12 United States Patent

Davis et al.

US010528419B2

US 10,528.419 B2
Jan. 7, 2020

(10) Patent No.:
45) Date of Patent:

(54) MAPPING AROUND DEFECTIVE FLASH
MEMORY OF A STORAGE ARRAY
(71)

Applicant: Pure Storage, Inc., Mountain View, CA
(US)

(72) Inventors: John D. Davis, Mountain View, CA
(US); John Hayes, Mountain View, CA
(US); Hari Kannan, Mountain View,
CA (US); Nenad Miladinovic,
Mountain View, CA (US); Zhangxi
Tan, Mountain View, CA (US)

(73) Pure Storage, Inc., Mountain View, CA

(US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(%)

(21) 15/705,691

(22)

Appl. No.:
Filed: Sep. 15, 2017

Prior Publication Data

US 2018/0004594 Al Jan. 4, 2013

(65)

Related U.S. Application Data

(63)
Aug. 7, 2014, now Pat. No. 9,766,972.

Int. CIL.
GO6F 11/10
HO3M 13/37

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC

(52)
GOGF 11/1012 (2013.01); HO3M 13/3761
(2013.01); GOGF 11/1008 (2013.01);

Continuation of application No. 14/454,531, filed on

(38) Field of Classification Search
CPC GO6F 11/1008; GO6F 11/1012; GO6F
11/2033; GO6F 12/0246; GO6F 12/0646;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

2/1995 Lubbers et al.
12/1995 Jones

(Continued)

5,390,327 A
5,479,653 A

FOR.

IGN PATENT DOCUMENTS

3/2010
12/2010

(Continued)

EP
EP

2164006
2256621

OTHER PUBLICATIONS

Hwang, Kai et al. “RAID-x: A New Distributed Disk Array for
[/O-Centric Cluster Computing,” HPDC *00 Proceedings of the 9th

IEEE International Symposium on High Performance Distributed
Computing, IEEE, 2000, pp. 279-286.

(Continued)

Primary Examiner — Kyle Vallecillo

(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(US) LLP

(57) ABSTRACT

A method of failure mapping 1s provided. The method
includes determiming that a non-volatile memory block 1n
the memory has a defect and generating a mask that indi-
cates the non-volatile memory block and the defect. The
method includes reading from the non-volatile memory
block with application of the mask, wherein the reading and
the application of the mask are performed by the non-
volatile solid-state storage.

(Continued) 20 Claims, 10 Drawing Sheets
156~
CPU
212~ ﬁ 216
Controller
008~ __ (=) DRAM
| Error Correction
oz T
N et Womry o
1 ash Memory |
222 e e ﬁggi
Die | A
: i Flash !
299 D.ie /):,Packai‘e__‘_egz _\:Leoz
\ ______ o2
Die 222
Plane Plane >
Block|[* * " | h2ages
70‘1\ ;ﬂ:mza
504 606 604

US 10,528,419 B2
Page 2

(1)

(52)

(58)

(56)

Int. ClL.
HO3M 13/11 (2006.01)
HO3M 13/09 (2006.01)
HO3M 13/15 (2006.01)
G1I1C 29/00 (2006.01)
GoOol 12/08 (2016.01)
GO6lF 12/06 (2006.01)
Gool’ 12/02 (2006.01)
HO3M 13/05 (2006.01)
U.S. CL
CPC ... GO6F 12/0246 (2013.01); GO6F 12/0646
(2013.01); GO6F 12/08 (2013.01); G1iC 29/70
(2013.01); G1IC 29/76 (2013.01); G1iC
29/765 (2013.01); GI1IC 29/88 (2013.01);
G11C 29/883 (2013.01); G1IC 29/856
(2013.01); HO3M 13/05 (2013.01); HO3M
13/09 (2013.01); HO3M 13/1102 (2013.01);
HO3M 13/1515 (2013.01)
Field of Classification Search
CPC GO6F 12/08; HO4L 29/14; G11C 29/04;
G11C 29/70; G11C 29/76; G11C 29/765;
G11C 29/81; G11C 29/88; G11C 29/883;
G11C 29/886; G11C 2029/0401; G11C
2029/0403; HO3M 13/05; HO3M 13/09;
HO3M 13/1102; HO3M 13/1515; HO3M
13/3761
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5,649,093 A 7/1997 Hanko et al.
6,275,898 Bl 8/2001 DeKoning
6,535,417 B2 3/2003 Tsuda
6,643,748 B1 11/2003 Wieland
6,725,392 Bl 4/2004 Frey et al.
6,836,816 B2 12/2004 Kendall
6,985,995 B2 1/2006 Holland et al.
7,032,125 B2 4/2006 Holt et al.
7,051,155 B2 5/2006 Talagala et al.
7,065,617 B2 6/2006 Wang
7,069,383 B2 6/2006 Yamamoto et al.
7,076,606 B2 7/2006 Orsley
7,107,480 Bl 9/2006 Moshayedi et al.
7,159,150 B2 1/2007 Kenchammana-Hosekote et al.
7,162,575 B2 1/2007 Dalal et al.
7,164,608 B2 1/2007 Lee
7,334,156 B2 2/2008 Land et al.
7,370,220 Bl 5/2008 Nguyen et al.
7,424,498 Bl 9/2008 Patterson
7,424,592 Bl 9/2008 Karr
7,444,532 B2 10/2008 Masuyama et al.
7,480,658 B2 1/2009 Heinle et al.
7,536,506 B2 5/2009 Ashmore et al.
7,558,859 B2 7/2009 Kasiolas
7,565,446 B2 7/2009 Talagala et al.
7,613,947 B1 11/2009 Coatney
7,681,104 Bl 3/2010 Sim-Tang et al.
7,681,105 Bl 3/2010 Sim-Tang et al.
7,730,258 Bl 6/2010 Snuth
7,743,276 B2 6/2010 Jacobsen et al.
7,757,038 B2 7/2010 Kitahara
7,778,960 Bl 8/2010 Chatterjee et al.
7,814,272 B2 10/2010 Barrall et al.
7,814,273 B2 10/2010 Barrall
7,818,531 B2 10/2010 Barrall
7,827,351 B2 11/2010 Suetsugu et al.
7,827,439 B2 11/2010 Matthew et al.
7,870,105 B2 1/2011 Arakawa et al.
7,885,938 Bl 2/2011 Greene et al.
7,886,111 B2 2/2011 Klemm et al.
7,908,448 Bl 3/2011 Chatterjee et al.

7,916,538
7,941,697
7,958,303
7,971,129
7,991,822
8,010,485
8,010,829
8,020,047
8,046,548
8,051,361
8,051,362
8,082,393
8,080,634
8,080,911
8,090,837
8,108,502
8,117,388
8,140,821
8,145,838
8,145,840
8,176,360
8,180,855
8,200,922
8,225,000
8,239,618
8,244,999
8,305,811
8,315,999
8,320,200

8,327,080
8,351,290
8,375,146
8,397,016
8,402,152
8,412,880
8,423,739
8,429,436
8,473,778
8,479,037
8,498,967
8,522,073
8,533,527
8,544,029
8,589,625
8,595,455
8,615,599
8,627,136
8,627,138
8,600,131
8,601,218
8,700,875
8,700,694
8,700,914
8,713,405
8,725,730
8,750,387
8,702,793
8,775,858
8,775,808
8,788,913
8,799,746
8,819,311
8,819,383
8,824,201
8,843,700
8,850,108
8,850,288
8,850,593
8,850,619
8,802,847
8,802,928
8,308,825
8,874,836
8,880,778
8,898,383
8,898,388
8,904,231
8,918,478

B2
B2
B2
B2
B2
Bl
Bl
B2
Bl
B2
B2
B2
B2
Bl
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
Bl
B2
Bl
B2
B2
B2

Bl
Bl
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
B2
B2
B2
B2
B2

3/2011
5/2011
6/2011
6/2011
8/2011
8/2011
8/2011
9/2011
10/2011
11/2011
11/2011
12/2011
12/2011
12/2011

1/201

1/201
2/201
3/201
3/201
3/201
5/201
5/201
6/201
7/201
8/201
8/201
11/201
11/201
11/201

12/201
1/201
2/201
3/201
3/201
4/201
4/201
4/201
6/201
7/201
7/201
8/201
9/201
9/201

11/201

11/201

12/201
1/201
1/201
2/201
2/201
4/201
4/201
4/201
4/201
5/201
6/201
6/201
7/201
7/201
7/201
8/201
8/201
8/201
9/201
9/201
9/201
9/201

10/201

10/201

10/201
10/201
10/201
10/201
11/201
11/201
11/201
12/201
12/201

N R s S S e N A e A A S N S

~bhbrbs b, bbb bhbbbbbbbbbbbbbbbbbbbbbbbbbADbADSADSADBA,DSLADLDBDDLWWWIWILWWIWILWWILWWWIWIWWIWN

Jeon et al.
Mathew et al.
Shuster

Watson

Bish et al.
Chatterjee et al.
Chatterjee et al.
Courtney
Chatterjee et al.
Sim-Tang et al.
L1 et al.
Galloway et al.
Mimatsu
Taylor

Shin et al.
Tabbara et al.
Jernigan, IV
Raizen et al.
Miller et al.
Koul et al.
Frost et al.
Aiello et al.
McKean et al.
Karamcheti
Kotzur et al.
Chatterjee et al.
Jeon

Chatley et al.

Keeth

Der

Huang et al.
Sinclair
Talagala et al.
Duran
Leibowitz et al.
Ash et al.
Filingim et al.
Simitcl
Chatterjee et al.

Chatterjee et al.
Cohe

Daikokuya et al.

Bakke et al.

Colgrove et al.

Chatterjee et al.
Takefman et al.

Shankar et al.
Clark
Vermunt et al.
Piszczek et al.
Barron et al.
Chatterjee et al.
Duchesneau
Healey et al.
Keeton et al.
Frost et al.
Grube et al.
Gower et al.
Colgrove et al.
Xin et al.

Baker et al.
[.1a0

Jobanputra et al.

Miller et al.
Salessi et al.
Hayes et al.
[Lazier et al.
Eckhardt et al.
Cypher

Feng et al.
Xavier et al.
Hayes

Hayes
Nedved et al.

Yamamoto et al.

Kimmel
Coatney et al.
Ozzie et al.

G11C 29/808
365/200

US 10,528,419 B2

Page 3
(56) References Cited 2011/0060927 Al 3/2011 Fillingim et al.
2011/0119462 A1 5/2011 Leach et al.
U.S. PATENT DOCUMENTS 2011/0219170 Al 9/2011 Frost et al.
2011/0238625 Al 9/2011 Hamaguchi et al.
8,930,307 B2 1/2015 Colgrove et al. 2011/0264843 Al 10/2011 Haines et al.
8,930,633 B2 1/2015 Amit et al. 2011/0302369 Al 12/2011 Goto et al.
8,949,502 B2 2/2015 McKnight et al. 2012/0011398 Al 1/2012 Eckhardt
8,959,110 B2 2/2015 Smuth et al. 2012/0072768 Al* 3/2012 MOITiS ovvvveeen.... GOG6F 11/1666
8,977,597 B2 3/2015 Ganesh et al. 714/6.9
9,003,144 Bl 4/2015 Hayes et al. 2012/0079318 A1 3/2012 Colgrove et al.
209,724 B2 42015 Gold et al 2012/0110249 Al 5/2012 Jeong et al.
9,021,053 B2 4/2015 Bernbo et al. - . . -
_ . 2012/0131253 Al 5/2012 McKnight
0,021,215 B2 4/2015 Meir et al. - . .
_ 2012/0158923 Al 6/2012 Mohamed et al.
9,025,393 B2 52015 Wu 2012/0191900 A 7/2012 Kunimatsu et al
0,043372 B2 5/2015 Makkar et al. 0120108157 Al $5015 T“mm""‘"zile al-
9,053,808 B2 6/2015 Sprouse . . L letry et al.
9,058,155 B2 6/205 Cepulls et Ell 202/0198261 A 8/202 BI’OWII et 3.1
9,116,819 B2 82015 Cope et al. 2012/0209943 Al 8/2012 Jung
9,117,536 B2 82015 Yoon 2012/0226934 Al 9/2012 Rao
9.122.401 B2 0/2015 Zaltsman et al. 2012/0246435 Al 9/2012 Meir et al.
0.134,908 B2 9/2015 Horn et al. 2012/0260055 Al 10/2012 Murase
9,153,337 B2 10/2015 Sutardja 2012/0311557 Al 12/2012 Resch
9,189,650 B2 11/2015 Jaye et al. 2013/0022201 Al 1/2013 Glew et al.
9,201,733 B2 12/2015 Verma 2013/0036314 Al 2/2013 Glew et al.
9,207,876 B2 12/2015 Shu et al. 2013/0042056 Al 2/2013 Shats
9,251,066 B2 2/2016 Colgrove et al. 2013/0060884 Al 3/2013 Bernbo et al.
9,323,667 B2 4/2016 Bennett 2013/0067188 Al 3/2013 Mehra et al.
9,323,681 B2 4/2016 Apostolides et al. 2013/0073894 Al 3/2013 Xavier et al.
9,348,538 B2 5/2016 Mallaiah et al. 2013/0073895 Al* 3/2013 Cohen ... GOGF 11/1096
0,384,082 Bl 7/2016 Lee et al. 14/6.
9,390,019 B2 7/2016 " Patterson et al. 2013/0124776 Al 52013 Hallak et al.
9,405,478 B2 8/2016 Koseki et al. | | |
0437541 BY 29016 Ishida 2013/0132800 Al 5/2013 Healy et al.
0.552.200 B2 1/2017 Stalzer 2013/0151771 Al 6/2013 Tsukahara et al
9,558,069 B2 1/2017 Davis .oceevveeevenn., GOGF 11/142 2013/0173853 Al 7/2013 Ungureanu et al.
9,640,279 BL* 5/2017 POPPS vecvveveereeenn, G11C 29/16 2013/0238554 Al 9/2013 Yucel et al.
9,818,478 B2 11/2017 Chung 2013/0246839 Al* 9/2013 Werner GO6F 11/108
9,829,066 B2 11/2017 Thomas et al. 714/6. 13
2002/0144059 Al 10/2002 Kendall 2013/0290618 Al* 10/2013 Werner GOGF 11/1044
2003/0105984 Al 6/2003 Masuyama et al. 711/103
2003/0110205 Al 6/2003 Johnson 2013/0339314 Al 12/2013 Carpentier et al.
2004/0161086 Al 82004 Buntin et al. S013/0330635 Al 199013 Amvt of ol
2005/0001652 Al 1/2005 Malik et al. ! ! ! itet al
2005/0076228 Al 4/2005 Davis et al. 2013/0339818 Al 12/2013 Baker et al.
2005/0235132 Al 10/2005 Karr et al. 2014/0040530 A1* 2/2014 Chenoonnn... GO6F 11/1068
2005/0278460 Al 12/2005 Shin et al. 711/103
2005/0283649 Al 12/2005 Turner et al. 2014/0040535 Al 2/2014 Lee
2006/0015683 Al 1/2006 Ashmore et al. 2014/0040702 Al 2/2014 He et al.
2006/0114930 Al 6/2006 Lucas et al. 2014/0047263 Al 2/2014 Coatney et al.
2006/0174157 Al 8/2006 Barrall et al. - - - -
2014/0047269 Al 2/2014 K
2006/0248294 Al 11/2006 Nedved et al. » | 0. i |
2007/0079068 Al 4/2007 Draggon 201470065721 Al 3/2014 Herman et al.
2007/0214314 Al 9/2007 Reuter 2014/0068224 Al 3/2014 Fan et al.
2007/0234016 Al 10/2007 Davis et al. 2014/0075252 Al 3/2014 Luo et al.
2007/0268905 Al 11/2007 Baker et al. 2014/0082411 Al* 3/2014 Warnes GO6F 11/1666
2008/0080709 Al 4/2008 Michtchenko et al. 714/6.3
2008/0107274 Al 5/2008 Worthy 2014/0136880 Al 5/2014 Shankar et al.
%ggg&g;ggﬁé if 1%882 i_ﬂd@fsoﬂ et al. 2014/0181402 Al 6/2014 White
1 120 | . _
2009/0077208 Al 3/2009 Nguyen et al. 20140189421 AL™ 722014 Werner ..c.oveveee. G06F7112/260§?
2009/0138654 Al 5/2009 Sutardja) *
2009/0210616 Al* 82009 Karamcheti G11C 5/04 2014/0208062 AL* 772014 Cohen GO6F73£§82
711/105
2009/0216910 Al 82009 Duchesneau 2014/0237164 Al 8/2014 Le et al.
2009/0216920 Al 82009 Lauterbach et al. 2014/0279936 Al 9/2014 Bernbo et al.
2009/0254689 Al* 10/2009 Karamcheti GO6F 12/0246 2014/0280025 A1 9/2014 FEidson et al.
710/301 2014/0289588 Al 9/2014 Nagadomu et al.
2010/0017444 A1 12010 Chatterjee et al. 2014/0380125 Al 12/2014 Calder et al.
38i“8§88§i§3§ N %878 i et] 2014/0380126 Al 12/2014 Yekhanin et al.
1 1 1 pOS OL1acs ClL 4al. : : :
2010/0115070 Al 5/2010 Missimilly ggtgfgggégig ii" %82 im“‘?s
2010/0125695 A1 5/2010 Wu et al. - : 1) LOWIS
2010/0162076 Al 6/2010 Sim-Tang et al. 2015/0039849 Al 272015 Lewis
2010/0169707 Al 7/2010 Mathew et al. 2015/0089285 Al 372015 Kermarrec et al.
2010/0174576 Al 7/2010 Naylor 2015/0100746 Al 4/2015 Rychlik
2010/0268908 Al 10/2010 Ouyang et al. 2015/0134824 Al 5/2015 Mickens
2011/0040925 Al 2/2011 Frost et al. 2015/0153800 Al 6/2015 Lucas et al.

US 10,528,419 B2
Page 4

(56) References Cited
U.S. PATENT DOCUMENTS

6/2015 Chunn
10/2015 Vincent

2015/0180714 Al
2015/0280959 Al

FOREIGN PATENT DOCUMENTS

WO WO 02-13033 2/2002
WO WO 2008103569 8/2008
WO WO 2008157081 12/2008
WO WO 2013032825 7/2013

OTHER PUBLICATIONS

Schmid, Patrick: “RAID Scaling Charts, Part 3:4-128 kB Stripes
Compared”, Tom’s Hardware, Nov. 27, 2007 (http://www.tomshardware.

com/reviews/RAID-SCALING-CHARTS. 1735-4. html), See pp. 1-2.

Storer, Mark W. et al., “Pergamum: Replacing Tape with Energy
Efficient, Reliable, Disk-Based Archival Storage,” Fast '08: 6th
USENIX Conference on File and Storage Technologies, San Jose,
CA, Feb. 26-29, 2008 pp. 1-16.

Ju-Kyeong Kim et al., “Data Access Frequency based Data Repli-
cation Method using Erasure Codes in Cloud Storage System”,
Journal of the Institute of Electronics and Information Engineers,
Feb. 2014, vol. 51, No. 2, pp. 85-91.

International Search Report and the Written Opinion of the Inter-
national Searching Authority, PCT/US2015/018169, dated May 15,
2015.

International Search Report and the Written Opinion of the Inter-
national Searching Authority, PCT/US2015/034302, dated Sep. 11,
2015.

International Search Report and the Written Opinion of the Inter-
national Searching Authority, PCT/US2015/039135, dated Sep. 18,
2015.

International Search Report and the Written Opinion of the Inter-
national Searching Authority, PCT/US2015/039136, dated Sep. 23,
2015.

International Search Report, PCT/US2015/039142, dated Sep. 24,
2015.

International Search Report, PCT/US2015/034291, dated Sep. 30,
2015.

International Search Report and the Written Opinion of the Inter-
national Searching Authority, PCT/US2015/039137, dated Oct. 1,
2015.

International Search Report, PCT/US2015/044370, dated Dec. 15,
2015.

International Search Report amd the Written Opinion of the Inter-
national Searching Authority, PCT/US2016/031039, dated May 35,
2016.

International Search Report, PCT/US2016/014604, dated May 19,
2016.

International Search Report, PCT/US2016/014361, dated May 30,
2016.

International Search Report, PCT/US2016/014356, dated Jun. 28,
2016.

International Search Report, PCT/US2016/014357, dated Jun. 29,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/016504, dated Jul. 6,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/024391, dated Jul. 12,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authornty, PCT/US2016/026529, dated Jul. 19,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/023485, dated Jul. 21,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/033306, dated Aug. 19,
2016.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/047808, dated Nov. 25,
2016.

Stalzer, Mark A., “FlashBlades: System Architecture and Applica-
tions,” Proceedings of the 2nd Workshop on Architectures and
Systems for Big Data, Association for Computing Machinery, New
York, NY, 2012, pp. 10-14.

International Seach Report and the Written Opinion of the Interna-
tional Searching Authority, PCT/US2016/042147, dated Nov. 30,
2016.

* cited by examiner

US 10,528,419 B2

Sheet 1 of 10

851

Jan. 7, 2020

U.S. Patent

abeloig

- ©1E)S PIOS |
Wu_mm_o?,coz

1

R v e

sue-

oLae
UOUMS

051 0GL 05l

av L

opoN abeloig

-0

US 10,528,419 B2

Sheet 2 of 10

Jan. 7, 2020

U.S. Patent

O%L

EE

abeiolg yse|d

- J8]J0JIUuoN

- pgl

_ IERYETS
m

SOYIIMS

—

_ SOALI(] PJeH

m I8N0y _

9zl -
$92.IN0s8Y sbelio]

| -0zl

$82IN0s8Y DUDLIOMIBN

801 ~ -

e L

Isjjosiuon sbeioig

|
00)

7L

waisAe bunndwon asudisiug

gLl
_ S108S820J

i

gl

$82.1n0s8} buissanold

1 -0

¥

J8||04uon) m:_vtmémz a ﬁ_m_n_mbcoo DUISS8201d _

011

e

U.S. Patent Jan. 7, 2020 Sheet 3 of 10 US 10,528,419 B2

State Memory
04~

US 10,528,419 B2

907

Sheet 4 of 10

76L 751 7S\ 750 751 7§l
c7) 082) 0¢2, 0s7) 087) 052)

£ { /

[BlEIE

Ve~ |

| apopN 9bei01g
0G|

Jan. 7, 2020

061

P ey man DR VTR O UTE pew e salh SR sl

" N 10euUcoalUI LOIIBIIUNWILOT

o A el o kxa TR e s RN DI YRR e gmy AW

U.S. Patent

U.S. Patent Jan. 7, 2020 Sheet 5 of 10 US 10,528,419 B2

|

- Translation |

| Translation |
502D l

i Data Shard < ¢ » Data

" Translation t

| Translation |

l | Table |

l | Address

- Translation |~
Physical Flasnh
Memory Location

Shard

200

U.S. Patent Jan. 7, 2020 Sheet 6 of 10 US 10,528,419 B2

CPU

ik wewd i

ey R e e e e e e el

US 10,528,419 B2

0L/
AVIRAL

Sheet 7 of 10

=
Y

01

Jan. 7, 2020

A7
011

01/

U.S. Patent

mE mm:c

Nom

aoede

1 SS9l
-90/ ao_.%mc .

U.S. Patent Jan. 7, 2020 Sheet 8 of 10 US 10,528,419 B2

Defective Flash Block

. T — O , 208 208 808
_ Defect Indicator

802

Mask
806

606~

224 -

Replace Bit Values

U.S. Patent Jan. 7, 2020 Sheet 9 of 10 US 10,528,419 B2

02~
Distribute user data throughout|

U.S. Patent Jan. 7, 2020 Sheet 10 of 10 US 10,528,419 B2

j— 1001 E 1003

CPU Memory

)” 1005 | o
— - — | | Input/Output
e - BUS . Device
)— 1007 -
Mass
Storage
f 1011
Display

FIG. 10

US 10,528,419 B2

1

MAPPING AROUND DEFECTIVE FLASH
MEMORY OF A STORAGE ARRAY

BACKGROUND

Solid-state memory, such as flash, 1s currently 1n use 1n
solid-state drives (SSD) to augment or replace conventional
hard disk drives (HDD), writable CD (compact disk) or
writable DVD (digital versatile disk) drives, collectively
known as spinming media, and tape drives, for storage of
large amounts of data. Flash and other solid-state memories
have operation, lifespan, defect and other characteristics that
differ from spinning media. Yet, many solid-state drives are
designed to conform to hard disk drive standards for com-
patibility reasons, which makes it diflicult to provide
enhanced features or take advantage of unique aspects of
flash and other solid-state memory. Address spaces opti-
mized for spinning media may be suboptimal for solid-state
memory.

It 1s within this context that the embodiments arise.

SUMMARY

In some embodiments, a method of failure mapping 1s
provided. The method includes distributing user data
throughout a plurality of storage nodes through erasure
coding, wherein the plurality of storage nodes are housed
within a chassis that couples the storage nodes as a storage
cluster. Each of the plurality of storage nodes has a non-
volatile solid-state storage with non-volatile memory and the
user data 1s accessible via the erasure coding from a remain-
der of the plurality of storage nodes 1n event of two of the
plurality of storage nodes being unreachable. The method
includes determiming that a non-volatile memory block 1n
the memory has a defect and generating a mask that indi-
cates the flash block and the defect. The method includes
reading from the non-volatile memory block with applica-
tion of the mask, wherein the reading and the application of
the mask are performed by the non-volatile solid-state
storage.

Other aspects and advantages of the embodiments will
become apparent from the following detailed description
taken 1n conjunction with the accompanying drawings which
illustrate, by way of example, the principles of the described
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The described embodiments and the advantages thereof
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings. These drawings 1n no way limit any changes 1n
form and detail that may be made to the described embodi-
ments by one skilled 1n the art without departing from the
spirit and scope of the described embodiments.

FIG. 1 1s a perspective view of a storage cluster with
multiple storage nodes and internal storage coupled to each
storage node to provide network attached storage, in accor-
dance with some embodiments.

FIG. 2 1s a system diagram of an enterprise computing
system, which can use one or more of the storage clusters of
FIG. 1 as a storage resource 1n some embodiments.

FIG. 3 1s a multiple level block diagram, showing con-
tents of a storage node and contents of one of the non-
volatile solid-state storage units in accordance with some
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a block diagram showing a communication path
for redundant copies of metadata, with further details of

storage nodes and solid-state storages 1n accordance with
some embodiments.

FIG. 5 1s an address and data diagram showing address
translation as applied to user data being stored 1n a non-
volatile solid-state storage in some embodiments.

FIG. 6 1s a multiple level block diagram, showing a
controller, flash dies, and interior details of flash dies.

FIG. 7 illustrates faillure mapping, in which addresses are
mapped around defects 1n flash memory, 1n some embodi-
ments.

FIG. 8A illustrates a defective flash block 1n one of the
flash dies 1 a flash memory.

FIG. 8B shows a mask with a defect indicator, which can
be applied to mask a defect in the defective flash block of
FIG. 8A.

FIG. 8C shows various strategies and mechanisms for
applying the mask shown 1n FIG. 8B to reads of data in the
flash block of FIG. 8A.

FIG. 9 1s a flow diagram of a method for masking
defective bits 1n a storage array, which can be practiced on
or by the storage cluster, storage nodes and/or non-volatile
solid-state storages in accordance with some embodiments.

FIG. 10 1s an 1llustration showing an exemplary comput-
ing device which may mmplement the embodiments
described herein.

DETAILED DESCRIPTION

The embodiments below describe a storage cluster that
stores user data, such as user data originating from one or
more user or client systems or other sources external to the
storage cluster. The storage cluster distributes user data
across storage nodes housed within a chassis, using erasure
coding and redundant copies of metadata. Erasure coding
refers to a method of data protection in which data 1s broken
into fragments, expanded and encoded with redundant data
pieces and stored across a set of diflerent locations, such as
disks, storage nodes or geographic locations. Flash memory
1s one type of solid-state memory that may be integrated
with the embodiments, although the embodiments may be
extended to other types of solid-state memory or other
storage medium, including non-solid state memory. Control
of storage locations and workloads are distributed across the
storage locations 1n a clustered peer-to-peer system. Tasks
such as mediating communications between the various
storage nodes, detecting when a storage node has become
unavailable, and balancing I/Os (inputs and outputs) across
the various storage nodes, are all handled on a distributed
basis. Data 1s laid out or distributed across multiple storage
nodes 1n data fragments or stripes that support data recovery
in some embodiments. Ownership of data can be reassigned
within a cluster, independent of mput and output patterns.
This architecture described 1n more detail below allows a
storage node 1n the cluster to fail, with the system remaining
operational, since the data can be reconstructed from other
storage nodes and thus remain available for input and output
operations. In various embodiments, a storage node may be
referred to as a cluster node, a blade, or a server.

The storage cluster 1s contained within a chassis, 1.e., an
enclosure housing one or more storage nodes. A mechanism
to provide power to each storage node, such as a power
distribution bus, and a communication mechanism, such as
a communication bus that enables communication between
the storage nodes are included within the chassis. The
storage cluster can run as an mdependent system 1n one

US 10,528,419 B2

3

location according to some embodiments. In one embodi-
ment, a chassis contains at least two instances of both the
power distribution and the communication bus which may
be enabled or disabled independently. The mternal commu-
nication bus may be an Ethernet bus, however, other tech- 5
nologies such as Peripheral Component Interconnect (PCI)
Express, InfiniBand, and others, are equally suitable. The
chassis provides a port for an external communication bus
for enabling communication between multiple chassis,
directly or through a switch, and with client systems. The 10
external communication may use a technology such as
Ethernet, InfiniBand, Fibre Channel, etc. In some embodi-
ments, the external communication bus uses diflerent com-
munication bus technologies for inter-chassis and client
communication. If a switch 1s deployed within or between 15
chassis, the switch may act as a translation between multiple
protocols or technologies. When multiple chassis are con-
nected to define a storage cluster, the storage cluster may be
accessed by a client using either proprietary interfaces or
standard interfaces such as network file system (NFS), 20
common 1nternet file system (CIFS), small computer system
interface (SCSI) or hypertext transier protocol (HTTP).
Translation from the client protocol may occur at the switch,
chassis external communication bus or within each storage
node. 25

Each storage node may be one or more storage servers and
cach storage server 1s connected to one or more non-volatile
solid-state memory units, which may be referred to as
non-volatile solid-state storages or storage units. One
embodiment includes a single storage server 1in each storage 30
node and between one to eight non-volatile solid-state
memory units, however this one example 1s not meant to be
limiting. The storage server may include a processor,
dynamic random access memory (DRAM) and interfaces for
the mternal communication bus and power distribution for 35
cach of the power buses. Inside the storage node, the
interfaces and non-volatile solid-state storage share a com-
munication bus, e.g., PCI Express, in some embodiments.
The non-volatile solid-state memory units may directly
access the internal communication bus interface through a 40
storage node communication bus, or request the storage
node to access the bus interface. The non-volatile solid-state
memory unit contains an embedded central processing unit
(CPU), solid-state storage controller, and a quantity of
solid-state mass storage, e.g., between 2-32 terabytes (ITB) 45
in some embodiments. An embedded volatile storage
medium, such as DRAM, and an energy reserve apparatus
are included 1n the non-volatile solid-state memory unit. In
some embodiments, the energy reserve apparatus 1s a capaci-
tor, super-capacitor, or battery that enables transferring a 50
subset of DRAM contents to a stable storage medium in the
case ol power loss. In some embodiments, the non-volatile
solid-state memory unit 1s constructed with a storage class
memory, such as phase change or magnetoresistive random
access memory (MRAM) that substitutes for DRAM and 55
enables a reduced power hold-up apparatus.

The storage nodes have one or more non-volatile solid-
state storage units, each of which has non-volatile random-
access memory (NVRAM) and flash memory, mn some
embodiments. The non-volatile solid-state storage units 60
apply various address spaces for storing user data. The
address spaces, and assignments of addresses to data seg-
ments and data shards, may be tracked in mapping tables,
which are implemented as metadata 1n various locations in
memory. In some embodiments, an address space has 65
sequential, nonrepeating addresses, as applied to medium
addresses, segment addresses and/or virtual allocation units

4

of the user data. In various embodiments, the address space
can be ever-increasing, ever-decreasing or some other non-
repeating sequence of values. For simplicity, the ever-
increasing, nonrepeating addresses may be used as one
example 1n the embodiments but 1s not meant to be limiting.
This mechanism enhances the ability to write to pages 1n
flash memory, and for reading the flash memory to recover
a previous version of user data. In a storage cluster, the
non-volatile solid-state storage units are assigned non-over-
lapping ranges from this address space.

One of many features of the storage nodes and non-
volatile solid-state storage units described below 1s the
ability to mask defective bits when reading from the flash
memory. The non-volatile solid-state storage units generate
masks based on defects in the flash memory. There are
various mechanisms to apply a mask, and various embodi-
ments may make use of one or more related mechanisms. Bit
values can be replaced, bit values can be removed and
substitute data 1inserted, or bit locations can be masked so as
to indicate to error correction a don’t care, or a probability
of a stuck bit 1n some embodiments. Allowing continued use
of flash dies with defective blocks or pages, and flash
packages with defective flash dies, supports yield recovery,
use of all available storage space, and virtualizing the
capacity of the system. Die packages that could not ordi-
narily be sold in the marketplace can be used herein. The
detection of defects, and application of masking, can be
performed dynamically, which supports graceful degrada-
tion of storage capacity without catastrophic failure.

FIG. 1 1s a perspective view of a storage cluster 160, with
multiple storage nodes 150 and internal solid-state memory
coupled to each storage node to provide network attached
storage or storage area network, n accordance with some
embodiments. A network attached storage, storage area
network, or a storage cluster, or other storage memory, could
include one or more storage clusters 160, each having one or
more storage nodes 150, in a tlexible and reconfigurable
arrangement of both the physical components and the
amount of storage memory provided thereby. The storage
cluster 160 1s designed to fit 1n a rack, and one or more racks
can be set up and populated as desired for the storage
memory. The storage cluster 160 has a single chassis 138
having multiple slots 142. It should be appreciated that
chassis 138 may be referred to as a housing, enclosure, or
rack unit. In one embodiment, the chassis 138 has fourteen
slots 142, although other numbers of slots are readily
devised. For example, some embodiments have four slots,
cight slots, sixteen slots, thirty-two slots, or other suitable
number of slots. Each slot 142 can accommodate one storage
node 150 1 some embodiments. Chassis 138 includes flaps
148 that can be utilized to mount the chassis 138 on a rack.
Fans 144 provide air circulation for cooling of the storage
nodes 150 and components thereot, although other cooling
components could be used, or an embodiment could be
devised without cooling components. A switch fabric 146
couples storage nodes 150 within chassis 138 together and
to a network for communication to the memory. In an
embodiment depicted 1n FIG. 1, the slots 142 to the left of
the switch fabric 146 and fans 144 are shown occupied by
storage nodes 150, while the slots 142 to the right of the
switch fabric 146 and fans 144 are empty and available for
insertion of storage node 150 for illustrative purposes. This
configuration 1s one example, and one or more storage nodes
150 could occupy the slots 142 1n various further arrange-
ments. The storage node arrangements need not be sequen-
tial or adjacent 1n some embodiments. Storage nodes 150 are
hot pluggable, meaning that a storage node 150 can be

US 10,528,419 B2

S

inserted into a slot 142 1n the chassis 138, or removed {from
a slot 142, without stopping or powering down the system.
Upon insertion or removal of storage node 150 from slot
142, the system automatically reconfigures in order to rec-
ognize and adapt to the change. Reconfiguration, 1n some
embodiments, includes restoring redundancy and/or rebal-
ancing data or load.

Each storage node 150 can have multiple components. In
the embodiment shown here, the storage node 150 includes
a printed circuit board 158 populated by a CPU 156, 1.¢.,
processor, a memory 154 coupled to the CPU 156, and a
non-volatile solid-state storage 152 coupled to the CPU 156,
although other mountings and/or components could be used
in further embodiments. The memory 154 has instructions
which are executed by the CPU 156 and/or data operated on
by the CPU 156. As further explained below, the non-
volatile solid-state storage 152 includes flash or, i further
embodiments, other types of solid-state memory.

Storage cluster 160 i1s scalable, meaning that storage
capacity with non-uniform storage sizes 1s readily added, as
described above. One or more storage nodes 150 can be
plugged mto or removed from each chassis and the storage
cluster self-configures 1 some embodiments. Plug-in stor-
age nodes 150, whether 1nstalled 1n a chassis as delivered or
later added, can have different sizes. For example, in one
embodiment a storage node 150 can have any multiple of 4
TB, e.g., 8 TB, 12 TB, 16 TB, 32 TB, etc. In further
embodiments, a storage node 150 could have any multiple of
other storage amounts or capacities. Storage capacity of each
storage node 150 1s broadcast, and influences decisions of
how to stripe the data. For maximum storage efliciency, an
embodiment can self-configure as wide as possible 1n the
stripe, subject to a predetermined requirement of continued
operation with loss of up to one, or up to two, non-volatile
solid-state storage units 152 or storage nodes 1350 within the
chassis.

FIG. 2 1s a system diagram of an enterprise computing,
system 102, which can use one or more of the storage nodes,
storage clusters and/or non-volatile solid-state storage of
FIG. 1 as a storage resource 108. For example, tlash storage
128 of FIG. 2 may integrate the storage nodes, storage
clusters and/or non-volatile solid-state storage of FIG. 1 1n
some embodiments. The enterprise computing system 102
has processing resources 104, networking resources 106 and
storage resources 108, including flash storage 128. A flash
controller 130 and flash memory 132 are included in the
flash storage 128. In various embodiments, the flash storage
128 could include one or more storage nodes or storage
clusters, with the flash controller 130 including the CPUs,
and the flash memory 132 including the non-volatile solid-
state storage of the storage nodes. In some embodiments
flash memory 132 may include different types of flash
memory or the same type of flash memory. The enterprise
computing system 102 illustrates an environment suitable
for deployment of the flash storage 128, although the flash
storage 128 could be used in other computing systems or
devices, larger or smaller, or 1n variations of the enterprise
computing system 102, with fewer or additional resources.
The enterprise computing system 102 can be coupled to a
network 140, such as the Internet, 1 order to provide or
make use of services. For example, the enterprise computing,
system 102 could provide cloud services, physical comput-
Ing resources, or virtual computing services.

In the enterprise computing system 102, various resources
are arranged and managed by various controllers. A pro-
cessing controller 110 manages the processing resources
104, which include processors 116 and random-access

10

15

20

25

30

35

40

45

50

55

60

65

6

memory (RAM) 118. Networking controller 112 manages
the networking resources 106, which include routers 120,
switches 122, and servers 124. A storage controller 114
manages storage resources 108, which include hard drives
126 and flash storage 128. Other types ol processing
resources, networking resources, and storage resources
could be included with the embodiments. In some embodi-
ments, the tlash storage 128 completely replaces the hard
drives 126. The enterprise computing system 102 can pro-
vide or allocate the various resources as physical computing
resources, or i1n variations, as virtual computing resources
supported by physical computing resources. For example,
the various resources could be implemented using one or
more servers executing software. Files or data objects, or
other forms of data, are stored 1n the storage resources 108.

In various embodiments, an enterprise computing system
102 could include multiple racks populated by storage
clusters, and these could be located 1n a single physical
location such as i1n a cluster or a server farm. In other
embodiments the multiple racks could be located at multiple
physical locations such as 1n various cities, states or coun-
tries, connected by a network. Each of the racks, each of the
storage clusters, each of the storage nodes, and each of the
non-volatile solid-state storage could be individually con-
figured with a respective amount of storage space, which 1s
then reconfigurable independently of the others. Storage
capacity can thus be flexibly added, upgraded, subtracted,
recovered and/or reconfigured at each of the non-volatile
solid-state storages. As mentioned previously, each storage
node could implement one or more servers in some embodi-
ments.

FIG. 3 1s a multiple level block diagram, showing con-
tents ol a storage node 150 and contents of a non-volatile
solid-state storage 152 of the storage node 150. Data 1s
communicated to and from the storage node 150 by a
network interface controller (NIC) 202 1n some embodi-
ments. Fach storage node 150 has a CPU 156, and one or
more non-volatile solid-state storage 152, as discussed
above. Moving down one level in FIG. 3, each non-volatile
solid-state storage 152 has a relatively fast non-volatile
solid-state memory, such as non-volatile random access
memory (NVRAM) 204, and flash memory 206. In some
embodiments, NVRAM 204 may be a component that does
not require program/erase cycles (DRAM, MRAM, PCM),
and can be a memory that can support being written vastly
more often than the memory 1s read from. Moving down
another level in FIG. 3, the NVRAM 204 1s implemented 1n
one embodiment as high speed volatile memory, such as
dynamic random access memory (DRAM) 216, backed up
by energy reserve 218. Energy reserve 218 provides sufli-
cient electrical power to keep the DRAM 216 powered long
enough for contents to be transferred to the flash memory
206 1n the event of power failure. In some embodiments,
energy reserve 218 1s a capacitor, super-capacitor, battery, or
other device, that supplies a suitable supply of energy
suflicient to enable the transfer of the contents of DRAM
216 to a stable storage medium 1n the case of power loss.
The flash memory 206 1s implemented as multiple flash dies
222, which may be referred to as packages of flash dies 222
or an array of flash dies 222. It should be appreciated that the
flash dies 222 could be packaged in any number of ways,
with a single die per package, multiple dies per package (1.¢.
multichip packages), 1n hybrid packages, as dies on a printed
circuit board or other substrate. In some embodiments, the
hybrid package may include a combination of memory
types, such as NVRAM, random access memory (RAM),
CPU, field programmable gate array (FPGA), or different

US 10,528,419 B2

7

s1zed flash memory 1n the same package. In the embodiment
shown, the non-volatile solid-state storage 152 has a con-
troller 212 or other processor, and an 1mput output (I/O) port
210 coupled to the controller 212. I/O port 210 1s coupled to

the flash storage node 150. Flash input output (I/O) port 220
1s coupled to the flash dies 222, and a direct memory access
unit (DMA) 214 1s coupled to the controller 212, the DRAM
216 and the flash dies 222. In the embodlment shown, the
I/0 port 210, controller 212, DMA unit 214 and flash I/O
port 220 are implemented on a programmable logic device
(PLD) 208, ¢.g., a field programmable gate array (FPGA). In
this embodiment, each flash die 222 has pages, organized as
sixteen kB (kilobyte) pages 224, and a register 226 through
which data can be written to or read from the flash die 222.
In further embodiments, other types of solid-state memory
are used 1n place of, or 1n addition to flash memory 1llus-
trated within flash die 222.

In NVRAM 204, redundancy 1s not orgamized by seg-
ments but istead by messages, where each message (e.g.,
128 bytes to 128 kB or smaller or larger) establishes its own
data stripe, 1n some embodiments. NVRAM i1s maintained at
the same redundancy as segment storage and operates within
the same storage node groups 1 some embodiments.
Because messages are stored individually the stripe width 1s
determined both by message size and the storage cluster
configuration. Larger messages may be more efliciently
stored as wider strips.

Two of the many tasks of the CPU 156 on a storage node
150 are to break up write data, and reassemble read data.
When the system has determined that data 1s to be written,
an authority for that data 1s located 1n one of the non-volatile
solid-state storages 152. The authornity, 1.e., the owner of the
metadata or user data, may be embodied as metadata,
including one or more lists such as lists of data segments
which the non-volatile solid-state storage 152 manages.
When a segment ID for data i1s already determined the
request to write 1s forwarded to the non-volatile solid-state
storage 152 currently determined to be the host of the
authority determined from the segment. The host CPU 156
of the storage node 150, on which the non-volatile solid-
state storage 152 and corresponding authority reside, then
breaks up or shards the data and transmits the data out to
various non-volatile solid-state storage 152. The transmitted
data 1s written as a data stripe in accordance with an erasure
coding scheme. In some embodiments, data 1s requested to
be pulled, and 1n other embodiments, data i1s pushed. In
reverse, when data 1s read, the authority for the segment 1D
contaiming the data 1s located as described above. The host
CPU 156 of the storage node 150 on which the non-volatile
solid-state storage 152 and corresponding authority reside
requests the data from the non-volatile solid-state storage
and corresponding storage nodes pointed to by the authority.
In some embodiments the data 1s read from flash storage as
a data stripe. The host CPU 156 of storage node 150 then
reassembles the read data, correcting any errors (if present)
according to the appropnate erasure coding scheme, and
forwards the reassembled data to the network. In further
embodiments, some or all of these tasks can be handled in
the non-volatile solid-state storage 152. In some embodi-
ments, the segment host requests the data be sent to storage
node 150 by requesting pages from storage and then sending,
the data to the storage node making the original request. In
some embodiments, a stripe width 1s only read i1 there 1s a
single page grid failure or delay.

In some systems, for example 1n UNIX-style file systems,
data 1s handled with an index node or inode, which specifies

the CPU 156 and/or the network interface controller 202 of 5

10

15

20

25

30

35

40

45

50

55

60

65

8

a data structure that represents an object 1n a file system. The
object could be a file or a directory, for example. Metadata
may accompany the object, as attributes such as permission
data and a creation timestamp, among other attributes. A
segment number could be assigned to all or a portion of such
an object 1n a file system. In other systems, data segments
are handled with a segment number assigned elsewhere. For
purposes of discussion, the unit of distribution i1s an entity,
and an entity can be a file, a directory or a segment. That 1s,
entities are units ol data or metadata stored by a storage
system. Entities are grouped into sets called authorities.
Each authority has an authority owner, which 1s a storage
node that has the exclusive right to update the entities in the
authority. In other words, a storage node contains the author-
ity, and that the authority, in turn, contains entities.

A segment 1s a logical container of data in accordance
with some embodiments. A segment may be an address
space between medium address space and physical flash
locations. Segments may also contain metadata, which
enable data redundancy to be restored (rewritten to different
flash locations or devices) without the involvement of higher
level software. In one embodiment, an internal format of a
segment contains client data and medium mappings to
determine the position of that data. Fach data segment is
protected, e.g., from memory and other failures, by breaking
the segment into a number of data and parity shards, where
applicable. The data and parity shards are distributed, 1e.,
striped, across non-volatile solid-state storages 152 coupled
to the host CPUs 156 1n accordance with an erasure coding
scheme. Usage of the term segments refers to the container
and its place 1n the address space of segments 1n some
embodiments. Usage of the term stripe refers to the same set
of shards as a segment and includes how the shards are
distributed along with redundancy or parity information in
accordance with some embodiments.

A series of address-space transformations takes place
across an entire storage system. At the top are the directory
entries (filenames), which link to an mode ID. Modes point
into medium address space, where data 1s logically stored.
Medium addresses may be mapped through a series of
indirect mediums to spread the load of large files, or
implement data services like deduplication or snapshots.
Segment addresses are then translated into physical tlash
locations. Physical flash locations have an address range
bounded by the amount of flash 1n the system 1n accordance
with some embodiments. Medium addresses and segment
addresses are logical containers, and 1n some embodiments
use a 128 bit or larger identifier so as to be practically
infinite, with a likelihood of reuse calculated as longer than
the expected life of the system. Addresses from logical
containers are allocated in a hierarchical fashion 1n some
embodiments. Initially, each non-volatile solid-state storage
152 may be assigned a range of address space. Within this
assigned range, the non-volatile solid-state storage 152 1is
able to allocate addresses without synchronization with
other non-volatile solid-state storage 152.

Data and metadata are stored by a set of underlying
storage layouts that are optimized for varying workload
patterns and storage devices. These layouts incorporate
multiple redundancy schemes, compression formats and
index algorithms. Some of these layouts store information
about authorities and authority masters, while others store
file metadata and file data. The redundancy schemes include
error correction codes that tolerate corrupted bits within a
single storage device (such as a NAND flash chip), erasure
codes that tolerate the failure of multiple storage nodes, and
replication schemes that tolerate data center or regional

US 10,528,419 B2

9

failures. In some embodiments, low density parity check
(LDPC) code 1s used within a single storage unit. Data 1s not
turther replicated within a storage cluster, as it 1s assumed a
storage cluster may fail. Reed-Solomon encoding 1s used
within a storage cluster, and mirroring 1s used within a
storage grid 1n some embodiments. Metadata may be stored
using an ordered log structured index (such as a Log
Structured Merge Tree), and large data may not be stored 1n
a log structured layout.

FI1G. 4 15 a block diagram showing a communication path
234 for redundant copies of metadata 230, with further
details of flash storage nodes 150 (i.e., storage nodes 150
having flash memory) and non-volatile solid-state storages
152 1n accordance with some embodiments. Metadata 230
includes information about the user data that 1s written to or
read from the flash memory 206. Metadata 230 can include
messages, or derivations from the messages, indicating
actions to be taken or actions that have taken place involving
the data that 1s written to or read from the tlash memory 206.
Distributing redundant copies ol metadata 230 to the non-
volatile solid-state storage units 152 through the communi-
cation mterconnect 170 ensures that messages are persisted
and can survive various types of failure the system may
experience. Each non-volatile solid-state storage 152 dedi-
cates a portion of the NVRAM 204 to storing metadata 230.
In some embodiments, redundant copies of metadata 230 are
stored 1n the additional non-volatile solid-state storage 152.

Flash storage nodes 150 are coupled via the communica-
tion 1nterconnect 170. More specifically, the network inter-
tace controller 202 of each storage node 150 1n the storage
cluster 1s coupled to the commumnication interconnect 170,
providing a communication path 234 among storage nodes
150 and non-volatile solid-state storage 152. Storage nodes
150 have one or more non-volatile solid-state storage units
152. Non-volatile solid-state storage units 152 internal to a
storage node can communicate with each other, for example
via a bus, a serial communication path, a network path or
other communication path 234 as readily devised 1n accor-
dance with the embodiments disclosed herein. Communica-
tion interconnect 170 can be included 1n or implemented
with the switch fabric of FIG. 1 1n some embodiments.
Storage nodes 150 of FIG. 4 form a storage cluster that 1s
enclosed within a single chassis that has an internal power
distribution bus within the chassis as described with refer-
ence to FIG. 1.

Referring to FIGS. 3 and 4, 1n case of a power failure,
whether local to non-volatile solid-state storage 152 or a
storage node 150, data can be copied from the NVRAM 204
to the tlash memory 206. For example, the DMA umt 214 of
FIG. 3 can copy contents of the NVRAM 204, including the
metadata, to the tlash memory 206, using power supplied by
the energy reserve 218. Energy reserve 218 1s sized with
suflicient capacity to support copy operation. That 1s, the
energy reserve 218 should be sized so as to provide sutilicient
current at a suflicient voltage level for a time duration long
enough to complete the copying so that messages that are 1n
metadata 230 are persisted in the flash memory 206.

A further mechanism for persisting messages 1n a storage
system 1nvolves the communication path 234 described
above 1n FIG. 4. Redundant copies of the metadata 230 can
be distributed via the communication path 234, 1n various
ways. For example, a message coming from the filesystem
could be distributed via the communication interconnect 170
as a broadcast over the communication path 234 to all of the
non-volatile solid-state storages 152. A non-volatile solid-
state storage 152 could send a copy of metadata 230 over the
communication path 234 to other non-volatile solid-state

10

15

20

25

30

35

40

45

50

55

60

65

10

storage 152 1 a storage node 150. CPU 156 on a storage
node 150, receiving a message from the communication
interconnect 170 via the network interface controller 202
could send a copy of the message to each solid-state storage
152. The CPU 156 may rebroadcast the message to other
flash storage nodes 150, and the flash storage nodes 150
could then distribute the message to the solid-state storages
152 1n each of these flash storage nodes 150 in some
embodiments. In these and other uses of the communication
path 234, redundant copies of the metadata 230 can be
distributed to the non-volatile solid-state storages 152. Then,
il one non-volatile solid-state storage 152, or one storage
node 150 experiences a failure, redundant copies of any
message are available 1n metadata 230 of at least one other
non-volatile solid-state storage 152. Each non-volatile solid-
state storage 152 can apply decision logic 232 when evalu-
ating various situations such as local power failure, an
unreachable node, or 1nstructions to consider or commence
a data recovery or a data rebuild. The decision logic 232
includes witnessing logic, voting logic, consensus logic
and/or other types of decision logic in various embodiments.
Decision logic 232 could be implemented in hardware,
software executing on the controller 212, firmware, or
combinations thereof, and could be implemented as part of
the controller 212 or coupled to the controller 212. The
decision logic 232 1s employed in consensus decisions
among multiple solid-state storage units 152, in some
embodiments. In further embodiments, the decision logic
232 could cooperate with the other non-volatile solid-state
storage units 152 1n order to gather copies of the redundant
metadata 230, and make local decisions. The mechanisms
for persisting messages 1n a storage system are useful in the
event ol a failure, and can be used in data recovery and
reconstruction as described above.

Examples of messages mnclude a request to write data, a
request to read data, a request to lock or unlock a file, a
change in permission of a file, an update to a file allocation
table or other file or directory structure, a request to write a
file that has executable instructions or to write a file name
that 1s reserved and interpreted as an executable direction,
updates to one or more authorities, updates to a fingerprint
table, list or other data used in deduplication, updates to hash
tables, updates to logs, and so on. When a message 1s
received 1n non-volatile solid-state storage 152 of a storage
node 150, indicating some action has taken place, the
message or a derivation of the message 1s stored as metadata
230 1n the NVRAM 204 of that solid-state storage 152. By
applying the redundant copies of the metadata 230, actions
are captured that are in progress, so that 1f a failure happens,
these actions can be replayed and replacement actions can
then be performed, for example upon restart. Actions span
storage nodes and use cluster messaging, so the act of
sending a message can be made persistent data via one or
more of the mechamisms for persisting messages. These
mechanisms address some of the known failure scenarios in
order to ensure availability of data. In some embodiments,
the messages don’t require permanence beyond completion
of the actions. In other embodiments the messages are
further retained to {facilitate rollback or other recovery
operations.

For example, 1f a command 1s sent out to carry out a write
operation, this message 1s recorded and redundant. If there
1s a failure, it can be determined whether or not that action
has been carried out, and whether or not the action should be
driven to completion. Such determination can be carried out
using the decision logic 232 1n each non-volatile solid-state

storage 152. There 1s dedicated storage in NVRAM 204 for

US 10,528,419 B2

11

messages and other metadata 230, so that messages are
recorded in the non-volatile solid-state storage 152 and
replicated 1n some embodiments. The messages and other
metadata 230 are written into flash memory 206 1if one
non-volatile solid-state storage 152 experiences a power
tailure, or if the entire system experiences a power failure or
otherwise shuts down. The redundancy level of the messages
matches the redundancy level of the metadata in some
embodiments. When there are suflicient numbers of copies
ol messages, the message becomes 1rrevocable. If one node
goes down, other nodes can vote, achieve consensus, or
witness the various copies of the message and determine
what action, if any, to carry to completion. If the entire
system goes down, e.g., through a global power failure, then
a suflicient number of these messages get written from
NVRAM 204 to tlash memory 206. Upon restoration of
power, the nodes can again open copies of the message and
determine what action, 1f any, to carry to completion to
prevent any corruption.

With continued reference to FIGS. 3 and 4, storage node
150 of a storage cluster 160 1ncludes two levels of control-
lers. There 1s a host CPU 156 in the storage node 150, and
there 1s a controller 212 in the non-volatile solid-state
storage 152. The controller 212 can be considered a flash
memory controller, which serves as a bridge between the
host CPU 156 and the flash memory 206. Each of these
controllers, namely the host CPU 156 and the flash control-
ler 212, can be implemented as one or more processors or
controllers of various types from various manufacturers. The
host CPU 156 can access both the flash memory 206 and the
NVRAM 204 as distinct resources, with each being inde-
pendently (1.e., mndividually) addressable by the host CPU
156.

By separating the NVRAM 204 and the flash memory 206
into distinct resources, not all data placed in the NVRAM
204 must be written to the flash memory 206. The NVRAM
204 can also be employed for various functions and pur-
poses. For example, updates to the NVRAM 204 can be
made obsolete by newer updates to the NVRAM 204. A later
transfer of user data from the NVRAM 204 to the flash
memory 206 can transfer the updated user data, without
transierring the obsolete user data to the flash memory 206.
This reduces the number of erasure cycles of the flash
memory 206, reduces wear on the tlash memory 206, and
moves data more efliciently. The CPU 156 can write to the

NVRAM 204 at a smaller granularity than the granularity of
the transiers from the NVRAM 204 to the flash memory

206. For example, the CPU 156 could perform 4 kB writes
to the NVRAM 204, and the DMA unit 214 could perform
a page write ol 16 kB from the NVRAM 204 to the flash
memory 206 under direction of the controller 212. The
ability to collect multiple writes of user data to the NVRAM
204 prior to writing the user data from the NVRAM 204 to
the flash memory 206 increases writing efficiency. In some
embodiments, a client write of user data 1s acknowledged at
the point at which the user data 1s written to the NVRAM
204. Since the energy reserve 218, described above with
reference to FIG. 3, provides sullicient power for a transier
of contents of the NVRAM 204 to the flash memory 206, the
acknowledgment of the client write does not need to wait
until the user data 1s written to the flash memory 206.

As further examples of differences between present
embodiments and previous solid-state drives, the metadata
230 1n the NVRAM 204 is not written into the flash memory
206, except 1n cases of power loss. Here, a portion of the
NVRAM 204 acts as a workspace for the CPU 156 of the
storage node 150 to apply the metadata 230. The CPU 156

10

15

20

25

30

35

40

45

50

55

60

65

12

of the storage node 150 can write to the NVRAM 204 and
read the NVRAM 204, in order to access the metadata 230.
The CPU 156 1s responsible for migrating data from the
NVRAM 204 down to the tlash memory 206 1n one embodi-
ment. Transfer from the NVRAM 204 to the flash memory

206 1s not automatic and predetermined, 1n such embodi-
ments. Transter waits until there 1s suthcient user data in the

NVRAM 204 for a page write to the flash memory 206, as
determined by the CPU 156 and directed to the DMA unait
214. The DMA unit 214 can be further involved in the path
of the user data. In some embodiments, the DMA unit 214
(also known as a DMA engine) 1s designed to detect and
understand various data formats. The DMA unit 214 can
perform a cyclic redundancy check (CRC) calculation to
check the integrity of the user data. In some embodiments,
the DMA unit 214 inserts the CRC calculation into the data
and verifies that the data i1s consistent with a previously
inserted CRC calculation.

Work may be offloaded to the controller 212 of the
non-volatile solid-state storage 152. Processing that 1s
oflloaded to flash controller 212 can be co-designed with
processing performed by the CPU 156 of the storage node
150. Various mapping tables that translate from one address
space to another, e.g., index trees or address translation
tables, can be managed within the non-volatile solid-state
storage 152, in some embodiments. The controller 212 of the
non-volatile solid-state storage 152 can perform various
tasks such as looking through these mapping tables, finding
metadata associated with the mapping tables, and determin-
ing physical addresses, ¢.g., for user data sought by the CPU
156 of the storage node 150. In order to find an authority
associated with a segment number, a standard solid-state
drive might bring back an entire 16 kB flash page, and the
CPU 156 would search 1n this page. In some embodiments,
the controller 212 of the non-volatile solid-state storage 152
can perform this search much more efliciently, and pass the
results to the CPU 156 of the storage node 150, without
sending back the entire tlash page to the CPU 156.

FIG. 5 1s an address and data diagram showing address
translation as applied to user data being stored 1n an embodi-
ment of a non-volatile solid-state storage 152. In some
embodiments, one or more of the address translations
applies an address space having sequential, nonrepeating
addresses. Addresses in this address space could be 1n an
ever-icreasing sequence (e.g., counting numbers or a regu-
lar or 1rregular counting sequence with skipping), an ever-
decreasing sequence (e.g., a countdown or a regular or
irregular countdown with skipping), a pseudorandom
sequence generated from one or more specified or generated
seed numbers, a Fibonacci sequence, geometric sequence or
other mathematical sequence, etc. Further nonrepeating
sequences are readily devised 1n accordance with the teach-
ings herein. User data, arriving for storage in a storage
cluster, 1s associated with a file path according to a file
system. The user data 1s separated into data segments, each
of which 1s assigned a segment address. Each data segment
1s separated 1nto data shards, each of which 1s stored 1n flash
memory 206. Various address translation tables 502 (e.g.,
mapping tables) are applied by either the CPU of the storage
node or the controller of the non-volatile solid-state storage
to translate, track and assign addresses to the user data and

portions thereof.

These address translation tables 502 reside as metadata 1n
the memory 154 (See FIG. 1) of the storage node, the
NVRAM 204 of the non-volatile solid-state storage, and/or
the flash memory of the non-volatile solid-state storage, in
various embodiments. Generally, address translation tables

US 10,528,419 B2

13

502 of FIG. 5 with a greater number of entries as result of
being later in the chain of translations (e.g., address trans-
lation tables 502D and 502E) should be located 1n the flash
memory 206, as there may not be suflicient memory space
for these 1n the NVRAM or the memory 154. Further,
messages regarding updates to the tables 502, or derivations
of these messages, could be stored as metadata 1n the
above-described memories. Metadata 1n one or more of
these locations can be subjected to replication, 1.e., redun-
dancy, and decisions for various degrees of fault tolerance
and system recovery, as described above.

For a particular portion of user data, the file path 1s
translated or mapped to an mnode ID with use of an address
translation table 502A. This may be 1n accordance with a
filesystem, and could be performed by the CPU of the
storage node 1n some embodiments. The mode ID 1s trans-
lated or mapped to a medium address with use of an address
translation table 502B, which could be performed by a CPU.
In some embodiments, the medium address, which 1s 1n a
medium address space, 1s included as one of the sequential,
nonrepeating addresses. The medium address 1s translated or
mapped to the segment address, with use of an address
translation table 502C through the CPU 1n some embodi-
ments. The segment address, which 1s 1n a segment address
space, may be included as one of the sequential, nonrepeat-
ing addresses. The segment address, as assigned to the data
segment, 1s translated to a virtual allocation unit, as assigned
to the data shard, with use of an address translation table
502D. Controller 212 of the non-volatile solid-state storage
may perform this translation by accessing address transla-
tion table 502D in the flash memory 206. The wvirtual
allocation unit 1s translated to a physical flash memory
location with the use of an address translation table S02E.
The physical flash memory location may be assigned to the
data shard in some embodiments.

The address space with the sequential, nonrepeating
addresses may be applied to the medium address space, the
segment address space and/or the wvirtual allocation unit
address space 1n various embodiments. In each case, a range
ol addresses from the address space 1s assigned to each of
the non-volatile solid-state storages 1n a storage cluster, or to
cach of the storage nodes in a storage cluster. The ranges
may be non-overlapping, such that each non-volatile solid-
state storage unit 1s assigned a range that differs from the
ranges of the other non-volatile solid-state storage units. In
this mechanmism, no address from this address space repeats
anywhere 1n the storage cluster. That 1s, each address from
this address space 1s unique, and no two portions of user data
are assigned the same address from this address space,
during the expected lifespan of the system. Each time one of
the addresses from this address space 1s assigned to a portion
of user data 1n a non-volatile solid-state storage unit,
whether the address 1s a medium address, a segment address,
or a virtual allocation unit, the address (upon assignment
according to the sequence) should be diflerent from all such
addresses previously assigned according to the sequence 1n
that non-volatile solid-state storage unit. Thus, the addresses
may be referred to as sequential and nonrepeating 1n this
address space. The address space with these properties could
include the medium address space, the segment address
space and/or the virtual allocation unit address space. A
non-volatile solid-state storage unit can allocate the assigned
range of addresses 1n the non-volatile solid-state storage
without synchronization with other non-volatile solid-state
storage units 1n a storage cluster 1n some embodiments.

Each range of the address space has upper and lower
bounds 1n some embodiments. Overall, the address space

10

15

20

25

30

35

40

45

50

55

60

65

14

has a range that exceeds the likely maximum number of
addresses from the address space that would be assigned
during the expected lifespan of a system. In one embodi-
ment, the sequential, nonrepeating addresses in the address
space are binary numbers with at least 128 bits. The amount
of bits may vary in embodiments, however with 128 bats,
two raised to the 1287 power is greater than the expected
maximum number ol addresses occurring for the lifetime of
the system. The upper bound of the address space 1s greater
than or equal to this number, or could include or be this
number, i some embodiments. Larger numbers could be
applied as technology further advances to higher operating
speeds and lower time delays for reading and/or writing. The
lower bound of the address space could be zero or one, or
some other suitable low number, or negative numbers could
be used.

Applying the sequential, nonrepeating addresses to one or
more of the medium addresses, the segment addresses, or the
virtual allocation units, enhance data recovery and flash
writes. In some embodiments, the storage cluster, the storage
node or the non-volatile, solid-state storage unit performs a
snapshot of the present contents of the storage cluster, the
storage node, or the non-volatile solid-state storage unit. At
a later time, a particular version of user data can be recov-
ered by referring to the snapshot. Since the relevant
addresses do not have duplicates, there 1s an unambiguous
record of the version of the user data at the time of the
snapshot, and data 1s readily recovered 11 still existing 1n the
relevant memory. Formats for snapshots are readily devised,
and may include a file with a record of the contents of the
cluster, the storage node, or the non-volatile solid-state
storage umt, applying one or more address schemes.
Depending on which address scheme or schemes 1s present
in the snapshot, the address translation tables S02A, 502B,
502C, 502D, 302E can be applied to determine physical
flash memory locations and presence or absence 1n the flash
memory 206 of the desired data for recovery. It should be
appreciated that various embodiments can apply various
addressing schemes, with various numbers of address trans-
lations, various numbers of translation tables, various ranges
for the addresses and various names for the addresses. Such
address schemes may be developed for various reasons, such
as performance, table size reduction, efc.

For flash writes, 1n some embodiments blocks of flash
pages 224 are erased, and then individual flash pages 224
(see FIG. 3) are written 1n sequential order within a single
crased block. This operation i1s supported by the above-
described addressing mechanism, which assigns sequential
addresses to data segments and/or data shards as they arrive
for storage. In some embodiments, information relating to
the medium address, the segment address, and/or the virtual
allocation unit 1s written to a header of the tlash page 224,
thus 1dentitying data stored in the flash page 224 (e.g., as
data shards). The flash page 224, in such embodiments,
becomes self-describing and self-checking, via the informa-
tion 1n the header.

FIG. 6 1s a multiple level block diagram, showing a
controller 212, flash dies 222, and interior details of flash
dies 222. Diagnostic information relating to the flash
memory 206 can be obtained on a per flash package 602, pe
flash die 222, per tlash plane 604, per tlash block 606, and/or
per flash page 224 basis across the entirety of a storage
cluster 160, 1n some embodiments. In the example shown 1n
FIG. 6, the flash memory 206 includes multiple tlash pack-
ages 602. Each flash package 602 includes multiple flash
dies 222, each of which 1n turn includes multiple tlash planes
604. Each flash plane 604 1includes multiple flash blocks 606

US 10,528,419 B2

15

cach of which i turn includes multiple flash pages 224. The
diagnostic information 1s gathered or generated by the
controller 212 of each non-volatile solid-state storage 152
and forwarded to the CPU 156 of the corresponding storage
node 150. In some embodiments, the CPU 156 performs
turther analysis on the diagnostic information and generates
turther diagnostic information. The controller 212 and/or the
CPU 156 can write the diagnostic information to a memory
in the storage cluster 160, for example the tflash memory 206
or the DRAM 216 of a non-volatile solid-state storage 152,
the memory 154 coupled to the CPU 156 in a storage node
150, or other memory of the storage cluster 160, storage
node 150, or non-volatile solid-state storage 152. The diag-
nostic information can be stored as metadata, in some
embodiments. The DRAM 216 could be on-chip, e.g. on the
controller 212, or off-chip, e.g., separate from and coupled
to the controller 212, 1n various embodiments.

One type of diagnostic information 1s obtained by track-
ing bit errors per flash page 224 or per codeword. Each flash
page 224 has multiple codewords, 1n some embodiments.
Incidents of error correction could be reported and these
incidents may be used as a source on which to base the
diagnostic information. For example, the controller 212
could track bit errors of the flash memory 206 and forward
the information about the bit errors to the CPU 156, which
could then tabulate this and/or generate further diagnostic
information. Bit errors, or error corrections, can be tracked
from feedback from an error correction block 608 in the
controller 212 1n some embodiments. The CPU 156 or the
controller 212 could track wear of flash blocks 606 in the
flash memory 206, ¢.g., by establishing and updating a wear
list 1n memory coupled as described above, responsive to or
based on some of the diagnostic information. Such tracking,
could include ranking flash blocks 606 as to levels of wear,
or comparing flash blocks 606 as to levels of wear. The flash
memory 206 can be characterized over time, based on the
diagnostic information. Characterization information could
indicate changes or trends in the flash memory 206, such as
increases 1n the rate of errors or error correction over time.
This characterization can be performed at any of the levels
ol granularity discussed above.

In some embodiments, the CPU 156 sends the diagnostic
information, or summarizes the diagnostic information in a
report and sends the report, via a network. The diagnostic
information or the report could be sent to an appropriate
person or orgamization, which could include an owner or
operator of a storage cluster 160, a manufacturer of storage
nodes 150, a manufacturer of flash memory 206, flash
packages 602 or flash dies 222 or other interested or autho-
rized party. These reports could benefit the manufacturers,
which can use the information for warranty service and/or to
highlight manufacturing and reliability problems and guide
improvements. The reports also benefit users, who can plan
system maintenance, repairs and upgrades based on the
details 1n the reports. Actual behavior of the flash memory
206 over time can be compared to predicted behavior or to
warranties 1l applicable.

The CPU 156 or the controller 212 could make decisions
based on the diagnostic information. For example, if 1t 1s
determined that a flash block 606 has a high level of wear,
the CPU 156 or the controller 212 could determine to write
some of the user data to another tlash block 606 with a lower
level of wear. The controller 212 may bias a read from the
flash memory, or a write to the flash memory 206, as a
response to producing or obtaiming the diagnostic informa-
tion. Depending on the type of flash, and whether specific
teatures are available on flash dies 222, this biasing can take

10

15

20

25

30

35

40

45

50

55

60

65

16

different forms. Biasing the writes or the reads may extend
the lifespan of some or all of the flash memory 206. For
example, some types ol flash dies 222 may support a
variable write time, a variable write voltage, a variable read
time, a variable reference voltage, a variable reference
current or a variable number of reads. The controller 212
could determine, based on the diagnostic information, to
direct a flash die 222 to apply a specified value of one of the
above variable parameters to a specified write or read. The
specified value could be applied to specified writes or reads
to flash pages 224, flash blocks 606, tlash dies 222, and/or
flash packages 602. Thus, the granularity of the application
of variable parameters to writes or reads of the tlash memory
206 can match and be supported by the granularity of the
diagnostic information itself.

Continuing with the above examples, the variable param-
cters are applicable to multiple scenarios. In a case where a
flash block 606 1s experiencing an increase in read errors, the
controller 212 could direct the flash block 606 to perform
repeated reads at diflering reference voltages or reference
currents. I a variable reference voltage or a reference
current 1s not available, the controller 212 could perform the
multiple reads without varying the reference voltage or
current. The controller 212, or the CPU 156 could then
perform statistical analysis of the reads and determine a
most likely bit value for each read of data 1n the flash block
606. In cases where a variable write parameter 1s supported
in flash dies 222, a value of a vanable write parameter can
be selected 1n an attempt to increase write or read reliability
of the flash die 222. Similarly, 1n cases where a variable read
parameter 1s supported in flash dies 222, a value of a variable
read parameter can be selected 1n an attempt to increase read
reliability of the flash die 222. In some embodiments a value
for a variable write or read parameter could be selected 1n
response to a determination that some portion of flash
memory 206 has greater wear relative to another portion. As
a further example, some types of tlash dies 222 may have
and support changing from multilevel cell (MLC) operation
to single cell (SLC) operation. SLC flash has one bit per cell,
and MLC flash has more than one bit per cell. The CPU 156
or the controller 212 could direct a flash die 222 to change
from MLC operation to SLC operation 1n order to increase
reliability of reads or writes. This change may be 1n response
to determining that some portion of the flash memory 206
has greater wear relative to another portion.

FIG. 7 illustrates failure mapping, in which addresses are
mapped around defects 714, 716 1n flash memory 206, in
some embodiments. Failure mapping can be applied to
known defects and/or newly discovered defects. Application
of failure mapping to known defects supports yield recovery
by allowing a manufacturer to install flash packages 602
with known detfective flash dies 222 into the flash memory
206 of a non-volatile solid-state storage 152 (see FIGS. 3
and 6). Dynamic application of failure mapping to newly
discovered detects supports virtualizing the storage capacity
of a storage cluster 160, use of all available storage space,
and graceful degradation of storage capacity without cata-
strophic failure. Defects 714, 716 in flash memory 206 can
be various sizes and encompass various ranges of addresses
in physical address space 704. For example, a relatively
small defect 714 could be a single failed bit at a single
physical address. A relatively large defect 716 could be a
failed flash page, flash block, flash die, or flash package,
with a corresponding range of addresses in the physical
address space 704. It should be appreciated that the physical
address of a defect 714, 716 in the tlash memory 206 1is

related to the physical address of the defect relative to the

US 10,528,419 B2

17

flash die, the physical address of the tlash die relative to the
flash package, and the physical address of the contents of the
flash package relative to address decoding of flash packages
in the flash memory 206 (e.g., address decoding on a printed
circuit board and/or address decoding of multiple printed
circuit boards relative to the non-volatile solid-state storage
unit). Characterization of the defect 714, 716 as small or
large 1s arbitrary and 1s for i1llustrative purposes, and further
aspects of the defect 714, 716 may be characterized.

Still referring to FIG. 7, in order to perform {failure
mapping, the non-volatile solid-state storage unit determines
which addresses in a physical address space 704 are usable
addresses 710, and which addresses 1n the physical address
space 704 are unusable addresses 712. The unusable
addresses 712 correspond to locations of the defects 714,
716 1n the flash memory 206, and the usable addresses 710
correspond to locations in the flash memory 206 that have
working, non-defective tlash bits. The usable addresses 710
and unusable addresses 712 are mutually exclusive in some
embodiments. That 1s, the usable addresses 710 in the
physical address space 704 exclude the unusable addresses
712 and thus exclude the physical addresses of the defects
714, 716 1n the flash memory 206. In some embodiments,
the non-volatile solid-state storage 152 generates a defects
map 708 that indicates the unusable addresses 712 1n the
physical address space 704 or otherwise indicates the defects
714, 716 1n the flash memory 206. Various formats for the
defects map 708, such as a list, an array, a table or a
database, are readily devised in accordance with the teach-
ings herein.

A mapper 706 in the non-volatile solid-state storage unit
maps memory addresses of a memory address space 702 1nto
physical addresses in the physical address space 704. More
specifically, the mapper 706 maps the memory addresses of
the memory address space 702 into the usable addresses 710
of the physical address space 704, and thereby maps around
or bypasses the unusable addresses 712 and corresponding
defects 714, 716 of the tlash memory 206. The mapper 706
1s thus based on the defects 714, 716, and 1n some embodi-
ments 1s based on the detfects map 708. The mapper 706
could 1nclude one or more of the address translation tables
502 (see FI1G. 5), which translate addresses of the user data,
at various levels and 1n various address spaces 1n the system,
to physical memory locations. For example, one embodi-
ment of the non-volatile solid-state storage unit generates an
address translation table 502 (e.g., address translation table
502FE) that maps around defects 714, 716 in the flash
memory 206 on a per tlash package 602, flash die 222, flash
plane 604, tlash block 606, tlash page 224 or physical
address basis (see FIG. 6). The address translation table 502
1s applied to write and read accesses of user data.

There are multiple mechanisms 1n which a storage node or
non-volatile solid-state storage unit could determine the
defects 714, 716 1n flash memory 206. In embodiments
making use of flash dies or tlash packages with defects 714,
716 known at the time of assembly ol a non-volatile solid-
state storage unit, storage node or storage cluster, informa-
tion could be provided from an external source. The storage
nodes could determine the usable addresses 710 and unus-
able addresses 712 of the flash memory 206 based on
information from a manufacturer or tester of flash packages,
or tlash dies, or a tester of the flash memory 206. This
information could be provided via a network in some
embodiments. The storage nodes support yield recovery of
flash packages that have been downgraded as a result of
testing. Downgraded flash packages may have known
defects such as a mixture of non-defective flash dies and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

defective flash dies, or may have tlash dies with one or more
defective flash blocks or other defective portions of flash
memory 206. In embodiments utilizing the dynamic deter-
mination of defects 714, 716, the controller of a non-volatile
solid-state storage and/or the CPU 156 of a storage node
could determine defects 714, 716 as part of or based on the
diagnostic information described above with reference to
FIG. 6. For example, a threshold could be established for
error counts, error rates, error correction counts or error
correction rates. When a portion of the tlash memory 206
exceeds a total error count, error rate, error correction count
Or error correction rate, that portion of the flash memory 206
could be declared defective and mapped out as described
above. Defect detection, defect mapping, and address trans-
lation to map around the defects can be performed on an
ongoing basis.

FIG. 8A illustrates a flash block 606 having defects 1n a
flash die of a flash memory. Flash block 606 1s an example
of a type of defect that can be mapped around by the mapper
706 as discussed above regarding FIG. 7. Further mecha-
nisms discussed below with reference to FIGS. 8A-8C are
applicable to this and other types of defects, in some
embodiments of non-volatile solid-state storage units. In
FIG. 8A, the flash block 606 has several stuck or faulty bat
lines 802. One or more stuck bit lines 802 1s a type of defect
seen 1n some flash dies. A flash page 224 is seen as defective,
since one or more bit locations (shown 1n the diagram as
having an “X’”) have bit values corresponding to the stuck bit
lines 802. A bit line could be stuck at a “0” or a “1” value
for these bit locations. Flash page 224 1s not limited to a
stuck bit line defect as other defects besides a stuck bit line
may be integrated with the embodiments. Flash block 606
has a spare data area 804, which can be applied for various
purposes. Bits from the spare data area 804 may be applied
as parity bits for pages 224. Bits from the spare data arca 804
may also be used for repairing data read from a defective
flash block 606, 1n some embodiments. One known type of
tflash die employs a flash page size of about 16,384 bytes and
a spare data area size of about 1,216 bytes. Some embodi-
ments of the non-volatile solid-state storage unit use the
spare data area 804 to store replacement data. Some embodi-
ments use the spare data area 804 to store ordered lists
(tuples) of pointers ito a page and a replacement page.
These pointers are associated with or are part of a mask 806,
in various embodiments.

FIG. 8B shows a mask 806 with a defect indicator 808,
which can be applied to mask a defect 1n the flash block 606
of FIG. 8A. Various embodiments of the non-volatile solid-
state storage unit can determine that a tflash block 606 has a
defect, and generate a mask 806 that indicates the defect of
flash block 606. This determining and mask generation
could be based on manufacturer information, such as pro-
vided from a manufacturer of flash dies or tlash packages. In
some embodiments, the determining and mask generation
could be based on characterizing the tlash memory during or
alter assembly of a non-volatile solid-state storage 152.
Characterizing may include multiple writes and reads from
the flash memory. The determining and mask generation
could also be based on ongoing monitoring during system
operation, e€.g., the diagnostic information discussed with
reference to FIG. 6. The non-volatile solid-state storage unit
can generate a mask 806 at various times during the lifespan
of a storage cluster. In some embodiments, the non-volatile
solid-state storage unit stores the mask 806 as metadata.

The example mask 806 shown in FIG. 8B has a defect
indicator 808, 1n the form of a value at each bit location
corresponding to a defect, e.g., a defect 1n a flash page 224.

US 10,528,419 B2

19

The defect indicator 808 aligns with the defect 1n the flash
page 224. Various formats for masks 806 are readily devised
in accordance with the teachings herein. For example, the
mask 806 could indicate non-defective bits in a flash page
read by having a specified value 1n bit locations in the mask
806 corresponding to the non-defective bits 1n the flash page
224. The mask 806 may indicate defective bits 1n a flash
page read by having a further specified value 1n bit locations
in the mask 806 corresponding to the defective bits in the
flash page 224. These specified values could be weights,
codes, flags, or other types of guides for mask operations.
Various schemes for indicating defective or non-defective
bits, and associated values, are readily devised in accordance
with the teachings heremn. In some embodiments mask 806
1s a bit mask or mask 806 1s a set of one or more pointers to
bit locations. Detfect indicator 808 may be interpreted by the
non-volatile solid-state storage unit as pointing to a bit
location 1n a flash page 224 that 1s a don’t care. In some
embodiments the defect indicator 808 may be interpreted as
pointing to a bit location in a flash page 224 where a bit
value should be deleted or removed, where a bit value
should be replaced or where a bit value 1s likely stuck. Since
the controller 212 (see FIGS. 3, 4 and 6) has access to the
physical flash addresses, masks 806 can be created that
apply to pages 224, blocks 606, planes 604, dies 222, etc.
The ability to create masks in this manner amortizes the
mask overhead accordingly. Some embodiments can create
a mask hierarchy to reduce overhead. In a mask hierarchy,
masks can be combined for different levels (block, plane,
die, etc.) to generate one or more page masks, e.g., page
specific masks. These could be pre-calculated, or generated
on-the-fly (1.e., as needed) 1n some embodiments.

FIG. 8C shows various strategies and mechanisms for
applying the mask 806 shown 1n FIG. 8B to reads of data in
the flash block 606 of FIG. 8A. Various embodiments of the
non-volatile solid-state storage units may apply one or more
ol these strategies and mechamsms, however, the embodi-
ments are not limited to the example strategies. Variations of
these strategies and mechanisms could be applied to portions
ol data other than a flash page 224, although application to
a tlash page 224 1s illustrated since many types of flash
memory support page reads. A first strategy 1s to replace bit
values 1n the data resulting from reading the flash page 224 A
from the flash block 606. In keeping with the example flash
block 606 having defects, the flash page 224 A has multiple
stuck bits corresponding to the stuck bit lines 802. In the first
strategy, bit values of defective bits, 1.e., bit locations 1n the
flash page 224 A corresponding to the stuck bit lines 802, are
replaced with replacement bit values from the spare data
arca 804 of the flash block 606. The mask 806 indicates
which bit locations in the flash page 224 A are defective and
receives the replacement bit values to repair the data result-
ing from the read of the tlash page 224 A. If two blocks have
similar bit line failures, some embodiments can combine
these and generate a superset of bit line failures, reducing the
number of masks 806 and sacrificing some pre-failed bits, as
long as space 1s available to do so.

A second strategy 1s to replace the tlash page 224 with
replacement data from the spare data arca 804 which has
been set aside to act as a replacement flash page. In this
strategy, the mask 806 has a defect indicator 808 that
indicates the entire flash page 224B of a particular flash
block 606 should be replaced. A third strategy 1s to remove
defective bit values from a flash page 224C and provide
substitute bit values from the spare data area 804. Similar to
the first strategy, the mask 806 indicates which bit locations
in the flash page 224C are defective and should be removed.

10

15

20

25

30

35

40

45

50

55

60

65

20

In contrast to the first strategy, in which replacement bit
values are inserted into the same bit locations in the flash
page 224A as the defective bit values being replaced, the

substitute data portion 810E 1s inserted at the least signifi-
cant bit (LSB) end of the flash page 224C. Data portions

810B, 810C, 810D are shifted, e.g., to the left or towards the
most significant bit (MSB) end of the flash page 224C. This
action stitches the gaps produced by removing the defective
bit values from the flash page 224C, 1.e., removing the
defective bit values from the data read from the flash page
224C. The resultant repaired tlash page 224D has the various
data portions 810A, 8108, 810C, 810D, 810F as contiguous
data bits with no gaps, to repair the data resulting from the
read of the flash page 224C. A vanation of the third strategy
1s to insert the substitute data portion 810E at the MSB end
of the flash page 224C. A further variation 1s to insert the
substitute data portion 810E elsewhere 1n the flash page
224C. Data portions 810A, 8108, 810C, 810D are shifted
accordingly, in these variations. The substitute data portion
810F 1s from the spare data arca 804 of the flash block 606.
The repaired flash page 224D can be substituted for a
defective page from the flash block 606, as a replacement
flash page.

With reference back to FIG. 6 and ongoing reference to
FIGS. 8A-8C, one embodiment of the controller 212 of a
non-volatile solid-state storage unit has an error correction
block 608 that applies Log-Likelihood-Ratio (LLR) tech-
niques to data read from the flash block 606, with applica-
tion of the mask 806. Log-Likelihood-Ratio 1s defined as
LLR=log 10(P(X=01Y)P(X=11Y)), where P(X=01Y) 1s the
conditional probability that a bit was written as “0” if the
value read 1s Y, and similarly for P(x=11Y). Y can be bmary
10,1} in the case of a hard read, or can have more values in
case of a solt read. The set of values depends on the number
of performed reads (i.e., resolution) from the flash memory
206. The LLRs are calculated based on the hard or soft value
read from flash using a transfer curve/look-up table. The
transfer curve/look-up table can be obtained through a
characterization process during or before production, or the
transfer curve/look-up table can be obtained dynamically
during operation. Tables/transfer curves are calculated by
estimation of the conditional probabilities 1n the LLR defi-
nition. To estimate the conditional probabilities, known data
1s written to the part and hard/soft data 1s read from part.
Conditional probability 1s estimated from the collected data.
In the case of the dynamic estimation, data 1s read, either
hard or soft, and decoded with the “a prior1 LLR”. In the
simplest case of the hard read, an equal LLR of opposite sign
1s assigned to 0’s and 1’s. Then, the decoded sequence 1is
used 1n lieu of the known sequence for the conditional
probability estimation.

One of the failure mechanisms of NAND flash 1s that bit
lines 802 can be stuck, as described above with reference to
FI1G. 8A. With a stuck bit line 802, a transistor 1s stuck 1n an
open or closed position and affects all the bits on the same
bit line 802 1n the flash block 606. The stuck bits can be
detected 1n several techniques. One mechanism 1s to read a
number of pages 224 from the flash block 606, ¢.g., N pages
224. The data obtained from read 1s mapped as 1—=-1, 0—1
and accumulated. The accumulated value 1s decoded such
that 1 accumulated value z for a position 15 —N/2<=z<=N/2
position 1s set to 0, 1f z<-N/2 or z>N/2 position 1s set to 1.
After detection, position set to 1 denotes the position of
stuck bits. The stuck bit can be “0” or “1” with equal
probability, so the LLR assigned to these positions 1s
LLR=0. This information 1s beneficial for decoding perior-
mance both using BCH (Bose, Chaudhuri, and Hoc-

US 10,528,419 B2

21

quenghem) errors and erasures decoding or LDPC decoding,
as having no information 1s preferred to having wrong
information. This allows the decode operation to determine
what the true value should be without bias. A value of
LLR=0 1s conveying that “0” or *“1” are equally likely. The
decode operation can then be performed as normal. Mask-
ing, through the use of the mask 806, provides the additional
information to replace the bad bits. The decode operation of
the stuck position doesn’t matter because the stuck position
bit would be replaced with another bit as described above,
in various embodiments.

FIG. 9 1s a flow diagram of a method for masking
defective bits 1 a storage array, which can be practiced on
or by the storage cluster, storage nodes and/or non-volatile
solid-state storage units 1n accordance with some embodi-
ments. Some or all of the actions of the method can be
practiced by a processor, such as a controller of a non-
volatile solid-state storage or a CPU of a storage node. User
data and metadata are distributed throughout storage nodes
of a storage cluster, in an action 902. The user data is
accessible via erasure coding from the storage nodes even if
two of the storage nodes are unreachable. Each of the
storage nodes has non-volatile solid-state storage with flash
memory. The storage nodes may be housed within a single
chassis that couples the storage nodes of the storage cluster.
A defect 1s 1dentified 1n a flash block, 1n an action 904. The
defect could be determined or identified based on externally
provided information such as from a manufacturer or test
results. The defect could be determined based on processes
internal to the storage cluster, storage nodes and non-volatile
solid-state storage units, such as tracking errors or error
corrections and generating diagnostic information. A mask 1s
generated, 1 an action 906. The mask indicates the flash
block and the defect by pointing to or otherwise indicating,
bits or bit locations associated with the flash block. A flash
page 1s read, 1 an action 908. The mask 1s applied, 1n an
action 910. Application of the mask could be performed 1n
vartous ways, and results 1n data that has defective bits
masked accordingly. Some or all of the above actions are
repeated as further defects are determined and further masks
or updates to the mask are performed. In further embodi-
ments of the method, the mask could 1indicate other portions
of the tlash or non-volatile memory, such as the page, die or
package. In still further embodiments, the mask could be an
hierarchical mask set as described above.

It should be appreciated that the methods described herein
may be performed with a digital processing system, such as
a conventional, general-purpose computer system. Special
purpose computers, which are designed or programmed to
perform only one function may be used in the alternative.
FIG. 10 1s an 1llustration showing an exemplary computing
device which may implement the embodiments described
herein. The computing device of FIG. 10 may be used to
perform embodiments of the functionality for a storage node
or a non-volatile solid-state storage 1in accordance with some
embodiments. The computing device includes a central
processing unit (CPU) 1001, which 1s coupled through a bus
1005 to a memory 1003, and mass storage device 1007.
Mass storage device 1007 represents a persistent data stor-
age device such as a disc drive, which may be local or
remote 1n some embodiments. The mass storage device 1007
could implement a backup storage, in some embodiments.
Memory 1003 may include read only memory, random
access memory, etc. Applications resident on the computing
device may be stored on or accessed via a computer readable
medium such as memory 1003 or mass storage device 1007
in some embodiments. Applications may also be in the form

5

10

15

20

25

30

35

40

45

50

55

60

65

22

of modulated electronic signals modulated accessed via a
network modem or other network interface of the computing
device. It should be appreciated that CPU 1001 may be
embodied 1n a general-purpose processor, a special purpose
processor, or a specially programmed logic device 1n some
embodiments.

Display 1011 1s 1 communication with CPU 1001,
memory 1003, and mass storage device 1007, through bus
1005. Display 1011 1s configured to display any visualiza-
tion tools or reports associated with the system described
herein. Input/output device 1009 1s coupled to bus 1005 1n
order to communicate information in command selections to
CPU 1001. It should be appreciated that data to and from
external devices may be communicated through the mput/
output device 1009. CPU 1001 can be defined to execute the
functionality described herein to enable the functionality
described with reference to FIGS. 1-9. The code embodying
this functionality may be stored within memory 1003 or
mass storage device 1007 for execution by a processor such

as CPU 1001 1n some embodiments. The operating system
on the computing device may be MS-WINDOWS™,
UNIX™_ LINUX™ 10S™_ (CentOS™, Android™, Redhat
Linux™, z/OS™_ or other known operating systems. It
should be appreciated that the embodiments described
herein may be itegrated with virtualized computing system
also.

Detailed illustrative embodiments are disclosed herein.
However, specific functional details disclosed herein are
merely representative for purposes ol describing embodi-
ments. Embodiments may, however, be embodied in many
alternate forms and should not be construed as limited to
only the embodiments set forth herein.

It should be understood that although the terms first,
second, etc. may be used herein to describe various steps or
calculations, these steps or calculations should not be lim-
ited by these terms. These terms are only used to distinguish
one step or calculation from another. For example, a {first
calculation could be termed a second calculation, and,
similarly, a second step could be termed a first step, without
departing from the scope of this disclosure. As used herein,
the term “and/or” and the */” symbol includes any and all
combinations of one or more of the associated listed 1tems.

As used herein, the singular forms “a”, “an’ and “the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises”, “comprising”’, “includes”,
and/or “including”, when used herein, specily the presence
of stated features, integers, steps, operations, clements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Therefore, the terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended
to be limiting.

It should also be noted that in some alternative imple-
mentations, the functions/acts noted may occur out of the
order noted 1n the figures. For example, two figures shown
In succession may in fact be executed substantially concur-
rently or may sometimes be executed 1n the reverse order,
depending upon the functionality/acts mvolved.

With the above embodiments 1n mind, 1t should be under-
stood that the embodiments might employ various com-
puter-implemented operations involving data stored 1n com-
puter systems. These operations are those requiring physical
mampulation of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or

magnetic signals capable of being stored, transferred, com-

US 10,528,419 B2

23

bined, compared, and otherwise manipulated. Further, the
manipulations performed are often referred to in terms, such
as producing, identifying, determining, or comparing. Any
of the operations described herein that form part of the
embodiments are useful machine operations. The embodi-
ments also relate to a device or an apparatus for performing
these operations. The apparatus can be specially constructed
for the required purpose, or the apparatus can be a general-
purpose computer selectively activated or configured by a
computer program stored in the computer. In particular,
various general-purpose machines can be used with com-
puter programs written in accordance with the teachings
herein, or it may be more convenient to construct a more
specialized apparatus to perform the required operations.

A module, an application, a layer, an agent or other
method-operable entity could be implemented as hardware,
firmware, or a processor executing soltware, or combina-
tions thereof. It should be appreciated that, where a soft-
ware-based embodiment 1s disclosed herein, the software
can be embodied in a physical machine such as a controller.
For example, a controller could include a first module and a
second module. A controller could be configured to perform
various actions, €.g., ol a method, an application, a layer or
an agent.

The embodiments can also be embodied as computer
readable code on a non-transitory computer readable
medium. The computer readable medium 1s any data storage
device that can store data, which can be therealiter read by
a computer system. Examples of the computer readable
medium 1include hard drives, network attached storage
(NAS), read-only memory, random-access memory, CID-
ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled
computer system so that the computer readable code 1is
stored and executed in a distributed fashion. Embodiments
described herein may be practiced with various computer
system configurations including hand-held devices, tablets,
microprocessor systems, microprocessor-based or program-
mable consumer electronics, minicomputers, mainframe
computers and the like. The embodiments can also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a wire-based or wireless network.

Although the method operations were described in a
specific order, 1t should be understood that other operations
may be performed 1n between described operations,
described operations may be adjusted so that they occur at
slightly different times or the described operations may be
distributed 1n a system which allows the occurrence of the
processing operations at various intervals associated with
the processing.

In various embodiments, one or more portions of the
methods and mechanisms described herein may form part of
a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Inirastructure as a Service (laaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). In IaaS,
computer infrastructure 1s delivered as a service. In such a
case, the computing equipment i1s generally owned and
operated by the service provider. In the PaaS model, sofit-
ware tools and underlying equipment used by developers to
develop software solutions may be provided as a service and
hosted by the service provider. SaaS typically includes a
service provider licensing soitware as a service on demand.
The service provider may host the software, or may deploy

10

15

20

25

30

35

40

45

50

55

60

65

24

the software to a customer for a given period of time.
Numerous combinations of the above models are possible
and are contemplated.

Various umits, circuits, or other components may be
described or claimed as “configured to” perform a task or
tasks. In such contexts, the phrase “configured to™ 1s used to
connote structure by indicating that the units/circuits/com-
ponents include structure (e.g., circuitry) that performs the
task or tasks during operation. As such, the unit/circuit/
component can be said to be configured to perform the task
even when the specified unit/circuit/component 1s not cur-
rently operational (e.g., 1s not on). The units/circuits/com-
ponents used with the “configured to” language include
hardware—{or example, circuits, memory storing program
instructions executable to implement the operation, etc.
Reciting that a unit/circuit/component 1s “configured to”
perform one or more tasks 1s expressly intended not to
invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/
component. Additionally, “configured to” can include
generic structure (e.g., generic circuitry) that 1s manipulated
by software and/or firmware (e.g., an FPGA or a general-
purpose processor executing software) to operate 1n manner
that 1s capable of performing the task(s) at 1ssue. “Config-
ured to” may also 1include adapting a manufacturing process
(e.g., a semiconductor fabrication {facility) to fabricate
devices (e.g., integrated circuits) that are adapted to imple-
ment or perform one or more tasks.

The foregoing description, for the purpose of explanation,
has been described with reference to specific embodiments.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible 1n
view of the above teachings. The embodiments were chosen
and described 1n order to best explain the principles of the
embodiments and 1ts practical applications, to thereby
enable others skilled 1n the art to best utilize the embodi-
ments and various modifications as may be suited to the
particular use contemplated. Accordingly, the present
embodiments are to be considered as illustrative and not
restrictive, and the invention 1s not to be limited to the details
given herein, but may be modified within the scope and
equivalents of the appended claims.

What 1s claimed 1s:
1. A method of failure mapping 1n a storage system,
performed by the storage system, comprising:

determining a failed flash memory die 1n storage memory
of the storage system:;

generating a defect map comprising a physical memory
address associated with the failed flash memory die,
wherein the defect map comprises one of a plurality of
masks 1n a hierarchical mask set used for generating
page masks;

mapping around the physical memory address associated
with the failed flash memory die based on the defect
map; and

writing to or reading from the storage memory, 1 accor-
dance with the mapping.

2. The method of claim 1, further comprising:

recording an indication of the failed flash memory die 1n
a defects map.

3. The method of claim 1, further comprising:

generating an address translation table that maps around
the failed tlash memory die.

4. The method of claim 1, further comprising:

obtaining information about the failed flash memory die
from a source external to the storage system, wherein

US 10,528,419 B2

25

the determiming 1s based on the mformation from the
source external to the storage system.

5. The method of claim 1, further comprising;:

performing yield recovery of a flash package with one or

more known defective tlash dies.

6. The method of claim 1, further comprising:

determining diagnostic information of the

memory, on a per flash die basis.

7. The method of claim 1, turther comprising;:

performing graceiul degradation of storage capacity of the

storage system, based on the mapping around the failed
flash memory die and mapping around further failed
flash memory dies.

8. A tangible, non-transitory, computer-readable media
having instructions thereupon which, when executed by a
processor, cause the processor to perform a method com-
prising:

determining one or more flash memory dies are defective

in storage memory of a storage system;

generating a defect map comprising physical memory

addresses associated with the one or more flash
memory dies that are defective, wherein the defect map
comprises one of a plurality of masks 1n a hierarchical
mask set used for generating page masks;

mapping around the physical memory addresses associ-

ated with the one or more flash memory dies that are
defective based on the defect map; and

writing to or reading from the storage memory, through

the mapping.

9. The computer-readable media of claim 8, wherein the
method further comprises:

writing 1nformation regarding the one or more flash

memory dies that are defective to a defects map.

10. The computer-readable media of claim 8, wherein the
method further comprises:

generating an address translation table 1n accordance with

the mapping, wherein the writing to or reading ifrom the
storage memory 1s through the address translation
table.

11. The computer-readable media of claim 8, wherein the
method further comprises:

writing into the storage system, information that the one

or more flash memory dies are defective from a manu-
facturer of the one or more flash memory dies, wherein
the determining 1s based on the mmformation from the
manufacturer.

12. The computer-readable media of claim 8, wherein the
mapping and the writing or reading supports vield recovery
of a flash package with one or more known defective flash
dies.

storage

10

15

20

25

30

35

40

45

26

13. The computer-readable media of claim 8, wherein the
method further comprises:

performing diagnostics on the storage memory, on a per
flash die basis, wherein the determining 1s based on the
diagnostics.

14. A storage system, comprising:

flash memory-based storage memory; and

one or more processors, configurable to:

determine one or more failed flash memory dies in the
storage memory,

generate a defect map comprising physical memory
addresses associated with the one or more failed
flash memory dies, wherein the defect map com-
prises one of a plurality of masks in a hierarchical
mask set used for generating page masks;

develop mapping around the physical memory
addresses associated with the one or more failed
flash memory dies based on the defect map; and

write to or read from the storage memory, using the
mapping.
15. The storage system of claim 14, wherein the one or
more processors are further configurable to:

generate or update a defects map to indicate the one or
more failed flash memory dies.

16. The storage system of claim 14, wherein the one or
more processors are further configurable to:

generate or update an address translation table to map
around the one or more failed flash memory dies.

17. The storage system of claim 14, wherein the one or
more processors are further configurable to:

incorporate information about the one or more failed flash
memory dies from a source external to the storage
system.

18. The storage system of claim 14, wherein the one or
more processors are further configurable to:

recover usage ol a flash package with one or more
defective tlash dies.

19. The storage system of claim 14, wherein the one or
more processors are further configurable to:

diagnose the storage memory, on a per flash die basis.

20. The storage system of claim 14, wherein the one or
more processors are further configurable to:

perform gracetul degradation of storage capacity of the
storage system, based on the mapping around the one
or more failed flash memory dies.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

