12 United States Patent

Subrahmanyam et al.

US010528436B2

US 10,528,436 B2
Jan. 7, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

MICRO-JOURNAL BASED TRANSACTION
LOGGING

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Pratap Subrahmanyam, Saratoga, CA
(US); Zongwei Zhou, Mountain View,
CA (US); Xavier Deguillard, Orsay
(FR); Rajesh Venkatasubramanian,
San Jose, CA (US)

Assignee: VMWARE, INC., Palo Alto, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 693 days.

Notice:

Appl. No.: 15/192,940

Filed: Jun. 24, 2016

Prior Publication Data

US 2017/0344440 Al Nov. 30, 2017

Related U.S. Application Data

Provisional application No. 62/343,439, filed on May
31, 2016.

Int. CI.

GO6F 16/30 (2019.01)

GO6F 11/14 (2006.01)

GO6F 16/23 (2019.01)

U.S. CL

CPC GO6F 1171474 (2013.01); GO6F 16/2365

(2019.01); GO6F 16/2379 (2019.01)

Field of Classification Search

CPC ., GO6F 11/14774; GO6F 16/2379
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

10,169,169 B1* 1/2019 Shaikh GOO6F 11/1474
2009/0089338 Al* 4/2009 Ranade, GOO6F 9/466
2010/0274768 Al* 10/2010 Wangccoe.ee. GOO6F 16/27

707/676
2014/0258671 Al* 9/2014 Lordccccee... GO6F 16/113
711/171
2014/0379638 Al* 12/2014 Li .cooviiiiiiiiiiiiinnns, GOO6F 16/27
707/610
2015/0193464 Al* 7/2015 Kwon GOO6F 16/1815
707/648
2016/0344834 Al* 11/2016 Dasccceeeennn. HO4L 67/2842
2017/0011062 Al1* 1/2017 Zaveri GOO6F 16/2379

OTHER PUBLICATTONS

Jlan Xu et al, “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories™, Feb. 22, 2016, 17 pages.,
Santa Clara, CA.

* cited by examiner

Primary Examiner — Mahesh H Dwivedi

(57) ABSTRACT

Techniques for using micro-journals to ensure crash consis-
tency ol a transactional application are provided. In one
embodiment, a computer system can receive a transaction
associated with the transactional application, where the
transaction includes a plurality of modifications to data or
metadata of the transactional application. The computer
system can further select a free micro-journal from a pool of
micro-journals, where the pool of micro-journals are stored
in a byte-addressable persistent memory of the computer
system, and where each micro-journal in the pool 1s con-
figured to record journal entries for a single transaction at a
time. The computer system can then write journal entries
into the micro-journal corresponding to the plurality of
modifications included in the transaction and commait the
journal entries to the byte-addressable persistent memory.

23 Claims, 7 Drawing Sheets

COMPUTER SYSTEM 100

DRAM 108

TRANSACTIONAL APP | | MICRO-JOURNALING
118 SERVICE 120

BYTE-ACCESSIBLE PERSISTENT MEMORY 110

APP DATA/METADATA MICRO-JOURNAL
118 PooL 122

MEMORY Bus 106

PROCESSING

CeRrE 104(1)

STORAGE/PERIPHERAL BUS 112

CPU(s) 102

NONVOLATILE STORAGE DEVICE(S) 114

PROCESSING

CoRE 104(N)

U.S. Patent Jan. 7, 2020 Sheet 1 of 7 US 10,528,436 B2

COMPUTER SYSTEM 100

DRAM 108 BYTE-ACCESSIBLE PERSISTENT MEMORY 110

APP DATA/METADATA MICRO-JOURNAL
118 PooL 122

RANSACTIONAL APP| | MICRO-JOURNALING
116 SERVICE 120

MEMORY Bus 106

PROCESSING PROCESSING

CorEe 104(1) CORE 104(N)

STORAGE/PERIPHERAL BUS 112

NONVOLATILE STORAGE DEVICE(S) 11

FIG. 1

U.S. Patent

Jan. 7, 2020

202

Sheet 2 of 7 US 10,528,436 B2

5200

RECEIVE TRANSACTION ASSOCIATED WITH

TRANSACTIONAL APPLICATION

204

SELECT FREE MICRO-JOURNAL FROM POOL AND ASSIGN
SELECTED MICRO-JOURNAL TO TRANSACTION

206

WRITE JOU

RNAL ENTRY INTO MICRO-JOURNAL FOR EACH

DATA/META

208

JATA MOD

FICATION OPERATION INCLUDED IN

TRANSACTION

COMMIT JOURNAL ENTRIES TO BYTE-ADDRESSABLE

PERSISTENT MEMORY

210

REPLAY JOURNAL ENTRIES, THEREBY MODIFYING APP

212

DATA/METADATA IN PLACE

COMMIT DATA/METADATA MODIFICATIONS

214

FREE MICRO-JOURNAL

FIG. 2

U.S. Patent Jan. 7, 2020 Sheet 3 of 7 US 10,528,436 B2

300
302~ 5
IDENTIFY MICRO-JOURNALS IN MICRO-JOURNAL POOL
THAT ARE STILL IN-FLIGHT
304

REPLAY JOURNAL ENTRIES OF MICRO-JOURNALS

IDENTIFIED AT BLOCK 302

306
COMMIT APP DATA/METADATA CHANGES
308

FREE MICRO-JOURNALS

FIG. 3

U.S. Patent Jan. 7, 2020 Sheet 4 of 7 US 10,528,436 B2

407 5400

RECEIVE TRANSACTION ASSOCIATED WITH

TRANSACTIONAL APPLICATION

404

SELECT FREE MICRO-JOURNAL FROM FREE LIST AND
ASSIGN SELECTED MICRO-JOURNAL TO TRANSACTION

406

WRITE JOURNAL ENTRY INTO MICRO-JOURNAL FOR EACH
DATA/METADATA MODIFICATION OPERATION INCLUDED IN
TRANSACTION

GRAB ID LOCK, READ CURRENT ID NUMBER, W
NUMBER AS JOURNAL COMMIT D IN MICRO-JO
HEADER

410

COMMIT JOURNAL ENTRIES AND HEADER TO BYTE-
ADDRESSABLE PERSISTENT MEMORY, INCREMENT ID
NUMBER, AND RELEASE LOCK

412 :

MOVE MICRO-JOURNALS IN IN-FLIGHT LIST TO FREE LIST

414

REPLAY JOURNAL ENTRIES, THEREBY MODIFYING APP
DATA/METADATA IN PLACE

416

GRAB ID LOCK, READ CURRENT ID NUMBER, WRITE ID
NUMBER AS METADATA COMMIT 1D IN MICRO-JOURNAL

HEADER, INCREMENT |D NUMBER, AND RELEASE LOCK

418

ADD MICRO-JOURNAL TO IN-FLIGHT LIST -

FIG. 4

U.S. Patent Jan. 7, 2020 Sheet 5 of 7 US 10,528,436 B2

502 5 500
503 ' '

INITIALIZE MAXJOURNALCOMMITID TO THE MAX JOURNAL

COMMIT ID OF ALL MICRO-JOURNALS IN POOL

FOR EACH MICRO-JOURNAL IN POOL:
506
YES JOURNAL COMMIT 1D < NO
WMETADATA COMMIT 1D7?
508 - 516

SET MAXID = MAX{MAXID,
METADATA COMMIT [D)

SET MAXID = MAX(MAXID, JOURNAL COMMIT ID)
AND ADD MICRO-JOURNAL TO IN-FLIGHT LIST

518

METADATA COMMIT 1D >
MAXJOURNALCOMMITID?

YES

NG JOURNAL COMMIT 1D >

MAXJOURNALCOMMITID?

NO

512 514 , 520

ADD MICRO-JOURNAL RO-JOURNAL

REMOVE MICRO-JOURNALS FROM IN-
FLIGHT LIST AND ADD TO FREE LIST

TO IN-FLIGHT LIST REE LIST

524
526

SETID 10 MAXID + 1 o

FIG. 5A

U.S. Patent

Jan. 7, 2020 Sheet 6 of 7

530

ORDER MICRO-JOURNALS IN IN-FLIGHT LIST ACCORDING

TO JOURNAL COMMIT 1D

532

REPLAY MICRO-JOURNALS IN DETERMINED ORDER

FIG. 5B

602

RECEIVE TRANSACTION ASSOCIATED WITH

TRANSACTIONAL APPLICATION

604

SELECT FREE MICRO-JOURNAL FROM POOL AND ASSIGN
SELECTED MICRO-JOURNAL TO TRANSACTION

606

WRITE JOURNAL ENTRY INTO MICRO-JOURNAL FO
DATA/METADATA MODIFICATION OPERATION INCLL

TRANSACTION

s

(GRAB ID LOCK, READ CURRENT ID NUMBER, W
NUMBER AS JOURNAL COMMIT 1D IN MICRO-JO

HEADER

610

COMMIT JOURNAL ENTRIES AND
ADDRESSABLE PERSISTENT MEMO

AEADER TO BYTE-

RY, INCREMENT ID

NUMBER, AND RELEASE LOCK

612

FREE OTHER MICRO-JOURNAL IN POOL

614-

REPLAY JOURNAL ENTRIES, THEREBY MODIFYING APP

DATA/METADATA IN PLACE

FIG. 6

US 10,528,436 B2

600
o

U.S. Patent

Jan. 7, 2020 Sheet 7 of 7

CREATE SHADOW COPY OF MICRO-JOURNALS IN POOL

BEGIN REWRITING COMMIT IDS OF SHA
JOURNALS BASED ON INITIAL ID O

706

DOW MICRC-
- LERO

ATOMICALLY ACTIVATE SHADOW MICRO-JOURNALS AND

DEACTIVATE NON-SHADOW MICRO-JOURNALS

US 10,528,436 B2

FIG. 7

US 10,528,436 B2

1

MICRO-JOURNAL BASED TRANSACTION
LOGGING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 62/343,439, filed May 31, 2016, entitled
“Micro-Journal Based Transaction Logging,” which 1s
incorporated by reference 1n 1ts enftirety for all purposes.

BACKGROUND

Applications that rely on transactional semantics, such as
databases, key-value stores, file systems, and the like, typi-
cally make use of transaction logging (also known as
journaling) to ensure data consistency 1n the face of system
crashes/failures. In a conventional transaction logging
implementation, an application records all of 1ts transactions
in a singular write-ahead/append-only log that 1s stored on
nonvolatile storage (e.g., a magnetic hard disk or solid-state
disk (SSD)). The “append-only” qualifier means that log
entries are continually added to the end of the log as
transactions occur. Thus, the log captures the entire history
ol transactions that have been processed by the application
since the last log mitialization or compaction. If the appli-
cation’s host system crashes or otherwise fails, the entries 1n
the log are replayed, from first to last, to bring the storage or
memory on which the application data resides nto a trans-
actionally consistent state (note that some applications, such
as log structured file systems, can use the log for storing 1ts
data/metadata and thus do not need to implement a replay
mechanism).

While the approach of using a singular write-ahead/
append-only log for transaction logging 1s functional (and 1s
suited to the performance characteristics of conventional
nonvolatile storage devices), 1t also suilers from a number of
drawbacks. First, as indicated above, recovery after a system
crash or failure generally requires the entirety of the log to
be replayed (due to batching of log entry and/or application
data commuits). This can make the recovery process a time-
consuming task, particularly for applications that deal with
very large data volumes. Second, since the log 1s append-
only and will continue to grow in size as new transactions
are processed, there 1s a need to compact the log on a
periodic basis so that it does not consume all of the available
space on nonvolatile storage. Although there are various
methods to perform this compaction, all of these methods
consume CPU/memory resources and incur throughput/
latency degradation, resulting in unpredictable and non-
uniform performance. Third, the fact that all transactions are
recorded 1n a single sequential log means that one mal-
formed or buggy transaction can potentially corrupt the log
entries for other transactions, thereby damaging the entire
transactional history of the system.

SUMMARY

Techniques for using micro-journals to ensure crash con-
sistency of a transactional application are provided. In one
embodiment, a computer system can receive a transaction
associated with the transactional application, where the
transaction includes a plurality of modifications to data or
metadata of the transactional application. The computer
system can further select a free micro-journal from a pool of
micro-journals, where the pool of micro-journals are stored
in a byte-addressable persistent memory of the computer

5

10

15

20

25

30

35

40

45

50

55

60

65

2

system, and where each micro-journal 1n the pool 1s con-
figured to record journal entries for a single transaction at a
time. The computer system can then write journal entries
into the micro-journal corresponding to the plurality of
modifications included in the transaction and commait the
journal entries to the byte-addressable persistent memory.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a computer system 1n which embodiments
of the present disclosure may be implemented.

FIG. 2 depicts a micro-journal based transaction process-
ing workflow according to an embodiment.

FIG. 3 depicts a recovery worktlow associated with the
workilow of FIG. 2 according to an embodiment.

FIG. 4 depicts a micro-journal based transaction process-
ing worktlow using commit coalescing according to an
embodiment.

FIGS. SA and 5B depict a recovery worktlow associated
with the worktlow of FIG. 4 according to an embodiment.

FIG. 6 depicts a simplified version of the workilow of
FIG. 4 for senal transactions according to an embodiment.

FIG. 7 depicts a workflow for handling ID overflow
according to an embodiment.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and details are set forth in order to
provide an understanding of various embodiments. It will be
evident, however, to one skilled in the art that certain
embodiments can be practiced without some of these details,
or can be practiced with modifications or equivalents
thereof.

1. Overview

Embodiments of the present disclosure provide enhanced
transaction logging techniques that make use of a pool of
micro-journals, rather than a singular write-ahead/append-
only log, to ensure crash consistency for a transactional
application. As used herein, a “micro-journal” 1s a relatively
small, fixed-size log (e.g., on the order of bytes, kilobytes,
or megabytes depending on application data volume) that
records journal entries for a single transaction at a time.

These micro-journaling techmques are particularly well-
suited for implementation on computer systems that incor-
porate byte-addressable persistent memory, which offers
fast, fine-grained access to data 1n a manner similar to
dynamic random-access memory (DRAM) but 1s nonvola-
tile 1n nature. Accordingly, all of the embodiments described
herein assume that the micro-journals are stored on such
byte-addressable persistent memory. Examples of existing
byte-addressable persistent memory technologies include
phase change memory (PCM), nonvolatile DIMMs
(NVDIMMs), and so on. However, 1t should be appreciated
that the micro-journaling techniques of the present disclo-
sure¢ may also be implemented using any other type of
memory or storage technology (either known now or devel-
oped 1n the future) that exhibits similar performance, access,
and durability characteristics as byte-addressable persistent
memory.

According to one set of embodiments, a micro-journaling
service running on a computer system can receive a trans-
action that includes modifications to the data and/or meta-
data of a transactional application. The micro-journaling

US 10,528,436 B2

3

service can then select a free micro-journal from a pool of
micro-journals allocated on a byte-addressable persistent
memory ol the computer system and can write, for each
data/metadata modification of the transaction, a correspond-
ing journal entry into the selected micro-journal. Unlike a
conventional write-ahead/append-only log, the selected
micro-journal 1s dedicated to recording the data/metadata
modifications made by this single transaction. Upon 1ssuing,
the journal entry writes, the micro-journaling service can
commit the writes to the byte-addressable persistent memory
and can thereafter replay the journal entries to modily the
application data/metadata “in place” (i.e., on the memory or
storage medium where that data/metadata resides). Finally,
the micro-journaling service can commit the data/metadata
modifications and free the micro-journal for use with a
subsequent transaction.

With the micro-journaling workflow above, a number of
advantages can be realized over conventional transaction
logging techniques that use a singular write-ahead/append-
only log. For example, at the time of recovering from a
system crash/failure, there 1s no need to replay the journal
entries for all historical transactions executed by the appli-
cation. Instead, the micro-journaling service need only
replay the few “in-flight” micro-journals that have commuit-
ted journal entries in the byte-addressable persistent memory
but have not yet been marked as freed. This significantly
reduces the amount of time and compute resources needed
to carry out the recovery process.

Further, since each micro-journal 1s freed upon comple-
tion ol i1ts corresponding transaction, there 1s no need to
implement any log compaction routines. Instead, the freed
micro-journals can simply be reused for subsequent trans-
actions.

Yet further, since each micro-journal 1s dedicated to
recording the data/metadata modifications for a single trans-
action, the journal entries for different transactions are
separated. This dramatically reduces the possibility of sys-
tem-wide journal corruption in comparison to a consolidated
append-only log.

Yet further, by storing the micro-journals on byte-address-
able persistent memory (rather than conventional nonvola-
tile storage), the techniques of the present disclosure can
take full advantage of the fast random read/write speeds of
this type of memory and can avoid the long latency that 1s
incurred by writing journal entries to disk.

In certain embodiments, 1n addition to storing the micro-
journals 1n byte-addressable persistent memory, the data/
metadata of the transactional application may also be per-
sisted 1n, and directly manipulated from, that same memory.
This may be useful for applications such as databases and
key-value stores that require high throughput and low
latency, but at the same time need to ensure durability of 1ts
data/metadata. In these embodiments, the micro-journaling
worktlow described above can be optimized to reduce the
number of persistent memory commits needed to complete
cach transaction. This optimization, referred to as “commiut
coalescing,” 1s detailed 1n Section (5) below.

2. System Architecture

FI1G. 1 1s a simplified block diagram of a computer system
100 that may be used to implement embodiments of the
present disclosure. As shown, computer system 100 includes
one or more central processing units (CPUs) 102 that
comprise a number of processing cores 104(1)-104(N).
CPU(s) 102 are connected, via a memory bus 106, to DRAM
108 and byte-addressable persistent memory (e.g., PCM,
NVDIMM, etc.) 110. In addition, CPU(s) 102 are connected,

10

15

20

25

30

35

40

45

50

55

60

65

4

via a storage or peripheral bus 112, to one or more nonvola-
tile storage devices (e.g., magnetic hard disks or SSDs) 114.

CPU(s) 102 are configured to execute a transactional
application 116, which 1s shown as running from DRAM
108. Transactional application 116 1s a software component
that operates on data and metadata using logical units of
processing known as transactions. Examples of transactional
applications include, e.g., databases, key-value stores, file
systems, and the like. In the example of FIG. 1, the data/
metadata of transactional application 116 (i.e., app data/
metadata 118) 1s shown as residing in byte-addressable
persistent memory 110. However, 1n alternative embodi-
ments, some or all of app data/metadata 118 may reside in
other memory or storage locations, such as in DRAM 108 or
on nonvolatile storage device(s) 114.

As noted 1n the Background section, conventional tech-
niques for implementing transaction logging with respect to
a transactional application like application 116 mnvolve per-
sisting transaction information i a singular write-ahead/
append-only log that resides on nonvolatile storage (e.g.,
device(s) 114). However, this conventional approach suflers
from a number of limitations and drawbacks, such as a
lengthy recovery worktlow, the need to perform log com-
paction, and the possibility of log corruption due to mal-
formed/buggy transactions.

To address these and other 1ssues, computer system 100 of
FIG. 1 implements a micro-journaling service 120 (shown as
running from DRAM 108) and a pool of micro-journals 122
allocated 1n byte-addressable persistent memory 110. Each
micro-journal 1s a relative small, fixed-size log that 1s
configured to store the data/metadata modifications for a
single transaction. In a particular embodiment, there may be
one micro-journal allocated 1n pool 122 for each processing
core 104(1)-104(N), since each processing core can process
one transaction at a time. Further, there may be N instances
of micro-journaling service 120 running concurrently (one
cach processing core 104(1)-104(IN)).

At a high level, micro-journaling service 120 can, at a
time transactional application 116 1s tasked with processing
a transaction, carry out a workflow for writing/persisting
journal entries for the transaction to an available micro-
journal 1 pool 122, updating/persisting the application
data/metadata modified by the transaction in place, and then
freeing the micro-journal upon ftransaction completion
(thereby allowing 1t to be reused for subsequent transac-
tions). In addition, upon a system crash or failure, micro-
journaling service 120 can identily the micro-journals that
were m-flight at the time of the crash/failure and replay the
journal entries in the identified micro-journals. With this
general design and approach, the drawbacks associated with
a singular write-ahead/append-only log are eliminated
because: (1) system recovery 1s near instant (due to the need
to replay only a few in-flight micro-journals), (2) log com-
paction routines are no longer necessary, and (3) log cor-
ruption 1s much less likely (due to the separation of trans-
actions into separate micro-journals). Further, by placing the
micro-journals in byte-addressable persistent memory 110
rather than on nonvolatile storage device(s) 114, the high
latency incurred by performing journal writes/commits to
disk 1s avoided. A more detailed description of the work-
flows that may be executed by micro-journaling service 120
1s provided in the sections that follow.

It should be appreciated that computer system 100 of FIG.
1 1s 1llustrative and not intended to limit embodiments of the
present disclosure. For example, although micro-journaling
service 120 1s shown as being separate from transactional
application 116, 1n some embodiments this service may be

US 10,528,436 B2

S

incorporated 1nto application 116. Further, the various com-
ponents of computer system 100 may be arranged according,
to different configurations, may include subcomponents
and/or functions that are not specifically described, and/or
may have certain components removed. One of ordinary
skill 1n the art will recognize many variations, modifications,
and alternatives.

3. Transaction Processing

FIG. 2 depicts a workilow 200 that can be carried out by
micro-journaling service 120 of FIG. 1 for processing a
transaction according to an embodiment. It 1s assumed that
worktlow 200 1s executed on a processing core 104 that 1s
configured to run an instance of service 120.

Starting with block 202, micro-journaling service 120 can
receive a transaction associated with transactional applica-
tion 116. The transaction can comprise a group of modifi-
cation operations 1-m for moditying data and/or metadata of
the application (1.e., app data/metadata 118). For example, 1T
transactional application 116 1s a key-value store, the trans-
action may comprise a group ol modification operations for
moditying a set of key-value pairs.

At block 204, micro-journaling service 120 can select,
from pool 122, an available (1.e., free) micro-journal and
assign the selected micro-journal to the current transaction.
This can mvolve, e.g., placing a lock on the selected
micro-journal so that 1t cannot be selected/assigned by other
instances of service 120 for the duration of the current
transaction. In one set of embodiments, the micro-journals in
pool 122 can be pre-allocated at mitialization of transac-
tional application 116 or computer system 100. In other
embodiments, the micro-journals 1 pool 122 can be allo-
cated on an as-needed basis (e.g., at the time a micro-journal
needs to be assigned to a transaction). The allocated size of
cach micro-journal can be fixed based on, €.g., a maximum
transaction size that 1s expected by transactional application
116.

Once a free micro-journal has been assigned to the
transaction, micro-journaling service 120 can write a journal
entry mto the micro-journal for each modification operation
1-m included 1n the transaction (block 206). The specific
content and format of these journal entries can vary depend-
ing on the nature of transactional application 116. Generally
speaking, each journal entry will be structured such that 1t
can be replayed multiple times without changing the end
result of the modification operation (1.e., each journal entry
will be idempotent). This property can be enforced by, e.g.,
using absolute rather than delta values for data values
identified in the journal entry.

Then, at block 208, micro-journaling service 120 can
commit the written journal entries to byte-addressable per-
sistent memory 110 (referred to herein as performing a
“pcommit™). This pcommit action can flush the data asso-
ciated with the written journal entries from any CPU or other
intermediary caches 1n the system and can ensure that the
journal entries are, 1n fact, persisted to memory 110.

Upon completion of the pcommit, micro-journaling ser-
vice 120 can proceed to “replay” the journal entries in the
transaction (1.e., execute the modification operation corre-
sponding to each journal entry), thereby modilying the
application data/metadata in the location where 1t 1s stored
(block 210). Micro-journaling service 120 can then perform
a commit action to ensure that those data/metadata updates
are, 1n fact, persisted 1n place (block 212). In scenarios
where the application data/metadata 1s stored on byte-
addressable persistent memory 110 (as shown in FIG. 1),
this step can mvolve performing a second pcommit.

10

15

20

25

30

35

40

45

50

55

60

65

6

Finally, at block 214, micro-journaling service 120 can
free the micro-journal so that it can be reused. For example,
iI micro-journaling service 120 previously placed on a lock
on the micro-journal, that lock can be removed. Alterna-
tively, micro-journaling service 120 can update a value in
the header of the micro-journal indicating 1ts availability
status (in certain embodiments, this can be performed prior
to block 212 so that 1t 1s persisted to memory 110 via the
pcommit action at block 212).

Further, as part of block 214, micro-journaling service
120 can take steps to ensure that the current journal entries
are overwritten for the next transaction. For instance, micro-
journaling service 120 may mark the existing entries as
deleted, or simply move a write pointer for the micro-journal
back to the start of its allocated memory region. At the
conclusion of block 214, micro-journaling service 120 can
return to block 202 1n order to process subsequent transac-
tions.

4. Recovery

FIG. 3 depicts a workilow 300 that may be carried out by
micro-journaling service 120 of FIG. 1 for ensuring consis-
tency of the data/metadata of transactional application 116
upon recovering from a system crash or failure according to
an embodiment. Workflow 300 assumes that the transactions
of application 116 were logged, or 1n the process of being
logged, according to worktlow 200 at the time of the
crash/failure.

At block 302, micro-journaling service 120 can identily
the set of micro-journals 1 pool 122 that are still “in-flight™
(1.., have committed journal entries 1n byte-addressable
persistent memory 110 but have not yet been freed). This set
represents the transactions that were not fully completed at
the time of the crash/failure, and thus may be in an incon-
sistent state. This set will include micro-journals that were
committed per block 208 of FIG. 2, but were not freed per
block 214 of FIG. 2 prior to the crash/failure.

At block 304, micro-journaling service 120 can replay the
journal entries 1n the set of micro-journals 1dentified at block
302, thereby applying (or re-applying) the data/metadata
changes corresponding to those entries to the memory/
storage on which the data/metadata resides. Recall that the
journal entries are structured as idempotent entries. Thus,
there 1s no adverse consequence for re-applying a data/
metadata change that may be been previously applied.

Finally, at blocks 306 and 308, micro-journaling service
120 can commit the data/metadata changes (e.g., perform a
pcommuit 1f the data/metadata 1s stored on byte-addressable
persistent memory 110) and free the micro-journals. Micro-
journaling service 120 can perform the freeing operation at
block 308 as an atomic operation (such as, e¢.g., atomically
changing an “allocated” bit to “iree’). After block 308, all of
the data/metadata of transactional application 116 will be in
a consistent state, and thus application 116 can be restarted
to carry out 1ts normal runtime operation.

5. Commit Coalescing

In scenarios where the data/metadata of transactional
application 116 1s maintained in byte-addressable persistent
memory 110 (along with micro-journals 122), transaction
processing workflow 200 of FIG. 2 1s required to perform
two pcommits per transaction—a ‘“‘qournal pcommit” to
commit the journal entries to byte-addressable persistent
memory 110 (at block 208), and a “data/metadata pcommuit™
to commit the data/metadata modifications to byte-address-
able persistent memory 110 (at block 212). Unfortunately,
pcommits incur a latency that 1s substantially higher than
writes to persistent memory (or to DRAM). This because a
pcommuit typically involves at least two steps: (1) 1ssuing the

US 10,528,436 B2

7

pcommit to a persistent memory controller, and (2) persist-
ing all of the write data cached by the controller to the
persistent memory medium (usually with some wear-level-
ing algorithm overhead). Step (1) alone can consume up to
150-200 CPU cycles, and step (2) 1s even more expensive.
Thus, the need to perform two pcommits can significantly
increase the latency for each transaction.

To address this, 1n certain embodiments micro-journaling,
service 120 can implement a “commit coalescing” mecha-
nism to reduce the number of pcommits needed per trans-
action from two to one. This commit coalescing mechanism
leverages the fact that a pcommit action commits all pending
write data to the persistent memory medium, across all
threads/processing cores. Thus, rather than performing the
data/metadata pcommit to commit the data/metadata
changes for a given transaction, micro-journaling service
120 can wait for a journal pcommit to occur for a later
transaction (either running on the same processing core or a
different processing core of the system). The subsequent
journal pcommit will also commit the data/metadata changes
tfor the earlier transaction, thereby eflectively combining, or
coalescing, the effect of the two pcommits 1nto one.

5.A Transaction Processing Using Commit Coalescing

FI1G. 4 depicts a workilow 400 that can be carried out by
micro-journaling service 120 of FIG. 1 for processing a
transaction using commit coalescing according to an
embodiment. Worktlow 400 assumes that the following
three data 1tems are maintained 1n the volatile memory (1.e.,

DRAM 108) of computer system 100: (1) a globally ascend-

ing identifier (ID) with a lock guarding write access to the
ID, (2) a list of free micro-journals 1n pool 122 that can be
assigned to new transactions, and (3) a list of in-flight
micro-journals that have been assigned but not yet freed.
Workflow 400 also assumes there may be multiple transac-
tions being processed at any given point 1n time (via, €.g.,
concurrent instances of service 120 running on respective
processing cores 104(1)-104(N)).

At blocks 402, 404, and 406, micro-journaling service
120 can receive a transaction associated with transactional
application 116, select a free micro-journal from the free-

micro-journal list, assign the selected micro-journal to the
transaction, and write a journal entry into the assigned
micro-journal for each modification operation included in
the transaction. These steps can be performed 1n a manner
that 1s similar to blocks 202, 204, and 206 of worktlow 200.

At block 408, micro-journaling service 120 can grab the
lock on the ID 1n DRAM 108, read the current ID number,
and write the ID number to a header of the micro-journal as
a “qournal commit ID.” Micro-journaling service 120 can
then 1ssue a pcommait to commit the journal header and the
written journal entries to byte-addressable persistent
memory 110, increment the ID number in DRAM 108, and
release the lock (block 410).

Once the lock 1s released, micro-journaling service 120
can move all micro-journals 1n the 1n-flight list to the free list
(block 412). This because the journal pcommit performed at
block 410 has also committed the data/metadata writes for
any pending micro-journals to byte-addressable persistent
memory 110, and thus those micro-journals are now iree to
be reused. Micro-journaling service 120 can perform the
move operation at block 412 as an atomic operation.

After that, micro-journaling service 120 can replay the
journal entries to modily the application data/metadata for
the transaction 1n place (block 414). Service 120 can also
grab the ID lock again, read the current 1D number, write the

10

15

20

25

30

35

40

45

50

55

60

65

8

ID number to the micro-journal header as a “metadata
commit ID,” increment the ID number in DRAM 108, and
release the lock (block 416).

Finally, at block 418, micro-journaling service 120 can
add the current micro-journal to the 1n-flight list and work-
flow 400 can return to block 402 1n order to process
additional transactions. Like the move operation at block
412, micro-journaling service can perform the adding of the
current micro-journal to the in-tlight list atomically. Note
that the micro-journal 1s not moved to the free list at the end
of this worktlow since the data/metadata changes have not
been explicitly committed; instead, the micro-journal will be
moved to the free list when a subsequent journal pcommit 1s
issued by the current micro-journaling service instance, or
another service mstance runmng on a different processing
core of the system.

5.B Recovery Using Commit Coalescing

FIGS. 5A and 5B collectively depict a worktlow 500 that
may be carried out by micro-journaling service 120 of FIG.
1 for executing a recovery worktlow 1n view of the commit
coalescing performed in worktlow 400 according to an
embodiment. In particular, FIG. 5A depicts a sub-process for
reconstructing the globally ascending ID, micro-journal free
list, and micro-journal in-tlight list in DRAM 108, and FIG.
5B depicts a sub-process for replaying necessary journal
entries once those three data items are reconstructed.

Starting with FIG. SA, micro-journaling service 120 can
first 1mtialize a variable referred to as “maxID” to zero
(block 502). In addition, micro-journaling service 120 can
initialize a variable referred to as “maxJournal CommitID” to
the maximum journal commait ID of all of the micro-journals
in pool 122 (block 503). Micro-journaling service 120 can
then enter a loop for each micro-journal 1 pool 122 (block
504).

Within the loop, micro-journaling service 120 can check
whether the journal commait ID for the current micro-journal
1s less than i1ts metadata commit ID (block 3506). If so,
micro-journaling service 120 can set maxID to the greater of
maxID or the metadata commuit 1D (block 508). In addition,
micro-journaling service 120 can check whether the meta-
data commuit ID 1s greater than maxJournalCommuitID (block
510). If yes, micro-journaling service 120 can add the
current micro-journal to the in-flight list (block 512). It no,
micro-journaling service 120 can add the current micro-
journal to the free list (block 514).

If the journal commit ID 1s not less than the metadata
commit ID at block 506, micro-journaling service 120 can
set maxID to the greater of maxID or the journal commuit I
and can add the current micro-journal to the in-flight list
(block 3516). Micro-journaling service 120 can then check
whether the journal commuit ID 1s greater than maxJournal-
CommitID (block 3518), and if so, can remove all micro-
journals 1n the in-flight list that have a metadata commait 1D
less than the current journal commit ID and can add those
removed micro-journals to the free list (block 520).

At the conclusion of the foregoing processing, the current
loop 1iteration can end (block 3524), and workiflow 500 can
return the start of the loop to process additional micro-
journals 1 pool 122. Once all micro-journals have been
processed, the globally ascending ID in DRAM 108 can be
set to maxID+1 (block 526) and worktlow 500 can turn to
FIG. 5B. Alternatively, the globally ascending ID can be
initialized to zero and block 526 can be omitted.

At block 330 of FIG. 5B, micro-journaling service 120
can order all of micro-journals 1n the in-flight list according
to their respective journal commit IDs. Micro-journaling,
service 120 can then replay the micro-journals in this

US 10,528,436 B2

9

determined order (block 532). As part of block 532 micro-
journaling service 120 can, for each micro-journal, grab the
ID lock, read the current ID number, write the ID number to

the micro-journal header as a “metadata commait ID,” incre-
ment the ID number in DRAM 108, and release the lock 1n

a manner similar to block 416 of workilow 400. In this
example no pcommits are 1ssued, so these micro-journals
remain in the in-fhight list. In an alternative embodiment,
micro-journaling service 120 can 1ssue a pcommit after
replaying the micro-journals 1n the in-tflight list and then
move those micro-journals to the free list. Recovery is
typically a rare situation (once per boot at worst), and thus
the cost of a pcommut for all of the micro-journals that were
in thght 1s relatively small.

After block 532, all of the data/metadata of transactional
application 116 will be 1n a consistent state, and thus
application 116 can be restarted to carry out its normal
runtime operation.

5.C Simplified Transaction Processing for Serial Transac-
tions

As mentioned above, transaction processing workilow
400 of FIG. 4 assumes that there may be multiple concurrent
transactions. However, some transactional applications,
such as the Redis data store, are single-threaded and thus
process transactions in a serial fashion. For these single-
threaded applications, a simplified workiflow can be used for
implementing microjournal-based transaction logging with
commit coalescing. An example of such a simplified work-
flow 600 1s shown 1n FIG. 6 according to an embodiment. In
workilow 600, exactly two micro-journals are allocated in
pool 122. In addition, a globally ascending ID 1s maintained
in DRAM 108.

At blocks 602, 604, and 606, micro-journaling service
120 can receive a transaction associated with transactional
application 116, select a free micro-journal from pool 122,
assign the selected micro-journal to the transaction, and
write a journal entry into the assigned micro-journal for each
modification operation included in the transaction.

At block 608, micro-journaling service 120 can grab the
lock on the ID 1n DRAM 108, read the current ID number,
and write the ID number to a header of the micro-journal as
a journal commait ID. Micro-journaling service 120 can then
1ssue a pcommit to commit the journal header and the
written journal entries to byte-addressable persistent
memory 110, increment the ID number in DRAM 108, and
release the lock (block 610).

Once the lock 1s released, micro-journaling service 120
can free the other micro-journal 1 pool 122 11 1t 1s not
already free (block 612) and can replay the journal entries to
modily the application data/metadata for the transaction in
place (block 614). Micro-journaling service 120 can then
return to block 602 1n order to process additional transac-
tions. Note that that there 1s no need to maintain a separate
“metadata commit ID” per micro-journal/transaction as in
worktlow 400; once a journal pcommut 1s 1ssued with respect
to one micro-journal, service 120 knows that the data/
metadata changes for the other micro-journal are also com-
mitted, and thus the other micro-journal can be automati-
cally freed for use.

For thus simplified approach, the recovery process 1s
straightforward—micro-journaling service 120 1dentifies the
micro-journal with the higher journal commit ID and replays
the journal entries in that micro-journal. There 1s no need to
take any action with respect to the other micro-journal,
because 1t 1s erther an uncommuitted journal or journal whose
data/metadata changes have already been commutted.

10

15

20

25

30

35

40

45

50

55

60

65

10

5.D Handling ID Overtlow
One potential problem with the various commit coalesc-

ing worktlows described above 1s that the globally ascending
ID maintained in DRAM 108 can overflow, which 1n turn

can break the workflows. One way for this avoiding this
problem 1s to simply use a variable size that 1s large enough
to ensure that overtflow will not occur within the practical
lifetime of the system, such as a 64-bit variable.

Another solution 1s to implement an ID reset process 700
as shown 1n FIG. 7 according to an embodiment. At blocks
702 and 704, micro-journaling service 120 can create a
shadow copy of the micro-journals in pool 122 during the
application 116’s normal runtime operation and can begin
re-writing the commit IDs 1in the shadow micro-journals
based on an iitial ID of zero (or some other 1mitial value).

Once all of the commit IDs have been rewritten, micro-
journaling service 120 can atomically activate the shadow
micro-journals and deactivate the non-shadow micro-jour-
nals, thereby completing the reset process (block 706). Or
alternatively, service 120 can use a special “reset” journal
(which does not require a commit ID) to record all of the
commit IDs to be rewritten and thus guarantee crash con-
sistency of the reset process.

Certain embodiments described herein can employ vari-
ous computer-implemented operations involving data stored
in computer systems. For example, these operations can
require physical manipulation of physical quantities—usu-
ally, though not necessarily, these quantities take the form of
clectrical or magnetic signals, where they (or representations
of them) are capable of being stored, transferred, combined,
compared, or otherwise manipulated. Such manipulations
are often referred to in terms such as producing, identitying,
determining, comparing, etc. Any operations described
herein that form part of one or more embodiments can be
useiul machine operations.

Further, one or more embodiments can relate to a device
or an apparatus for performing the foregoing operations. The
apparatus can be specially constructed for specific required
purposes, or 1t can be a general purpose computer system
selectively activated or configured by program code stored
in the computer system. In particular, various general pur-
pose machines may be used with computer programs written
in accordance with the teachings herein, or 1t may be more
convenient to construct a more specialized apparatus to
perform the required operations. The various embodiments
described herein can be practiced with other computer
system configurations including handheld devices, micro-
processor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainirame comput-
ers, and the like.

Yet further, one or more embodiments can be 1mple-
mented as one or more computer programs Or as one or more
computer program modules embodied 1n one or more non-
transitory computer readable storage media. The term non-
transitory computer readable storage medium refers to any
data storage device that can store data which can thereafter
be 1put to a computer system. The non-transitory computer
readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams 1n a manner that enables them to be read by a
computer system. Examples ol non-transitory computer
readable media include a hard drive, network attached
storage (NAS), read-only memory, random-access memory,
flash-based nonvolatile memory (e.g., a flash memory card

or a solid state disk), a CD (Compact Disc) (e.g., CD-ROM,
CD-R, CD-RW, etc.), a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage
devices. The non-transitory computer readable media can

US 10,528,436 B2

11

also be distributed over a network coupled computer system
so that the computer readable code 1s stored and executed 1n
a distributed fashion.

Finally, boundaries between various components, opera-
tions, and data stores are somewhat arbitrary, and particular
operations are 1llustrated 1n the context of specific 1llustra-
tive configurations. Other allocations of functionality are
envisioned and may fall within the scope of the invention(s).
In general, structures and functionality presented as separate
components 1n exemplary configurations can be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
can be implemented as separate components.

As used in the description herein and throughout the
claims that follow, “a,” “an,” and *“the” includes plural
references unless the context clearly dictates otherwise.
Also, as used 1n the description herein and throughout the
claims that follow, the meaming of “in” includes “in” and
“on” unless the context clearly dictates otherwise.

The above description illustrates various embodiments
along with examples of how aspects of particular embodi-
ments may be implemented. These examples and embodi-
ments should not be deemed to be the only embodiments,
and are presented to 1llustrate the flexibility and advantages
of particular embodiments as defined by the following
claims. Other arrangements, embodiments, implementations
and equivalents can be employed without departing from the
scope hereof as defined by the claims.

What 1s claimed 1s:

1. A method for ensuring crash consistency of a transac-
tional application, the method comprising:

concurrently executing, by a computer system, a plurality

of instances of a micro-journaling service, wherein

cach instance:

receives a transaction associated with the transactional
application, the transaction including a plurality of
modifications to data or metadata of the transactional
application;

selects a free micro-journal from a pool of micro-
journals, wherein the pool of micro-journals are
stored 1n a byte-addressable persistent memory of the
computer system, wherein each micro-journal in the
pool 1s configured to record journal entries for
exactly one transaction at a time, and wherein the
free micro-journal i1s not currently being used by
another nstance of the micro-journaling service;

writes journal entries into the micro-journal corre-
sponding to the plurality of modifications included in
the transaction; and

commits the journal entries to the byte-addressable
persistent memory.

2. The method of claim 1 further comprising;:

applying the plurality of modifications to the data or

metadata of the transactional application;

committing the plurality of modifications; and

freeing the micro-journal for use with subsequent trans-

actions.

3. The method of claim 1 wherein the journal entries are
idempotent.

4. The method of claim 1 wherein each micro-journal in
the pool 1s pre-allocated a fixed amount of space on the
byte-addressable persistent memory based on a maximum
transaction size expected by the transactional application.

5. The method of claim 1 wherein the data or metadata of
the transaction application 1s also stored in the byte-address-
able persistent memory.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The method of claim 1 further comprising, after a crash
or failure of the computer system:

identifying a set of micro-journals 1n the pool that were

in-flight at the time of the crash or failure;

replaying the journal entries of the identified set;

committing the replayed journal entries; and

freeing each micro-journal 1n the i1dentified set.

7. The method of claim 6 wherein i1dentifying the set of
micro-journals 1n the pool that were in-tlight at the time of
the crash or failure comprises:

identifying micro-journals in the pool that include com-

mitted journal entries but are not freed.

8. The method of claim 6 wherein the i1dentified set of
micro-journals 1n the pool that were in-flight at the time of
the crash or failure comprise micro-journals that have com-
mitted journal entries 1n byte-addressable persistent memory
but have not yet been freed.

9. The method of claiam 1 wheremn selecting the free
micro-journal comprises:

locking the selected micro-journal so that the selected

micro-journal cannot be selected by other 1nstances of
the micro-journaling service for a duration of the
transaction.

10. A non-transitory computer readable storage medium
having stored thereon program code executable by a com-
puter system, the program code embodying a method for
ensuring crash consistency of a transactional application, the
method comprising:

concurrently executing a plurality of instances of a micro-

journaling service, wherein each instance:

receives a transaction associated with the transactional
application, the transaction including a plurality of
modifications to data or metadata of the transactional
application;

selects a free micro-journal from a pool of micro-
journals, wherein the pool of micro-journals are
stored 1n a byte-addressable persistent memory of the
computer system, wherein each micro-journal in the
pool 1s configured to record journal entries for
exactly one transaction at a time, and wherein the
free micro-journal 1s not currently being used by
another instance of the micro-journaling service;

writes journal entries mnto the micro-journal corre-
sponding to the plurality of modifications included in
the transaction; and

commits the journal entries to the byte-addressable
persistent memory.

11. The non-transitory computer readable storage medium
of claim 10 wherein the method further comprises:

applying the plurality of modifications to the data or

metadata of the transactional application;

committing the plurality of modifications; and

freeing the micro-journal for use with subsequent trans-

actions.

12. The non-transitory computer readable storage medium
of claim 10 wherein the journal entries are i dempotent.

13. The non-transitory computer readable storage medium
of claam 10 wherein each micro-journal 1 the pool 1is
pre-allocated a fixed amount of space on the byte-address-
able persistent memory based on a maximum transaction
s1ze expected by the transactional application.

14. The non-transitory computer readable storage medium
of claim 10 wherein the data or metadata of the transaction
application 1s also stored 1n the byte-addressable persistent
memory.

US 10,528,436 B2

13

15. The non-transitory computer readable storage medium
of claim 10 wherein the method further comprises, after a

crash or failure of the computer system:

identifying a set of micro-journals 1n the pool that were

in-flight at the time of the crash or failure;

replaying the journal entries of the 1dentified set;

committing the replayed journal entries; and

freeing each micro-journal in the i1dentified set.

16. The non-transitory computer readable storage medium
of claim 135 wherein 1dentifying the set of micro-journals 1n
the pool that were in-tlight at the time of the crash or failure
COmMprises:

identifying micro-journals 1n the pool that include com-

mitted journal entries but are not freed.

17. A computer system comprising:
a Processor;
a byte-addressable persistent memory; and
a non-transitory computer readable medium having stored
thereon program code for implementing crash consis-
tency for a transactional application, the program code
causing the processor to:
concurrently execute a plurality of instances of a micro-
journaling service, wherein each instance:
recerves a transaction associated with the transac-
tional application, the transaction including a plu-
rality of modifications to data or metadata of the
transactional application;
selects a free micro-journal from a pool of micro-
journals, wherein the pool of micro-journals are
stored 1n the byte-addressable persistent memory,
wherein each micro-journal 1n the pool 1s config-
ured to record journal entries for exactly one
transaction at a time, and wherein the free micro-
journal 1s not currently being used by another
instance of the micro-journaling service;

10

15

20

25

30

14

writes journal entries into the micro-journal corre-
sponding to the plurality of modifications included
in the transaction; and

commits the journal entries to the byte-addressable
persistent memory.

18. The computer system of claim 17 wherein the pro-
gram code further causes the processor to:

apply the plurality of modifications to the data or meta-

data of the transactional application;

commit the plurality of modifications; and

free the micro-journal for use with subsequent transac-

tions.

19. The computer system of claim 17 wherein the journal
entries are 1dempotent.

20. The computer system of claim 17 wherein each
micro-journal 1n the pool 1s pre-allocated a fixed amount of
space on the byte-addressable persistent memory based on a
maximum transaction size expected by the transactional
application.

21. The computer system of claim 17 wherein the data or
metadata of the transaction application 1s also stored in the
byte-addressable persistent memory.

22. The computer system of claam 17 wherein the pro-
gram code further causes the processor to, after a crash or
failure of the computer system:

identily a set of micro-journals 1n the pool that were

in-flight at the time of the crash or failure;

replay the journal entries of the identified set;

commit the replayed journal entries; and

free each micro-journal in the i1dentified set.

23. The computer system of claim 22 wherein identifying
the set of micro-journals 1n the pool that were in-flight at the
time of the crash or failure comprises:

identifying micro-journals in the pool that include com-

mitted journal entries but are not freed.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

