THE NESTED ARGUMENT
BLOCK TC BE ADDED BACK TO THE
ARGUMENT BLOCK WITH THE
VALUE.

2210

US 10,528,607 B2

Page 2
(56) References Cited 2013/0159832 Al* 6/2013 Ingargiola GO6F 17/246
715/220
U.S. PATENT DOCUMENTS 2013/0235197 Al1* 9/2013 Ebromccccoee.... GO6F 9/54
348/143
7,360,202 B1* 4/2008 Seshadn HO4L 12/1859 2014/0047413 Al1* 2/2014 Sheiwve HO4L 65/403
717/106 717/110
8,631,323 B1* 1/2014 Grayccooeeeeerrinnnn, GO6F 8/33 2014/0189548 Al1* 7/2014 Werner GO6F 3/0481
715/255 715/762
9,483,459 B1* 11/2016 Rileyoonnn.l. G10L 25/48 2015/0134633 Al1* 5/2015 Colgrove GO6F 17/30424
2003/0028864 Al1l* 2/2003 Bowen GOG6F 8/48 707/706
717/141 2016/0188181 Al* 6/2016 Smith GO6F 3/048
2003/0105620 Al1* 6/2003 Bowen GO6F 17/5022 715/765
703/22 2016/0225271 Al* 8/2016 Robichaud GO6F 17/30663
2003/0120698 Al* 6/2003 Wykeoeeeennn, GO6F 9/44526 2016/0357586 Al™ 12/2016 Roseoooevvvvnnnnnn, GO6F 9/445
718/100 2018/0052879 Al* 2/2018 Wright GO6F 3/0605
2006/0075328 Al* 4/2006 Becker GO6F 17/246
715/213
2006/0282818 Al* 12/2006 DeSpain GOGE 17/246 OTHER PUBLICATIONS
717/109 n : .. ‘ :
2007/0288429 Al* 12/2007 Litl .ovovvevveeree.. GOGF 17/30935 T;t;eg‘ f’y“m'd”wed editing, author: TF Lunney et al published on
2008/0172647 Al1* 7/2008 Roche GO6F 17/30392 o |
717/100 Work with HTML5 and CSS more efficiently. (Jun. 2014). Adobe
2010/0004980 Al1l* 1/2010 BOWenooo.... G06Q 30/02 Dreamweaver CC Tutorials. Retrieved from the Internet Nov. 4,
705/7 31 2016 at <https://helpx.adobe.com/dreamweaver/how-to/using-code-
2012/0150939 Al* 6/2012 Zaifman GOG6F 9/45512 view-dreamweaverhtml>. 41 pages.
709/2073 Using NetBeans IDE 5.5. (Oct. 2006). NetBeans. Retrieved from
2012/0191716 A1* 7/2012 Omoigui HO1L. 27/1463 the Internet at <http://netbeans.org>. pp. 1-96.
707/740 Use code completion to enter symbols. (2016). Xcode Help. Retrieved
2012/0197928 Al* 8/2012 Zhang GO6F 17/30545 from the Internet Nov. 4, 2016 at <http://help.apple.com/xcode/mac/
707/769 8.0/#/dev8716704af>. 2 pages.
2013/0125094 Al1* 5/2013 Wolfram GO6F 17/28
717/109 * cited by examiner

U.S. Patent Jan. 7, 2020 Sheet 1 of 30 US 10,528,607 B2

CLIENT DEVICES 10 ‘1/00

— HOST DEVICES 106

HOST
APPLICATIONS 114

CLIENT
APPLICATIONS 110

MONITORING
COMPONENT 112

NETWORKS DATA INTAKE AND
FIG. 1 "y ' QUERY SYSTEM 108

DATA
SOURCE

DATA DATA
SOURCE SOURCE

202 202 202

AND QUERY FORWARDER | | FORWARDER
SYSTEM 108 204 204

INDEXER INDEXER INDEXER
' 206 206 206

DATA DATA DATA
STORE STORE STORE

208 208 208

U.S. Patent

302

304

306

308

310

312

314

316

318

Jan. 7, 2020 Sheet 2 of 30 US 10,528,607 B2

RECEIVE DATA
ANNOTATE DATA WITH METADATA
FIELDS
PARSE DATA INTO EVENTS
DETERMINE TIMESTAMPS FOR
EVENTS
ASSOCIATE TIMESTAMPS AND OTHER
METADATA FIELDS WITH EVENTS
TRANSFORM EVENTS
IDENTIFY KEYWORDS IN EVENTS
UPDATE KEYWORD INDEX
STORE EVENTS IN DATA STORE

FIG. 3

U.S. Patent

402

404

406

408

410

Jan. 7, 2020 Sheet 3 of 30 US 10,528,607 B2

SEARCH HEAD RECEIVES QUERY
FROM CLIENT

SEARCH DETERMINES WHAT
PORTIONS OF THE QUERY CAN BE

DISTRIBUTED TO INDEXERS

SEARCH HEAD DISTRIBUTES
PORTIONS OF QUERY TO INDEXERS

INDEXERS SEARCH DATA STORE
FOR QUERY-RESPONSIVE EVENTS

SEARCH HEAD COMBINES ANY
PARTIAL RESULTS OR EVENTS TO

PRODUCE FINAL RESULT

FIG. 4

§ Ol °08

ddAddS
140ddNSs

US 10,528,607 B2

" '06:02:201€Z:0}:7L0Z LEAUM iPalte} Joplo AN, Apoq|/96rez Ifebessew poddns

605 d| Jawojsn9 W/om

—

ot

T

-

N 205

2 J4VMMAT1AdIIN

6 " 'UOII0BUUOD X
j00d 8]eald JoU p|no D uoiideoxgpeseoJnosay/0odadinosal UoW WO dIbojgam o

- uondeox3 1o Speaquoioauuo)) syslsusixa ogploibojgeam ...//

m 'SMOJ|0} UodadxX8|L9GE I Palle) §9/86 U/ UNISpoobzm 066:21:10 €2 190 ‘

" 805 a| Joawoisn) A

= _ G0G

— L0S

ddV 44040

" °Z2°001L°001L°001 G9/86)/957EC 88\ :L01EC-0L-7102°HIAHO

057 (anemasto) ”
| Jawojsn9 o0OC

U.S. Patent

US 10,528,607 B2

Sheet 5 of 30

, 2020

7

Jan

ve Ol

aGOoM PaUIgqWIOD” §5800k = 8dAlasinos DO'Sss00e/ MMM diZ BIEPIBIIOING = 80JN0S LAAAM = JSOU

el LG OLGIEBIES OV PROL 08 L/OWOIYD (OM09E))

| “IALLHM) 6 ocsaMaepelddy (4 O 0B[N [81U] (USOIUIDRIA) 0°G/BHIZON,, » LOD-SAE-4S
=Pl1onpoidé ugelos onpold/wos)sauiebdnojenglmmm/.diy, €68 80 . 1L diiH LOLESH4av0 LA
871S90S=CINOISSISr®8L-1SI=PILSUNUIPIO/ 180d. [95:02:8L:¥102/1dy/82] - - L1 ¥91°9€2°281

SINCOSM POUIgUIOD™ SS900kE = adA190Jnos BOJ'SS30ok/ MMM dIZ BIEPIEIUIOINY = 82JN0S L AMAMM = JSOU

006 .5 98G/IBIRS OF Y01 0 6 L/AWOIYD (03299 oY) "TINLHY) S 9ES/IMUBAN

alddy (¢~ 2 0L X SO 2B\ |81U] “USOUIORIN) 0°G/BIIIZOIN, 6 L-LSA=Alwslulplo/uoofsawebdn
Eﬁﬁéﬁaﬁ__ 2622 00Z .11 d11H 101£644av0oL448189aS=aINOISSIASMre609D-9V-S8=p|}oNpo.
dpGL-1SI=plwsigUeI0}ppR=UCHOR, 0P NEY/ 139, [06:02:8L:¥10ZMdy/8e] - - LL ¥9L 982 281

A0OOM ™ PAUIGLIOD ™ $8800E = o0dA100UN0s | DOJ'ss00B/ZMMM dIZ B)EP|BLIOING = B0INOS ; TMMM = JSOY

691 & 9LG/LEIES O

¥801°0'61L/AWOoIYD (034295 91| “A Axaspnelddy (79 MAOM -1°9 LN SOMPUIAA) 0G/ell!
ZON, 7 L-1Sd=PIUAUPO/UOD mmEmmn_:o,_mtmm MMM//ZANL, G991 002 WL dLLH €£11ES44AV .
4427890S=AINOISSIASMr ey L-LSI=PIWBUNUIIPIO/ 13D, [91:22:81:¥102/4dv/82] - - G1°681°G0Z 16

809 1817 susA] JueA

(KeN & 6 8 L 98 ¢ ¥ ¢ ¢ - AZid) ~ abed Ja8d 02

hid 000 $5-02-S
v L/8C/v

ind 000 9G.0¢.8
vL/8c/y

Ad 000 91-¢¢.8
v1/8¢/v

~ 1517

gg oUW slep #
g Aepw aiep #
vZ Jnoy eep #
+001 dijusio »

9 pllucbaies »

+001 SOg #

G uonoe @
spol4 bunssiajy)

| 2dAleounos o
¢ 80INnes v

¢ 150y »
Spisld po)isiss

909 ._mo_mn_w SPlel

;' o R

A 1BULIOH

uinjod Jad anoy | @Q@ ®C__®EE| Joelese(] X

10]J08|9S BpoW YoJBag SUOJING UOIOB YoJeas

A PO HewSs § 2 F ¢ @8 H Ador

219 Jaxdld ebuey awi]

UOI}09|8g 0} W07 +

UONEZHENSIA

NGO Woo07Z — A SUlBWI] 1BULIoS

SONSNRIG (G18'9g) suens

709 sge] synsay yoleas

(INd 00020612 ¥1/08/¥ 9J0ja9)} SJUSAS3 618'GE »

'

09 Jedg Yyoleossg sewefdnosonng |

U.S. Patent

aS0|) A SY SAES]2 Mo
¥—~nusw se aAeg . S MSN ©
Buioday B yoleag spJeoquseq suUaly suodey 10Ald E

009 Us8I0Q YoJesas

US 10,528,607 B2

Sheet 6 of 30

Jan. 7, 2020

U.S. Patent

INd 000 Gv¥-CcL-L 7L/6C/v
INd Q00 L¥-C& L ¥L/6C/V
INd Q00 #¥-CE-L 7L/6C/Y

INd 000 9%.¢C-| v1/6l/v

INd 000 Z¥:2€:L ¥1/6C/Y
¢ ajepdn 1se

49 Ol

G16¢CC
G6G CC
1 2C'¥C

¥¥Z 0¢
6286

SIunoy

(¢) sadA182Jn0g (@) $92Jn0Q () S1SOH

~ i ¢ MMM
NI (L Z MMM
~ i | MMM
AN Sa|eS JOPUBA
A AS|lew

I’ ¢ }SOH

Alewwng eleq

Vi Ol

528,607 B2

2

~
—
=
‘Bl1Bp ay) 2Zzuuewwns oWl Ag sJallslay do |, puk Si1aJialay 'SaYoJeas bunum
0] ‘S1B)S JO Ueyoawlil 8yl ‘puBwIwIoD do |, 91| spodal oinb 1o 1SI| B U0} INCUYNIM SalaW pue splall aidinnw
yoJeas bulwiojsues) B asn ge) sjuaAa ayl ul piely Aue uo yoI|o Buisn sSUcBZI|ENSIA pue sg|ge) piing

- 7] SPUBLLILWOYD Yoleas suoday }oIind JOAIH

er)

-~

=

~

~

P

P

—

7.

o

m H E 1snels Aue bunessuab Jusl Yyoleas Jno A @
e~

= 70/ —~— (6v) ebesanoo D\alamm_ yeuumspleld @ [

.nJa 0/ ~(€) spiold peypajes O bo'sg:/2:6 ¥1/22/L 210)0Q) SJUSAR 0G8°Q9] A

20/ ~(8) spiaid iy O

A19POIAl Ble B sk asn 0} 8yi] NoA pinom spjay YoIUpA [EUIBUl =X3pUl

9S0|0) ASY 9AES

JoJeag MaN b

SPIvl4 198|9S
pbuinuoday ¥ yoleas SIEN, spyodoy JOAIg E

00L

0.

U.S. Patent

~Ieii0« o abed jad o7

US 10,528,607 B2

LA i/ B —

Xapul p
JSPI 0
180y »

dnoib v

@l

gdhiuonag v

30z Dep v

IBGAT BIRD #

Agbm gep P

DUDDOS SlBp #

YIUoW™ o1ep #
UL GIep #
_” Aepusaiep #
O _\N INoLy 2lep #
_m NGO #
wauoduied v
dluein »

S91AQ v SINgLNY

Sheet 8 of 30

T @ AW},

60/~ . N “'0 a3 Jo wnoo & - m.”u.

saniea LWn|on SMOY YII08

Q0. ~ ' awi iy =

sLun|eD wdg

Jan. 7, 2020

& LOIEIUBWINGOC

PEUdIEW SIUBAB $(G 216 10 P0G LG

G0.

10Nl MON B

U.S. Patent

~Ieiiogd A aled jad g7

US 10,528,607 B2

—
o
-
- m
N _ alqe] 01 ppy _
e :
P
i 51210 |
P,
m 041 — SMOx XEN
~ U Nead | HOS
—
) SMOJ Iy
—
g
7”.,. |BLIGIG0 § 1502
.H. wauodiwes
-
p—

. E 0 Wang jo juneD Bl

sanieA LWNon

[+

]

SMOM A

WL Y

SUtNoD Yjdg

& LOIEIUBWINGOC

PaUdIEW SIUBAS $(G'Z18 10 PS8

G0.

10Nl MON B

U.S. Patent

~ IR0 A aled Jad g7

US 10,528,607 B2

14 FASHA
S|lin
¢ pauoeD

g 3 PRLIIBIA

Sheet 10 of 30

L B84Y SOLISIN
141" abrsMAsSUIT

| Bisoaxapu|
eot ASOGIBALISIEASIRL
1% labeuenAl0naNCasRgBIE]

4 FDAO0A 1IN

' N 0 WaAZ J0 uneD B

SanieA LWIN|oY

(4]

SUtNoD Yjdg

Jan. 7, 2020

PaUdIEW SIUBAS $(G'Z18 10 PS8

G0.

10Nl MON B

U.S. Patent

US 10,528,607 B2

8 Old

—
ot
-
-
-
= sJoad Wol) paAladal s)jnsal sielsald ay) aiebalbby
= peay yoiesas AQ painoax3
9 9.

1SOY A g Junoo sjejsaud |, Jodis, Yoieas
= 08— sJoad 0} JUaS
&
—
“ JSOY A g UNOD s)els | ,Jolus,, yoiess
-
= 709 —Y 'yoJdeag |euibup
o~
-

U.S. Patent

US 10,528,607 B2

Sheet 12 of 30

Jan. 7, 2020

U.S. Patent

L1 N[PSAA 9L N an |
1225 LT} J— INd 00.cl e 00.21 Nd 00.21 by D
MIQAIOU e _
AJUDPE e :<'* \ E:ﬁ“w: m
wiodpus cee - |
HENE e ._".“.\..u o D
SSEDDE mmmm 0L 2 uwowyun |]
LL}
“ >
LL
(¢
HQINIL A9 SINAAE 4197 1L0ON
abe W)

Lt 1 3 B B b ¢ X 1 @t 3 1 ¢ &L L N @t J§ 3 3 L [E ¢ &1 3 % B L L E X 3 43 & [L ¢ 1 X 3 J §L L L [&t »§ 3 43 & [@t 2 3 §F §3 & ¢ ¢ T @t @ B §I §& B L ;& &t 3 B 3 § [@t @t ©; 1 §n 3 & ;J & B 1 3 §B L & .1 & 1 L B R & & £ T 1 J L R [E & J§ 3 3 & R ¢ & 1 3 3 & L B R 1 © 3 3 L L B @[@t 1 & 3 3 § ¢ & @t ;& 3 3L R [% 1 1 § 3 & L L ¢ & B § §3 4 [@t @t ©® J1 N 3 & & & T 1 J3 N I §& & 1 J &t R B &L ¢ 1 1t 3 § §L § ;& & .t &t B §L L B [@t 1 &2 I L B &R B 1 T 3 J §L L B L t §1 5 § & R F & 3 3 3 3 R [% &t 1 3 §3 L ¢ I B @[§ . ° J §% & 1 ¢ & 3 . J3 ¢ R @& % 5 J§J &L J §& § & §B ©* R . & § L @t § § [R R & U & W §3 B 3 [@ 1 § §B & R R & I L. 3 J3 R [N B 1 J

v CE

NGO I2)G 1

S 1dVLION LIAnNy

BYBiH IO ALsAsS WNIDo N

OAY LSOH / SHLLNEVYEANTNA

v Gl

wnoan il

S 1dV.LION AHJOMIL-IN

SI1SOH (8101 3O IU20Jad

A3HOLVd ATINd S1SOI

C

INOD 1810

S I1g9VLON ALILNAGH

006 MJIN SHOLVOIIANI A

URGENCY

B o e
e e .. E— —

AONIDHN AE SINIAG F1dV.ION

................ /€08

<9l ¢Syl ' 2€9

............

UNoD |81,

SLSOH FAT9VHINTNA

v 19

NG |B1G]

S 1dVLION LNIOdUN-

lllllllllllllllllll

mv+m
2

mm_n_m{._.OZ mwmoo<

WNoD B0 L

' SNOILOTANT JHYMTVIN

LUNGD mmﬁw..r

706

¢06

106

US 10,528,607 B2

Sheet 13 of 30

Jan. 7, 2020

U.S. Patent

46 Ol

SHEIOP MBIA pouBisseun & MopN « Yo (1) a (GOO-AAASNH) UO PRIDIBA LIBJUSIA) JUNOIIY & SS9I0Y 7 1107/0 A n
S{iglap Malp Emm_mmmﬁm a M3N - YOIl @ » {500-1LSOH) UQ pa1aQ {(SqWOo3) JUNoIIY - SS90y NV %a.mwwmwﬂ @ n
SUEIOP MOIA | Bisseun - MON « yoiH (0) a (900-A3ATNOD) UO pPaIejeq (Naq) JUNosaY a 55920y E{mma,mwﬂm%ﬂm @ O
SHEIBPR MIIN ﬁwmm_mm%m a MSN » L0Ip @ » (100-S0Od00Md) U pRlRiRg (Aigaung) WNnolaYy » SSID0Y NV %o.mmﬂmmwm B]
SUIOP MIN poufisseun - MBN a ybiH () « P319939Q UOHIEINUBYINY 1XOLED|D IO UNSSU) o ssoooy NVOOULDOL (] O
SHE1AN M3IA ﬁwmm_mmmﬁﬂ o M3N o DI @ » PA13819(] UCHIRINUBLINY 1XaJiLa|D) 10 9IN3sU| A 55900Y ANV mwo.mw%mwﬂm @ £

JBUMD sneis AousBin 21 L Mw_ﬁwm =HI]] suoidQ 19815%

Buiymiew ¢z (18 10E | SIU8Ae peXeios Ipy | «sUl gL & € L 8 & + € 2 H ADIE B & Ppaiesun | (e 0o1o8
At weisno

716 LSI'T SLNdAL - (2102 ‘92 1SNBNY WY 0Z:6Z: 1.1 01 GZ 1SNBNY WY 0Z:6Z: | | LUOL) (SWIN-{Ea) MOPUIM JNOY $Z B Ul SJUBAS GZZ

e ¢LO¢

WI-eay . . 9¢ bny oS
AV 008 WY 00:9 Y Q0¥ |

;mmhwmmfﬂ MR 1 [:JB A A |

o] T e
—— SARD OF 1867 _
| €16 aNN3NIL o b e

INOY | =i8(Q | « 3EIS IBOUIT vetesaCl Y] LON0SIBS 1 WNOZ YD N0 WOsY R apik [¥]

SINGY §¢ BET

|« awaio]« ones [A] ﬂ B E SO i52')

SNV G 1887

Sonu 5| 158 ¢l6 Q1314 JONVY dNIL

sjuene Buiymew gzz N

176 SA13l4 AP o v2 I R S—] R R
M|_|D m_w_|_||_|< Haleaes SIUEUIBAOL) LHBLUOD AJUNDaY
LNAIONI] [] [ubu] L]

8L JBUMO AausBin Sniele

SSUOIDY | MBIASM JUBDIDU|

0L6 A4VOdHS1VA MJIAFd LNJAIONI

US 10,528,607 B2

Sheet 14 of 30

Jan. 7, 2020

U.S. Patent

16

2AS

D6 Ol

400N SIHL
S10d1dS
ddS0

SAUNVdXd

400N SIHL
S10d1dS
d4SM

AAS

2AS

US 10,528,607 B2

Sheet 15 of 30

Jan. 7, 2020

U.S. Patent

ds Ol

ONINHYWN ——

AVOILIHO - —

. IINELNEE
"NOILYZITLNFHOD
NdO FOVHIAY d

¢¥6 SNNIIN NMOA-11Nd

I"MSY.L HEINIZ-OX XA
I"MSYL HSINIA- O IXdA
I-MSY.L HSINIS-IOHIXdA
I-MSVL HSINIZ--IOHTIXdA

I"MSY L HSINIF- 1O TXdA
4 JoysSIn

« LXAN Gl

3JNIL
€102
0Z AON a3
Nd 00: | Nd 00:Z} NV 00:1 1] Y 00:01
Gz
0S
G/
e e T Y , 001
G2l

WOODHUNMTASAS LOGIXSH-SddV
NOD AN TAS AS LOGIXSE-8ddV
INOO MNMTIdS AS L09IXSA-5ddVY
NOOS MNIMTIdS AS L09IXS3-5d4dVY
INOO MNM IS AS L09IXS3-5ddVY

& |SOH

vl €L ¢ L1 0l

Sdid

LS00 €L CL/OC/L L
0LE 800Gl €LIOT/L I
¢C 8O-0G-£L ©L/0Z/L1L
s ¥i-09-21 £L/0c/L1
L8 FL-0G-LL £L/0G/LL

—= [

8 L9 S v ez|[lL]ATud»

Nd D01 I/XS3d 1IN30dd

o JOVHIAY |[& [NOILYZNILNZHOO NdO IOVHIAY | & AALYOFIOOY |(&

I —————————————————————————

A A R

L

mg SHIAMHYIN AV IHSIC

Ndo

ANIHOVIA TVNLLAIA JLYHDIN MSY L
D8I TWOOMNNMIGS AS L0GIXSH-SddV N0 8 L-WA-OVOT ONILYHOIN
WOOMNNTASAS LOGIXSA-SddY LSOH 440 8 L-AA-UYOT DNILYHOIN

Wd 30 L°6CFy-L CL/0E/LL
Wd 3LP 0L ¥ 1 ©L0L/L L
Wd 0LO Ve Pl CLAOZ/LL

8L-WA-OVYO 1 404 NOILYODO TV F0dn0OS3d U3DNVHD INd 09 A8-vP-L LL/0L/1L

N & = W)

YHO WO MNNTTdS AS LOGIXSA-SddY NO JdOVSN NdO LSOH, AV 1Y
4 JovysSSIN

WNd COZ Le-av-L CLA08/LL L
A gL

«1XaN § ¥ € 2| 1] A3ud»
SLN3IAT ANV SHSVL LINIOTH |

U.S. Patent Jan. 7, 2020 Sheet 16 of 30 US 10,528,607 B2

1000

\ DATA DATA DATA
SOURCE SOURCE SOURCE

202 202 202

FORWARDER FORWARDER
204 204

CLIENT NETWORK
1002 1004

CLOUD-BASED DATA INTAKE
AND QUERY SYSTEM 1006

SYSTEM SYSTEM
INSTANCE INSTANCE

1008 1008

US 10,528,607 B2

Sheet 17 of 30

Jan. 7, 2020

Patent

S

U

30dMN0S | §20C 40dMN0OS

ARV V.iv{

N AT N B, e . Nommmwo:om c0C
40 dOOAVH

L1 w_u_ S mmoﬁm\,mou_

Lt 80¢

70C
dd0dVMEO S

80¢

SSID0Hd | dH0OLS V1VA 4d40.1S V1Vd
ded 90¢ Y¥3AX3AANI 90¢ d3aXAANI

OLLl

$5400dd
dd

801 WILSAS
AddN0O ANV IMVINI VLV(

0cl 1 XH4OMLAN

upyOL L S1401 %

Mas) (ANIT ANVYININOD)
JD0IA3IA IN3ID JOIAIA IN3ID

S4uy

CENY
JOIA3A IN3IND

U.S. Patent Jan. 7, 2020 Sheet 18 of 30 US 10,528,607 B2

1200
’/-

Select a Data Model

- 4 Data Models ~1201

o | Soinc ot A Lo SawPE
> [ot ol sarverlogs SawPLE
- test

FIG. 12

1300
/‘

Select an Object

4 Back

- 6 Objects in Buttercup Game Sales ~1301

> [sotoup Gans Vb sorsErems
- HTTP Success

- R uccesfm - .
| FadPuchases

- HTTP Client Error

FIG. 13

US 10,528,607 B2

Sheet 19 of 30

Jan. 7, 2020

U.S. Patent

90v L

00V |

7l Ol

12°220} 611 66'S epnoo jo ape|g AjoH
918162 9Z 1 6661 102 Buluing
GO'CLES Gel 66 72 SHQa(Q soeds ublusg
6l'€2SP 181 66 72 |anbag jeul
L9'LGOF £ee 666/ 2101aND WIS
0G'LYZ9 062 66 ¥C swiopbury a100ipay
B 0672 259340 10 PHON,
1c85/9 691 66'6€ SUIIBAJOAN 8Y) IO
10'856. 661 66'6€ 'solg ojjsjuebueyy
€L .06 GOoPl 122 POl JaYSNIA weslq

& $5SeYaInd [hiSSH%INS JO JWN0D A SUUEU 10NPO.d

8o1id Jo WNg i N 'SS900NS JO JUNOY) sweu 1onpoud |

SSNeA uwn|od |z _\..\.{‘ SMOYM HIdS

- - N “'npoid Q1 IseYBIH & N

suwnjoo wds | Loy 1—Y

0] d
olUl] ||

¢] uojEjusLLINGoQ aoud Ag sweu npoid g} 1saybiH >19Hi3

910[dwo)d (Nd 000°20:61:G €1/22/6 210}30) SIUSAS 996’}

A Saseyoind njsssoong

JOANId MN @

Gl Old

607 B2

2

A leuuod o abed jad o7

US 10,528

9 MBIA
b Sjin

< 21010520

L 1O § o G
Loms N SN o B DY o R O o

paYIE

85 i 4PSYNEAN

Z 1055900:40u11E |

"
SO O o o oo
Ay

o 1O O o O o o
o 1o o o oo o
S 1o oo o oo
C 1o j oo ijolo o
G i1 o G o o
Lo I 0 o B N o R IR o S S on B N o I QR o

9cell JGHIAAIOUSBUD

-
o

A Pegcl 16/81L P0es SHIA

L£6 vyl L 28T clB G5 LGS [AXS

2187 aBesrasuaol

Sheet 20 of 30

L ByuonXapu|

UG SI(]

790 ASOYIBAIDSIE)]

Lon- TN I o S NN - B N e S (R o
SO 1S O O o
)

L0 L

¥ JgfeugpAIoaigaesegeIrg

o oo ol ISt Sl ol o o 1
D o |l olo ol 1 1ojo jolo 0o o 10
e

Low- I T e R (L
oo o o
0 I N ao B N o N B 4

o T I s B QS
Do jlCoc o]0 o
D o 1o o 0] o
(=N B o PR e Sl B R
o S N e B N o S SN o B N v B A e

9 P JOAONINONE

& BlEp Uoieas oulyeal |8 anenk |4 auedid |4 indruyi adfieaunos iad {8 indruyiTeaunos Jad |2 indniyy xepui—ied |8 indniyiisoy Jed }a joodw |8 dew {8 onies | & suonoauuod |8 1uod |8 1TINN & wiauodwiod

-Ao|dap
H N ") WaAT Jo Whon B - N wauodwon

SanjeA uln(en SMOy HIdS

()«

SLALNIOD Jdg e H

Jan. 7, 2020

&1 LONEIUSINI0 0

V& F ¢ B I POUDIBW SIUAAD $O0'GL2 L JO ¥00'CL 2 L

00G1L m
A UDIRIBBIOY ”_.O>_& >>®z l=]}

U.S. Patent

US 10,528,607 B2

Sheet 21 of 30

Jan. 7, 2020

U.S. Patent

91 Ol

a3l LAAT JO JUND
1321 WDAZ JO] o EE UMoRILIC
000°6e 060°0¢ 000'6¢ 000°9¢ go0's L 0o0'alL 00n's G|

m | DO Yor
00|]] evoneis
| SHEI0O8D
A Wby | voilsod pusba
ood; [RaLaRD ”
ndnsyy I3 A SJAYIO CNOID) | 810100 X8I\
sputoes yseians O ail4paUDIBAA _
1g|hpauasyoieas [} .
Asuainouco ydieas [} ® E PIod
RIED yoJeas auwiyeas [
auljedid {3
irdnay) adieainoes sed M} -
m wndruyy oaunos sad [0 HORIVNEHSELO m ; ANEN 2B
Indnayl xapul sed 8
ndniy) 1soy Jad
naniy) MMQQE W SOUIOI m ieuando | aniea uiwy
dew [}
lantss-Loidap [T euolldo | 9)eAIsIuj
suogasuuo-Aoidap M shesNesusdl
J&Mﬂ__ m eault | 9eas
Byuaxapul
UOIANSIC]
A B0 WeAT JOneD # | P9l
850GJBAJA5IB 018
0091 . (UIPIAR Jeg) SXy-A
JaberuriyAi01R2I09SRRIEG (81860) Sy
OVEe T ¢ m i PAUDIBLL SIUBAR POSELEC IO #OSCLES

~ UGHRIDI93DY E A S IARY H.O\/mn_ >\/mz @

L1 DOl

068 ¢ 000 ¢ G0% ¢ Q0L ¢ 006 < 008 | G09 | 0% § _ |

GOy

;) ; E LDIHS0 pUsha

US 10,528,607 B2

0G¥
- 0] 10100
e m......”_
L]] 005
plospue-aqow~en]]] &
~ . ’ m
: e : - I — L
1= | - o3)
i Ausgoe|g-aiqow~en [065 .m
¥ », podi-ajiqow-gn " % EE 2|120%
Lab
&)
-
<%
009
[]
— 1 [BUDIICO =l
e 0
mm...,. A D300 WaAT 0 WnoD # | D194
[2
I~ 059
=
&
00Z} U 00/ sy | #
Ld
| o
0327 ”
I
L e F ¢ | (ANd D00°8L6 1.0 P L/GZ/6 210J0) SIUBAB N1 L84

U.S. Patent

US 10,528,607 B2

Sheet 23 of 30

Jan. 7, 2020

U.S. Patent

A BP0 3SOQI8A ‘PIol Ag-1ds e yim suoisuniuos
_ Ul pasn aJB $9118S Blep ajdijintl usym sswieu play 1hdino 1mniisuod 01 pasn X9-[BAS>)

E A SUi] 1Y
|

& wrwrivrirrivie rrivvierivrimiee Hrvivvivviveinin Frevrewrewerieriy

| ([<osneo-Ag-Jids> Ag] <BBe-aiBuis>)) [<suondo-uig>] [<B6e>] [<jui>=pwn|] [<]000>=1u09] [<|00g>=(eiued] [<Bunis>=1ew.o)] kbuuisi=des] TETGAWN |
pauiquios Asaooe=adAlesInos

018l Uyoleag

E T BT T

d8l Old

}
_ SION MOUS "SONSIRIS 10 9|gel Buipuodsalion UM JBYD $8119S 8] B S81ES8J9)

DUBLLILLION (<asne-Ag-lids> A8 (< wiiol] [<buuiss>=das] Tegostul]

A 9PON 9SOQIOA

_ E ~ W] |V

_l - Z08T Y2JESS |
V8L Old B

pasn Ajjusosy J=]lnuasn aweu lonpoid Ag (esud)inoy Jad Teylalln

71]
pauiquios sssooe=z=adAlaoinos

a908T "

kel eyl eyl gyl b

vyl vyl

_ INIAT L83V INIAZ L83V (JAXIAANI pUBLILLION [<asneo-Ag> Ag] <1sI-pial> [<suondo-dols>] [«u>] d01
A _ |
_ obe ainuiwi e obe shep €2 SHINL Gec 9ve puswiion (<asne-Ag-Uids> A8 (<Uwiio)] [«Buiss=das] TEUSSUIT
yoJeaq 0} 1BUAA pUBLLILIO? [<N>] TTeT _

puewwIon <1S1|-pidl> [<|00g>=anieA upull [<p|sii>=pjaiindino] SHE]

_ puBlILIOD <I8lj~p|1vy-om> 3[BT
pasn Apusosy JaJajal pz=wi| do}

asn AjUusos ={|nUasn aweu 1anpoid Ag (9211d)inoy Jad TBUG8U

A BPO 8SOQIBA Pas Al ef =1l }onp g {(aoud)inoy pey }!
pasn Ajjueosy Bew ‘ U0} ‘.Je] ‘9aeld ‘awil S[GE]
v908T ¥ |

_
E A BWIL |V

PAUIGUIOD ™ SS800k=adA}@2IN0S _

US 10,528,607 B2

Sheet 24 of 30

Jan. 7, 2020

U.S. Patent

UGRoUN 4 1saiipa
JNZAT LSFLY LNZAT LSAIMEYH O3XE0NI uonsun.g (1unos 1aunsip
ofie Ui g ofe sAep ¢z SIUBAT GZZ' OPe
uonoun4 ()op
Ualeas 0] 1BUM 10)ebaibby Junos
uonouUN 4 (iunod 7
UoIoUN 4 (o
UGIBUN 4 ()bae
XBIWAS ASId

_ A JDOIN 9S0GISA

E ~ WL Y

[zsuondo-uigs < i=uedss] [«60es] [<uis=pu] [<joogs=1ues] [<joogs>=|enied] [«Bunss=jguno}] {<buss=dasi TEGISLN |
DatIGUICS™ $S800e=adA}82iNn0Ss

YoJeas |

381 'Ol

A OPO 9Spasa

{ <asneo-Ag-jids> Ag (<uoissaidxa-eaas) | { [<asnep-Ag-dss Ag] <bHbe-g1buiss))

‘ueds swin uc peseq Yibus; ueds e Buisn ‘uIg YoLa 10 9ZIS 8y) S188
I <suondo-uid> Avucmamvw [<BbEe>] [<ul==11|] [<iood>=102] [<|ooqs=jenied] [«Buns>=1e1i0}] [<Buinss>=das} TEGOoWN |
nmzﬂﬁamlmmm%mumabmu,.gm 7

_ E » oWl Y
0ZST yoleas |

dsi Ol

LN
o7

‘ueds
paseq-bol uo paseq Yibuai ueds e HUISn ‘UIg Yyaes 0 8218 a4 8108

<Winu>=els
<yibusl-ueds>=ueds

<teds-Gop=ueds
<ipbusi-ueds>=uedsunu
<WUNU>=PUd

<JUI>=SUIg

_ ~ ODOC\ 0S5
(<ashejs-Ag-1ds> Ag (<usissaldxe-ieAss)
| { [casnes-Ag-mds> Ag] <Bbe-21buiss>)) [gsuondo-uigh] [<bbes] [<ui==1] [<icod>=1u02] [<|ooq>=ened] [<Buns>=1euuoy] [<Bunss=dos] HEGISWN |
patiguics sseone=adAld2nos

E ~ o] {I¥
ZI8T Yoleas

s s, s——— s—— soo———m. o, sooonmssin oo s, s smmosnnnes oo swmmmmsnnn. s s s o, s sosonnosnnn. s s o)

7i8l

US 10,528,607 B2

Sheet 25 of 30

Jan. 7, 2020

U.S. Patent

LANHAAD LSV
obe anuiL B

r

H8l Ol

‘paljdde s§ UCIIBZIISIOSID HNnejap _
‘lesuawInuy sI piay 31 "Ag snsal aul wids o] pial e saiinads

A SPOW 9SOIBA

E ~ SUWLL IV

:
|
|

LN=EAD 1S5d1AV
obe sjnuiw B

]
|
I
|
I
|
|
|
|
|
|
|
|
|

Plold }soy
ANHAZD LS TV (U=AX=EANI JEIE O}
obe skep ¢7 SiuUsAg §ZZ ove
P9l adAJJuans
Yaless 0] JBUM\ | pieid diual)d
JEIR s9JAq
D| 9] <JUl>=Sulq |
PlD14 Lioiyoe
49081

XBIUAS [<asne|o-aisUms> JuAHAN] T <su01ido-0)> <pIal>

CC81 <asneo-Ag-nids>IA g <(adAnuaaajunos>
["<suondo-uigs> «<wj=uedss] [«B6ex] [«iulz=jw] [<100q>=1u09] I«j00q>=e1ued] [<Buliss=jeulo)] [<Bulis>=das] Teuydauil] |
poUIGUIND T88900=adA103IN0S

08T yoJiess

JuapE

LANZHDAL LSE T4 A4 X30NI 2111
obe shep ¢z SIUBAT GZZ'9FZ

uies| ol W pia; 1SOY
JadeaQ 0] JeUYAA I}
adAjluaAns

dijusi|o

il

» UL IV

_ A ODON 8S0QIBN
_

. I . i . e JGORT Pl s9JAQ
uoIoe

[<asne|0-Ag-ujds> Ad] n@uzzau _
[<suondo-ulgs <tip=uedss] [«Bbes] [<iul>=Hun] {<00g>=1u09] [<|00q>=|eIued] {<Buuiss>=1eulio)] [«buuis>=des] Teudauil; |
poUIqUIns ~88800R=adA183In0S

71381

M8l Oid

US 10,528,607 B2

Sheet 26 of 30

Jan. 7, 2020

181 Ol

U.S. Patent

rglL Old

-~

_ LNIAZ 1541V
bz anui .

A DDOP SSO0IBA

_.O A 3L Y

iiiiiiiiiiiiiiii

JOBIBG0D

INAAY 1841y
ofig gInuky B

A PO L0 af

_ E A AU Y

§££££££££££E£££E

BHLdnos Wwonog Jo do) aLUos U1 10U JO Ui 8 anjea
5918s pa1elaiiBe aul saanbal 1B BUSIUS SSNBID-248UM Y

LoNaund {}op

101806366y 1 1HTVE)

LOIDLIN. (junoo
LG2UN 0
LONOUN {}oae

XBIUAG <dwioo-usaiylaieums <bbr-81buISs

<OLi0D-LI2i8UMs> <bBBe-9|0UiS>

XEIUAG AB)4

731

< 1908T

ot e o oo, e e ey

J<osnejo-cuaymRFagHM] - <suodo-01> <=lINUASN> <di 8:N0s> Ag] <(adAnusashunods

[<suondo-uige <wl=ueds:] [«Bbes] [<itiz=1wi] [«j00qs=1u00] [<|poqs>=|eiied] {«Buiss=1ewi0j] [<Bus»=das] TEUDaW |

Jojelado

XEIAS A8

HI081

pauguics "ssaose=adA182IN0s —

;o._mmwl._

[B<diLion-14ysailaUMEIONGT > FYTHAA] T <suoNdo-01> <=lINUasN: «<dI 82)n0s> Ar] <{adAuaaapunod: _
[esuondo-Ligs <iti=uedss] [«BOes] [<iui=1wi] [«jooqs=1103] [<j00d>=znied] {«Buiss ~1euii0)] [<Bulis>=das]) TBEgo el |

DolHUI0S T Ssa00e=adABIN0s

yoJeaqg
‘Huidnost wonoq ic do) swes Ul 1ol 1o Ut aq anjeA !

5a18s pa1zDaIBhE ol 52:4nba) 1B BLISILG 9SNBD-28UM Y

LoIUN (op

L J01RDs 6By UN0S

LONoUN (1inoo

LON3LUN {}o

LOaUN {)Bap

XRIUAS <dwon-ysaiyipiayms <bbe-gbuiss

| <Guiao-LlaiaUms <Bbe-aibuisy
| XBIUAG AS)A

¢RT <8SNBJ0-2ISUMEFHTHAA] " <sU0Rd0-01> <=]INUBSN> «di”831n08> Ag] <{adAyjuarshunod

[<esuoindo-uigs> «tui=uedss>] [<B0es] [<iui=pui] {2|0oq>==1u03] [<jooq>=|giued] {<Buliss=1euiof] [«Bunss>=das] TByIau |

pauquiod” 88200e=adA}90INn0s _

co._mwwl._

N8I Ol

US 10,528,607 B2

70 < JUAOD I3539HM J=linussn di" asinos Ag (edAjusashiunos wi=ueds TEYHISWI] |
pauiquioo~sseooe=9dAl9ainos

7 A SPON 9SOQIBA _

—

, yoJeag

—

3 [

S N8l DlId

7 Ariehmiveiintie. ShiaiveneieiieieRieRTY. Venimiidrieis. detehinitieiieimiemiesiieiinieel tboeirennin. wiaieimiveieieivteieuiekiiniet iwebiieiini Shiviehimieniteimbiemivieiieiis. rmiieien. érirehmiehetnbiriehieiieiis wieiiinie e imivnnimebiainimiivries eieiieaht. sviemiaiembninbimietints eiwiieinh. teeeiuiieieiniieiieiieiieki. shiwitreiiehinl. iviseiieh miebieebeiinbireieihs. neeimekinin. Amisiieieivhivmbibinivreieiniet ieneiive. ivebehimereimivieiieeiem ieiisiebiiei

| _

- A BPON 9S0UIBA

W | _

m _FE <JUAOI> JMIHAM] <suondo-0l» <j=jjnuasns <di” 821n0s> A gl «{adAjjusashunoss

U/ [<suondo-ulg> <uwf=uedss] [«Bbes] [<uis=nwi] [<jooq>=1u09o] [<|jooqs=|ened] [<Bulss=1ewioj] [<Buliss>=dos] Teyoau | _

pauIquios sseosoe=adA18aInos —
4 yoleas

e s s o s oot s smssmsnemesnoenss . somsmomesmns s s, s smssmmssmsusomss. st maseamssmneans s sosommstmsnmnss s st st st o]

Jan. 7, 2020

A SPOI 2SOqISA _

[<suondo-uigs> <wi=uedss] [<bB6es] [<uis=nwi|] [<1ocq>=1u09] [<|00qs>=|eiued] [<Buliss=1ewiol] [<Buliss>=das] TEUISUI] |
A B 1Y pauiquios”ssanoe=adA193Inos

7 [[<dwoo-ysasyiaisyms diunoop FyIHM] <suondo-ol> <j=|Inuasns <di"82i1nos> Ag] <(adApuanrajunos>

U.S. Patent

US 10,528,607 B2

Sheet 28 of 30

Jan. 7, 2020

U.S. Patent

d6l Old

{S1U1 0} U2YO) By
Jayjo//
{
/NAG)ay xebal
.,,_mE_u&rP 1Vi=) 1¢]]
}
SPIGMARY/
4
/GLSLSU(sgeiBae[jUNCD)gy (xabal
xay, uonouny] usyo)

h

SUGIjoUny//

!
S1eISIL, [ysnd
(=)(zeq)qy xaba
'[4o1I8d0, Juawinbie,] (uao)

O)e)s{ooy, ‘ysnd

H=)ueg)ay xebal
'‘[Joiesado, Juswinbie] uso)

sfue/
{
dod, 1xau
‘I xebBau
FUSIBOSNS, (USNO)
}
LoJBasSgns pug/
{
BUBLILIOD, ysnd
‘All; xebeal
FUOIBBSONS, UaMO)
}
Joaeasgns Uels/
{
PUBLLWLIOY, IXauU
‘1l xebal
‘adid, (uayo)

adid;

4
funC LA &)/ X002
{IX8), (UadO)

}

saionb sjgnopy/

] : puBWIWICO-00]

1 = s8jnigsiy)

e e e e ———— —— —— —— —

R

V6l 9Old

<qUl> AQ = XBIUAS
[asneio-pus-AQ)

sge|baljuNo) = XRIUAS
[suoipun-ooy}

<|00>=JB0 = XBIUAS
fuondo-leq]

[vondo-xeq]

<uofdo-legs | <uondo-xeds = XejuAs
Isuocndo-00y]

<asSne-pu-Ag> {., <PiBl>,.)., <SUohHouN}
-00> {<suonNdo-00o)s) 00) = XBIUAS
{00]-puBLLLIOD]

oo jugquoIees
b — ——— — e

|
<JUt>=ZB(= XBIUAS _

@\ .
- d0Z Sld
7 w—— wo— JUT—— smss— w——— ———— PR JU— a— —— T
— ﬁw <L |
M Ze(=00]
1B =00j
AFM _ jBAD | —
— _ [[T[].sweN Jendwod, sprai |
— N6 PaYN0O]L =UsNDE pESW _
o Aunoeg:6oMUBATIUIN =8dA3821N0S SMOPUIM=XAPUI 24885 |
U dew |
aweN Jseinduwion, spieiy |
NG PayD o), =uonoe” pesiu —
AND8Q:DONUBATUINM =d A)B83IN0 S SMOPUIM=XEPUI {§21B0S |
dewr
SSWBN JaIndwio s, sprey
- JIN0 PSH0O|, =UoHNoE™ pesw —
o An2eg: Do IUBATUIAA=00AJ92IN0S SMOPUIM=XSPU] 1]2JE3S |
cm ceus |
.y auweN Jaindwon, sprsiy | _
e~ N0 paMooL, =Uonoe” pesw
~— ANoes BOTUeATURA=8dA}82IN0S SMODUIM=XaDUI §2Jeas |
% deuw | —
— di spray |
2 | $=81BY JS0U _
pdoyp=adAla2Inos NIOMIBU=X2 DUl {21p0S |
_ dew | —
| $=dI" 904n0s X1d:00510=0dA}821N0S NIOM}BU=XEPU!
—
S _ 2002 oJESS © |
(|
~
- .
S v0¢ ©Old
e
|zeq=00; _
18 =00}
~ jeAa |
n [. eweN 101ndwon, spiaij | 1IN0 padoo], =UsNoE pesSwW —
b’ AUN0oag.B0NUBATUN =8dAJa2IN0S SMODUIM=XBpUI aseas | deur | auwieN Jo1nduwion),, spialy | ,In0 PaXoo], =ucoe pesw
A_nlav AINZaS BoOMUSATUN =0dAI82IN0S SMODUIM=XaDUI {21838 | delr | SWEN J8INAWIoD, St | N0 paMdool =uonoe pesw _
P Anoog o UBAIUN=RdALR2IN0S SMODUIM=XAPUI {oseas | dewr | aWBN JoIndwios,, spdi) | N0 pad0o], =Uuonoe pesw
Anoag: DoTULAJUIN =0d AJB2IN0 S SMOPUIM=XODUI iaieas | dew | di spraly | [§=0WiEU SO
S.. pdoup=0dA}821n0s YioMmeu=xapuil yateas | dew | 1$=dI” 221n0s X1d:00510=0dA}152.1N0S YIOMIOU=XSPUI
- - _mOOT e eSS o

US 10,528,607 B2

Sheet 30 of 30

Jan. 7, 2020

U.S. Patent

olce
AN TVA
dH1L HLIM XMO01d LNJdINNDaVY
dH1 Ol XM0vd dJdddy 49 OL MO0 '1d
INJNNDEY A41SIN dHL dSNVO

80c¢c
A00 19
INJNNDEY dHL INO&ad MA00 14
INJNNDEY AdLSIN ddAV 1dSIA
dHL 4O 1IVAOINdd dSNVO

90¢c
A001d LNdNNDEY A4dLSAN
dH1 4O 445N V NOdd ddJdAIdO0dd
AMNTVA V 40 AV 1dSIA dSNVO

¥0cc
A001d AINJNND AV
dHL NIHLIM 00 19 LANINND &V
Ad41SdN V 40 AV IaSId 4SMNVO

¢0cc
A001d
INJNNDEY NV 4O AV 1dSIAd 4SMNVO

¢¢ Ol

0l¢
SA00 19 INJdNNDJY
40 148 dH1 NO ddsvd dddOO
44 OL ANVINIWOD dH1 4SNVO

¥01¢C
UNVININOO dHL 40O
XVINAS dHL NO ddSvd SXM00 1d
INJNND AV 4O 145 AJdAVY 1dSIdA
dH1 Ol NOILVOIdIdOIN dSNVO

cole
ANVININOD dHL
40 XVLINAS NO ddSvd ANVININOD
VvV 40 SM00 1d LNJdNNDaVY
40 138 V 40O AV'14SId 4SMNVO

US 10,528,607 B2

1
SYNTAX TEMPLATES FOR CODING

BACKGROUND

Modern data centers often include thousands of hosts that
operate collectively to service requests from even larger
numbers of remote clients. During operation, components of
these data centers can produce significant volumes of
machine-generated data. In order to reduce the size of the
data, it 1s typically pre-processed before it 1s stored. In some
istances, the pre-processing includes extracting and storing
some of the data, but discarding the remainder of the data.
Although this may save storage space in the short term, it
can be undesirable in the long term. For example, i the
discarded data 1s later determined to be of use, 1t may no
longer be available.

In some instances, techniques have been developed to
apply mimimal processing to the data i an attempt to
preserve more of the data for later use. For example, the data
may be maintained 1 a relatively unstructured form to
reduce the loss of relevant data. Unfortunately, the unstruc-
tured nature of much of this data has made 1t challenging to
perform i1ndexing and searching operations because of the
difficulty of applying semantic meaning to unstructured
data. As the number of hosts and clients associated with a
data center continues to grow, processing large volumes of
machine-generated data in an intelligent manner and eflec-
tively presenting the results of such processing continues to
be a priority. Moreover, processing of the data may return a
large amount of information that can be difficult for a user
to interpret. For example, 1 a user submits a search of the
data, the user may be provided with a large set of search
results for the data but may not know how the search results
relate to the data itself or how the search results relate to one
another. As a result, a user may have a difficult time

deciphering what portions of the data or the search results
are relevant to her/his inquiry.

SUMMARY

Embodiments of the present mvention are directed to
syntax templates for coding.

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the detailed description. This summary 1s not
intended to 1dentify key features or essential features of the
claimed subject matter, nor 1s it intended to be used 1n
1solation as an aid 1n determining the scope of the claimed
subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Implementations of the present disclosure are described in
detail below with reference to the attached drawing figures,
wherein:

FIG. 1 1llustrates a networked computer environment in
which an embodiment may be implemented;

FIG. 2 illustrates a block diagram of an example data
intake and query system in which an embodiment may be
implemented;

FIG. 3 1s a flow diagram that illustrates how indexers
process, mndex, and store data recerved from forwarders in
accordance with the disclosed embodiments;

FI1G. 4 1s a tflow diagram that 1llustrates how a search head
and indexers perform a search query in accordance with the
disclosed embodiments;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 1llustrates a scenario where a common customer 1D
1s found among log data received from three disparate
sources 1n accordance with the disclosed embodiments;

FIG. 6 A 1llustrates a search screen 1n accordance with the
disclosed embodiments;

FIG. 6B 1llustrates a data summary dialog that enables a
user to select various data sources 1n accordance with the
disclosed embodiments;

FIGS. TA-7D 1illustrate a series of user interface screens

for an example data model-driven report generation inter-
face 1n accordance with the disclosed embodiments;

FIG. 8 illustrates an example search query received from
a client and executed by search peers 1n accordance with the
disclosed embodiments;

FIG. 9A 1llustrates a key indicators view in accordance
with the disclosed embodiments;

FIG. 9B illustrates an incident review dashboard 1n accor-
dance with the disclosed embodiments;

FIG. 9C 1illustrates a proactive monitoring tree in accor-
dance with the disclosed embodiments;

FIG. 9D 1llustrates a user interface screen displaying both
log data and performance data in accordance with the
disclosed embodiments:

FIG. 10 illustrates a block diagram of an example cloud-
based data intake and query system 1n which an embodiment
may be implemented;

FIG. 11 illustrates a block diagram of an example data
intake and query system that performs searches across
external data systems in accordance with the disclosed
embodiments;

FIGS. 12-14 illustrate a series of user interface screens for
an example data model-driven report generation interface 1n
accordance with the disclosed embodiments;

FIGS. 15-17 illustrate example visualizations generated
by a reporting application 1n accordance with the disclosed
embodiments;

FIG. 18A 1llustrates a coding screen in accordance with
the disclosed embodiments.

FIG. 18B 1illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 18C illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 18D 1illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 18E 1illustrates a coding screen in accordance with
the disclosed embodiments.

FIG. 18F illustrates a coding screen in accordance with
the disclosed embodiments.

FIG. 18G 1llustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 18H 1illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 181 1llustrates a coding screen 1n accordance with the
disclosed embodiments.

FIG. 1817 illustrates a coding screen 1n accordance with the
disclosed embodiments.

FIG. 18K 1illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 18L illustrates a coding screen in accordance with
the disclosed embodiments.

FIG. 18M 1illustrates a coding screen in accordance with
the disclosed embodiments.

FIG. 18N 1illustrates a coding screen 1n accordance with
the disclosed embodiments.

FIG. 19A 1llustrates a syntax definition of a command 1n
accordance with the disclosed embodiments.

US 10,528,607 B2

3

FIG. 19B illustrates rules of a command generated from
a syntax definition of the command 1n accordance with the
disclosed embodiments.

FIG. 20A 1llustrates a coded query 1n accordance with the
disclosed embodiments.

FIG. 20B illustrates a reformatted coded query in accor-
dance with the disclosed embodiments.

FIG. 21 presents a flowchart illustrating a method in
accordance with the disclosed embodiments.

FIG. 22 presents a flowchart illustrating a method in
accordance with the disclosed embodiments.

DETAILED DESCRIPTION

Embodiments are described herein according to the fol-
lowing outline:
1.0. General Overview

2.0. Operating Environment
2.1. Host Devices
2.2. Chient Devices
2.3. Client Device Applications
2.4. Data Server System
2.5. Data Ingestion
2.5.1. Input
2.5.2. Parsing
2.5.3. Indexing
2.6. Query Processing,
2.”7. Field Extraction
2.8. Example Search Screen
2.9. Data Modelling
2.10. Acceleration Techniques

-~

10.1. Aggregation Technique
10.2. Keyword Index

.10.3. High Performance Analytics Store

.10.4. Accelerating Report Generation

11. Security Features

.12. Data Center Monitoring

.13. Cloud-Based System Overview

.14. Searching Externally Archived Data
2.14.1. ERP Process Features

2.15. I'T Service Monitoring

3.0. Code Completion

3.1. Example Coding Interface

3.2. Contextual Suggestions and Syntax Templates

3.3. Rule Generation

3.4. Code Reformatting

3.5. Additional Implementations

S S S W)

N DO Do DO

1.0. GENERAL OVERVIEW

Modern data centers and other computing environments
can comprise anywhere from a few host computer systems
to thousands of systems configured to process data, service
requests from remote clients, and perform numerous other
computational tasks. During operation, various components
within these computing environments often generate signifi-
cant volumes of machine-generated data. For example,
machine data i1s generated by various components 1in the
information technology (IT) environments, such as servers,
sensors, routers, mobile devices, Internet of Things (IoT)
devices, etc. Machine-generated data can include system
logs, network packet data, sensor data, application program
data, error logs, stack traces, system performance data, etc.
In general, machine-generated data can also 1include pertor-
mance data, diagnostic information, and many other types of
data that can be analyzed to diagnose performance problems,
monitor user interactions, and to dertve other insights.

10

15

20

25

30

35

40

45

50

55

60

65

4

A number of tools are available to analyze machine data,
that 1s, machine-generated data. In order to reduce the size
ol the potentially vast amount of machine data that may be
generated, many of these tools typically pre-process the data
based on anticipated data-analysis needs. For example,
pre-specilied data items may be extracted from the machine
data and stored in a database to facilitate etlicient retrieval
and analysis of those data items at search time. However, the
rest of the machine data typically 1s not saved and discarded
during pre-processing. As storage capacity becomes pro-
gressively cheaper and more plentiful, there are fewer incen-
tives to discard these portions of machine data and many
reasons to retain more of the data.

This plentiful storage capacity 1s presently making it
feasible to store massive quantities of mimimally processed
machine data for later retrieval and analysis. In general,
storing minimally processed machine data and performing
analysis operations at search time can provide greater flex-
ibility because 1t enables an analyst to search all of the
machine data, instead of searching only a pre-specified set of
data i1tems. This may enable an analyst to mvestigate dii-
ferent aspects of the machine data that previously were
unavailable for analysis.

However, analyzing and searching massive quantities of
machine data presents a number of challenges. For example,
a data center, servers, or network appliances may generate
many different types and formats of machine data (e.g.,
system logs, network packet data (e.g., wire data, etc.),
sensor data, application program data, error logs, stack
traces, system performance data, operating system data,
virtualization data, etc.) from thousands of different com-
ponents, which can collectively be very time-consuming to
analyze. In another example, mobile devices may generate
large amounts of information relating to data accesses,
application performance, operating system performance,
network performance, etc. There can be millions of mobile
devices that report these types of information.

These challenges can be addressed by using an event-
based data intake and query system, such as the SPLUNK®
ENTERPRISE system developed by Splunk Inc. of San
Francisco, Calif. The SPLUNK® ENTERPRISE system 1is
the leading platform for providing real-time operational
intelligence that enables organizations to collect, index, and
search machine-generated data from various websites, appli-
cations, servers, networks, and mobile devices that power
their businesses. The SPLUNK® ENTERPRISE system 1s
particularly useful for analyzing data which 1s commonly
found 1n system log files, network data, and other data input
sources. Although many of the techniques described herein
are explaimned with reference to a data intake and query
system similar to the SPLUNK® ENTERPRISE system,
these techniques are also applicable to other types of data
systems.

In the SPLUNK® ENTERPRISE system, machine-gen-
erated data are collected and stored as “events”. An event
comprises a portion of the machine-generated data and 1s
associated with a specific point 1n time. For example, events
may be derived from “time series data,” where the time
series data comprises a sequence of data points (e.g., per-
formance measurements from a computer system, etc.) that
are associated with successive points 1 time. In general,
cach event can be associated with a timestamp that 1s derived
from the raw data in the event, determined through inter-
polation between temporally proximate events having
known timestamps, or determined based on other configu-
rable rules for associating timestamps with events, etc.

US 10,528,607 B2

S

In some 1nstances, machine data can have a predefined
format, where data items with specific data formats are
stored at predefined locations 1n the data. For example, the
machine data may include data stored as fields in a database
table. In other instances, machine data may not have a
predefined format, that 1s, the data 1s not at fixed, predefined
locations, but the data does have repeatable patterns and 1s
not random. This means that some machine data can com-
prise various data items of diflerent data types and that may
be stored at diflerent locations within the data. For example,
when the data source 1s an operating system log, an event
can include one or more lines from the operating system log
containing raw data that includes different types of pertor-
mance and diagnostic information associated with a specific
point 1n time.

Examples of components which may generate machine
data from which events can be derived include, but are not
limited to, web servers, application servers, databases, fire-
walls, routers, operating systems, and software applications
that execute on computer systems, mobile devices, sensors,
Internet of Things (Io'T) devices, etc. The data generated by
such data sources can include, for example and without
limitation, server log files, activity log files, configuration
files, messages, network packet data, performance measure-
ments, sensor measurements, €1c.

The SPLUNK® ENTERPRISE system uses flexible
schema to specily how to extract information from the event
data. A tlexible schema may be developed and redefined as
needed. Note that a tlexible schema may be applied to event
data “on the fly,” when 1t 1s needed (e.g., at search time,
index time, mgestion time, etc.). When the schema 1s not
applied to event data until search time it may be referred to
as a “late-binding schema.”

During operation, the SPLUNK® ENTERPRISE system
starts with raw input data (e.g., one or more system logs,
streams of network packet data, sensor data, application
program data, error logs, stack traces, system performance
data, etc.). The system divides this raw data into blocks (e.g.,
buckets of data, each associated with a specific time frame,
etc.), and parses the raw data to produce timestamped
events. The system stores the timestamped events 1n a data
store. The system enables users to run queries against the
stored data to, for example, retrieve events that meet criteria
speciflied 1n a query, such as containing certain keywords or
having specific values 1n defined fields. As used herein
throughout, data that 1s part of an event 1s referred to as
“event data”. In this context, the term “field” refers to a
location 1n the event data containing one or more values for
a specific data item. As will be described 1n more detail
herein, the fields are defined by extraction rules (e.g., regular
expressions) that derive one or more values from the portion
of raw machine data 1n each event that has a particular field
specified by an extraction rule. The set of values so produced
are semantically-related (such as IP address), even though
the raw machine data in each event may be i1n different
formats (e.g., sesmantically-related values may be 1n different
positions 1n the events derived from different sources).

As noted above, the SPLUNK® ENTERPRISE system
utilizes a late-binding schema to event data while perform-
ing queries on events. One aspect of a late-binding schema
1s applying “extraction rules” to event data to extract values
tor specific fields during search time. More specifically, the
extraction rules for a field can include one or more 1struc-
tions that specily how to extract a value for the field from the
event data. An extraction rule can generally include any type
of 1nstruction for extracting values from data 1in events. In
some cases, an extraction rule comprises a regular expres-

10

15

20

25

30

35

40

45

50

55

60

65

6

sion where a sequence of characters form a search pattern,
in which case the rule 1s referred to as a “regex rule.” The
system applies the regex rule to the event data to extract
values for associated fields 1n the event data by searching the
event data for the sequence of characters defined 1n the regex
rule.

In the SPLUNK® ENTERPRISE system, a field extractor
may be configured to automatically generate extraction rules
for certain field values in the events when the events are
being created, indexed, or stored, or possibly at a later time.
Alternatively, a user may manually define extraction rules
for fields using a variety of techniques. In contrast to a
conventional schema for a database system, a late-binding
schema 1s not defined at data ingestion time. Instead, the
late-binding schema can be developed on an ongoing basis
until the time a query 1s actually executed. This means that
extraction rules for the fields in a query may be provided 1n
the query itself, or may be located during execution of the
query. Hence, as a user learns more about the data in the
events, the user can continue to refine the late-binding
schema by adding new fields, deleting fields, or modifying
the field extraction rules for use the next time the schema 1s
used by the system. Because the SPLUNK® ENTERPRISE
system maintains the underlying raw data and uses late-
binding schema for searching the raw data, 1t enables a user
to continue 1vestigating and learn valuable 1nsights about
the raw data.

In some embodiments, a common field name may be used
to reference two or more fields containing equivalent data
items, even though the fields may be associated with dii-
ferent types of events that possibly have diflerent data
formats and different extraction rules. By enabling a com-
mon field name to be used to 1dentily equivalent fields from
different types of events generated by disparate data sources,
the system facilitates use of a “common information model”™
(CIM) across the disparate data sources (further discussed
with respect to FIG. 5).

2.0. OPERATIING ENVIRONMEN'T

FIG. 1 illustrates a networked computer system 100 1n
which an embodiment may be implemented. Those skilled in
the art would understand that FIG. 1 represents one example
of a networked computer system and other embodiments
may use different arrangements.

The networked computer system 100 comprises one or
more computing devices. These one or more computing
devices comprise any combination of hardware and software
configured to implement the various logical components
described herein. For example, the one or more computing
devices may include one or more memories that store
instructions for 1mplementing the wvarious components
described herein, one or more hardware processors config-
ured to execute the instructions stored in the one or more
memories, and various data repositories 1 the one or more
memories for storing data structures utilized and manipu-
lated by the various components.

In an embodiment, one or more client devices 102 are
coupled to one or more host devices 106 and a data intake
and query system 108 via one or more networks 104.
Networks 104 broadly represent one or more LANs, WANS,
cellular networks (e.g., LTE, HSPA, 3G and other cellular

technologies), and/or networks using any of wired, wireless,
terrestrial microwave, or satellite links, and may include the
public Internet.

2.1. Host Devices

In the 1llustrated embodiment, a system 100 includes one
or more host devices 106. Host devices 106 may broadly

US 10,528,607 B2

7

include any number of computers, virtual machine instances,
and/or data centers that are configured to host or execute one
or more 1stances of host applications 114. In general, a host
device 106 may be mvolved, directly or indirectly, 1n pro-
cessing requests recerved from client devices 102. Each host
device 106 may comprise, for example, one or more of a
network device, a web server, an application server, a
database server, etc. A collection of host devices 106 may be
configured to implement a network-based service. For
example, a provider ol a network-based service may con-
figure one or more host devices 106 and host applications
114 (e.g., one or more web servers, application servers,
database servers, etc.) to collectively implement the net-
work-based application.

In general, client devices 102 communicate with one or
more host applications 114 to exchange information. The
communication between a client device 102 and a host
application 114 may, for example, be based on the Hypertext
Transter Protocol (HTTP) or any other network protocol.
Content delivered from the host application 114 to a client
device 102 may include, for example, HTML documents,
media content, etc. The communication between a client
device 102 and host application 114 may include sending
various requests and receiving data packets. For example, in
general, a client device 102 or application running on a
client device may mitiate communication with a host appli-
cation 114 by making a request for a specific resource (e.g.,
based on an HT'TP request), and the application server may
respond with the requested content stored in one or more
response packets.

In the 1llustrated embodiment, one or more of host appli-
cations 114 may generate various types ol performance data
during operation, including event logs, network data, sensor
data, and other types of machine-generated data. For
example, a host application 114 comprising a web server
may generate one or more web server logs 1n which details
ol interactions between the web server and any number of
client devices 102 1s recorded. As another example, a host
device 106 comprising a router may generate one or more
router logs that record information related to network trathic
managed by the router. As yet another example, a host
application 114 comprising a database server may generate
one or more logs that record information related to requests
sent from other host applications 114 (e.g., web servers or
application servers) for data managed by the database server.

2.2. Client Devices

Client devices 102 of FIG. 1 represent any computing
device capable of interacting with one or more host devices
106 via a network 104. Examples of client devices 102 may
include, without limitation, smart phones, tablet computers,
handheld computers, wearable devices, laptop computers,
desktop computers, servers, portable media players, gaming
devices, and so forth. In general, a client device 102 can
provide access to different content, for instance, content
provided by one or more host devices 106, etc. Each client
device 102 may comprise one or more client applications
110, described 1n more detail 1n a separate section herein-
aiter.

2.3. Client Device Applications

In an embodiment, each client device 102 may host or
execute one or more client applications 110 that are capable
of iteracting with one or more host devices 106 via one or
more networks 104. For instance, a client application 110

10

15

20

25

30

35

40

45

50

55

60

65

8

may be or comprise a web browser that a user may use to
navigate to one or more websites or other resources provided
by one or more host devices 106. As another example, a
client application 110 may comprise a mobile application or
“app.” For example, an operator of a network-based service
hosted by one or more host devices 106 may make available
one or more mobile apps that enable users of client devices
102 to access various resources of the network-based ser-
vice. As yet another example, client applications 110 may
include background processes that perform various opera-
tions without direct interaction from a user. A client appli-
cation 110 may include a “plug-1n” or “extension” to another
application, such as a web browser plug-in or extension.

In an embodiment, a client application 110 may include a
monitoring component 112. At a high level, the monitoring
component 112 comprises a solftware component or other
logic that facilitates generating performance data related to
a client device’s operating state, including monitoring net-
work tratlic sent and received from the client device and
collecting other device and/or application-specific informa-
tion. Momitoring component 112 may be an integrated
component ol a client application 110, a plug-in, an exten-
sion, or any other type of add-on component. Monitoring,
component 112 may also be a stand-alone process.

In one embodiment, a monitoring component 112 may be
created when a client application 110 1s developed, for
example, by an application developer using a software
development kit (SDK). The SDK may include custom
monitoring code that can be incorporated mto the code
implementing a client application 110. When the code 1s
converted to an executable application, the custom code
implementing the monitoring functionality can become part
of the application 1tself.

In some cases, an SDK or other code for implementing the
monitoring functionality may be offered by a provider of a
data intake and query system, such as a system 108. In such
cases, the provider of the system 108 can implement the
custom code so that performance data generated by the
monitoring functionality 1s sent to the system 108 to facili-
tate analysis of the performance data by a developer of the
client application or other users.

In an embodiment, the custom monitoring code may be
incorporated ito the code of a client application 110 1n a
number of different ways, such as the insertion of one or
more lines 1n the client application code that call or other-
wise 1nvoke the monitoring component 112. As such, a
developer of a client application 110 can add one or more
lines of code into the client application 110 to trigger the
monitoring component 112 at desired points during execu-
tion of the application. Code that triggers the monitoring
component may be referred to as a monitor trigger. For
instance, a monitor trigger may be included at or near the
beginning of the executable code of the client application
110 such that the monitoring component 112 1s 1mitiated or
triggered as the application 1s launched, or included at other
points 1n the code that correspond to various actions of the
client application, such as sending a network request or
displaying a particular interface.

In an embodiment, the monitoring component 112 may
monitor one or more aspects of network traflic sent and/or
received by a client application 110. For example, the
monitoring component 112 may be configured to monitor
data packets transmitted to and/or from one or more host
applications 114. Incoming and/or outgoing data packets can
be read or examined to identily network data contained
within the packets, for example, and other aspects of data
packets can be analyzed to determine a number of network

US 10,528,607 B2

9

performance statistics. Monitoring network trailic may
enable information to be gathered particular to the network
performance associated with a client application 110 or set
ol applications.

In an embodiment, network performance data refers to
any type of data that indicates information about the network
and/or network performance. Network performance data
may 1include, for mnstance, a URL requested, a connection
type (e.g., HI'TP, HTTPS, etc.), a connection start time, a
connection end time, an HT'TP status code, request length,
response length, request headers, response headers, connec-
tion status (e.g., completion, response time(s), failure, etc.),
and the like. Upon obtaining network performance data
indicating performance of the network, the network pertor-
mance data can be transmitted to a data intake and query
system 108 for analysis.

Upon developing a client application 110 that icorpo-
rates a monitoring component 112, the client application 110
can be distributed to client devices 102. Applications gen-
crally can be distributed to client devices 102 1n any manner,
or they can be pre-loaded. In some cases, the application
may be distributed to a client device 102 via an application
marketplace or other application distribution system. For
instance, an application marketplace or other application
distribution system might distribute the application to a
client device based on a request from the client device to
download the application.

Examples of functionality that enables monitoring per-

formance of a client device are described in U.S. patent
application Ser. No. 14/324,748, entitled “UTILIZING

PACKET HEADERS TO MONITOR NETWORK TRAF-
FIC IN ASSOCIATION WITH A CLIENT DEVICE™, filed
on 27 Oct. 2014, and which i1s hereby incorporated by
reference 1n 1ts entirety for all purposes.

In an embodiment, the monitoring component 112 may
also monitor and collect performance data related to one or
more aspects of the operational state of a client application
110 and/or client device 102. For example, a monitoring
component 112 may be configured to collect device pertor-
mance information by monitoring one or more client device
operations, or by making calls to an operating system and/or
one or more other applications executing on a client device
102 for performance information. Device performance
information may include, for instance, a current wireless
signal strength of the device, a current connection type and
network carrier, current memory performance iformation, a
geographic location of the device, a device orientation, and
any other information related to the operational state of the
client device.

In an embodiment, the monitoring component 112 may
also monitor and collect other device profile information
including, for example, a type of client device, a manufac-
turer and model of the device, versions of various software
applications installed on the device, and so forth.

In general, a monitoring component 112 may be config-
ured to generate performance data in response to a monitor
trigger 1n the code of a client application 110 or other
triggering application event, as described above, and to store
the performance data 1n one or more data records. Each data
record, for example, may include a collection of field-value
pairs, each field-value pair storing a particular item of
performance data 1n association with a field for the item. For
example, a data record generated by a monitoring compo-
nent 112 may include a “networklLatency” field (not shown
in the Figure) in which a value 1s stored. This field indicates
a network latency measurement associated with one or more
network requests. The data record may 1nclude a “state” field

10

15

20

25

30

35

40

45

50

55

60

65

10

to store a value indicating a state of a network connection,
and so forth for any number of aspects of collected pertor-
mance data.

2.4. Data Server System

FIG. 2 depicts a block diagram of an exemplary data
intake and query system 108, similar to the SPLUNK®
ENTERPRISE system. System 108 includes one or more
torwarders 204 that recerve data from a variety of iput data
sources 202, and one or more 1mdexers 206 that process and
store the data in one or more data stores 208. These
forwarders and indexers can comprise separate computer
systems, or may alternatively comprise separate processes
executing on one or more computer systems.

Each data source 202 broadly represents a distinct source
of data that can be consumed by a system 108. Examples of
a data source 202 include, without limitation, data files,
directories of files, data sent over a network, event logs,
registries, etc.

During operation, the forwarders 204 identily which
indexers 206 receive data collected from a data source 202
and forward the data to the appropnate indexers. Forwarders
204 can also perform operations on the data before forward-
ing, including removing extrancous data, detecting time-
stamps 1n the data, parsing data, indexing data, routing data
based on critenia relating to the data being routed, and/or
performing other data transformations.

In an embodiment, a forwarder 204 may comprise a
service accessible to client devices 102 and host devices 106
via a network 104. For example, one type of forwarder 204
may be capable of consuming vast amounts of real-time data
from a potentially large number of client devices 102 and/or
host devices 106. The forwarder 204 may, for example,
comprise a computing device which implements multiple
data pipelines or “queues” to handle forwarding of network
data to indexers 206. A forwarder 204 may also perform
many of the functions that are performed by an indexer. For
example, a forwarder 204 may perform keyword extractions
on raw data or parse raw data to create events. A forwarder
204 may generate time stamps for events. Additionally or
alternatively, a forwarder 204 may perform routing of events
to indexers. Data store 208 may contain events derived from
machine data from a variety of sources all pertaining to the
same component 1n an IT environment, and this data may be

produced by the machine 1n question or by other compo-
nents 1n the IT environment.

2.5. Data Ingestion

FIG. 3 depicts a flow chart illustrating an example data
flow performed by Data Intake and Query system 108, 1n
accordance with the disclosed embodiments. The data tlow
illustrated 1 FIG. 3 1s provided for illustrative purposes
only; those skilled 1n the art would understand that one or
more of the steps of the processes illustrated 1n FIG. 3 may
be removed or the ordering of the steps may be changed.
Furthermore, for the purposes of 1llustrating a clear example,
one or more particular system components are described 1n
the context of performing various operations during each of
the data flow stages. For example, a forwarder 1s described
as recerving and processing data during an input phase; an
indexer 1s described as parsing and indexing data during
parsing and indexing phases; and a search head 1s described
as performing a search query during a search phase. How-

US 10,528,607 B2

11

ever, other system arrangements and distributions of the
processing steps across system components may be used.

2.5.1. Input

At block 302, a forwarder receives data from an input
source, such as a data source 202 shown in FIG. 2. A
forwarder 1nitially may receive the data as a raw data stream
generated by the mput source. For example, a forwarder may
receive a data stream from a log file generated by an
application server, from a stream of network data from a
network device, or from any other source of data. In one
embodiment, a forwarder receives the raw data and may
segment the data stream 1nto “blocks”, or “buckets,” possi-
bly of a uniform data size, to facilitate subsequent process-
ing steps.

At block 304, a forwarder or other system component
annotates each block generated from the raw data with one
or more metadata fields. These metadata fields may, for
example, provide information related to the data block as a
whole and may apply to each event that 1s subsequently
derived from the data in the data block. For example, the
metadata fields may include separate fields specifying each
of a host, a source, and a source type related to the data
block. A host field may contain a value i1dentifying a host
name or IP address of a device that generated the data. A
source field may contain a value 1dentifying a source of the
data, such as a pathname of a file or a protocol and port
related to received network data. A source type field may
contain a value specilying a particular source type label for
the data. Additional metadata fields may also be included
during the input phase, such as a character encoding of the
data, 1f known, and possibly other values that provide
information relevant to later processing steps. In an embodi-
ment, a forwarder forwards the annotated data blocks to
another system component (typically an indexer) for further

processing.
The SPLUNK® ENTERPRISE system allows forwarding,

of data from one SPLUNK® ENTERPRISE instance to
another, or even to a third-party system. SPLUNK®
ENTERPRISE system can employ different types of for-
warders 1n a configuration.

In an embodiment, a forwarder may contain the essential
components needed to forward data. It can gather data from
a variety of inputs and forward the data to a SPLUNK®
ENTERPRISE server for indexing and searching. It also can
tag metadata (e.g., source, source type, host, etc.).

Additionally or optionally, 1n an embodiment, a forwarder
has the capabilities of the aforementioned forwarder as well
as additional capabilities. The forwarder can parse data
before forwarding the data (e.g., associate a time stamp with
a portion of data and create an event, etc.) and can route data
based on criteria such as source or type of event. It can also
index data locally while forwarding the data to another
indexer.

2.5.2. Parsing,

At block 306, an indexer receives data blocks from a
forwarder and parses the data to organize the data into
cvents. In an embodiment, to organize the data into events,
an mdexer may determine a source type associated with each
data block (e.g., by extracting a source type label from the
metadata fields associated with the data block, etc.) and refer
to a source type configuration corresponding to the identified
source type. The source type definition may include one or
more properties that indicate to the indexer to automatically

10

15

20

25

30

35

40

45

50

55

60

65

12

determine the boundaries of events within the data. In
general, these properties may include regular expression-

based rules or delimiter rules where, for example, event
boundaries may be indicated by predefined characters or
character strings. These predefined characters may include
punctuation marks or other special characters including, for
example, carriage returns, tabs, spaces, line breaks, etc. If a
source type for the data i1s unknown to the indexer, an
indexer may infer a source type for the data by examining
the structure of the data. Then, 1t can apply an mferred
source type definition to the data to create the events.

At block 308, the indexer determines a timestamp for each
event. Similar to the process for creating events, an indexer
may again refer to a source type definition associated with
the data to locate one or more properties that indicate
istructions for determining a timestamp for each event. The
properties may, for example, mstruct an indexer to extract a
time value from a portion of data in the event, to interpolate
time values based on timestamps associated with temporally
proximate events, to create a timestamp based on a time the
cvent data was received or generated, to use the timestamp
ol a previous event, or use any other rules for determining
timestamps.

At block 310, the indexer associates with each event one
or more metadata fields including a field contaiming the
timestamp (in some embodiments, a timestamp may be
included in the metadata fields) determined for the event.
These metadata fields may include a number of “default
fields” that are associated with all events, and may also
include one more custom fields as defined by a user. Similar
to the metadata fields associated with the data blocks at
block 304, the default metadata fields associated with each
event may include a host, source, and source type field
including or 1n addition to a field storing the timestamp.

At block 312, an indexer may optionally apply one or
more transformations to data included in the events created
at block 306. For example, such transformations can include
removing a portion of an event (e.g., a portion used to define
event boundaries, extraneous characters from the event,
other extraneous text, etc.), masking a portion of an event
(e.g., masking a credit card number), removing redundant
portions of an event, etc. The transformations applied to
event data may, for example, be specified 1n one or more
configuration files and referenced by one or more source
type definitions.

2.5.3. Indexing

At blocks 314 and 316, an indexer can optionally generate
a keyword index to facilitate fast keyword searching for
event data. To build a keyword index, at block 314, the
indexer 1dentifies a set of keywords in each event. At block
316, the indexer includes the identified keywords 1n an
index, which associates each stored keyword with reference
pointers to events containing that keyword (or to locations
within events where that keyword 1s located, other location
identifiers, etc.). When an indexer subsequently receives a
keyword-based query, the indexer can access the keyword
index to quickly identily events containing the keyword.

In some embodiments, the keyword index may include
entries for name-value pairs found in events, where a
name-value pair can 1nclude a pair of keywords connected
by a symbol, such as an equals sign or colon. This way,
events containing these name-value pairs can be quickly
located. In some embodiments, fields can automatically be
generated for some or all of the name-value pairs at the time
of indexing. For example, 1f the string “dest=10.0.1.2" 1s

US 10,528,607 B2

13

found 1n an event, a field named “dest” may be created for
the event, and assigned a value of “10.0.1.2”.

At block 318, the indexer stores the events with an
associated timestamp 1n a data store 208. Timestamps enable
a user to search for events based on a time range. In one
embodiment, the stored events are organized 1nto “buckets,”
where each bucket stores events associated with a specific
time range based on the timestamps associated with each
event. This may not only improve time-based searching, but
also allows for events with recent timestamps, which may
have a higher likelihood of being accessed, to be stored in
a faster memory to facilitate faster retrieval. For example,
buckets containing the most recent events can be stored in
flash memory rather than on a hard disk.

Each indexer 206 may be responsible for storing and
searching a subset of the events contained 1n a correspond-
ing data store 208. By distributing events among the index-
ers and data stores, the indexers can analyze events for a
query 1n parallel. For example, using map-reduce tech-
niques, each indexer returns partial responses for a subset of
events to a search head that combines the results to produce
an answer for the query. By storing events in buckets for
specific time ranges, an indexer may further optimize data
retrieval process by searching buckets corresponding to time
ranges that are relevant to a query.

Moreover, events and buckets can also be replicated
across different indexers and data stores to facilitate high
availability and disaster recovery as described in U.S. patent

application Ser. No. 14/266,812, entitled “SITE-BASED
SEARCH AFFINITY?, filed on 30 Apr. 2014, and in U.S.

patent application Ser. No. 14/266,817, entltled “MULTI-
SITE CLUSTERING”, also filed on 30 Apr. 2014, each of
which 1s hereby incorporated by reference 1n 1ts entirety for

all purposes.

2.6. Query Processing

FIG. 4 1s a flow diagram that illustrates an examplary
process that a search head and one or more indexers may
perform during a search query. At block 402, a search head
receives a search query from a client. At block 404, the
search head analyzes the search query to determine what
portion(s) of the query can be delegated to indexers and what
portions of the query can be executed locally by the search
head. At block 406, the search head distributes the deter-
mined portions of the query to the appropriate indexers. In
an embodiment, a search head cluster may take the place of
an idependent search head where each search head 1n the
search head cluster coordinates with peer search heads 1n the
search head cluster to schedule jobs, replicate search results,
update configurations, fulfill search requests, etc. In an
embodiment, the search head (or each search head) com-
municates with a master node (also known as a cluster
master, not shown 1n Fig.) that provides the search head with
a list of indexers to which the search head can distribute the
determined portions of the query. The master node maintains
a list of active indexers and can also designate which
indexers may have responsibility for responding to queries
over certain sets of events. A search head may communicate
with the master node before the search head distributes
queries to 1ndexers to discover the addresses of active
indexers.

At block 408, the indexers to which the query was
distributed, search data stores associated with them for
events that are responsive to the query. To determine which
events are responsive to the query, the indexer searches for
events that match the criteria specified 1n the query. These

10

15

20

25

30 e

35

40

45

50

55

60

65

14

criteria can include matching keywords or specific values for
certain fields. The searching operations at block 408 may use

the late-binding schema to extract values for specified fields
from events at the time the query 1s processed. In an
embodiment, one or more rules for extracting field values
may be specified as part of a source type definition. The
indexers may then either send the relevant events back to the
search head, or use the events to determine a partial result,
and send the partial result back to the search head.

At block 410, the search head combines the partial results
and/or events received from the indexers to produce a final
result for the query. This final result may comprise diflerent
types of data depending on what the query requested. For
example, the results can include a listing of matching events
returned by the query, or some type of visualization of the
data from the returned events. In another example, the final
result can include one or more calculated values derived
from the matching events.

The results generated by the system 108 can be returned
to a client using different techmiques. For example, one
technique streams results or relevant events back to a client
in real-time as they are 1dentified. Another technique waits
to report the results to the client until a complete set of
results (which may include a set of relevant events or a result
based on relevant events) 1s ready to return to the client. Yet
another technique streams interim results or relevant events
back to the client 1n real-time until a complete set of results
1s ready, and then returns the complete set of results to the
client. In another technique, certain results are stored as
search jobs” and the client may retrieve the results by
referring the search jobs.

The search head can also perform various operations to
make the search more ethicient. For example, before the
search head begins execution of a query, the search head can
determine a time range for the query and a set of common
keywords that all matching events include. The search head
may then use these parameters to query the indexers to
obtain a superset ol the eventual results. Then, during a
filtering stage, the search head can perform field-extraction
operations on the superset to produce a reduced set of search
results. This speeds up queries that are performed on a

periodic basis.

2.7. Field Extraction

The search head 210 allows users to search and visualize
event data extracted from raw machine data received from
homogenous data sources. It also allows users to search and
visualize event data extracted from raw machine data
received from heterogeneous data sources. The search head
210 includes various mechamisms, which may additionally
reside 1 an indexer 206, for processing a query. Splunk
Processing Language (SPL), used 1in conjunction with the
SPLUNK® ENTERPRISE system, can be utilized to make
a query. SPL 1s a pipelined search language in which a set
of 1puts 1s operated on by a first command 1n a command
line, and then a subsequent command following the pipe
symbol “I” operates on the results produced by the first
command, and so on for additional commands. Other query
languages, such as the Structured Query Language (“SQL”),
can be used to create a query.

In response to receiving the search query, search head 210
uses extraction rules to extract values for the fields associ-
ated with a field or fields in the event data being searched.
The search head 210 obtains extraction rules that specity
how to extract a value for certain fields from an event.
Extraction rules can comprise regex rules that specilty how

US 10,528,607 B2

15

to extract values for the relevant fields. In addition to
specilying how to extract field values, the extraction rules
may also include instructions for dertving a field value by
performing a function on a character string or value
retrieved by the extraction rule. For example, a transforma-
tion rule may truncate a character string, or convert the
character string into a diflerent data format. In some cases,
the query itsell can specily one or more extraction rules.

The search head 210 can apply the extraction rules to
event data that 1t receives from indexers 206. Indexers 206
may apply the extraction rules to events 1n an associated data
store 208. Extraction rules can be applied to all the events 1n
a data store, or to a subset of the events that have been
filtered based on some criteria (e.g., event time stamp
values, etc.). Extraction rules can be used to extract one or
more values for a field from events by parsing the event data
and examining the event data for one or more patterns of
characters, numbers, delimiters, etc., that indicate where the
field begins and, optionally, ends.

FIG. 5 illustrates an example of raw machine data
received from disparate data sources. In this example, a user
submits an order for merchandise using a vendor’s shopping
application program 301 runming on the user’s system. In
this example, the order was not delivered to the vendor’s
server due to a resource exception at the destination server
that 1s detected by the middleware code 502. The user then
sends a message to the customer support 503 to complain
about the order failing to complete. The three systems 501,
502, and 303 are disparate systems that do not have a
common logging format. The order application 501 sends
log data 504 to the SPLUNK® ENTERPRISE system in one
format, the middleware code 502 sends error log data 505 1n
a second format, and the support server 503 sends log data
506 1n a third format.

Using the log data received at one or more indexers 206
from the three systems the vendor can uniquely obtain an
insight into user activity, user experience, and system behav-
ior. The search head 210 allows the vendor’s administrator
to search the log data from the three systems that one or
more indexers 206 are responsible for searching, thereby
obtaining correlated information, such as the order number
and corresponding customer ID number of the person plac-
ing the order. The system also allows the administrator to see
a visualization of related events via a user interface. The
administrator can query the search head 210 for customer 1D
ficld value matches across the log data from the three
systems that are stored at the one or more indexers 206. The
customer ID field value exists in the data gathered from the
three systems, but the customer ID field value may be
located 1n different areas of the data given differences 1n the
architecture of the systems—there 1s a semantic relationship
between the customer ID field values generated by the three
systems. The search head 210 requests event data from the
one or more mdexers 206 to gather relevant event data from
the three systems. It then applies extraction rules to the event
data in order to extract field values that 1t can correlate. The
search head may apply a diflerent extraction rule to each set
of events from each system when the event data format
differs among systems. In this example, the user interface
can display to the administrator the event data corresponding
to the common customer 1D field values 507, 508, and 509,
thereby providing the administrator with insight mnto a
customer’s experience.

Note that query results can be returned to a client, a search
head, or any other system component for further processing.
In general, query results may include a set of one or more
events, a set of one or more values obtained from the events,

10

15

20

25

30

35

40

45

50

55

60

65

16

a subset of the values, statistics calculated based on the
values, a report containing the values, or a visualization,
such as a graph or chart, generated from the values.

2.8.

Example Search Screen

FIG. 6A illustrates an example search screen 600 1n
accordance with the disclosed embodiments. Search screen
600 includes a search bar 602 that accepts user input 1n the
form of a search string. It also includes a time range picker
612 that enables the user to specily a time range for the
search. For “historical searches™ the user can select a spe-
cific time range, or alternatively a relative time range, such
as “today,” “yesterday” or “last week.” For “real-time
searches,” the user can select the size of a preceding time
window to search for real-time events. Search screen 600
also mitially displays a “data summary” dialog as is 1llus-
trated 1n FIG. 6B that enables the user to select different
sources for the event data, such as by selecting specific hosts
and log files.

After the search 1s executed, the search screen 600 1n FIG.
6A can display the results through search results tabs 604,
wherein search results tabs 604 includes: an “events tab”™
that displays various information about events returned by
the search; a “statistics tab” that displays statistics about the
search results; and a “visualization tab” that displays various
visualizations of the search results. The events tab illustrated
in FIG. 6A displays a timeline graph 605 that graphically
illustrates the number of events that occurred in one-hour
intervals over the selected time range. It also displays an
events list 608 that enables a user to view the raw data 1n
cach of the returned events. It additionally displays a fields
sidebar 606 that includes statistics about occurrences of
specific fields 1 the returned events, including “selected
fields” that are pre-selected by the user, and “interesting
fields™ that are automatically selected by the system based
on pre-specified criteria.

2.9. Data Models

A data model 1s a hierarchically structured search-time
mapping of semantic knowledge about one or more datasets.
It encodes the domain knowledge necessary to build a
variety ol specialized searches of those datasets. Those
searches, 1n turn, can be used to generate reports.

A data model 1s composed of one or more “objects” (or
“data model objects”) that define or otherwise correspond to
a specific set of data.

Objects 1n data models can be arranged hierarchically 1n
parent/child relationships. Each child object represents a
subset of the dataset covered by its parent object. The
top-level objects 1n data models are collectively referred to
as “root objects.”

Child objects have inheritance. Data model objects are
defined by characteristics that mostly break down into
constraints and attributes. Child objects inherit constraints
and attributes from their parent objects and have additional
constraints and attributes of their own. Child objects provide
a way ol filtering events from parent objects. Because a child
object always provides an additional constraint in addition to
the constraints it has inherited from 1ts parent object, the
dataset it represents 1s always a subset of the dataset that 1ts
parent represents.

For example, a first data model object may define a broad
set of data pertaining to e-mail activity generally, and
another data model object may define specific datasets
within the broad dataset, such as a subset of the e-mail data

US 10,528,607 B2

17

pertaining specifically to e-mails sent. Examples of data
models can include electronic mail, authentication, data-
bases, intrusion detection, malware, application state, alerts,
compute inventory, network sessions, network traflic, per-
formance, audits, updates, vulnerabilities, etc. Data models
and their objects can be designed by knowledge managers 1n
an organization, and they can enable downstream users to
quickly focus on a specific set of data. For example, a user
can simply select an “e-mail activity” data model object to
access a dataset relating to e-mails generally (e.g., sent or
received), or select an “e-mails sent” data model object (or
data sub-model object) to access a dataset relating to e-mails
sent.

A data model object may be defined by (1) a set of search
constraints, and (2) a set of fields. Thus, a data model object
can be used to quickly search data to 1dentify a set of events
and to 1dentily a set of fields to be associated with the set of
events. For example, an “e-mails sent” data model object
may specily a search for events relating to e-mails that have
been sent, and specily a set of fields that are associated with
the events. Thus, a user can retrieve and use the “e-mails
sent” data model object to quickly search source data for
events relating to sent e-mails, and may be provided with a
listing of the set of fields relevant to the events 1n a user
interface screen.

A child of the parent data model may be defined by a
search (typically a narrower search) that produces a subset
of the events that would be produced by the parent data
model’s search. The child’s set of fields can include a subset
of the set of fields of the parent data model and/or additional
fields. Data model objects that reference the subsets can be
arranged 1n a hierarchical manner, so that child subsets of
events are proper subsets of their parents. A user iteratively
applies a model development tool (not shown in Fig.) to
prepare a query that defines a subset of events and assigns
an object name to that subset. A child subset 1s created by
turther limiting a query that generated a parent subset. A
late-binding schema of field extraction rules 1s associated
with each object or subset 1n the data model.

Data definitions 1n associated schemas can be taken from
the common 1information model (CIM) or can be devised for
a particular schema and optionally added to the CIM. Child
objects inherit fields from parents and can include fields not
present 1n parents. A model developer can select fewer
extraction rules than are available for the sources returned
by the query that defines events belonging to a model.
Selecting a limited set of extraction rules can be a tool for
simplifying and focusing the data model, while allowing a
user tlexibility to explore the data subset. Development of a

data model 1s further explained 1n U.S. Pat. Nos. 8,788,525
and 8,788,526, both entitled “DATA MODEL FOR
MACHINE DATA FOR SEMANTIC SEARCH”, both
1ssued on 22 Jul. 2014, U.S. Pat. No. 8,983,994, entitled
“GENERATION OF A DATA MODEL FOR SEARCHING
MACHINE DATA”, i1ssued on 17 Mar. 2015, U.S. patent
application Ser. No. 14/611,232, entitled “GENERATION
OF A DATA MODEL APPLIED TO QUERIES”, filed on 31
Jan. 2015, and U.S. patent application Ser. No. 14/815,884,
entitled “GENERATION OF A DATA MODEL APPLIED
TO OBIJECT QUERIES”, filed on 31 Jul. 2015, each of
which 1s hereby incorporated by reference 1n 1ts entirety for

all purposes. See, also, Knowledge Manager Manual, Build
a Data Model, Splunk Enterprise 6.1.3 pp. 150-204 (Aug.

25, 2014).

A data model can also include reports. One or more report
formats can be associated with a particular data model and
be made available to run against the data model. A user can

10

15

20

25

30

35

40

45

50

55

60

65

18

use child objects to design reports with object datasets that
already have extraneous data pre-filtered out. In an embodi-
ment, the data intake and query system 108 provides the user
with the ability to produce reports (e.g., a table, chart,
visualization, etc.) without having to enter SPL, SQL, or
other query language terms into a search screen. Data
models are used as the basis for the search feature.

Data models may be selected 1n a report generation
interface. The report generator supports drag-and-drop orga-
nization of fields to be summarized in a report. When a
model 1s selected, the fields with available extraction rules
are made available for use 1n the report. The user may refine
and/or filter search results to produce more precise reports.
The user may select some fields for organizing the report and
select other fields for providing detail according to the report
organization. For example, “region” and “salesperson’ are
fields used for organizing the report and sales data can be
summarized (subtotaled and totaled) within this organiza-
tion. The report generator allows the user to specily one or
more fields within events and apply statistical analysis on
values extracted from the specified one or more fields. The
report generator may aggregate search results across sets of
events and generate statistics based on aggregated search
results. Building reports using the report generation inter-

face 1s further explained i U.S. patent application Ser. No.
14/503,335, entitled “GENERATING REPORTS FROM

UNSTRUCTURED DATA”, filed on 30 Sep. 2014, and
which 1s hereby incorporated by reference 1n its entirety for
all purposes, and 1n Pivot Manual, Splunk Enterprise 6.1.3
(Aug. 4, 2014). Data visualizations also can be generated 1n
a variety of formats, by reference to the data model. Reports,
data visualizations, and data model objects can be saved and
associated with the data model for future use. The data
model object may be used to perform searches of other data.

FIGS. 12, 13, and 7A-7D 1illustrate a series of user
interface screens where a user may select report generation
options using data models. The report generation process
may be driven by a predefined data model object, such as a
data model object defined and/or saved via a reporting
application or a data model object obtained from another
source. A user can load a saved data model object using a
report editor. For example, the mitial search query and fields
used to drive the report editor may be obtained from a data
model object. The data model object that 1s used to drive a
report generation process may define a search and a set of
fields. Upon loading of the data model object, the report
generation process may enable a user to use the fields (e.g.,
the fields defined by the data model object) to define critena
for a report (e.g., filters, split rows/columns, aggregates, etc.)
and the search may be used to identily events (e.g., to
identify events responsive to the search) used to generate the
report. That 1s, for example, 11 a data model object 1s selected
to drive a report editor, the graphical user interface of the
report editor may enable a user to define reporting criteria
for the report using the fields associated with the selected
data model object, and the events used to generate the report
may be constrained to the events that match, or otherwise
satisty, the search constraints of the selected data model
object.

The selection of a data model object for use in driving a
report generation may be facilitated by a data model object
selection interface. FI1G. 12 1llustrates an example interactive
data model selection graphical user interface 1200 of a
report editor that displays a listing of available data models
1201. The user may select one of the data models 1202.

FIG. 13 illustrates an example data model object selection
graphical user interface 1300 that displays available data

US 10,528,607 B2

19

objects 1301 for the selected data object model 1202. The
user may select one of the displayed data model objects 1302
for use 1n driving the report generation process.

Once a data model object 1s selected by the user, a user
interface screen 700 shown in FIG. 7A may display an
interactive listing of automatic field identification options
701 based on the selected data model object. For example,
a user may select one of the three 1llustrated options (e.g., the
“All Fields” option 702, the “Selected Fields™ option 703, or
the “Coverage” option (e.g., fields with at least a specified
% of coverage) 704). If the user selects the “All Fields”
option 702, all of the fields identified from the events that
were returned 1n response to an 1nitial search query may be
selected. That 1s, for example, all of the fields of the
identified data model object fields may be selected. I the
user selects the “Selected Fields” option 703, only the fields
from the fields of the identified data model object fields that
are selected by the user may be used. If the user selects the
“Coverage” option 704, only the fields of the identified data
model object fields meeting a specified coverage critena
may be selected. A percent coverage may refer to the
percentage of events returned by the 1mitial search query that
a given field appears . Thus, for example, 11 an object
dataset 1icludes 10,000 events returned in response to an
initial search query, and the “avg_age” field appears 1n 854
of those 10,000 events, then the “avg_age” field would have
a coverage of 8.54% for that object dataset. If, for example,
the user selects the “Coverage” option and specifies a
coverage value of 2%, only fields having a coverage value
equal to or greater than 2% may be selected. The number of
fields corresponding to each selectable option may be dis-
played 1n association with each option. For example, “97”
displayed next to the “All Fields” option 702 indicates that
97 fields will be selected 1t the “All Fields” option 1s
selected. The “3” displayed next to the “Selected Fields”
option 703 indicates that 3 of the 97 fields will be selected
if the “Selected Fields™ option 1s selected. The “49” dis-
played next to the “Coverage” option 704 indicates that 49
of the 97 fields (e.g., the 49 fields having a coverage of 2%
or greater) will be selected 11 the “Coverage” option 1s
selected. The number of fields corresponding to the “Cov-
erage’” option may be dynamically updated based on the
specified percent of coverage.

FIG. 7B 1illustrates an example graphical user interface
screen (also called the pivot interface) 705 displaying the
reporting application’s “Report Editor” page. The screen
may display interactive elements for defining various ele-
ments of a report. For example, the page includes a “Filters™
clement 706, a “Split Rows” element 707, a “Split Columns”™
clement 708, and a “Column Values™ element 709. The page
may include a list of search results 711. In this example, the
Split Rows element 707 1s expanded, revealing a listing of
fields 710 that can be used to define additional criteria (e.g.,
reporting criteria). The listing of fields 710 may correspond
to the selected fields (attributes). That 1s, the listing of fields
710 may list only the fields previously selected, either
automatically and/or manually by a user. FIG. 7C 1llustrates
a formatting dialogue 712 that may be displayed upon
selecting a field from the listing of fields 710. The dialogue
can be used to format the display of the results of the
selection (e.g., label the column to be displayed as “com-
ponent™).

FIG. 7D illustrates an example graphical user interface
screen 703 including a table of results 713 based on the
selected criteria including splitting the rows by the “com-
ponent” field. A column 714 having an associated count for
cach component listed 1n the table may be displayed that

5

10

15

20

25

30

35

40

45

50

55

60

65

20

indicates an aggregate count of the number of times that the
particular field-value pair (e.g., the value 1n a row) occurs in
the set of events responsive to the iitial search query.

FIG. 14 illustrates an example graphical user interface
screen 1400 that allows the user to filter search results and
to perform statistical analysis on values extracted from
specific fields 1n the set of events. In this example, the top
ten product names ranked by price are selected as a filter
1401 that causes the display of the ten most popular products
sorted by price. Each row 1s displayed by product name and
price 1402. This results 1n each product displayed i a
column labeled “product name™ along with an associated
price 1n a column labeled “price” 1406. Statistical analysis
of other fields 1n the events associated with the ten most
popular products have been specified as column values
1403. A count of the number of successtul purchases for
cach product 1s displayed in column 1404. This statistics
may be produced by filtering the search results by the
product name, finding all occurrences of a successiul pur-
chase 1n a field within the events and generating a total of the
number of occurrences. A sum of the total sales 1s displayed
in column 1405, which is a result of the multiplication of the
price and the number of successiul purchases for each
product.

The reporting application allows the user to create graphi-
cal visualizations of the statistics generated for a report. For
example, FIG. 15 illustrates an example graphical user
interface 1500 that displays a set of components and asso-
ciated statistics 1501. The reporting application allows the
user to select a visualization of the statistics 1n a graph (e.g.,
bar chart, scatter plot, area chart, line chart, pie chart, radial
gauge, marker gauge, filler gauge, etc.). FIG. 16 1illustrates
an example of a bar chart visualization 1600 of an aspect of
the statistical data 1501. FIG. 17 illustrates a scatter plot
visualization 1700 of an aspect of the statistical data 1501.

2.10. Acceleration Technique

The above-described system provides significant flexibil-
ity by enabling a user to analyze massive quantities of
minimally processed data “on the fly” at search time 1nstead
ol storing pre-specified portions of the data 1n a database at
ingestion time. This flexibility enables a user to see valuable
insights, correlate data, and perform subsequent queries to
examine interesting aspects of the data that may not have
been apparent at mngestion time.

However, performing extraction and analysis operations
at search time can involve a large amount of data and require
a large number of computational operations, which can
cause delays in processing the queries. Advantageously,
SPLUNK® ENTERPRISE system employs a number of
unmque acceleration techniques that have been developed to
speed up analysis operations performed at search time.
These techniques include: (1) performing search operations
in parallel across multiple indexers; (2) using a keyword
index; (3) using a high performance analytics store; and (4)
accelerating the process of generating reports. These novel
techniques are described in more detail below.

2.10.1. Aggregation Technique

To facilitate faster query processing, a query can be
structured such that multiple indexers perform the query 1n
parallel, while aggregation of search results from the mul-
tiple indexers 1s performed locally at the search head. For
example, FI1G. 8 illustrates how a search query 802 received
from a client at a search head 210 can split into two phases,

US 10,528,607 B2

21

including: (1) subtasks 804 (e.g., data retrieval or simple
filtering) that may be performed in parallel by indexers 206
for execution, and (2) a search results aggregation operation
806 to be executed by the search head when the results are
ultimately collected from the indexers.

During operation, upon receiving search query 802, a
search head 210 determines that a portion of the operations
involved with the search query may be performed locally by
the search head. The search head modifies search query 802
by substituting “stats” (create aggregate statistics over
results sets received from the indexers at the search head)
with “prestats” (create statistics by the indexer from local
results set) to produce search query 804, and then distributes
search query 804 to distributed indexers, which are also
referred to as ““search peers.” Note that search queries may
generally specily search criteria or operations to be per-
formed on events that meet the search criteria. Search
queries may also specily field names, as well as search
criteria for the values in the fields or operations to be
performed on the values 1n the fields. Moreover, the search
head may distribute the full search query to the search peers
as 1llustrated 1n FIG. 4, or may alternatively distribute a
modified version (e.g., a more restricted version) of the
search query to the search peers. In this example, the
indexers are responsible for producing the results and send-
ing them to the search head. After the indexers return the
results to the search head, the search head aggregates the
received results 806 to form a single search result set. By
executing the query in this manner, the system eflectively
distributes the computational operations across the indexers
while minimizing data transiers.

2.10.2. Keyword Index

As described above with reference to the flow charts 1n
FIG. 3 and FIG. 4, data intake and query system 108 can
construct and maintain one or more keyword indices to
quickly identity events containing specific keywords. This
technique can greatly speed up the processing of queries
involving specific keywords. As mentioned above, to build
a keyword index, an indexer first 1dentifies a set of key-
words. Then, the indexer includes the 1dentified keywords in
an 1ndex, which associates each stored keyword with refer-
ences to events containing that keyword, or to locations
within events where that keyword 1s located. When an
indexer subsequently receives a keyword-based query, the
indexer can access the keyword index to quickly identity
events contaiming the keyword.

2.10.3. High Performance Analytics Store

To speed up certain types of queries, some embodiments
of system 108 create a high performance analytics store,
which 1s referred to as a “summarization table,” that contains
entries for specific field-value pairs. Each of these entries
keeps track of instances of a specific value 1n a specific field
in the event data and includes references to events contain-
ing the specific value in the specific field. For example, an
example entry 1n a summarization table can keep track of
occurrences of the value “94107” 1n a “ZIP code” field of a
set of events and the entry includes references to all of the
events that contain the value “94107” 1n the ZIP code field.
This optimization technique enables the system to quickly
process queries that seek to determine how many events
have a particular value for a particular field. To this end, the
system can examine the entry in the summarization table to
count instances of the specific value 1n the field without

10

15

20

25

30

35

40

45

50

55

60

65

22

having to go through the individual events or perform data
extractions at search time. Also, 1f the system needs to
process all events that have a specific field-value combina-
tion, the system can use the references in the summarization
table entry to directly access the events to extract further
information without having to search all of the events to find
the specific field-value combination at search time.

In some embodiments, the system maintains a separate
summarization table for each of the above-described time-

specific buckets that stores events for a specific time range.
A bucket-specific summarization table includes entries for
specific field-value combinations that occur 1n events 1n the
specific bucket. Alternatively, the system can maintain a
separate summarization table for each indexer. The indexer-
specific summarization table includes entries for the events
in a data store that are managed by the specific indexer.
Indexer-specific summarization tables may also be bucket-
specific.

The summarization table can be populated by running a
periodic query that scans a set of events to find istances of
a specific field-value combination, or alternatively instances
of all field-value combinations for a specific field. A periodic
query can be mitiated by a user, or can be scheduled to occur
automatically at specific time intervals. A periodic query can
also be automatically launched in response to a query that
asks for a specific field-value combination.

In some cases, when the summarization tables may not
cover all of the events that are relevant to a query, the system
can use the summarization tables to obtain partial results for
the events that are covered by summarization tables, but may
also have to search through other events that are not covered
by the summarization tables to produce additional results.
These additional results can then be combined with the

partial results to produce a final set of results for the query.
The summarization table and associated techniques are
described 1n more detail 1n U.S. Pat. No. 8,682,925, entitled
“DISTRIBUTED HIGH PERFORMANCE ANALYTICS
STORE”, 1ssued on 25 Mar. 2014, U.S. patent application
Ser. No. 14/170,159, entitled “SUPPLEMENTING A HIGH
PERFORMANCE ANALYTICS STORE WITH EVALUA-
TION OF INDIVIDUAL EVENTS TO RESPOND TO AN
EVENT QUERY?”, filed on 31 Jan. 2014, and U.S. patent
application Ser. No. 14/815,973, entitled “STORAGE
MEDIUM AND CONTROL DEVICE”, filed on 21 Feb.
2014, each of which 1s hereby incorporated by reference 1n
its entirety.

2.10.4. Accelerating Report Generation

In some embodiments, a data server system such as the
SPLUNK® ENTERPRISE system can accelerate the pro-
cess of periodically generating updated reports based on
query results. To accelerate this process, a summarization
engine automatically examines the query to determine
whether generation of updated reports can be accelerated by
creating intermediate summaries. If reports can be acceler-
ated, the summarization engine periodically generates a
summary covering data obtained during a latest non-over-
lapping time period. For example, where the query seeks
events meeting a specified criteria, a summary for the time
period includes only events within the time period that meet
the specified criteria. Similarly, 1f the query seeks statistics
calculated from the events, such as the number of events that
match the specified criteria, then the summary for the time
period includes the number of events in the period that
match the specified criteria.

US 10,528,607 B2

23

In addition to the creation of the summaries, the summa-
rization engine schedules the periodic updating of the report

associated with the query. During each scheduled report
update, the query engine determines whether intermediate
summaries have been generated covering portions of the
time period covered by the report update. If so, then the
report 1s generated based on the information contained in the
summaries. Also, 1f additional event data has been received
and has not yet been summarized, and 1s required to generate
the complete report, the query can be run on this additional
event data. Then, the results returned by this query on the
additional event data, along with the partial results obtained
from the intermediate summaries, can be combined to gen-
crate the updated report. This process 1s repeated each time
the report 1s updated. Alternatively, 1f the system stores
events 1 buckets covering specific time ranges, then the
summaries can be generated on a bucket-by-bucket basis.
Note that producing intermediate summaries can save the
work i1nvolved 1n re-running the query for previous time
periods, so advantageously only the newer event data needs
to be processed while generating an updated report. These
report acceleration techniques are described 1n more detail in
U.S. Pat. No. 8,589,403, entitled “COMPRESSED JOUR-
NALING IN EVENT TRACKING FILES FOR META-
DATA RECOVERY AND REPLICATION™, 1ssued on 19
Nov. 2013, U.S. Pat. No. 8,412,696, entitled “REAL TIME
SEARCHING AND REPORTING”, 1ssued on 2 Apr. 2011
and U.S. Pat. Nos. 8,589,375 and 8,589,432, both also
entitled “REAL TIME SEARCHING AND REPORTING”,

both i1ssued on 19 Nov. 2013, each of which i1s hereby
incorporated by reference 1n 1ts entirety.

2.11. Security Features
The SPLUNK® ENTERPRISE platform provides various
schemas, dashboards and visualizations that simplify devel-

opers’ task to create applications with additional capabili-
ties. One such application 1s the SPLUNK® APP FOR

ENTERPRISE SECURITY, which performs monitoring and
alerting operations and includes analytics to facilitate 1den-
tifying both known and unknown security threats based on
large volumes of data stored by the SPLUNK® ENTER-
PRISE system. SPLUNK® APP FOR ENTERPRISE
SECURITY provides the security practitioner with visibility
into security-relevant threats found in the enterprise infra-
structure by capturing, monitoring, and reporting on data
from enterprise security devices, systems, and applications.
Through the use of SPLUNK® ENTERPRISE searching
and reporting capabilities, SPLUNK® APP FOR ENTER-
PRISE SECURITY provides a top-down and bottom-up
view ol an organization’s security posture.

The SPLUNK® APP FOR ENTERPRISE SECURITY
leverages SPLUNK® ENTERPRISE search-time normal-
1zation techmiques, saved searches, and correlation searches
to provide visibility into security-relevant threats and activ-
ity and generate notable events for tracking. The App
enables the security practitioner to investigate and explore
the data to find new or unknown threats that do not follow
signature-based patterns.

Conventional Security Information and Event Manage-
ment (SIEM) systems that lack the infrastructure to eflec-
tively store and analyze large volumes of security-related
data. Traditional SIEM systems typically use fixed schemas
to extract data from pre-defined security-related fields at
data ingestion time and storing the extracted data in a
relational database. This traditional data extraction process
(and associated reduction 1n data size) that occurs at data

10

15

20

25

30

35

40

45

50

55

60

65

24

ingestion time mevitably hampers future incident investiga-
tions that may need original data to determine the root cause
of a security 1ssue, or to detect the onset of an impending
security threat.

In contrast, the SPLUNK® APP FOR ENTERPRISE
SECURITY system stores large volumes of minimally pro-
cessed secunity-related data at ingestion time for later
retrieval and analysis at search time when a live security
threat 1s being mvestigated. To facilitate this data retrieval
process, the SPLUNK® APP FOR ENTERPRISE SECU-
RITY provides pre-specified schemas for extracting relevant
values from the diflerent types of security-related event data
and enables a user to define such schemas.

The SPLUNK® APP FOR ENTERPRISE SECURITY
can process many types ol security-related information. In
general, this security-related information can include any
information that can be used to identily security threats. For
example, the security-related information can include net-
work-related information, such as IP addresses, domain
names, asset i1dentifiers, network traflic volume, uniform
resource locator strings, and source addresses. The process

of detecting security threats for network-related information
1s further described in U.S. Pat. No. 8,826,434, entitled

“SECURITY THREAT DETECTION BASED ON INDI-
CATIONS IN BIG DATA OF ACCESS TO NEWLY REG-
ISTERED DOMAINS”, 1ssued on 2 Sep. 2014, U.S. patent
application Ser. No. 13/956,252, entitled “INVESTIGA-
TIVE AND DYNAMIC DETECTION OF POTENTIAL
SECURITY-THREAT INDICATORS FROM EVENTS IN
BIG DATA”, filed on 31 Jul. 2013, U.S. patent application
Ser. No. 14/445,018, entitled “GRAPHIC DISPLAY OF
SECURITY THREATS BASED ON INDICATIONS OF
ACCESSTO NEWLY REGISTERED DOMAINS”, filed on
28 Jul. 2014, U.S. patent application Ser. No. 14/445,023,
entitled “SECURITY THREAT DETECTION OF NEWLY
REGISTERED DOMAINS”, filed on 28 Jul. 2014, U.S.
patent application Ser. No. 14/815,971, entitled “SECU-
RITY THREAT DETECTION USING DOMAIN NAME
ACCESSES”, filed on 1 Aug. 2015, and U.S. patent appli-
cation Ser. No. 14/815,972, entitled “S HCURITY THREAT
DETECTION USING DOMAIN NAME REGISTRA-
TIONS”, filed on 1 Aug. 2015, each of which 1s hereby
incorporated by reference in 1ts entirety for all purposes.
Security-related 1nformation can also include malware
infection data and system configuration information, as well
as access control information, such as login/logout informa-
tion and access failure notifications. The security-related
information can originate from various sources within a data
center, such as hosts, virtual machines, storage devices and
sensors. The security-related information can also originate
from various sources 1n a network, such as routers, switches,
email servers, proxy servers, gateways, firewalls and intru-

sion-detection systems.
During operation, the SPLUNK® APP FOR ENTER-

PRISE SECURITY facilitates detecting “notable events”
that are likely to indicate a security threat. These notable
events can be detected 1n a number of ways: (1) a user can
notice a correlation in the data and can manually 1dentity a
corresponding group of one or more events as “notable;” or
(2) a user can define a “correlation search” speciiying
criteria for a notable event, and every time one or more
events satisiy the criteria, the application can indicate that
the one or more events are notable. A user can alternatively
select a pre-defined correlation search provided by the
application. Note that correlation searches can be run con-
tinuously or at regular intervals (e.g., every hour) to search
for notable events. Upon detection, notable events can be

US 10,528,607 B2

25

stored 1n a dedicated “notable events index,” which can be
subsequently accessed to generate various visualizations
containing security-related information. Also, alerts can be
generated to notily system operators when important notable
events are discovered.

The SPLUNK® APP FOR ENTERPRISE SECURITY

provides various visualizations to aid in discovering security
threats, such as a “key indicators view” that enables a user
to view security metrics, such as counts of diflerent types of
notable events. For example, FIG. 9A illustrates an example
key indicators view 900 that comprises a dashboard, which
can display a value 901, for various security-related metrics,
such as malware infections 902. It can also display a change
in a metric value 903, which indicates that the number of
malware infections increased by 63 during the preceding
interval. Key indicators view 900 additionally displays a
histogram panel 904 that displays a histogram of notable
events organized by urgency values, and a histogram of
notable events organized by time intervals. This key indi-
cators view 1s described in further detail in pending U.S.

patent application Ser. No. 13/956,338, entitled “KEY INDI-
CATORS VIEW?”, filed on 31 Jul. 2013, and which 1s hereby

incorporated by reference 1n 1ts entirety for all purposes.
These visualizations can also 1include an “incident review
dashboard™ that enables a user to view and act on “notable
events.” These notable events can include: (1) a single event
of high importance, such as any activity from a known web
attacker; or (2) multiple events that collectively warrant
review, such as a large number of authentication failures on
a host followed by a successtul authentication. For example,
FIG. 9B illustrates an example incident review dashboard
910 that includes a set of incident attribute fields 911 that, for
example, enables a user to specily a time range field 912 for
the displayed events. It also includes a timeline 913 that
graphically illustrates the number of 1incidents that occurred
in time intervals over the selected time range. It additionally
displays an events list 914 that enables a user to view a list
of all of the notable events that match the criteria 1n the
incident attributes fields 911. To facilitate 1dentifying pat-
terns among the notable events, each notable event can be
associated with an urgency value (e.g., low, medium, high,
critical), which 1s indicated in the incident review dash-
board. The urgency value for a detected event can be
determined based on the severity of the event and the
priority of the system component associated with the event.

2.12. Data Center Monitoring,

As mentioned above, the SPLUNK® ENTERPRISE plat-

form provides various features that simplily the developers’s
task to create various applications. One such application 1s
SPLUNK® APP FOR VMWARE® that provides opera-
tional visibility into granular performance metrics, logs,
tasks and events, and topology from hosts, virtual machines
and virtual centers. It empowers administrators with an
accurate real-time picture of the health of the environment,
proactively i1dentilying performance and capacity bottle-
necks.

Conventional data-center-monitoring systems lack the
inirastructure to eflectively store and analyze large volumes
of machine-generated data, such as performance information
and log data obtained from the data center. In conventional
data-center-monitoring systems, machine-generated data 1s
typically pre-processed prior to being stored, for example,
by extracting pre-specified data items and storing them 1n a
database to facilitate subsequent retrieval and analysis at

15

20

25

30

35

40

45

50

55

60

65

26

search time. However, the rest of the data 1s not saved and
discarded during pre-processing.

In contrast, the SPLUNK® APP FOR VMWARE® stores
large volumes of mimimally processed machine data, such as
performance information and log data, at ingestion time for
later retrieval and analysis at search time when a live
performance 1ssue 1s being investigated. In addition to data
obtained from various log files, this performance-related
information can include values for performance metrics
obtained through an application programming interiace
(API) provided as part of the vSphere Hypervisor™ system
distributed by VMware, Inc. of Palo Alto, Calif. For
example, these performance metrics can include: (1) CPU-
related performance metrics; (2) disk-related performance
metrics; (3) memory-related performance metrics; (4) net-
work-related performance metrics; (5) energy-usage statis-
tics; (6) data-tratlic-related performance metrics; (7) overall
system availability performance metrics; (8) cluster-related
performance metrics; and (9) virtual machine performance

statistics. Such performance metrics are described 1n U.S.
patent application Ser. No. 14/167,316, entitled “CORRE-

LATION FOR USER-SELECTED TIME RANGES OF
VALUES FOR PERFORMANCE METRICS OF COMPO-
NENTS IN AN INFORMATION-TECHNOLOGY ENVI-
RONMENT WITH LOG DATA FROM THAT INFORMA -
TION-TECHNOLOGY ENVIRONMENT”, filed on 29 Jan.
2014, and which 1s hereby incorporated by reference 1n 1ts
entirety for all purposes.

To facilitate retrieving information of interest from per-
formance data and log files, the SPLUNK® APP FOR
VMWARE® provides pre-specified schemas for extracting
relevant values from different types of performance-related
event data, and also enables a user to define such schemas.

The SPLUNK® APP FOR VMWARE® additionally pro-
vides various visualizations to facilitate detecting and diag-
nosing the root cause of performance problems. For
example, one such visualization 1s a “proactive monitoring
tree” that enables a user to easily view and understand
relationships among various factors that affect the perfor-
mance of a hierarchically structured computing system. This
proactive monitoring tree enables a user to easily navigate
the hierarchy by selectively expanding nodes representing
various entities (e.g., virtual centers or computing clusters)
to view performance information for lower-level nodes
associated with lower-level entities (e.g., virtual machines or
host systems). Example node-expansion operations are 1llus-
trated 1n FIG. 9C, wherein nodes 933 and 934 are selectively
expanded. Note that nodes 931-939 can be displayed using
different patterns or colors to represent diflerent perfor-
mance states, such as a critical state, a warning state, a
normal state or an unknown/oflline state. The ease of navi-
gation provided by selective expansion 1n combination with
the associated performance-state information enables a user
to quickly diagnose the root cause of a performance prob-
lem. The proactive monitoring tree 1s described 1n further
detail in U.S. patent application Ser. No. 14/253,490,
entitled “PROACTIVE MONITORING TREE WITH
SEVERITY STATE SORTING”, filed on 15 Apr. 2014, and
U.S. patent application Ser. No. 14/812,948, also entltled
“PROACTIVE MONITORING TREE WITH SEVERITY
STATE SORTING™, filed on 29 Jul. 2015, each of which 1s

hereby incorporated by reference in 1ts enftirety for all

purposes.
The SPLUNK® APP FOR VMWARE® also provides a

user interface that enables a user to select a specific time
range and then view heterogeneous data comprising events,
log data, and associated performance metrics for the selected

L.L

US 10,528,607 B2

27

time range. For example, the screen illustrated 1in FIG. 9D
displays a listing of recent “tasks and events” and a listing

of recent “log entries” for a selected time range above a
performance-metric graph for “average CPU core utiliza-
tion” for the selected time range. Note that a user 1s able to
operate pull-down menus 942 to selectively display different
performance metric graphs for the selected time range. This
enables the user to correlate trends in the performance-
metric graph with corresponding event and log data to
quickly determine the root cause of a performance problem.

This user interface 1s described 1n more detail 1n U.S. patent
application Ser. No. 14/167,316, entitled “CORRELATION

FOR USER-SELECTED TIME RANGES OF VALUES
FOR PERFORMANCE METRICS OF COMPONENTS IN
AN INFORMATION-TECHNOLOGY ENVIRONMENT
WITH LOG DATA FROM THAT INFORMAITTON-TECH-
NOLOGY ENVIRONMENT?, filed on 29 Jan. 2014, and

which 1s hereby incorporated by reference 1n 1ts entirety for
all purposes.

2.13. Cloud-Based System Overview

The example data intake and query system 108 described
in reference to FIG. 2 comprises several system components,
including one or more forwarders, indexers, and search
heads. In some environments, a user of a data intake and
query system 108 may install and configure, on computing
devices owned and operated by the user, one or more
soltware applications that implement some or all of these
system components. For example, a user may install a
soltware application on server computers owned by the user
and configure each server to operate as one or more of a
forwarder, an indexer, a search head, etc. This arrangement
generally may be referred to as an “on-premises” solution.
That 1s, the system 108 1s installed and operates on com-
puting devices directly controlled by the user of the system.
Some users may prefer an on-premises solution because 1t
may provide a greater level of control over the configuration
of certain aspects of the system (e.g., security, privacy,
standards, controls, etc.). However, other users may instead
prefer an arrangement in which the user i1s not directly
responsible for providing and managing the computing
devices upon which various components of system 108
operate.

In one embodiment, to provide an alternative to an
entirely on-premises environment for system 108, one or
more of the components of a data imntake and query system
instead may be provided as a cloud-based service. In this
context, a cloud-based service refers to a service hosted by
one more computing resources that are accessible to end
users over a network, for example, by using a web browser
or other application on a client device to interface with the
remote computing resources. For example, a service pro-
vider may provide a cloud-based data intake and query
system by managing computing resources configured to
implement various aspects of the system (e.g., forwarders,
indexers, search heads, etc.) and by providing access to the
system to end users via a network. Typically, a user may pay
a subscription or other fee to use such a service. Fach
subscribing user of the cloud-based service may be provided
with an account that enables the user to configure a custom-
1zed cloud-based system based on the user’s preferences.

FI1G. 10 1llustrates a block diagram of an example cloud-
based data intake and query system. Similar to the system of
FIG. 2, the networked computer system 1000 includes 1mnput
data sources 202 and forwarders 204. These input data
sources and forwarders may be i1n a subscriber’s private

10

15

20

25

30

35

40

45

50

55

60

65

28

computing environment. Alternatively, they might be
directly managed by the service provider as part of the cloud

service. In the example system 1000, one or more forward-
ers 204 and client devices 1002 are coupled to a cloud-based
data intake and query system 1006 via one or more networks
1004. Network 1004 broadly represents one or more LANS,
WANSs, cellular networks, intranetworks, internetworks, etc.,
using any of wired, wireless, terrestrial microwave, satellite
links, etc., and may include the public Internet, and 1s used
by client devices 1002 and forwarders 204 to access the
system 1006. Similar to the system of 108, each of the
forwarders 204 may be configured to receive data from an
input source and to forward the data to other components of
the system 1006 for further processing.

In an embodiment, a cloud-based data intake and query
system 1006 may comprise a plurality of system instances
1008. In general, each system instance 1008 may include
one or more computing resources managed by a provider of
the cloud-based system 1006 made available to a particular
subscriber. The computing resources comprising a system
instance 1008 may, for example, include one or more servers
or other devices configured to implement one or more
forwarders, indexers, search heads, and other components of
a data intake and query system, similar to system 108. As
indicated above, a subscriber may use a web browser or
other application of a client device 1002 to access a web
portal or other interface that enables the subscriber to
configure an instance 1008.

Providing a data intake and query system as described 1n
reference to system 108 as a cloud-based service presents a
number of challenges. Each of the components of a system
108 (e.g., forwarders, indexers and search heads) may at
times refer to various configuration files stored locally at
cach component. These configuration files typically may
involve some level of user configuration to accommodate
particular types of data a user desires to analyze and to
account for other user preferences. However, in a cloud-
based service context, users typically may not have direct
access to the underlying computing resources implementing
the wvarious system components (e.g., the computing
resources comprising each system instance 1008) and may
desire to make such configurations indirectly, for example,
using one or more web-based interfaces. Thus, the tech-
niques and systems described herein for providing user
interfaces that enable a user to configure source type defi-
nitions are applicable to both on-premises and cloud-based
service contexts, or some combination thereof (e.g., a hybnd

system where both an on-premises environment such as
SPLUNK® ENTERPRISE and a cloud-based environment
such as SPLUNK CLOUD™ are centrally visible).

2.14. Searching Externally Archived Data

FIG. 11 shows a block diagram of an example of a data
intake and query system 108 that provides transparent search
facilities for data systems that are external to the data intake
and query system. Such {facilities are available in the
HUNK® system provided by Splunk Inc. of San Francisco,
Calif. HUNK® represents an analytics platform that enables
business and IT teams to rapidly explore, analyze, and
visualize data 1n Hadoop and NoSQL data stores.

The search head 210 of the data intake and query system
receives search requests from one or more client devices
1104 over network connections 1120. As discussed above,
the data intake and query system 108 may reside mn an
enterprise location, 1n the cloud, etc. FIG. 11 1illustrates that
multiple client devices 1104a, 11045, . . . , 1104» may

US 10,528,607 B2

29

communicate with the data intake and query system 108.
The client devices 1104 may communicate with the data
intake and query system using a variety ol connections. For
example, one client device 1n FIG. 11 1s 1illustrated as
communicating over an Internet (Web) protocol, another
client device 1s illustrated as communicating via a command
line intertace, and another client device 1s 1illustrated as
communicating via a system developer kit (SDK).

The search head 210 analyzes the received search request
to 1dentily request parameters. If a search request recerved
from one of the client devices 1104 references an index
maintained by the data intake and query system, then the
search head 210 connects to one or more indexers 206 of the
data mtake and query system for the index referenced in the
request parameters. That 1s, 1f the request parameters of the
search request reference an index, then the search head
accesses the data 1n the index via the indexer. The data intake
and query system 108 may include one or more indexers
206, depending on system access resources and require-
ments. As described further below, the indexers 206 retrieve
data from their respective local data stores 208 as specified
in the search request. The indexers and their respective data
stores can comprise one or more storage devices and typi-
cally reside on the same system, though they may be
connected via a local network connection.

If the request parameters of the received search request
reference an external data collection, which 1s not accessible
to the indexers 206 or under the management of the data
intake and query system, then the search head 210 can
access the external data collection through an External
Result Provider (ERP) process 1110. An external data col-
lection may be referred to as a “virtual imdex” (plural,
“virtual indices™). An ERP process provides an interface
through which the search head 210 may access virtual
indices.

Thus, a search reference to an index of the system relates
to a locally stored and managed data collection. In contrast,
a search reference to a virtual index relates to an externally
stored and managed data collection, which the search head
may access through one or more ERP processes 1110, 1112.
FIG. 11 shows two ERP processes 1110, 1112 that connect
to respective remote (external) virtual indices, which are
indicated as a Hadoop or another system 1114 (e.g., Amazon
S3, Amazon EMR, other Hadoop Compatible File Systems
(HCES), etc.) and a relational database management system
(RDBMS) 1116. Other virtual indices may include other file
organizations and protocols, such as Structured Query Lan-
guage (SQL) and the like. The ellipses between the ERP
processes 1110, 1112 indicate optional additional ERP pro-
cesses ol the data intake and query system 108. An ERP
process may be a computer process that 1s mitiated or
spawned by the search head 210 and i1s executed by the
search data intake and query system 108. Alternatively or
additionally, an ERP process may be a process spawned by
the search head 210 on the same or diflerent host system as
the search head 210 resides.

The search head 210 may spawn a single ERP process in
response to multiple virtual indices referenced in a search
request, or the search head may spawn different ERP pro-
cesses for different virtual indices. Generally, virtual indices
that share common data configurations or protocols may
share ERP processes. For example, all search query refer-
ences to a Hadoop file system may be processed by the same
ERP process, 1 the ERP process 1s suitably configured.
Likewise, all search query references to an SQL database
may be processed by the same ERP process. In addition, the
search head may provide a common ERP process for com-

10

15

20

25

30

35

40

45

50

55

60

65

30

mon external data source types (e.g., a common vendor may
utilize a common ERP process, even 11 the vendor includes
different data storage system types, such as Hadoop and
SQL). Common indexing schemes also may be handled by
common ERP processes, such as flat text files or Weblog

files.

The search head 210 determines the number of ERP
processes to be mitiated via the use of configuration param-
cters that are included 1n a search request message. Gener-
ally, there 1s a one-to-many relationship between an external
results provider “family” and ERP processes. There 1s also
a one-to-many relationship between an ERP process and
corresponding virtual indices that are referred to 1n a search
request. For example, using RDBMS, assume two indepen-
dent instances of such a system by one vendor, such as one
RDBMS for production and another RDBMS used for
development. In such a situation, 1t 1s likely preferable (but
optional) to use two ERP processes to maintain the inde-
pendent operation as between production and development
data. Both of the ERPs, however, will belong to the same
family, because the two RDBMS system types are from the
same vendor.

The ERP processes 1110, 1112 recerve a search request
from the search head 210. The search head may optimize the
received search request for execution at the respective
external virtual index. Alternatively, the ERP process may
receive a search request as a result of analysis performed by
the search head or by a different system process. The ERP
processes 1110, 1112 can communicate with the search head
210 via conventional mput/output routines (e.g., standard
in/standard out, etc.). In this way, the ERP process receives
the search request from a client device such that the search
request may be efliciently executed at the corresponding
external virtual index.

The ERP processes 1110, 1112 may be implemented as a
process of the data intake and query system. Each ERP
process may be provided by the data intake and query
system, or may be provided by process or application
providers who are independent of the data intake and query
system. Each respective ERP process may include an inter-
face application installed at a computer of the external result
provider that ensures proper communication between the
search support system and the external result provider. The
ERP processes 1110, 1112 generate appropriate search
requests 1n the protocol and syntax of the respective virtual
indices 1114, 1116, each of which corresponds to the search
request recerved by the search head 210. Upon receiving
search results from their corresponding virtual indices, the
respective ERP process passes the result to the search head
210, which may return or display the results or a processed
set of results based on the returned results to the respective
client device.

Client devices 1104 may commumnicate with the data
intake and query system 108 through a network interface
1120, e.g., one or more LANs, WANSs, cellular networks,
intranetworks, and/or internetworks using any ol wired,
wireless, terrestrial microwave, satellite links, etc., and may
include the public Internet.

The analytics platform utilizing the External Result Pro-

vider process described in more detail in U.S. Pat. No.
8,738,629, entitled “EXTERNAL RESULT PROVIDED

PROCESS FOR RETRIEVING DATA STORED USING A
DIFFERENT CONFIGURATION OR PROTOCOL”,
issued on 27 May 2014, U.S. Pat. No. 8,738,587, entitled
“PROCESSING A SYSTEM SEARCH REQUEST BY
RETRIEVING RESULTS FROM BOTH A NATIVE
INDEX AND A VIRTUAL INDEX", 1ssued on 25 Jul. 2013,

US 10,528,607 B2

31

U.S. patent application Ser. No. 14/266,832, entitled “PRO-
CESSING A SYSTEM SEARCH REQUEST ACROSS

DISPARATE DATA COLLECTION SYSTEMS”, filed on 1
May 2014, and U.S. patent application Ser. No. 14/449,144,
entitled “PROCESSING A SYSTEM SEARCH REQUEST
INCLUDING EXTERNAL DATA SOURCES”, filed on 31
Jul. 2014, each of which 1s hereby incorporated by reference
in its enfirety for all purposes.

2.14.1. ERP Process Features

The ERP processes described above may include two
operation modes: a streaming mode and a reporting mode.
The ERP processes can operate in streaming mode only, 1n
reporting mode only, or 1n both modes simultaneously.
Operating 1n both modes simultaneously 1s referred to as
mixed mode operation. In a mixed mode operation, the ERP
at some point can stop providing the search head with
streaming results and only provide reporting results there-
alter, or the search head at some point may start 1ignoring
streaming results 1t has been using and only use reporting
results thereaiter.

The streaming mode returns search results 1n real time,
with minimal processing, 1n response to the search request.
The reporting mode provides results of a search request with
processing of the search results prior to providing them to
the requesting search head, which 1n turn provides results to
the requesting client device. ERP operation with such mul-
tiple modes provides greater performance tlexibility with
regard to report time, search latency, and resource utiliza-
tion.

In a mixed mode operation, both streaming mode and
reporting mode are operating simultaneously. The streaming,
mode results (e.g., the raw data obtained from the external
data source) are provided to the search head, which can then
process the results data (e.g., break the raw data into events,
timestamp 1t, filter 1t, etc.) and integrate the results data with
the results data from other external data sources, and/or from
data stores of the search head. The search head performs
such processing and can immediately start returning interim
(streaming mode) results to the user at the requesting client
device; simultaneously, the search head 1s waiting for the
ERP process to process the data it 1s retrieving from the
external data source as a result of the concurrently executing
reporting mode.

In some 1nstances, the ERP process initially operates in a
mixed mode, such that the streaming mode operates to
enable the ERP quickly to return interim results (e.g., some
of the raw or unprocessed data necessary to respond to a
search request) to the search head, enabling the search head
to process the interim results and begin providing to the
client or search requester interim results that are responsive
to the query. Meanwhile, in this mixed mode, the ERP also
operates concurrently in reporting mode, processing por-
tions of raw data 1n a manner responsive to the search query.
Upon determining that 1t has results from the reporting mode
available to return to the search head, the ERP may halt
processing 1n the mixed mode at that time (or some later
time) by stopping the return of data 1n streaming mode to the
search head and switching to reporting mode only. The ERP
at this point starts sending interim results 1n reporting mode
to the search head, which 1n turn may then present this
processed data responsive to the search request to the client
or search requester. Typically the search head switches from
using results from the ERP’s streaming mode of operation to
results from the ERP’s reporting mode of operation when
the higher bandwidth results from the reporting mode out-

5

10

15

20

25

30

35

40

45

50

55

60

65

32

strip the amount of data processed by the search head 1n the
streaming mode of ERP operation.

A reporting mode may have a higher bandwidth because
the ERP does not have to spend time transierring data to the
search head for processing all the raw data. In addition, the
ERP may optionally direct another processor to do the
processing.

The streaming mode of operation does not need to be
stopped to gain the higher bandwidth benefits of a reporting
mode; the search head could simply stop using the streaming
mode results—and start using the reporting mode results—
when the bandwidth of the reporting mode has caught up
with or exceeded the amount of bandwidth provided by the
streaming mode. Thus, a variety of triggers and ways to
accomplish a search head’s switch from using streaming
mode results to using reporting mode results may be appre-
ciated by one skilled in the art.

The reporting mode can involve the ERP process (or an
external system) performing event breaking, time stamping,
filtering of events to match the search query request, and
calculating statistics on the results. The user can request
particular types of data, such as 1f the search query itself
involves types of events, or the search request may ask for
statistics on data, such as on events that meet the search
request. In etther case, the search head understands the query
language used 1n the received query request, which may be
a proprietary language. One examplary query language is
Splunk Processing Language (SPL) developed by the
assignee of the application, Splunk Inc. The search head
typically understands how to use that language to obtain data
from the 1indexers, which store data in a format used by the
SPLUNK® Enterprise system.

The ERP processes support the search head, as the search
head 1s not ordinarily configured to understand the format in
which data 1s stored 1n external data sources such as Hadoop
or SQL data systems. Rather, the ERP process performs that
translation from the query submitted in the search support
system’s native format (e.g., SPL if SPLUNK® ENTER-
PRISE 1s used as the search support system) to a search
query request format that will be accepted by the corre-
sponding external data system. The external data system
typically stores data 1n a different format from that of the
search support system’s native index format, and it utilizes
a different query language (e.g., SQL or MapReduce, rather
than SPL or the like).

As noted, the ERP process can operate 1n the streaming
mode alone. After the ERP process has performed the
translation of the query request and received raw results
from the streaming mode, the search head can integrate the
returned data with any data obtained from local data sources
(e.g., native to the search support system), other external
data sources, and other ERP processes (i1 such operations
were required to satisty the terms of the search query). An
advantage of mixed mode operation 1s that, in addition to
streaming mode, the ERP process 1s also executing concur-
rently 1n reporting mode. Thus, the ERP process (rather than
the search head) 1s processing query results (e.g., performing
event breaking, timestamping, filtering, possibly calculating
statistics 1f required to be responsive to the search query
request, etc.). It should be apparent to those skilled 1n the art
that additional time 1s needed for the ERP process to perform
the processing in such a configuration. Therefore, the
streaming mode will allow the search head to start returning
interim results to the user at the client device before the ERP
process can complete sullicient processing to start returning
any search results. The switchover between streaming and
reporting mode happens when the ERP process determines

US 10,528,607 B2

33

that the switchover 1s appropniate, such as when the ERP
process determines 1t can begin returning meaningful results

from 1ts reporting mode.

The operation described above illustrates the source of
operational latency: streaming mode has low latency (imme-
diate results) and usually has relatively low bandwidth
(fewer results can be returned per unit of time). In contrast,
the concurrently runming reporting mode has relatively high
latency (1t has to perform a lot more processing before
returning any results) and usually has relatively high band-
width (more results can be processed per unit of time). For
example, when the ERP process does begin returning report
results, 1t returns more processed results than in the stream-
ing mode, because, e.g., statistics only need to be calculated
to be responsive to the search request. That 1s, the ERP
process doesn’t have to take time to first return raw data to
the search head. As noted, the ERP process could be
configured to operate in streaming mode alone and return
just the raw data for the search head to process in a way that
1s responsive to the search request. Alternatively, the ERP
process can be configured to operate 1n the reporting mode
only. Also, the ERP process can be configured to operate 1n
streaming mode and reporting mode concurrently, as
described, with the ERP process stopping the transmission
of streaming results to the search head when the concur-
rently running reporting mode has caught up and started
providing results. The reporting mode does not require the
processing ol all raw data that 1s responsive to the search
query request before the ERP process starts returning results;
rather, the reporting mode usually performs processing of
chunks of events and returns the processing results to the
search head for each chunk.

For example, an ERP process can be configured to merely
return the contents of a search result file verbatim, with little
or no processing ol results. That way, the search head
performs all processing (such as parsing byte streams into
events, filtering, etc.). The ERP process can be configured to
perform additional intelligence, such as analyzing the search
request and handling all the computation that a native search
indexer process would otherwise perform. In this way, the
configured ERP process provides greater flexibility in fea-
tures while operating according to desired preferences, such
as response latency and resource requirements.

2.15. IT Service Monitoring

As previously mentioned, the SPLUNK® ENTERPRIS]
platform provides various schemas, dashboards and visual-
izations that make it easy for developers to create applica-
tions to provide additional capabilities. One such application
1s SPLUNK® IT SERVICE INTELLIGENCE™, which
performs monitoring and alerting operations. It also includes
analytics to help an analyst diagnose the root cause of
performance problems based on large volumes of data stored
by the SPLUNK® ENTERPRISE system as correlated to
the various services an I'T organization provides (a service-
centric view). This differs significantly from conventional IT
monitoring systems that lack the infrastructure to effectively
store and analyze large volumes of service-related event
data. Traditional service monitoring systems typically use
fixed schemas to extract data from pre-defined fields at data
ingestion time, wherein the extracted data 1s typically stored
in a relational database. This data extraction process and
associated reduction 1n data content that occurs at data
ingestion time 1nevitably hampers future investigations,
when all of the original data may be needed to determine the
root cause of or contributing factors to a service 1ssue.

L1

5

10

15

20

25

30

35

40

45

50

55

60

65

34

In contrast, a SPLUNK® IT SERVICE INTELLI-
GENCE™ system stores large volumes of minimally-pro-
cessed service-related data at ingestion time for later
retrieval and analysis at search time, to perform regular
monitoring, or to investigate a service 1ssue. To facilitate this
data retrieval process, SPLUNK® IT SERVICE INTELLI-
GENCE™ enables a user to define an IT operations infra-
structure from the perspective of the services it provides. In
this service-centric approach, a service such as corporate
¢-mail may be defined 1n terms of the entities employed to
provide the service, such as host machines and network
devices. Each entity 1s defined to include information for
identifving all of the event data that pertains to the entity,
whether produced by the entity 1itself or by another machine,
and considering the many various ways the entity may be
identified 1n raw machine data (such as by a URL, an IP
address, or machine name). The service and entity defini-
tions can organize event data around a service so that all of
the event data pertaining to that service can be easily
identified. This capability provides a foundation for the
implementation of Key Performance Indicators.

One or more Key Performance Indicators (KPI’s) are
defined for a service within the SPLUNK® IT SERVICE

INTELLIGENCE™ application. Fach KPI measures an
aspect of service performance at a point 1n time or over a
pertod of time (aspect KPI’s). Each KPI 1s defined by a
search query that derives a KPI value from the machine data
of events associated with the entities that provide the ser-
vice. Information in the enfity definitions may be used to
identify the approprniate events at the time a KPI 1s defined
or whenever a KPI value 1s being determined. The KPI
values derived over time may be stored to build a valuable
repository of current and historical performance information
for the service, and the repository, itself, may be subject to
search query processing. Aggregate KPIs may be defined to
provide a measure of service performance calculated from a
set of service aspect KPI values; this aggregate may even be
taken across defined timeframes and/or across multiple
services. A particular service may have an aggregate KPI
derived from substantially all of the aspect KPI’s of the
service to indicate an overall health score for the service.
SPLUNK® IT SERVICE INTELLIGENCE™ f{acilitates
the production of meaningiul aggregate KPI’s through a
system of KPI thresholds and state values. Different KPI
definitions may produce values 1n diflerent ranges, and so

the same value may mean something very different from one
KPI definition to another. To address this, SPLUNK® IT

SERVICE INTELLIGENCE™ implements a translation of
individual KPI values to a common domain of “state”
values. For example, a KPI range of values may be 1-100,
or 50-275, while values 1n the state domain may be “critical,’
‘warning,” ‘normal,” and ‘informational’ Thresholds
associated with a particular KPI definition determine ranges
of values for that KPI that correspond to the various state
values. In one case, KPI values 95-100 may be set to
correspond to ‘critical’ in the state domain. KPI values from
disparate KPI’s can be processed uniformly once they are
translated 1into the common state values using the thresholds.
For example, “normal 80% of the time” can be applied
across various KPI’s. To provide meaningful aggregate
KPI’s, a weighting value can be assigned to each KPI so that
its influence on the calculated aggregate KPI value 1is
increased or decreased relative to the other KPI’s.

One service 1 an I'T environment often impacts, or 1s

impacted by, another service. SPLUNK® IT SERVICE
INTELLIGENCE™ can reflect these dependencies. For

example, a dependency relationship between a corporate

US 10,528,607 B2

35

¢-mail service and a centralized authentication service can
be reflected by recording an association between their
respective service definitions. The recorded associations
establish a service dependency topology that informs the
data or selection options presented 1n a GUI, for example.
(The service dependency topology 1s like a “map” showing
how services are connected based on their dependencies.)
The service topology may 1tself be depicted 1n a GUI and
may be interactive to allow navigation among related ser-
VICES.

Entity definitions in SPLUNK® I'T SERVICE INTELLI-
GENCE™ can include informational fields that can serve as
metadata, implied data fields, or attributed data fields for the
events identified by other aspects of the entity definition.
Entity definitions in SPLUNK® IT SERVICE INTELLI-
GENCE™ can also be created and updated by an import of
tabular data (as represented 1n a CSV, another delimited file,
or a search query result set). The import may be GUI-
mediated or processed using import parameters from a
GUI-based import definition process. Entity definitions 1n
SPLUNK® IT SERVICE INTELLIGENCE™ can also be
associated with a service by means of a service definition
rule. Processing the rule results in the matching entity
definitions being associated with the service definition. The
rule can be processed at creation time, and thereafter on a
scheduled or on-demand basis. This allows dynamic, rule-
based updates to the service definition.

During operation, SPLUNK® IT SERVICE INTELLI-
GENCE™ can recognize so-called “notable events” that
may indicate a service performance problem or other situ-
ation of interest. These notable events can be recognized by
a “correlation search” specilying trigger criteria for a
notable event: every time KPI values satisty the criteria, the
application indicates a notable event. A severity level for the
notable event may also be specified. Furthermore, when
trigger criteria are satisfied, the correlation search may
additionally or alternatively cause a service ticket to be
created in an IT service management (ITSM) system, such

as a systems available from ServiceNow, Inc., of Santa
Clara, Calif.

SPLUNK® IT SERVICE INTELLIGENCE™ provides
various visualizations built on 1ts service-centric organiza-
tion of event data and the KPI values generated and col-
lected. Visualizations can be particularly usetul for moni-
toring or investigating service performance. SPLUNK® IT
SERVICE INTELLIGENCE™ provides a service monitor-
ing interface suitable as the home page for ongoing IT
service momtoring. The interface 1s appropriate for settings
such as desktop use or for a wall-mounted display 1n a
network operations center (INOC). The interface may promi-
nently display a services health section with tiles for the
agoregate KPI’s indicating overall health for defined ser-
vices and a general KPI section with tiles for KPI’s related
to individual service aspects. These tiles may display KPI
information 1in a variety of ways, such as by being colored
and ordered according to factors like the KPI state value.
They also can be interactive and navigate to visualizations of
more detailed KPI information.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
service-monitoring dashboard visualization based on a user-
defined template. The template can include user-selectable
widgets of varying types and styles to display KPI informa-
tion. The content and the appearance of widgets can respond
dynamically to changing KPI information. The KPI widgets
can appear in conjunction with a background image, user
drawing objects, or other visual elements, that depict the IT
operations environment, for example. The KPI widgets or

10

15

20

25

30

35

40

45

50

55

60

65

36

other GUI elements can be interactive so as to provide
navigation to visualizations of more detailed KPI informa-

tion.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
visualization showing detailed time-series information for
multiple KPI’s in parallel graph lanes. The length of each
lane can correspond to a uniform time range, while the width
of each lane may be automatically adjusted to {it the dis-
played KPI data. Data within each lane may be displayed in
a user selectable style, such as a line, area, or bar chart.
During operation a user may select a position in the time
range ol the graph lanes to activate lane ispection at that
point 1n time. Lane inspection may display an indicator for
the selected time across the graph lanes and display the KPI
value associated with that point in time for each of the graph
lanes. The visualization may also provide navigation to an
interface for defimng a correlation search, using information
from the visualization to pre-populate the definition.

SPLUNK® IT SERVICE INTELLIGENCE™ provides a
visualization for incident review showing detailed informa-
tion for notable events. The incident review visualization
may also show summary information for the notable events
over a time frame, such as an indication of the number of
notable events at each of a number of sevenity levels. The
severity level display may be presented as a rainbow chart
with the warmest color associated with the highest severity
classification. The incident review visualization may also
show summary nformation for the notable events over a
time frame, such as the number of notable events occurring,
within segments of the time frame. The incident review
visualization may display a list of notable events within the
time frame ordered by any number of factors, such as time
or severity. The selection of a particular notable event from
the list may display detailed information about that notable
event, including an identification of the correlation search
that generated the notable event.

SPLUNK® IT SERVICE INTELLIGENCE™ provides
pre-specified schemas for extracting relevant values from
the different types of service-related event data. It also
enables a user to define such schemas.

3.0 CODE COMPLETION

In some embodiments, the present disclosure provides for
approaches to code completion that can be implemented to
assist a user as the user codes commands of a coding
language. Aspects of the present disclosure relate to various
approaches to assisting a user in understanding the various
coding options available to the user 1n a coding language,
properly codifying those coding options 1n the coding lan-
guage, as well understanding the functionality of the code
they create. These approaches can speed up the time 1t takes
a user to code, increase the likelihood that the code users
create mstructs a system to perform as intended, as well as
reduces the number of times drafts of the code need to be
executed and/or compiled by the system.

The coding language can be a query language, a pipelined
coding language, such as SPL (e.g., a pipelined search
language), or any other suitable coding language. A coding
language typically allows a user to enter commands, which
instruct the computer to perform tasks defined by the com-
mands. In SPL, for example, these commands can include
search commands that may operate on events, as described
above.

Some coding languages allow a user to specily or provide
a set ol arguments (1.e., one or more arguments) and/or
values of one or more arguments of a command. By pro-

US 10,528,607 B2

37

viding different combinations of values and/or arguments for
different instances of the same command, users are able to

specily 1n code, different corresponding variations to how
the tasks defined by the commands are to be performed.

To ensure a command 1s properly interpreted by a com-
puter, the command should be written 1n proper syntax and
include valid values for arguments, when present in the
code. Syntax provides a set of rules that defines the com-
binations of symbols that are considered to be a correctly
structured document or fragment 1n a coding language. For
various reasons, a user may not provide one or more
commands 1n proper syntax, may not be aware of the various
commands available for coding in the system, or not be
aware of various arguments and/or values thereof available
for commands.

One such reason for the forgoing 1s the user could be a
novice to coding or to a particular coding language. Fur-
thermore, even experienced users can make errors 1n code,
forget or be unaware of various coding options (e.g., obscure
commands or arguments), and be unfamiliar with updates or
changes to the coding language. This 1s compounded 1n
cases where the coding language 1s complex and includes a
large number of variations users could specily for com-
mands.

Additionally, SPL allows users to define commands and
syntax for the commands using a syntax coding language,
meaning the available commands and variations thereof
available to a particular user, who may not have coded the
command, can be vast and can change over time.

In some cases, the search system described herein pro-
vides different applications that use the coding language.
Different sets of commands with corresponding syntax can
be provided to and used in different applications. A com-
mand can include a command 1dentifier, which 1dentifies the
particular command from a set of commands in the coding
language. In the present example, unbeknownst to a user, 1n
different applications, different commands may use the same
command 1dentifier, but have different functionality and/or
syntax.

3.1 Example Coding Interface

Aspects of various approaches to assisting users 1n coding

are described below with respect to a screen of a coding
interface illustrated by FIGS. 18A, 18B, 18C, 18D, 18FE,

18F, 18G, 18H, 18I, 18], 18K, 18L, 18M, and 18N (collec-
tively referred to heremn as “FIG. 187). FIG. 18 depict a
progression of the screen as the user enters code using the
coding interface. The figures are depicted 1n sequence, such
that FIG. 18 A represents the screen at an 1mitial point of the
sequence, and FIG. 18N represents the screen at a final point
of the sequence. However, any number of representations of
the screen in-between the given figures may not be shown
for conciseness of disclosure.

The present example depicted 1n FIG. 18 users SPL, as an
example only. It should be appreciated that the present
disclosure 1s not limited to SPL, or to the coding interface
corresponding to FIG. 18. Additionally, 1t should be appre-
ciated that at least one aspect of the disclosure implemented
in a coding interface may not necessarily be implemented 1n
another coding interface. In particular certain features may
be independent from one another even though the coding
interface shown may include a combination of those fea-
tures.

In some implementations, the screen (e.g., a coding
screen) of FIG. 18 corresponds to a search screen of a search
system, such as search screen 600, described above. How-

10

15

20

25

30

35

40

45

50

55

60

65

38

ever, various aspect of the present disclosure need not be
incorporated 1nto a search screen of a search system, as

shown. In some cases, the system provides an integrated
development environment (IDE), which may not necessarily
be mcorporated 1nto a search system.

In various implementations, the coding interface includes
a text input region, which recerves text input from the user.
The text input region can display the text entered by the user,
which can visual represent code of one or more commands
being coded by the user using text. The text input regions
can support word processing capabilities, such as any suit-
able combination of text input, deletion, modification, cursor
position, visual indication of cursor position, copy, paste, the
ability to set cursor position, mouse mnput, keyboard com-
mands, and the like. Examples of potential features will be
described below. In the present example, the text mput
region 1s 1mplemented 1 search bar 1802 as a text box,
which could be an HM'TL form. In other cases, the text input
region could take other forms.

3.2 Contextual Suggestions And Syntax Templates

In various implementations, the system causes a set of one
or more contextual suggestions to be displayed to the user
based on input provided by the user to a text iput region.
Examples of such suggestions include suggestions 1806 A,
18068, 1806C, 1806D, 1806E, 1806F, 1806E 1806H, and
18061 (also referred to collectively as suggestions 1806).

As an overview, the user can select a suggestion to cause
code corresponding to the suggestion to be entered into the
text mput region. In some cases, the code 1s automatically
entered as at least one complete command (e.g., as text in the
text input region) 1n proper syntax for the coding language.
In other cases, one or more placeholder blocks (e.g., argu-
ment block 1810) or other representation of one or more
portions of the code 1s automatically entered into the text
mput region (e.g., using text and/or graphical interface
objects that may include text). The user can interact with any
placeholder blocks that may be included in the text input
region to complete the code in the text input region.

An example of a placeholder block includes an argument
block which corresponds to one or more arguments of a
command. The user fills 1 (e.g., types 1n or selects sugges-
tions for), or selects values for, the one or more placeholder
blocks and the system ensures that the completed code
incorporates the filled 1n code with proper syntax. In some
cases, one or more placeholder blocks can be active and/or
mnactive. Code corresponding to active placeholder blocks
may be edited using different combinations of user input and
may be represented differently in the text iput region
compared to mactive placeholder blocks. For example, the
code for mactive placeholder blocks may be represented and
interacted with similar to code that does not correspond to an
placeholder block (e.g., as plaintext with character by char-
acter keyboard navigation). For example, one or more
placeholder blocks may be disabled 1n response to the user
selectively submitting the one or more of the placeholder
blocks 1n the text input region, thereby disabling the one or
more placeholder blocks. Subsequently, the user may
optionally re-enable or re-active at least one placeholder
block for editing in an active state, which can include
moditying selected values of an placeholder block, deleting
the placeholder block, or adding an addition placeholder
block to a set of placeholder blocks.

Optionally, when editing active placeholder blocks, such
as argument blocks, the user may refrain from filling 1n one
or more placeholder blocks, and the system completes the

US 10,528,607 B2

39

code 1n the text input region without the corresponding code
of those argument blocks (e.g., arguments) once submaitted,
were the code may be optional as defined by the syntax.
Additionally, 1n some cases, the user can add and/or remove
placeholder blocks and/or argument blocks from the text
input region and the code 1s completed 1n the text mput
region according to the placeholder blocks.

In further respects, one or more placeholder blocks may
be added to the text input region as a set of placeholder
blocks that are part of a syntax template. A command syntax
template 1s a type of syntax template that corresponds to one
or more commands, but corresponds to a single command 1n
FIG. 18, by way of example only. In some implementations,
cach command a user could enter into the text input region
has a corresponding command syntax template. Further,
cach command syntax template comprises at least one
placeholder block, such as at least one argument blocks,
where each argument block represents a different argument
of the command. As indicated above, at least one place-
holder block may be optional, meaning 1t corresponds to
code that 1s not required for the code of the syntax template
to be written 1n proper syntax. Also, as indicated above,
while the placeholder blocks are editable by the user, the
user may add and/or remove placeholder blocks (e.g.,
optional argument blocks corresponding to optional argu-
ments for the command) from the command syntax tem-
plate. Furthermore, each placeholder block of a command
syntax template may be submitted collectively, which dis-
ables or deactivates the placeholder blocks, and optionally
re-enabled collectively, by submitting or re-enabling the
command syntax template. As indicated above, when a
command syntax template 1s submitted and/or disabled, the
system may disable a set of user mput methods for the
command syntax template and/or placeholder blocks, such
as navigation controls between placeholder blocks and/or
the ability to receive and select suggestions for the place-
holder blocks. Also indicated above, a different set of user
input methods may be activated for the command syntax
template and/or placeholder blocks when those components
are submitted and/or disabled (e.g., 1n an inactive state).

An argument syntax template 1s a type of syntax template
that corresponds to one or more arguments of a command.
An argument syntax template can be embedded or nested
within a command syntax template, and can provide similar
functionality as a command syntax template, as further
described below. Furthermore, 1n some implementations, an
argument syntax template can be embedded or nested within
another argument syntax template.

In the examples shown, suggestions are displayed as
corresponding options in a menu (e.g., dropdown menu), or
list. However, the suggestions can be 1n any suitable graphi-
cal interface element or combination or grouping of graphi-
cal interface elements. The options displayed to the user are
selectable by the user. For example, FIG. 18A shows eight
selectable options or suggestions in suggestions 1806A,
cach on a corresponding line and each having a correspond-
ing suggestion type listed in the corresponding line (e.g.,
“Recently Used” and “Command™). Suggestion types will
be further described below. Rather than displaying long
suggestions (e€.g., using wrapping), a suggestion that exceeds
a threshold length (e.g., number of characters) may be
truncated 1n the display, and the full text of suggestion could
be revealed i1n response to the user hovering over the
suggestion (e.g., 1n a tooltip) or based on other user 1nput.

As mentioned above, each suggestion 1s selectable by the
user to cause corresponding code to be entered into the text
input region. In the examples shown, the user can first select

10

15

20

25

30

35

40

45

50

55

60

65

40

a suggestion from a set of suggestions displayed to the user,
and subsequently select to incorporate code corresponding
to the selected suggestion into the text mput region. For
example, starting from search bar 1802, a user can use
keyboard keys, such as “Up Arrow” and “Down Arrow”
keys, to navigate through the list of suggestions. The system
causes the currently selected suggestion to be visually
indicated to the user. In the example, shown, the selected
suggestion 1s highlighted. For example, in FIG. 18B, the
user has navigated to a command having a command 1den-
tifier “timechart.”

The user may then provide further input to select the
option corresponding to the suggestion. For example, by
clicking the suggestion with a mouse or selecting the
“Enter” or “Space” key or another selection key(s). When
the user selects the displayed option, the code can automati-
cally be entered 1nto the text input region (which could be 1n
the form of a syntax template or plain text). Using
approaches described herein, the user can quickly navigate
to and select a desired suggestion, causing a representation
of code to be automatically entered into the text input region
and mput control of the user to be automatically returned to
the text mput region for additional coding. In some cases,
one or more options could cause at least one additional
graphical interface element to be displayed to the user (e.g.,
additional options and/or forms which 1s not shown 1n the
present example), which the user can interact with to cause
the code to be entered into the text mput region.

In the example of FIG. 18B, the user selects the high-
lighted suggestion to cause corresponding code to automati-
cally be entered into the text input region. Input control 1s
automatically returned to the text input region, which 1n this
example 1s to argument block 1810 1n a syntax template, but
in other cases could be to a plain text portion of the text input
region. A comparison between the text input region in FIGS.
18B and 18C reveals text representing the code that has been
added to the text input region (e.g., subsequent to the “1” 1n
“timechart”) 1n the form of a syntax template.

Although 1n the example shown, at least some text is
entered 1nto the text mput region, at least some of the code
may be represented, at least partially using other means. For
example, FIG. 18C includes text of a syntax template
representing the code, but could use any combination of
suitable visual indicator(s) and/or graphical interface objects
to represent the code 1n the text input region. Thus, 1t should
be appreciated that placeholder blocks and/or command
syntax templates are examples of representations of the
code.

Suggestions can be contextually suggested using rules,
which map the user mput to suggestions and define the
content of the suggestions. In some 1implementations, a rule
can include at least one extraction rule, such as a regex, to
extract at least a portion of user mput provided to the text
input region. A rule can further include one or more tokens
to assign to extracted text, as well as instructions for the rule
that are executed when the input 1s mapped to the rule, such
as mappings to other rules and defining which values and/or
value types are included 1n the suggestions. As least some of
these nstructions may be based on the tokens assigned to the
user mput.

In some cases, suggestions are generated by autocomplet-
ing one or more portions of the user mput. One or more of
the rules can be mapped to the autocompleted 1input, such as
by applying a regex of a rule to the autocompleted input.
Diflerent suggestions may correspond to different variations
of the autocompleted mput generated by an autocomplete
algorithm.

US 10,528,607 B2

41

Suggestions 1806A and 18068 are examples of sugges-
tions that may be generated using autocomplete. In these
examples, the set of suggestions 1s displayed based on at
least one or more characters provided by the user to the text
input region. Prior to FIG. 18A, as an example, a user has
typed all of the text into the text mput region, up to the
cursor (1.e., “sourcetype=access_combined|t”). When the
user types 1n t, suggestions 1806 A automatically appear, as
shown. The system has mapped the | character and the *“t”
character 1n the text input region to one or more rules, Wthh
define suggestlons 1806A. In the present example, “I” 1
referred to as a pipe symbol, which indicates a command can
tollow, according to the syntax of the coding language.
Thus, 1t will be appreciated that the rules can be constructed
to enforce at least some of the syntax of the coding language
employed onto one or more of the suggestions.

Assume the user types “17 1

in the screen shown in FIG.
18A. In the present example this results in FIG. 18B with
suggestions 18068 that are updated based on the additional
input. Suggestions 18068 can be generated similar to sug-
gestions 1806 A, the output of the autocomplete algorithm
being updated based on the additional input. As shown, the
suggestions defined by the one or more rules include sug-
gested command syntax templates and recently used com-
mands.

A suggestion for a recently used command can correspond
to a complete command in proper syntax. When a user
selects a recently used command, the code can automatically
be added to the text input region, such that the code in the
text mput region 1s executable by the system (e.g., the code
may be incorporated imnto code (e.g., a query or portion
thereol) already 1n the text mnput region). The recently used
commands can be generated based on commands that the
system has previously received 1n association with the user.
For example, a recently used command can be suggested
based on the system having performed a search in associa-
tion with a user that included the command. The user may
be the user currently constructing code in the text input
region, or a user associated with that user, such as a user of
a common client account, and/or having corresponding
permissions or roles. A recently used command may be
suggested based on having been previously run 1n associa-
tion with the search interface, such as the interface of FIG.
18, and/or another application where the execution 1s detect-
able by the system (e.g., via a search log).

In some cases, a recently used command may be sug-
gested based on being previously entered into the text input
region, such as 1n a previous coding session, or the same
coding session after having been deleted from the text input
region. Further, the code may have been entered into the text
input region using any suitable imnput mechamsm, such as via
any suitable suggestion, as described herein. Another pos-
sible way a recently used command could be entered 1nto
text input region 1s by the user directly typing or pasting the
command 1nto the text iput region.

As mentioned above, another example of a suggestion 1s
a command syntax template. For example, suggestions
1806 A comprise five command syntax templates for com-
mands having the command identifiers “table,” “top,”
“tags,” “timechart,” and top. When a user selects to enter a
command syntax template into the text input region, a set of
one or more argument blocks of the command syntax
template 1s added to the text mput region.

Suggestions 1806A and 18068 are automatically dis-
played as a user types text into the text input region and
correspond to the text typed by the user. However, contex-
tual suggestions can be triggered 1n other ways and/or can

10

15

20

25

30

35

40

45

50

55

60

65

42

correspond to other portions of the text input region. Sug-
gestions 1806C, 1806D, 1806E, 1806F, 1806G, 1806H, and
18061 are examples of suggestions that correspond to place-
holder blocks 1n the text input region. As mentioned above,
cach placeholder block represents one or more portions of
code in the text mput region. In the present examples,
placeholder blocks will be described in the context of
argument blocks, but the description can equally apply to
placeholder blocks. In particular, each argument block rep-
resents one or more arguments of a command, but the
description herein also applies to code that 1s not specifically
an argument of a command. Furthermore, each argument
block 1s part of a command syntax template that defines a
single command. However, argument blocks may be used
independent of command syntax templates and a command
syntax template could correspond to multiple commands.

In the present examples, each argument block corre-
sponds to a single argument of a command, by way of
example only. Also, a single argument 1s visually indicated
in the text mput region by being bounded by “<” and “>.”
The text input region can include any number of argument
blocks, corresponding to different arguments of a command.
For example, FIG. 18C shows nine argument blocks, or
placeholder blocks, in the text mnput region. In some cases,
a user can navigate to an argument block in the text mput
region to select the argument block. A currently selected
argcument block(s) 1s visually indicated to the user. The
example shown highlights selected argument blocks to 1den-
tify the selected argument blocks to the user. The user can
also deselect argument blocks, which may occur automati-
cally based on selection of a previously unselected argument
block. Optionally, when a command syntax template 1s
added to the text mput region, as described above, at least
one argument block 1s automatically selected (e.g., the first
argument block of the command syntax template). The
argument block can be 1n an argument syntax template
embedded 1n the command syntax template, which may
include an argument block and optionally static code or text.
In FIG. 18, an argument syntax template 1s visually indicated
as being bounded by “[” and *].”

In FIG. 18C, for example, argument block 1810 has been
automatically selected 1n response to the command syntax
template being added to the text input region. In FIG. 18D,
the user has navigated from argument block 1810 (as shown
in FIG. 18C) to argument block 1812 (as shown in FIG.
18D). In this example, each intermediate argument block has
been navigated to in order to reach argument block 1812
(e.g., using a “Tab” key to navigate to the next argument
block). Furthermore, navigating to an argument block causes
the argument block to become selected and the previously
selected argument block to be deselected. The user could
similarly navigate in the other direction (e.g., using a “Shift-
Tab” key combination), as desired, and navigation may wrap
around for a currently activated command syntax template.

As shown suggestions 1806C, 1806D, 1806E, 1806F,
1806G, 1806H, and 18061 are contextual based on the
currently selected argument block(s). For example, sugges-
tions 1806C corresponds to argument block 1812. As dis-
cussed previously, the aforementioned rules can be used
generate the suggestions for the selected argument block(s).
In the example shown, the rules are based on the syntax of
the command for the selected argument. For example, a rule
can define one or more valid values of an argument block.
In the example of FIG. 18D, the rules are based on syntax
for the “timechart” command and define valid values for the
selected argument block based on various options that may
be used as values for the argument 1n the command. In this

US 10,528,607 B2

43

example, each option 1s defined by the syntax to include a
static portion, that 1s to be used for each value corresponding
to the option, as well as formatting for the option, and a
variable portion. The syntax can also define one or more
valid data types for the variable portion. As shown, a “span”
option from the syntax corresponds to the selected sugges-
tion “span=<log-span>" where “span=" 1s a static string
tollowed by a variable portion of type log-span. The “span”
option also corresponds to the non-selected suggestion
“span=<span-length>,” based on the syntax defining a
potential alternative typing for the variable portion as type
span-length. The other options shown can be similarly
defined and allow for any number of data types.

Thus, the system can generate the suggestions for an
argument block based on the various options and vanations
thereof for the corresponding argument defined by the
syntax. In the present example, the system 1s configured to
provide a suggestion for each defined syntax variation of the
argument 1n the command in suggestions 1806C. In other
cases, a subset of the syntax variations can be suggested. As
another example, the same syntax variation can correspond
to multiple suggestions, but the system may populate the
variable portion with different values. In cases where a
variable portion 1s populated, the system may determine the
value(s) based on an analysis of the sourcetype (e.g., data,
such as events in the sourcetype), previous search results
associated with the user (e.g., returned by a search entered
into the text input region), predefined rules of the corre-
sponding data type (e.g., that specily a method and/or
function to determine or calculate the value(s)), and/or other
data.

In the present example, the user selects to enter code
corresponding to the selected argument block into the text
input region (e.g., similar to what has been described above
with respect to FIGS. 18B and 18C). This causes text
corresponding to the code to be automatically entered into
the command syntax template at a location defined by the
argument block (e.g., at the display location of the argument
block). As shown 1n FIG. 18E, the variable portion has been
automatically filled in by the system and the code reads
“span=1". However, the variable portion could be blank,
have placeholder text, or have a placeholder block, which as
described above, may operate similar to an argument block
(e.g., including oflering suggestions). Entering the selection
into the command syntax template optionally automatically
returns nput control to the argument block 1n a plain text
editing mode, as shown. The user can input an “Enter” or
“Tab” key to navigate to the next argument block in the
command syntax template, 11 one 1s present.

FIGS. 18D and 18FE illustrate implementations where the
system can insert an additional placeholder block and/or
argument syntax template 1n addition to the code corre-
sponding to the selected argument block. In particular, the
system has added argument block 1820 to the text input
region. This behavior can be defined by the command syntax
template and/or the argument syntax template corresponding,
to argument block 1814. In the present example, the argu-
ment block 1s automatically added based on the syntax
defining that at least one additional argument can be
included 1n the argument syntax template. For example, the
“ ... 7 1n following an argument block in the text mput
region 1 FIG. 18 indicates to the user that at least one
additional argument block can be added to the argument
syntax template.

Using this approach, the user can add additional place-
holder blocks and/or argument syntax templates to the
argument syntax template and/or the command syntax tem-

10

15

20

25

30

35

40

45

50

55

60

65

44

plate when allowed for by the syntax for those templates.
Thus, the user 1s informed as to whether additional options
are available, without needing prior knowledge of the syn-
tax, and can add additional code when desired without
having to study extensive suggestions that list all of the
possible combinations and vanations of the code corre-
sponding to the suggestions (which may be in the hundreds
Or more).

In the present example, the user can navigate to argument
block 1820, and may fill 1n a value for argument block 1820
to use the argument block 1n the completed code, or lead the
argument block blank to complete the code without a
corresponding argument. If the user fills 1n the value, 1t may
be accomplished similar to argument block 1812. Further-
more, an additional argument block could similarly be added
if additional options are available (e.g., until the user
exhausts the list of options defined by the syntax).

Similar to FIG. 18D, suggestions 1806D are based on
argument block 1814. The syntax of the command defines
that a value of the argument can comprise one or more of the
functions, as shown, which are captured by the rules applied
to the argument block. As shown, at least one suggestion
may correspond to an aggregator. An aggregator 1s a type of
function that 1s always applied to each filed of events 1n
search results, as opposed to one or more ficlds when
specified 1n the code.

It 1s also noted that 1n some 1mplementations, the system
refrains from displaying or providing one or more sugges-
tions to the user based on the text input region already
including code corresponding to the suggestion. In the
present example, the system may refrain from including a
suggestion corresponding to the suggestion selected 1n FIG.
18D when displaying suggestions for argument block 1820
based on the corresponding suggestions being in the text
input region (e.g., within the same argument syntax template
or syntax template level).

Although suggestions may be presented to the user for an
argument block, the user need not select one of the sugges-
tions to enter a value(s) for the argument block. In FIG. 18F,
for example, assume the user types in “c,” rather than
navigating nto suggestions 1806D (e.g., the dropdown
menu). The user could then see updated suggestions based
on autocompletion of the user input, which may only include
the Tunctions 1n suggestions 1806D that begin with “c.” The
user may then select the suggestion corresponding to
“count()” resulting in FIG. 18G. As an alternative, the user
could have typed in the corresponding code to result in FIG.
18G.

It 1s noted that as a user types text into an argument block,
suggestions are displayed based on the text input by the user
for the value(s) of the argument block. These suggestions
can be similar to what has been described above with respect
to FIGS. 18A, and 18B. However, the suggestions are
contextual to the argument block and the syntax defined for
the argument block (e.g., for the argument syntax template).
For example, functions may be suggested based on the
entered text corresponding to a function identifier (e.g.,
count).

As an example, assume the user types “count(” in FIG.
18F. When the user types 1 “(” the system can 1dentily the
user 1s currently entering 1n a value of a field for the function
(e.g., using a regex that extracts the character from user
input). This could also be based on the cursor position 1n the
text input region. Based on the identification, the system can
display suggestions corresponding to the variable portion of
the syntax for the function and/or command. In the present
example, where the user has selected the option correspond-

ing to “count()” suggestions could be generated a similar

US 10,528,607 B2

45

way, or could be specific to the suggestion. In this case, the
system determined fields for suggestions based on an analy-
sis of previous search results corresponding to the
sourcetype. The user can complete entering the value for
argument block 1814 by inputting the “Enter” key or using
some other manner of input, such as by selecting one of
suggestions 1806E, resulting in FIG. 18H.

FIG. 18H illustrates that a suggestion for an argument
block (e.g., argument block 1822) can optionally include one
or more syntax templates. In this example, the user has
selected an argument syntax template to {ill 1n an argument
block. However, other valid values include fields, as shown,
or could include a placeholder block, depending on the
syntax of the command and/or argument corresponding to
the selected argument block.

Assume the user selects the selected suggestion of FIG.
18H, to cause the argument syntax template to be mcorpo-
rated into the text mput region. In this case, the syntax
template (e.g., the argument syntax template) becomes
embedded or nested within the syntax template it was
suggested for and may be referred to as an embedded syntax
template or more specifically an embedded argument tem-
plate 1 this example. The nested argument template
includes at least one nested argument or placeholder block
(e.g., argument block 1824).

Any number of syntax templates can be embedded at a
grven layer of a syntax template and/or any number of layers
of syntax templates may be embedded within the syntax
template and/or placeholder block thereof depending on the
definition of the syntax for the syntax template. Thus, a
turther syntax template could be nested 1n the syntax tem-
plate corresponding to argument block

FIG. 181 shows the resultant screen after the selection,
and after the user has further filled in some of the values for
nested argument blocks in the nested argument template
using any suitable combination of approaches described
above. Assume the user navigates to argument block 1824
causing suggestions 1824 to be displayed to the user, and
selects the suggested argument syntax template, as shown.
Further assume, the user selects to incorporate the argument
syntax template corresponding to the selected suggestion to
the text input region and fills 1n “count” into the first
argument block that was added to the text input region.
Suggestions 1806H are displayed to the user, and the user
navigates to a suggestion, resulting in FIG. 181.

FIGS. 18] and 18K 1illustrates a syntax history suggestion
that can be included 1n the suggestions displayed to the user
(or could be displayed elsewhere 1n the screen for selection
and/or available for selection as a keyboard or other user
input). The syntax history suggestion may be available to the
user based on the suggestion being for a nested placeholder
block and/or syntax template. In the present example, the
suggestion 1s based on being for a nested argument block.
Selection of a syntax history suggestion causes the system to
automatically remove the nested code from the text input
region. Furthermore, the nested code could be replaced with
its parent code, such as its parent argument block, as shown
in FIG. 18K. Thus, the code 1n the text input region has
returned to the historical state of FIG. 18I, where the user
could change their selected suggestion or enter text directly
into argument block 1824.

In various implementations, each syntax history sugges-
tion 1s selectable to cause the code of the overall syntax
template to return to a state a single level up from the
currently selected placeholder block, by way of example.
Furthermore, in various implementations, values entered
into suggestions are retained for lower level placeholder

5

10

15

20

25

30

35

40

45

50

55

60

65

46

blocks. Thus, 1n FIG. 18K, assume the user selects the same
suggestion that was selected 1n FIG. 181 to remntroduce the
corresponding code 1nto the text input region. As shown 1n
FIG. 18L, the value corresponding to “count” has been
retained, and 1s automatically included in the code. The
value has been stored in association with the suggestion
despite the code having been removed from the text mput
region.

In the present example, the user subsequently enters a
value include a remaining argument block, as shown in FIG.
18M. The user then selectively submits the command syntax
template (1.e., the base or outermost syntax template 1n this
example), resulting in FIG. 18N. In the implementation
shown, the user can submit a base syntax template to the text
input region 1n various ways. At any point, the user could
press the “Escape” key. As another example, 1t the user 1s on
the last argument block, such as 1n FIG. 18M, pressing the
“Enter” key submits the base syntax template. As mentioned
previously, submitting a base syntax template can enable a
set of user input methods for the code of the base syntax
template and may disable a diflerent set of user input
methods utilized to edit the code while the base syntax
template 1s active. The enabled set of user input methods can
apply to other code 1n the text input region, such as code
corresponding to other syntax templates and/or plain text 1n
the text mput region.

In some cases, when a base syntax template 1s disabled 1n
the text mput region, the user can edit the code of the base
syntax template as plain text along with other plain text in
the text mput region. For example, in FIG. 18N, all of the
code of the base syntax template 1s represented as plain text,
which the user can delete, add to, or otherwise mampulate
using word processing mput. Additionally, based on a user
selecting to disable a base syntax template, the representa-
tion of the code 1n the text input region 1s modified 1n various
ways. This includes, for example, removing syntax indica-
tors which are not part of the code the user constructed, but
indicate parts of the syntax to the user. Examples include
argument or placeholder block indicators “<” *“>" embed-
ded syntax template indicators “[”” and *‘],” additional option
indicators . . . ”, as well as embedded syntax templates that
include blank, empty, or null values. Submitting a base
syntax template can convert the representation into plain text
that 1s 1n proper syntax for execution by the system, as
shown.

The user could continue to code 1n the text mput region
shown in FIG. 18N, which can include adding more base
syntax templates to the text mput region and/or typing in
additional code. In some implementations, only a single base
syntax template may be active at a given time. Furthermore,
the user could be restricted from moditying code outside of
the base syntax template 1n the text input region while the
base syntax template 1s active. Also, in some cases, the user
can selectively re-activate a base syntax template. For
example, the user could type in a keyboard command or
otherwise provide mnput to re-activate a base syntax tem-
plate. Doing so 1in FIG. 18N, for example, would reintroduce
the representation of the syntax template that was previously
in the text input region and the user can continue editing the
code corresponding to the syntax template. The representa-
tion could look as it does 1n FIG. 18M.

It 1s noted that 1n the present example, a user selects a
syntax template as a suggestion from a list of suggestions.
However, 1n other cases, the user could select any of the
various syntax templates 1n a diflerent manner. For example,
a user could select a command syntax template from a list of
command syntax templates, from a non-contextual menu, or

US 10,528,607 B2

47

using any other suitable approach. In various implementa-
tions, by selecting and filling 1n syntax templates, the user

can iteratively build commands, without needing to navigate
comprehensive lists of options for a command by refraining
from {illing 1n optional placeholder blocks of a command
syntax template, adding any number of placeholder blocks
to the command syntax template, and/or removing any
number of placeholder blocks from the command syntax
template, as permitted by the syntax of the command.

3.3 Rule Generation

As described above, the system can use rules to dictate the
suggestions provided to users when coding commands using
the coding language. Other uses for these rules include data
type validation. For example, using a regex of a rule, the
system can extract a value provided by the user to the text
iput region (€.g., 1n a base syntax template or otherwise),
and determine whether the value 1s of a valid data type.
Whether a value 1s of a valid data type can be defined by the
syntax ol the command and/or coding language and incor-
porated 1nto the rules. Based on identifying an invalid value,
the system can visually indicate the value 1s mnvalid to the
user. For example, the system can use the value to be
highlighted or otherwise visually i1dentified in the text input
region, pop up an error message, or otherwise notily the
user.

Another use for the rules includes syntax highlighting,
which 1s shown 1n FIG. 18, and FIGS. 20A and 20B, by way
of example. The syntax highlighting assists the user in
visually identifying different elements of the syntax of the
coding language on the screen. For example, a color coding
system can be used to visually identily different elements of
the syntax to the user. The rules are used to i1dentily what
characters in the text mput region to highlight and what
highlighting (e.g., color or formatting) to use in the text
input region. In the example shown, highlighting 1s indicated
using particular text formatting for common element types.
To use the rules, the text 1s parsed to identily the corre-
sponding parts or elements of the syntax. These elements
can be represented as the tokens, described above, and the
appropriate highlighting can be applied to the identified
clements.

In some implementations, the system determines a respec-
tive set of rules for each command available to the user. For
example, as described above, in some cases, different sets of
commands may be available to different application and 1n
some cases, commands can be defined individual using
custom syntax. Thus, different parsing rules may be needed
for each command. As a specific example, 1n some com-
mands, BY is a reserved word but 1in other commands 1t 1s
not a reserved word. Thus, the syntax code of commands
may be parsed per-command to create the parsing rules for
the commands. These parsing rules can then be used to parse
the text 1n the text input region based on the commands in
the string. These per-command parsing rules may be gen-
crated dynamically (not hard coded in chient side code)
which allows the rules to be applied for custom commands.
For example, rules for commands of an application may be
generated at load time of an application. Rules could be
updated or generated each time the application 1s loaded or
in some cases may be saved 1n association with an applica-
tion and reused when loading the application.

In some 1implementations, a client displaying the appli-
cation receives a file comprising a syntax definition for any
given command (e.g., at load time of the application).
Theses syntax definitions for each command are used to

10

15

20

25

30

35

40

45

50

55

60

65

48

build per-command parsing rules. FIG. 19A shows an
example of a syntax defimition for a command called “foo™

(e.g., has a command 1dentifier “f00). FIG. 19B shows an
example of rules for the foo command the system generated
by parsing the syntax definition assigned to the foo com-
mand.

As shown in FIG. 19A, the syntax definition specifies
clauses, which correspond to text surrounded by “[” and ““].”
In creating rules, the system can identily each clause and
cach 1dentified clause may be defined as syntax template 1n
the rules. Furthermore, a clause in the syntax definition can
reference one or more other clauses, which the system can
identify and each identified clause may be used as a nested
or embedded syntax template in the rules. These rules can be
utilized to implement the various suggestions and behavior
of syntax templates described above with respect to FIG. 18.
The system can further identity available options and varia-
tions for the commands from the syntax definition. Addi-
tional rules may be used to perform designated actions based
on the system applying the command specific rules to code
corresponding to the command.

3.4 Code Reformatting

Additional aspects of the present disclosure relate to
allowing a user to reformat code entered into a text input
region. FIGS. 20A and 20B show search bar 2002, which
can, as example, correspond to search bar 1802 or other text
input regions described herein. Assume the user has entered
text into a text input region, as shown i FIG. 20A. The user
may have typed 1n the code and/or generated portions of the
code using one or more syntax templates, as described
above. In some implementations, the user can selectively
reformat the code 1n the text mput region. FIG. 20B shows
an example of reformatting of the code 1n FIG. 20A. The
system may cause display of the reformatted code 1n
response to user input, such as one or more keyboard
commands. Optionally, the system may subsequently cause
display of the original code 1n response to further user input,
such as one or more keyboard commands, or otherwise
apply a different formatting template to the code.

In the present example, the system reformats the code by
adding one or more new lines, tabs, and/or spaces to the
code. For example, the system can identify each command
in the code and insert the new formatting elements based on
the 1dentified commands. In some cases, the code 1s refor-
matted such that an identified command 1s on a correspond-
ing line(s) of the code (e.g., by inserting a new line(s), when
needed). In further respects, spacing of 1dentified commands
can be modified. As an example, spacing (e.g., at least one
space character or tab) can be added to the code preceding
an 1dentified command (e.g., on 1ts respective line(s)). The
system can base the spacing on the level of the command 1n
the code. In particular, commands may be nested within
other commands. The spacing can indicate the level of the
command such that the system 1s configured to ensure at
least some different commands on a common nesting level
have common spacing preceding the command, as shown. In
the present example, these nested commands include nested
searches, or sub-searches, and the level of a command 1s
defined by its search level. In the example shown, each
sub-search 1s defined by code surrounded by “[” and *].”
Identifying nested commands, as well as where commands
being and/or end can be accomplished using the atoremen-
tioned parsing rules or other rules.

Also 1n some 1mplementations, at least some of the
formatting may be preserved when transitioning the code to

US 10,528,607 B2

49

the predefined code format or template of FIG. 20A. In the
example shown, new lines and tabs have been preserved for

the “eval” command, as well as the arguments “foo=bar”
and “foo=baz.” Had those formatting characters not been
included in the code, the reformatted code might include 5
cach of those elements on a common line.

3.5 Additional Implementations

FIG. 21 presents a tflowchart illustrating a method in 10
accordance with the disclosed embodiments. Each block
illustrating methods 1n accordance with FIG. 21, and other
methods described herein, comprises a computing process
that may be performed using any combination of hardware,
firmware, and/or software. For instance, various functions 15
may be carried out by a processor executing instructions
stored 1n memory. The methods may also be embodied as
computer-usable instructions stored on computer storage
media. The methods may be provided by a standalone
application, a service or hosted service (standalone or 1 20
combination with another hosted service), or a plug-in to
another product, to name a few.

At block 2102, display 1s caused of a set of argument
blocks of a command based on syntax of the command. For
example, the system of FIG. 18 can cause a command syntax 25
template of a command to be displayed 1n search bar 1802,
which comprises argument blocks of the command, as
shown 1n FIG. 18C. The command syntax template can be
added based on any suitable user selection, but 1n the present
example 1s based on selection of a corresponding sugges- 30
tion. The command syntax template enables the user to
access/imnput each argument and variation thereof permitted
by the syntax definition of the command. However, initially,
the command syntax template may be configured to display
an argument block for each required and/or optional argu- 35
ment block at a top level of the command, as defined by the
syntax definition.

At block 2104, modification 1s caused to the displayed set
of argument blocks based on the syntax of the command. For
example, the system can modily the set of argument blocks 40
by adding argument blocks to the set, removing argument
blocks from the set, and/or entering or changing values of
the argument blocks. Each of these tasks can be managed by
the system to ensure the modified set of argument blocks are
in conformance with the syntax of the command and defined 45
executable code. As an example, FIG. 181 could be a result
ol the modification.

At block 2106, the command 1s caused to be coded based
on the set of argument blocks. For example, the as shown 1n
FIG. 18N, the system converts the command syntax tem- 50
plate 1into executable code that 1s 1n the text imput region
based on the values of the argument blocks. The user may
than mnput an execution command to cause the query in the
text input region to be executed by the system

FIG. 22 presents a flowchart illustrating a method 1n 55
accordance with the disclosed embodiments. At block 2202,
display 1s caused of an argument block. For example, based
on a user selection of a suggestion as described above,
argument block 1824 1s displayed with a set of displayed
argument blocks of a command. 60

At block 2204, display 1s caused of a nested argument
block within the argument block. For example, the system
can cause argument blocks to be nested within argument
block 1824 based on a selection of a suggestion in sugges-
tions 1806G. 65

At block 2206, display 1s caused of a value recerved from
a user of the nested argument block. For example, the user

50

can enter “count” into one of the nested argument blocks as
shown 1n FIG. 18], resulting 1n the value being displayed 1n
the text mput region.

At block 2208, removal 1s caused of the displayed nested
argument block from the argument block. For example, the
user can select the syntax history option in suggestions
1806H resulting 1n FIG. 18K, which shows the argument
block’s argument syntax template has been removed from
the text mput region.

At block 2210, the nested argument block 1s caused to be
added back to the argument block with the value. For
example, the user may select the suggestion again 1n sug-
gestions 18061, and the argument syntax template 1s added
back to the text mput region as shown i FIG. 8L. The
argument block includes the value based on the user having
inputted the value the previous time the argument syntax
template was in the text input region.

From the foregoing, 1t will be seen that this invention 1s
one well adapted to attain all the ends and objects set forth
above, together with other advantages which are obvious
and 1inherent to the system and method. It will be understood
that certain features and subcombinations are of utility and
may be employed without reference to other features and
subcombinations. This 1s contemplated by and 1s within the
scope of the claims.

The mvention claimed 1s:

1. A computer-implemented method for causing coding of
a command of a coding language, via a user interface, the
method comprising:

in response to receiving, via the user interface, a first user

selection that indicates the command, causing display
of a syntax template for the command 1n a text mput
region of the user interface, wherein the displayed
syntax template comprises a set of argument blocks
including a first argument block that corresponds to a
first argument for the command;

displaying, within a second region of the user interface

that 1s separate from the text input region, a second
argument block that 1s excluded from the set of argu-
ment blocks and corresponds to an available argument
for the command;

in response to receiving, via the user interface, a second

user selection that indicates the second argument block,
updating the display of the syntax template to include
the second argument block 1n the set of argument
blocks, and wherein the updated display of the syntax
template enables providing a value for the second
argument; and

in response to recerving via the user interface, a third user

selection that indicates the value for the second argu-
ment, causing the coding of the command, wherein the
coded command 1s displayed within the text input
region and includes the second argument having the
received value.

2. The computer-implemented method of claim 1,
wherein causing coding of the command comprises ncor-
porating the coded command 1nto existing code of the text
input region, wherein the existing code includes a plurality
of additional coded commands of the coding language.

3. The computer-implemented method of claim 1,
wherein causing coding of the command comprises 1ncor-
porating the coded command 1nto a query defined in the
coding language.

4. The computer-implemented method of claim 1,
wherein the coding language 1s a pipelined coding language
and the command 1s a pipeline command of the pipelined
coding language.

US 10,528,607 B2

51

5. The computer-implemented method of claim 1, further
comprising causing:

execution of the coded command 1n a search query; and

display of search results of the search query, wherein the

text mput region displays the coded command.

6. The computer-implemented method of claim 1,
wherein the coded command displayed in the text input
region comprises a subset of the set of argument blocks
based on a value of an argument for a given argument block
of the set of argument blocks having an empty value.

7. The computer-implemented method of claim 1,
wherein the value for the second argument represents a
nested argument of an argument of a parent argument block
in the set ol argument blocks.

8. The computer-implemented method of claim 1, further
comprising;

in response to a fourth user selection that indicates the first

argument block of the set of argument blocks, display-
ing a list of values for the first argument.

9. The computer-implemented method of claim 1, further
comprising;

in response to receiving the value for the second argu-

ment, automatically causing a third argument block to
be added to the set of argument blocks displayed 1n the
text mput region.

10. The computer-implemented method of claim 1,
wherein causing coding of the command comprises convert-
ing the set of argument blocks into a plain text representation
of the command and displaying the plain text representation
of the command 1n the text entry region.

11. The computer-implemented method of claim 1, further
comprising;

1in response to receiving a fourth user selection an option

for submitting the set of argument blocks to the com-
mand, disabling a set of user imnput methods for the set
of argument blocks.

12. The computer-implemented method of claim 1, fur-
ther comprising:

based on i1dentifying the second argument block as a

nested argument block of a parent argument block in a
syntax of the command, causing display of a syntax
history option that 1s selectable to cause removal of the
second argument block from the set of argument blocks
displayed in the text input region.

13. The computer-implemented method of claim 1, fur-
ther comprising:

in response to a fourth user selection that indicates a

syntax history option, causing removal of the second
argument block from the set of argument blocks dis-
played 1n the text input region; and

in response to a fifth user selection that indicates the

second argument block, causing the second argument
block to be added back into the set of argument blocks
with the value for the second argument.

14. The computer-implemented method of claim 1, fur-
ther comprising:

parsing a syntax definition of the command;

generating parsing rules from the parsed syntax definition

of the command; and

causing the parsing rules to be applied to text, provided to

the text mput region, and generate a displayed list of
values for the second argument.
15. The computer-implemented method of claim 1, fur-
ther comprising:

5

10

15

20

25

30

35

40

45

50

55

60

65

52

causing receipt of a syntax definition for a plurality of
commands of the coding language from a server in
association with an application that provides the user
interface;

causing command specific syntax rules to be generated

from the syntax defimition for each command of the
plurality of commands; and

causing the application to enforce a set of the command

specific syntax rules corresponding to the command on
the set of argument blocks in the text entry region.

16. The computer-implemented method of claim 1,
wherein the set of argument blocks are included in a
command syntax template that enforces the syntax of the
command on which argument blocks addable or removable
from the set of argument blocks via an interaction with the
command syntax template in the text input region.

17. The computer-implemented method of claim 1,
wherein a third argument block of the set of argument blocks
corresponds to an optional argument of the command, and
the command 1s caused to be coded without the optional
argument 1n the text input region based on being defined as
optional 1n a syntax of the command.

18. The computer-implemented method of claim 1, caus-
ing a list of values for the second argument to be displayed,
based on a given argument block of the set of argument
blocks, and based on the given argument block being on a
common level of a syntax with the second argument block.

19. One or more non-transitory computer-readable media
having instructions stored thereon for causing coding of a
command of a coding language, via a user interface, the
instructions, when executed by a processor of a computing
device, to cause the computing device to perform a method
comprising;

in response to receiving, via the user interface, a first user

selection that indicates the command, causing display
of a syntax template for the command 1n a text iput
region of the user interface, wherein the displayed
syntax template comprises a set of argument blocks
including a first argument block that corresponds to a
first argument for the command;

displaying, within a second region of the user interface

that 1s separate from the text input region, a second
argument block that 1s excluded from the set of argu-
ment blocks and corresponds to an available argument
for the command;

in response to receiving, via the user interface, a second

user selection that indicates the second argument block,
updating the display of the syntax template to include
the second argument block i1n the set of argument
blocks, and wherein the updated display of the syntax
template enables providing a value for the second
argument; and

in response to recerving via the user interface, a third user

selection that indicates the value for the second argu-
ment, causing the coding of the command, wherein the
coded command 1s displayed within the text input
region and includes the second argument having the
received value.

20. The one or more computer-readable media of claim
19, wherein causing coding of the command comprises
incorporating the coded command 1nto a query defined in the
coding language.

21. The one or more computer-readable media of claim
19, wherein the method further comprises causing:

execution of the coded command 1n a search query; and

display of search results of the search query, wherein the
text input region displays the coded command.

US 10,528,607 B2

53

22. The one or more computer-readable media of claim
19, wherein the coded command displayed 1n the text input
region comprises a subset of the set of argument blocks
based on the value of an argument for a given argument
block of the set of argument block having an empty value.

23. The one or more computer-readable media of claim
19, wherein the method further comprises:

in response to a fourth user selection that indicates the first

argument block of the set of argument blocks, display-
ing a list of values for the first argument.

24. The one or more computer-readable media of claim
19, wherein the method further comprises:

in response to recerving the value for the second argu-

ment, automatically causing a third argument block to
be added to the set of argument blocks displayed in the
text input region.

25. A system comprising;:

one or more processors; and

memory having instructions stored thereon for causing

coding of a command of a coding language, via a user
interface, the instructions, executable by the one or
more processors to cause the system to perform a
method comprising:

1n response to receiving, via the user interface, a first user

selection that indicates the command, causing display
of a syntax template for the command 1n a text input
region ol the user interface, wherein the displayed
syntax template comprises a set ol argument blocks
including a first argument block that corresponds to a
first argument for the command,;

displaying, within a second region of the user interface

that 1s separate from the text input region, a second
argument block that 1s excluded from the set of argu-
ment blocks and corresponds to an available argument
for the command;

in response to receiving, via the user interface, a second

user selection that indicates the second argument block,
updating the display of the syntax template to include

10

15

20

25

30

35

54

the second argument block 1n the set of argument
blocks, and wherein the updated display of the syntax
template enables providing a value for the second
argument; and

in response to recerving via the user interface, a third user
selection that indicates the value for the second argu-
ment, causing the coding of the command, wherein the
coded command 1s displayed within the text input
region and includes the second argument having the
received value.

26. The system of claim 25, wherein causing coding of the
command comprises incorporating the coded command into
a query defined in the coding language.

277. The system of claim 25, wherein the method turther
comprises causing:

execution of the coded command 1n a search query; and

display of search results of the search query, wherein the
text input region displays the coded command.

28. The system of claim 25, wherein the coded command
displayed in the text input region comprises a subset of the
set of argument blocks based on a value of an argument for
a given argument block of the set of argument blocks having
an empty value.

29. The system of claim 235, wherein the method further
COmprises:

in response to a fourth user selection that indicates the first
argument block of the set of argument blocks, display-
ing a list of values for the first argument.

30. The system of claim 25, wherein the method turther
COmMprises:

in response to recerving the value for the second argu-
ment, automatically causing a third argument block to
be added to the set of argument blocks displayed 1n the
text input region.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

