12 United States Patent

US010514937B2

(10) Patent No.: US 10,514,937 B2

Zhang et al. 45) Date of Patent: Dec. 24, 2019

(54) AUTO-DISCOVERY SERVICE AND METHOD gagg?aggg E} : 3%8?? E/}duil et al. e ;gﬁ é%
,, ,, erjpretal. ...

OF DISCOVERING APPLICATIONS WITHIN 8380.882 B2* 22013 PODE oo 04T, 40/90

A VIRTUAL NETWORK 709/250

8,416,695 B2* 4/2013 Liuetal.ccccocoeoonnnn. 370/241

(75) Inventors: Yiwen Zhang, Beijing (CN); Liang 2002/0143955 Al* 10/2002 Shimada HO4L 29/06

Cui, Beijing (CN); Zhifeng Xia, 709/227

Beijing (CN) 2004/0177158 Al* 9/2004 Bauchetal. ... 709/245

2005/0114855 Al* 5/2005 Baumberger 718/1

_ 2005/0165917 Al1* 7/2005 Le ..cociiiiiiinnnnnnn, HO4L 63/0236

(73) Assignee: VMware, Inc., Palo Alto, CA (US) 709/220

2005/0254492 Al* 11/2005 Denneau et al. 370/389

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 507 days.

(21) Appl. No.: 13/344,505

(22) Filed: Jan. 5, 2012
(65) Prior Publication Data
US 2013/0179879 Al Jul. 11, 2013
(51) Imt. CL
GO6F 9/455 (2018.01)
(52) U.S. CL
CpPC ... GO6F 9/45533 (2013.01); GO6F 9/45537

(2013.01); GO6F 9/45545 (2013.01)
(58) Field of Classification Search

CPC GO6F 9/45533; GO6F 9/45537; GO6F
0/45545; HO4L 29/08072
USPC e 717/120; 709/224

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,101,528 A * §/2000 Buttccevvveniirinnnnnn, 709/203
6,836,462 B1* 12/2004 Albert HO4L 29/06
370/235
6,868,450 B1* 3/2005 Lucovsky GO6F 9/46
709/225

(Continued)

OTHER PUBLICATIONS

Unknown Author,*“The TCP/IP Guide”—TCP/IP Application Assign-
ments and Server Port Number Ranges: Well-Known, Registered
and Dynamic/Private Ports, www.tcpipguide.com/free/t_
TCPIPApplicationAssignmentsandServerPortNumberRang-2 . htm, Aug.
2004 .*

(Continued)

Primary Examiner — Francisco J Aponte
Assistant FExaminer — Kevin X Lu

(57) ABSTRACT

Embodiments provide a system including a first host com-
puting device that includes a first virtual machine (VM) and
a first application. The system also includes a second host
computing device including a virtualization software laver,
a second VM, and an auto-discovery service at least partially
instantiated within the virtualization software layer. The
auto-discovery service 1s configured to receive a message
and an auto-discovery packet from a second application
executing on the second VM. The auto-discovery service
inserts an option into the auto-discovery packet, and trans-
mits the auto-discovery packet to the first application. The
option 1n the auto-discovery packet includes the message
received from the second application.

19 Claims, 5 Drawing Sheets

500

Register callback function and message |- 502

l

Register traffic interception rules

l

Receive packet from local application

Traffic interception
rules satisfied?

’-"'"
- 504
. 506
508
Ignore |- 810
No | Packet

Insert option into packet

l

Transmit packet to remote device

interception rules
satisfied?

lgnore 520

Extract message from packet 522

I

Call callback function of local service with |z,
extracted message

US 10,514,937 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2007/0288921 Al1* 12/2007 Kingetal.onn. 718/1
2008/0080508 Al* 4/2008 Dasetal. 370/392
2010/0087212 Al1* 4/2010 Shiccoovivviiiinnin, HO4W 4/12

455/466
2011/0022812 Al* 1/2011 wvan der Linden et al. ... 711/163
2011/0299537 Al* 12/2011 Saraiya HO4L 61/2596

370/392
2012/0287931 Al* 11/2012 Kidambi et al. 370/392
2013/0139182 Al1* 5/2013 Sethuraman et al. 719/320
2013/0159999 Al1* 6/2013 Chiuehetal. 718/1

OTHER PUBLICATIONS

Riverbed Certified Solutions Professional (RCSP) Study Guide,

Version 1.0.13 (Apr. 2008).
Auto-Discovery of WAN Optimization Appliances and Connections
(http://blog.exinda.com/bi1d/57544/Auto-Discovery-of-WAN -

Optimization-Appliances-and-Connections) (Feb. 28, 2011) (accessed
Jul. 5, 2011).

* cited by examiner

US 10,514,937 B2

Sheet 1 of 5

Dec. 24, 2019

U.S. Patent

14}
AIOWBIN
9Ll _
aloiseiep 901
90INS
wold4/0 | U1 86B101S COEMJ.C@WU@._&
JUl "WIWIOD _ 92IN8p
921A8P YIOM]SN ¢0l ndul 18s
aj0Wwa.
WoI4/0] vLL ClLl vl 0Ll

001

801

L Ol

U.S. Patent Dec. 24, 2019 Sheet 2 of 5 US 10,514,937 B2

/ Host Computing Device 100
. nnn .2...._....0.,”
VM lAppIications 270 ! 2359 235N|
| 235 . =
5 Guest Operating System2 5 VM VM| |
i .
| Virtual Hardware Platform 2404 |} 5 ;
i 245 250 260 255 i 5 E
2 N \ N\ ; L :24ON:
i . User Input [Comm,: |} SN
(1| rocessor | Memo]l Device | Int [i 1Al
. 75, Virtual Machine Monitor [~ 1 275
. 215 pevice Driver Layer r Comm. Int. Driver 3
| i ’
: | AT T 220 1
. VinualBridge 2257 g 3
Hypervisgr ,..2....19.. ________ |
HW PLATFORM 205
| Network | User Input
Processor Memo .
Y Comm. Int Device !
/ / / /
102 104 112 110

_

U.S. Patent Dec. 24, 2019 Sheet 3 of 5 US 10,514,937 B2

FIG. 3 300

'4
100
/

Host computing device |
302 235
(100
Host computing device
270

/302 /235
[_= | /100

f Host computing device

| 302 235
l e fL 1

270

270

US 10,514,937 B2

Sheet 4 of 5

Dec. 24, 2019

U.S. Patent

0LC

JOSIAJOTA}

L LT

013 %

YOHMS [ENUIA

2%

N s

o_\vk 013%

moﬂ_L woﬂ_l_ Q07 -

_ s|npowl
90 EIE)N

=
Sq\ .

0L¢ A7

tGeT

0LC

¢GET

0/¢C | ._
1$¢ f_uiw 2o

13]]0J3U0D

rmmmu i

S|dV
uolnensiboy

00t —

aoeds uoIINoeXx3

0z~

a2IAap bunndwon

¢0t

oo_\\

v Old

U.S. Patent Dec. 24, 2019 Sheet 5 of 5 US 10,514,937 B2

FIG. 5 500

‘/
l Register callback function and message |- 502
_ v .
L Register traffic interception rules 904
l . 506
I Receive packet from local application
508
Traffic interception ignore |- 910
rules satisfied? NO packet
Yes
y .
512
I Insert option into packet @
I Transmit packet to remote device 914
1
Receive packet from remote device []
518
Traffic [anore
interception rules J ot 520
satisfied? PACKE

Yes

Extract message from packet 522

Call callback function of local service with | _z54
extracted message

US 10,514,937 B2

1

AUTO-DISCOVERY SERVICE AND METHOD
OF DISCOVERING APPLICATIONS WITHIN
A VIRTUAL NETWORK

BACKGROUND

Soltware applications, such as virtual machines (VMs),
may be executed by a group, or “cluster,” of host computing
devices. Each VM creates an abstraction of physical com-
puting resources, such as a processor and memory, of the
host executing the VM and executes a “guest” operating,
system, which, 1n turn, executes one or more soltware
applications. The abstracted resources may be functionally
indistinguishable from the underlying physical resources to
the guest operating system and software applications.

At least some host computing devices are connected
together to form one or more networks. In addition, some
network architectures include a large number of computing,
devices connected together to form complex network
topologies. Such network architectures increase a cost and/
or a complexity ol managing networks built on the network
architectures. Due to the complexity and size of such net-
work architectures, the network architectures may change,
experience 1nstabilities, and/or become misconfigured. The
complexity of the network architectures also increases an
amount ol effort required to identily computing devices,
applications, and resources within a network. To properly
configure such networks for use 1n cloud computing and/or
datacenter environments, significant amounts of time and
money are often expended.

For example, applications executing within the computing
devices of the network may spend significant amounts of
time discovering the existence and/or addresses of other
applications within the network. The applications may cause
additional traflic to be transmitted through the network to
discover information about other applications, which may
decrease an efliciency of the network. The decrease 1n
elliciency and the increased amount of time spent discov-
ering other applications may reduce an amount of revenue
generated by the computing devices within the network.

SUMMARY

One or more embodiments described herein provide an
auto-discovery (AD) service that enables a local application
to discover a corresponding remote application. The local
application registers a callback function, a message, and a
plurality of traflic interception rules with the AD service.
The AD service also receives an AD network packet from
the local application to be sent to a remote device to discover
whether a corresponding remote application exists within
the remote device. The AD service determines whether the
information in the header of the AD packet satisfies the
traflic interception rules. If the trailic interception rules are
satisfied, the AD service inserts the message as an option
within the AD packet header. The AD packet 1s transmitted
to the remote device, and a remote application executing on
the remote device 1nserts a second message within a second
packet. The remote application transmits the second packet
to the local application. The AD service intercepts the
second packet and determines whether the information 1n the
second packet header satisfies the traflic interception rules.
If the traflic interception rules are satisfied, the AD service
extracts the second message from the second packet. The
AD service also transmits the second message to the first
application using the callback function.

10

15

20

25

30

35

40

45

50

55

60

65

2

This summary introduces a selection of concepts that are
described 1 more detail below. This summary 1s not
intended to i1dentity essential features, nor to limit 1n any
way the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an exemplary computing
device.

FIG. 2 1s a block diagram of virtual machines that are
instantiated on a computing device, such as the computing
device shown 1n FIG. 1.

FIG. 3 1s a block diagram of an exemplary network
including a plurality of computing devices, such as a plu-
rality of computing devices shown in FIG. 1.

FIG. 4 1s a block diagram of an exemplary auto-discovery
service shown 1n FIG. 3.

FIG. 5 15 a flowchart of an exemplary method for discov-
ering applications within a network, such as the network

shown in FIG. 3.

DETAILED DESCRIPTION

Embodiments described herein provide an auto-discovery
(AD) service that enables a local application to discover a
corresponding remote application. The local application
registers a callback function, a message, and a plurality of
traflic interception rules with the AD service. In an embodi-
ment, the message includes the internet protocol (IP) address
of the local application. The AD service also receives an AD
packet from the local application to be sent to a remote
device to discover whether a corresponding remote appli-
cation exists within the remote device. The AD service
intercepts the AD packet and determines whether the infor-
mation 1n the header of the AD packet satisfies the tratlic
interception rules. If the traflic interception rules are satis-
fied, the AD service inserts the message as an option within
the AD packet header. The AD packet 1s transmitted to the
remote device, and a remote application executing on the
remote device inserts a second message within a second
packet. In an embodiment, the second message includes the
IP address of the second application. The remote application
then transmits the second packet to the local application. The
AD service intercepts the second packet and determines
whether the information 1n the second packet header satisfies
the traflic interception rules. If the traflic interception rules
are satisfied, the AD service extracts the second message
from the second packet. The AD service also transmits the
second message to the first application using the callback
function.

Accordingly, the AD service enables a local application to
discover the existence of one or more remote applications
executing on one or more remote devices. In addition, the
AD service enables the local application to discover the
network address of the remote applications. The AD service
uses data inserted into transport control protocol (TCP)
headers to discover the information from the remote appli-
cations. Accordingly, no additional overhead 1s added to
network traflic transmitted and received by the local appli-
cation and the remote application. Because the AD service
uses TCP-based messaging, the AD service and messages
transmitted by the AD service are transparent to network
address translation (NAT) and firewall services or devices.
Additionally, the AD service 1s executed within a virtual-
ization software layer of a host computing device and 1s at
least partially executed at a kernel layer of the virtualization
software layer. As a result, the AD service may be executed

US 10,514,937 B2

3

quickly with low application overhead to create a 1fast,
cllicient network discovery service.

FIG. 1 1s a block diagram of an exemplary computing
device 100. Computing device 100 includes a processor 102
for executing instructions. In some embodiments, computer-
executable instructions are stored mm a memory 104 for
performing one or more of the operations described herein.
Memory 104 1s any device allowing information, such as
executable instructions, configuration options (e.g., thresh-
old values), and/or other data, to be stored and retrieved. For
example, memory 104 may include one or more computer-
readable storage media, such as one or more random access
memory (RAM) modules, flash memory modules, hard
disks, solid state disks, and/or optical disks.

Computing device 100 also includes at least one presen-
tation device 106 for presenting information to a user 108.
Presentation device 106 1s any component capable of con-
veying information to user 108. Presentation device 106
may include, without limitation, a display device (e.g., a
liguid crystal display (LCD), organic light emitting diode
(OLED) display, or “electronic ink™ display) and/or an audio
output device (e.g., a speaker or headphones). In some
embodiments, presentation device 106 includes an output
adapter, such as a video adapter and/or an audio adapter. An
output adapter 1s operatively coupled to processor 102 and
configured to be operatively coupled to an output device,
such as a display device or an audio output device.

The computing device 100 may include a user input
device 110 for recerving input from user 108. User put
device 110 may include, for example, a keyboard, a pointing
device, a mouse, a stylus, a touch sensitive panel (e.g., a
touch pad or a touch screen), a gyroscope, an accelerometer,
a position detector, and/or an audio input device. A single
component, such as a touch screen, may function as both an
output device of presentation device 106 and user input
device 110.

Computing device 100 also includes a network commu-
nication interface 112, which enables computing device 100
to communicate with a remote device (e.g., another com-
puting device 100) via a communication medium, such as a
wired or wireless packet network. For example, computing
device 100 may transmit and/or receirve data via network
communication interface 112. User 1input device 110 and/or
network communication interface 112 may be referred to as
an mput interface 114 and may be configured to receive
information, such as configuration options (e.g., threshold
values), from a user.

Computing device 100 further includes a storage interface
116 that enables computing device 100 to communicate with
one or more datastores. In exemplary embodiments, storage
interface 116 couples computing device 100 to a storage area
network (SAN) (e.g., a Fibre Channel network) and/or to a
network-attached storage (NAS) system (e.g., via a packet
network). The storage interface 116 may be integrated with
network communication interface 112.

FIG. 2 depicts a block diagram of virtual machines 235,
235, . .. 235, that are mstantiated on a computing device
100, which may be referred to as a “host.” Computing device
100 includes a hardware platform 205, such as an x86
architecture platform. Hardware platform 205 may include
processor 102, memory 104, network communication inter-
tace 112, user mput device 110, and other input/output (1/0)
devices, such as a presentation device 106 (shown i FIG.
1). A virtualization software layer, also referred to herein-
after as a hypervisor 210, 1s installed on top of hardware
plattorm 205.

10

15

20

25

30

35

40

45

50

55

60

65

4

The wvirtualization software layer supports a virtual
machine execution space 230 within which multiple virtual
machines (VMs 235,-235,,) may be concurrently instanti-
ated and executed. Hypervisor 210 includes a device driver
layer 215, and maps physical resources of hardware platform
205 (e.g., processor 102, memory 104, network communi-
cation interface 112, and/or user input device 110) to “vir-
tual” resources of each of VMs 235,-235,; such that each of
VMs 235,-235,, has 1ts own virtual hardware platform (e.g.,
a corresponding one of virtual hardware platforms 240, -
240,,). Each wvirtual hardware platform includes its own
emulated hardware (such as a processor 245, a memory 250,
a network communication interface 255, a user input device
260 and other emulated I/O devices in VM 235)).

In some embodiments, memory 250 1n first virtual hard-
ware platform 240, includes a virtual disk that 1s associated
with or “mapped t0” one or more virtual disk 1mages stored
in memory 104 (e.g., a hard disk or solid state disk) of
computing device 100. The virtual disk 1mage represents a
file system (e.g., a hierarchy of directories and files) used by
first virtual machine 235, 1n a single file or 1n a plurality of
files, each of which includes a portion of the file system. In
addition, or alternatively, virtual disk images may be stored
in memory 104 of one or more remote computing devices
100, such as 1n a storage area network (SAN) configuration.
In such embodiments, any quantity of virtual disk images
may be stored by the remote computing devices 100.

Device driver layer 2135 includes, for example, a commu-
nication interface driver 220 that interacts with network
communication interface 112 to recerve and transmit data
from, for example, a local area network (LAN) connected to
computing device 100. Communication interface driver 220
also icludes a virtual bridge 225 that simulates the broad-
casting of data packets 1n a physical network recerved from
one communication interface (e.g., network communication
interface 112) to other communication interfaces (e.g., the
virtual communication interfaces of VMs 235,-235,,). Each
virtual communication interface may be assigned a unique
virtual Media Access Control (MAC) address that enables
virtual bridge 225 to simulate the forwarding of incoming
data packets from network communication mterface 112. In
an embodiment, network communication interface 112 1s an
Ethernet adapter that 1s configured 1n “promiscuous mode”
such that all Ethernet packets that it receives (rather than just
Ethernet packets addressed to 1ts own physical MAC
address) are passed to virtual bridge 225, which, 1n turn, 1s
able to further forward the Ethernet packets to VMs 235, -
235, This configuration enables an Ethernet packet that has
a virtual MAC address as 1ts destination address to properly
reach the VM 1n computing device 100 with a wvirtual
communication interface that corresponds to such virtual
MAC address.

Virtual hardware platform 240, may function as an
equivalent of a standard x86 hardware architecture such that
any x86-compatible desktop operating system (e.g., Micro-
solt WINDOWS brand operating system, LINUX brand
operating system, SOLARIS brand operating system, NET-
WARE, or FREEBSD) may be installed as guest operating
system (OS) 265 1n order to execute applications 270 for an
instantiated VM, such as first VM 235,. Virtual hardware
platforms 240 ,-240,. may be considered to be part of virtual
machine monitors (VMM) 275,-275,, which implement vir-
tual system support to coordinate operations between hyper-
visor 210 and corresponding VMs 235,-235,,. Those with
ordinary skill 1n the art will recognize that the various terms,
layers, and categorizations used to describe the virtualiza-
tion components 1 FIG. 2 may be referred to differently

US 10,514,937 B2

S

without departing from their functionality or the spirit or
scope of the disclosure. For example, virtual hardware
platforms 240,-240,, may also be considered to be separate
from VMMs 275,-275,, and VMMs 275,-275,, may be
considered to be separate from hypervisor 210. One example
of hypervisor 210 that may be used in an embodiment of the
disclosure 1s included as a component in VMware’s ESX
brand software, which 1s commercially available from
VMware, Inc.

FIG. 3 1s a block diagram of an exemplary network 300
that includes a plurality of host computing devices 100
communicatively coupled together. FIG. 4 1s a block dia-
gram ol an exemplary auto-discovery (AD) service 302 at
least partially executing or instantiated within a hypervisor
210, or virtualization software layer, of each computing
device 100. In an embodiment, each computing device 100
(and one or more applications or services executing therein)
uses AD service 302 to discover information relating to one
or more applications or services (heremnafter referred to as a
“remote application”) executing within other computing
devices 100 within network 300. Accordingly, AD service
302 1s communicatively coupled to, and may be used with,
a plurality of VMs 235 ,-235,, and/or applications 270. The
discovered information may include an existence of the
remote application, a network address of the remote appli-
cation, and/or any other information that enables network
300 to function as described herein. In some embodiments,
local application 270 and one or more remote applications
are executing within different VMs 235,-235.; of the same
computing device 100.

In an embodiment, AD service 302 1s instantiated within
hypervisor 210 and virtual machine execution space 230 of
computing device 100. More specifically, AD service 302
includes a set of registration application programming inter-
taces (APIs) 400, a controller module 402, and an intercep-
tor application 404 including an interceptor kernel module
406 and a plurality of trailic interceptor modules 408.
Registration APIs 400 and controller module 402 are 1nstan-
tiated within execution space 230, and interceptor applica-
tion 404 1s instantiated within hypervisor 210. Alternatively,
registration APIs 400, controller module 402, and/or inter-
ceptor application 404 may be instantiated within any other
soltware or hardware component or system ol computing
device 100.

Registration APIs 400 define one or more sets of data
structures and/or functions that are exposed to, and called by,
one or more local applications 270 (1.e., one or more
applications 270 local to the host computing device 100
implementing AD service 302). The registration APIs 400
are used by a local application 270 to register or record a
callback function and/or other information regarding the
local application 270, and to configure the AD service 302.
In some embodiments, the callback function includes a
textual notification format or framework and an open TCP/
UDP (user datagram protocol) port. When AD service 302
discovers the IP address (or other information) from a
remote application, AD service 302 notifies the local appli-
cation 270 by inserting the message data into the textual
notification framework and transmitting the data to the local
application 270 through the open port. As used herein, the
term “register” refers to associating and/or recording data
(or an application) with an application or device. For
example, registering may include linking the data to the
application, inserting at least a portion of the data into the
application (e.g., filling out one or more ficlds or table
entries within the application), and/or any other association
between the data and the application.

10

15

20

25

30

35

40

45

50

55

60

65

6

In an embodiment, local application 270 uses registration
APIs 400 to i1dentily and register traflic interception rules
that are used by traflic imnterceptor modules 408. Registration
APIs 400 transmit the traflic interception rules to controller
module 402, which 1n turn transmits the rules to traflic
interceptor modules 408 through interceptor kernel module
406. The local application 270 also uses registration APIs
400 to register an application-specific message to be trans-
mitted to remote applications. In an embodiment, the mes-
sage 1s encoded by the local application 270 1n an applica-
tion-specific manner and 1ncludes the internet protocol (IP)
address of the local application 270 and/or other identifying
information of the local application 270. Alternatively or
additionally, the message may include any other information
identified and/or selected by the local application 270, such
as a media access control (MAC) address of the local
application 270. In an embodiment, registration APIs 400
encode the message as a transmission control protocol
(TCP) option. More specifically, in an embodiment, the TCP
option has a predetermined type of 0x14, and the message
contents are icluded in the TCP option field. Alternatively,
the TCP option type may be any other option type that 1s
unassigned or unused by the TCP protocol, and/or may be
updated or changed by an administrator or another user.

Controller module 402 1s an application embodied and
executed within execution space 230 of hypervisor 210 at an
application or user layer. Controller module 402 operates as
an intermediate software interface or bridge that transmits
data between registration APIs 400 and interceptor applica-
tion 404. In an embodiment, controller module 402 receives
requests to register callback functions and/or traflic inter-
ception rules (hereimnafter referred to as “registration
requests™) from local applications 270 (through registration
APIs 400) and transmits discovery requests to remote appli-
cations. In addition, controller module 402 receives and/or
changes a kernel module state of interceptor application 404,
for example, using one or more software tools or applica-
tions provided by a virtual storage integrator (VSI) frame-
work or using a system call, such as mput/output control
(10ctl) 1 a hypervisor 210 based on a UNIX brand operating,
system.

Interceptor application 404 1s an application embodied
and executed within a kernel layer of hypervisor 210.
Interceptor application 404 1s used to monitor and/or analyze
network trathic received by, and transmitted from, hypervisor
210. More specifically, interceptor application 404 includes
interceptor kernel module 406 and traflic interceptor mod-
ules 408. In an embodiment, interceptor kernel module 406
instantiates the traflic interceptor modules 408 within hyper-
visor 210 during an initialization phase of AD service 302.
Each traflic interceptor module 408 1s attached to a port 410
of a virtual switch 412 positioned within hypervisor 210. In
some embodiments, trathic interceptor modules 408 are
kernel modules of an ESX brand host that 1s available from
VMware, Inc. In one embodiment, virtual switch 412 1s
embodied within virtual bridge 225 (shown 1n FIG. 2). Each
traflic interceptor module 408 1s also attached to a virtual
network interface card (NIC) 414 of a VM 235,-235,, such
that traflic interceptor module 408 i1s attached between a
virtual NIC 414 and a port 410 associated with virtual NIC
414 and VM 235,-235,. Alternatively, traflic interceptor
modules 408 may be attached to an NIC (not shown) of
computing device 100 and/or a virtual NIC (not shown) of
a hypervisor 210. Accordingly, each inbound network packet
received by virtual switch 412 1s “intercepted” (1.e., recerved
and analyzed) by a traflic interceptor module 408 before the

packet 1s recerved by virtual NIC 414 and VM 235,. In

US 10,514,937 B2

7

addition, each network packet transmitted from a VM 235, -
235, through a virtual NIC 414 1s recetved and analyzed by
an associated traflic interceptor module 408 before the
packet 1s transmitted from virtual switch 412.

In an embodiment, interceptor application 404 maintains
a database, such as a global rule descriptor, that stores
information related to network connections to and from local
application 270 (i.e., to and from the VM 235, executing
local application 270). For example, the interceptor appli-
cation 404 stores, 1n the database, a list of open or available
network connections from each local application 270 to one
or more remote applications. In an embodiment, the data-
base 1s stored 1n a memory, such as memory 250 or 104, and
includes a list of fields or filter conditions, such as source IP
address, a destination IP address, and a destination port, to
be used with the traflic interception rules. For example, only
network traflic that matches the fields stored in the database
1s acted upon by 1nterceptor application 404. In other words,
interceptor application 404 filters the network traflic using
the tratlic interception rules, and the network traflic that
matches the data stored 1n the database fields 1s acted upon
by interceptor application 404. In some embodiments, one or
more of the fields may include a zero or another indicator
that the field 1s unused for traflic ﬁltering (1.e., network
trailic with any value for the unused field 1s acted upon by
interceptor application 404). Alternatively or additionally,
the fields may include any other data that enables network
300 to function as described herein.

FIG. 5 1s a flowchart of an exemplary method 500 for
discovering applications 1n a network, such as network 300
(shown 1n FIG. 3). More specifically, method 500 discovers
remote applications executing within remote devices, such
as remote computing devices 100 (shown in FIG. 1), and/or
within remote VMs, such as VMs 235,-235,, (shown 1n FIG.
2). Method 500 1s executed by a computing device 100
(shown i FIG. 1). For example, a plurality of computer-
executable instructions are embodied within a computer-
readable medium, such as memory 104 or memory 250. The
instructions, when executed by a processor, such as proces-
sor 102 or processor 245, cause the processor to execute the
steps of method 500 and/or to function as described herein.

In an embodiment, a local application 270 (and the
computing device 100 hosting the local application 270)
executes AD service 302 and calls registration APIs 400 to
discover corresponding remote applications executing in
one or more remote VMs 235,-235,.. The remote applica-
tions (and the computing devices 100 hosting the remote
applications) corresponding to the local application 270 also
execute an AD service 302 that functions as described
herein. The local application 270 calls registration APIs 400
or provides AD service 302 with a callback function, a
message, and a plurality of traflic configuration rules. The
callback function 1s a function of the local application 270
that 1s used to pass information received from a remote
application to the local application 270. The message 1s an
IP address of the local application 270 and/or any other
message. The tratlic interception rules include filtering or
matching data contained 1n a header of each received net-
work packet with the values of the database fields. In an
embodiment, the trafhic interception rules include determin-
ing whether a TCP SYN bait 1s set within the packet header
of any outbound network packet (e.g., any packet originat-
ing irom local application 270) received by traflic intercep-
tor modules 408. In addition, the traflic interception rules
may 1include determining whether a source IP address, a
destination IP address, and/or a destination port number are

10

15

20

25

30

35

40

45

50

55

60

65

8

equal to or within IP address and/or port number values
and/or ranges identified 1n the database fields.

After receiving the callback function, the message, and
the traflic configuration rules, AD service 302 registers 502
the callback function and the message, and registers 504 the
traflic configuration rules. In an embodiment, the callback
function, the message, and the tratlic configuration rules are
registered or associated with one or more traflic interceptor
modules 408. After the callback function and the message
have been registered 502, and the traflic interception rules
have been registered 504, the local application 270 1s
considered to be registered with the AD service 302.

The local application 270 generates an auto-discovery
(AD) packet for a remote device to determine if the remote
device includes an application registered with or executing
an AD service 302. The AD service 302 receives 506 the AD
packet from the local application 270. More specifically, the
local application 270 transmaits a TCP packet with the SYN
bit set to one or more remote devices within network 300.
The AD packet 1s received 506 or intercepted by a traflic
interceptor module 408 attached to the local VM 233, and to
the port 410 associated with the local VM 235, . The tratlic
interceptor module 408 determines 508 11 the information 1n
the AD packet header satisfies the traflic interception rules.
In an embodiment, 1f the SYN bit 1s set within the AD packet
header and the source IP address, the destination IP address,
and the destination port number match the database fields,
and 1f the AD packet represents a new network connection
(1.e., the network connection to the remote device 1s not
present within the database), the traflic interception rules are
satisfied.

In an embodiment, 1f the tratlic interception rules are not
satisfied, traflic interceptor module 408 i1gnores 310 (1.e.,
does not modily) the packet and transmits the packet to
virtual switch 412 for transmission to the destination remote
device. However, 11 the traflic interception rules are satisfied,
tratlic interceptor module 408 1nserts 512 a TCP option 1nto
an option field of the AD packet. The option includes the
message provided by the local application 270. In one
embodiment, traflic interceptor module 408 sets the option
type of the option to 0x14, or to another unused option type,
and transmits 514 the AD packet to the remote device (and
to the remote application) using the virtual switch 412.

If the remote device includes an application registered
with or executing AD service 302, a traflic interceptor
module 408 executing on the remote device (i.e., a remote
traflic interceptor module 408) recerves or intercepts the AD
packet. The AD packet 1s analyzed by a remote traflic
interceptor module 408 to determine 1f the remote traflic
interception rules are satisfied. If the remote traflic intercep-
tion rules are satisfied, the remote tratlic interceptor module
408 extracts the message from the AD packet (e.g., the IP
address of the local application 270) and stores or registers
the local application 270 and 1ts message in the remote AD
service 302 1n a similar manner as described herein with
respect to the local AD service 302. The remote traflic
interceptor module 408 also inserts a message, such as an IP
address, provided by the remote application registered with
the remote AD service 302, into a TCP packet with both the
SYN bit and the ACK bits set (heremnafter referred to as an
“AD response packet”). The message 1s included within the
AD response packet as a TCP option with the option type set
to the predetermined option type (e.g., 0x14). The AD
response packet 1s transmitted back to the local application
270 and 1s recerved 516 by the virtual switch 412 and by the
traflic interceptor module 408 associated with the local
application 270.

US 10,514,937 B2

9

The local traflic interceptor module 408 determines 518 11
the AD response packet header information satisfies the
traflic interception rules. In an embodiment, 11 the SYN bit
and the ACK bit are set within an 1nbound packet (e.g., the
AD response packet) header, and 11 the source IP address, the
destination IP address, and the destination port number
match the database fields, the tratlic interception rules are
satisiied. If the packet header information does not satisiy
the traflic interception rules, the packet 1s 1ignored 520 (1.e.,
passed along to the packet destination without modifying the
packet) by the tratlic interceptor module 408, and the tratlic
interceptor module 408 continues recerving 516 packets.

If the AD response packet satisfies the traflic interception
rules, the traflic interceptor module 408 extracts 522 the
message provided by the remote application and AD service
302 from the packet. More specifically, the traflic interceptor
module 408 extracts the data stored in the option field of the
packet corresponding to the option type (e.g., 0x14) and sets
or 1dentifies the data to be the message. In an embodiment,
the message 1s the IP address of the remote application.
Trathic mterceptor module 408 transmits the message to the
local application 270 using the callback function of the local
application 270. In an embodiment, the traflic interceptor
module 408 calls 524 the callback function with the
extracted message as a parameter passed into the callback
tfunction. The local application 270 stores the IP address of
the remote application 1n database and/or within another
memory location for use in communicating with the remote
application.

After completion of method 500, local application 270 1s
aware ol the remote application and the IP address of the
remote application, and the remote application 1s aware of
the local application 270 and the IP address of the local
application 270. Accordingly, method 500 facilitates discov-
ering network information of applications remote from a
local application 270. While method 500 has been described
with respect to discovering the existence and IP address of
remote applications, 1t should be recognized that method
500 can be used to discover any other information of remote
applications.

Exemplary Operating Environment

The auto-discovery service as described herein may be
performed by a computer or computing device. A computer
or computing device may include one or more processors or
processing units, system memory, and some form of com-
puter-readable media. Exemplary computer-readable media
include flash memory drives, digital versatile discs (DVDs),
compact discs (CDs), floppy disks, and tape cassettes. By
way ol example and not limitation, computer-readable
media comprise computer storage media and communica-
tion media. Computer storage media store information such
as computer-readable instructions, data structures, program
modules, or other data. Communication media typically
embody computer-readable instructions, data structures,
program modules, or other data in a modulated data signal
such as a carnier wave or other transport mechanism and
include any information delivery media. Combinations of
any of the above are also included within the scope of
computer-readable media.

Although described 1n connection with an exemplary
computing system environment, embodiments of the disclo-
sure are operative with numerous other general purpose or
special purpose computing system environments or configu-
rations. Examples of well known computing systems, envi-
ronments, and/or configurations that may be suitable for use
with aspects of the disclosure include, but are not limited to,
mobile computing devices, personal computers, server com-

10

15

20

25

30

35

40

45

50

55

60

65

10

puters, hand-held or laptop devices, multiprocessor systems,
gaming consoles, microprocessor-based systems, set top
boxes, programmable consumer electronics, mobile tele-
phones, network PCs, minicomputers, mainirame comput-
ers, distributed computing environments that include any of
the above systems or devices, and the like.

Embodiments of the disclosure may be described 1n the
general context of computer-executable mstructions, such as
program modules, executed by one or more computers or
other devices. The computer-executable instructions may be
organized nto one or more computer-executable compo-
nents or modules. Generally, program modules include, but
are not limited to, routines, programs, objects, components,
and data structures that perform particular tasks or imple-
ment particular abstract data types. Aspects of the disclosure
may be implemented with any number and organization of
such components or modules. For example, aspects of the
disclosure are not limited to the specific computer-execut-
able instructions or the specific components or modules
illustrated 1n the figures and described herein. Other embodi-
ments of the disclosure may include different computer-
executable instructions or components having more or less
functionality than illustrated and described herein.

Aspects of the disclosure transform a general-purpose
computer into a special-purpose computing device when
programmed to execute the instructions described herein.

The operations illustrated and described herein may be

implemented as software instructions encoded on a com-
puter-readable medium, in hardware programmed or
designed to perform the operations, or both. For example,
aspects of the disclosure may be implemented as a system on
a chip.
The embodiments illustrated and described herein as well
as embodiments not specifically described herein but within
the scope of aspects of the disclosure constitute exemplary
means for maintaining high availability of software appli-
cation instances, such as virtual machines.

The order of execution or performance of the operations
in embodiments of the disclosure illustrated and described
herein 1s not essential, unless otherwise specified. That 1s,
the operations may be performed in any order, unless
otherwise specified, and embodiments of the disclosure may
include additional or fewer operations than those disclosed
herein. For example, it 1s contemplated that executing or
performing a particular operation before, contemporane-
ously with, or after another operation 1s within the scope of
aspects of the disclosure.

When introducing elements of aspects of the disclosure or
the embodiments thereof, the articles “a,” “an,” “the,” and
“said” are intended to mean that there are one or more of the
clements. The terms “comprising,” “including,” and “hav-
ing”” are intended to be inclusive and mean that there may be
additional elements other than the listed elements.

Having described aspects of the disclosure 1n detail, 1t will
be apparent that modifications and varnations are possible
without departing from the scope of aspects of the disclosure
as defined 1n the appended claims. As various changes could
be made 1n the above constructions, products, and methods
without departing from the scope of aspects of the disclo-
sure, 1t 1s intended that all matter contained in the above
description and shown 1n the accompanying drawings shall
be mterpreted as illustrative and not 1 a limiting sense.

What 1s claimed 1s:

1. A system comprising:

a first host computing device comprising a {irst virtual

machine (VM) and a first application executing on the

first VM and

US 10,514,937 B2

11

a second host computing device communicatively
coupled to the first host computing device to form a
network, the second host computing device compris-
ng:

a virtualization software layer;
a database;
a second VM, wherein a second application 1s execut-
ing within the second VM;
an auto-discovery service at least partially istantiated
within the virtualization soiftware layer and commu-
nicatively coupled to the second VM; and
a traflic interceptor module within the auto-discovery
service, wherein the auto-discovery service 1s con-
figured to:
register the second application with the auto-discov-
ery service, wherein registering the second appli-
cation includes recerving a message irom the
second application;
intercept, using the trailic interceptor module, a
packet from the second application that 1s bound
for the first host computing device;
determine whether the packet satisfies a first condi-
tion, the first condition being that the packet
represents a new network connection for the sec-
ond application;
recerve, Irom the second application, one or more of
a plurality of second conditions, the one or more
of the plurality of second conditions being that the
packet includes fields matching one or more of the
following: a source IP address, a destination IP
address, and a destination port number stored 1n
the database:
register the one or more of the plurality of second
conditions with the tratlic interceptor module;
determine whether the packet satisfies the one or
more of the plurality of second conditions;
when the packet satisfies the first condition and the
one or more of the plurality of second conditions,
insert an option into the packet, wherein the option
includes the message received from the second
application and transmit the packet to the first host
computing device to discover applications within
the first host computing device;
in response to the packet transmitted to the first host
computing device, receive, from the first host
computing device, a second packet comprising a
second message that includes an internet protocol
(IP) address of the first application;
extract the second message from the second packet;
determining whether the second packet satisfies the
one or more of the plurality of second conditions;
and
based on the second packet satistying the one or
more of the plurality of second conditions, trans-
mit the extracted second message to the second
application.

2. The system of claim 1, wherein the database stores:

a list of network connections for the second application,
the database fields comprising the source IP address;
and

the destination IP address, and the destination port.
3. The system of claim 1, wheremn the first condition
turther comprises whether a transmission control protocol

(TCP) SYN bait 1s set within a header of the packet.

10

15

20

25

30

35

40

45

50

55

60

65

12

4. The system of claim 1, wherein the traflic interceptor
module 1s configured to receive network packets transmitted
to the second VM and to recerve network packets transmit-
ted from the second VM.

5. The system of claim 4, wherein the virtualization
solftware layer comprises a virtual switch comprising a
plurality of ports for connecting to a plurality of VMs, and
wherein the traflic interceptor module 1s connected to a port
associated with the second VM.

6. The system of claim 4, wherein the auto-discovery
service 1s further configured to register at least one traflic
interception rule with the tratlic interceptor module.

7. The system of claim 1, wherein the message 1s encoded
by the second application and wherein the message com-
prises an IP address of the second application.

8. The system of claim 7, wherein the message 1s encoded
as a transmission control protocol (TCP) option, and
wherein contents of the message contents are included in the
TCP option field.

9. A method of discovering network applications, the
method comprising:

instantiate a traflic interceptor module within an auto-

discovery service executing within a virtualization soft-
ware layer of a first computing device;

register the first application with the auto-discovery ser-

vice, wherein registering the first application includes
receiving, by the auto-discovery, a message from the
first application executing on a first VM of the first
computing device;

intercepting, by the traflic interceptor module, a packet

from the first application that 1s bound for a second
computing device;

determining, by the auto-discovery service, whether the

packet satisfies a first condition, the first condition
being that the packet represents a new network con-
nection for the second application;

recerving, by the auto-discovery service, one or more of

a plurality of second conditions, the one or more of the
plurality of second conditions being that the packet
includes fields matching one or more of the following:
a source IP address, a destination IP address, and a
destination port number stored in a database;

register the one or more of the plurality of second con-

ditions with the traflic interceptor module;

determine whether the packet satisfies the first condition

and the one or more of the plurality of second condi-
tions;

when the packet satisfies the first condition and the one or

more of the plurality of second conditions, 1nsert, by
the auto-discovery service, an option into the packet,
wherein the option 1includes the message received from
the first application and transmitting, by the auto-
discovery service, the packet to the second computing
device to discover applications within the second com-
puting device;

in response to the packet transmitted to the second com-

puting device, recerving, from the second computing
device, a second packet comprising a second message
that includes an internet protocol (IP) address of a
second application that exists within the second com-
puting device;

extracting the second message from the second packet;

determining whether the second packet satisfies the one or

more of the plurality of second conditions; and

based on the second packet satisiying the one or more of

the plurality of second conditions, transmitting the
extracted second message to the first application.

.

US 10,514,937 B2

13

10. The method of claim 9, wherein the one or more of the
plurality of second conditions are being that the packet
includes fields matching the source IP address, the destina-
tion IP address, and the destination port number stored 1n a
database.

11. The method of claim 10, further comprising calling the
callback function with the extracted message.

12. A non-transitory computer-readable storage medium
having computer executable instructions embodied thereon,
wherein, when executed by a processor, the computer-
executable instructions cause the processor to:

instantiate a tratlic interceptor module within an auto-

discovery service executing within a virtualization soit-
ware layer of a first computing device;

attach the tratflic interceptor module to a virtual switch
within the virtualization software layer;

attach the traflic interceptor module to a first VM, wherein
a first application 1s executing within the first VIM;

register the first application with the auto-discovery ser-
vice, wherein registering the first application includes
receiving a message from the first application;

intercept, by the traflic interceptor module, a packet from
the first application that 1s bound for a second comput-
ing device;

receive, from the first application, one or more of a
plurality of first conditions;

register the one or more of the plurality of first conditions
with the traflic interceptor module;

determine whether the packet satisfies a second condition,
the second condition being the packet represents a new
network connection for the first application, and
whether the packet satisfies the one or more of the
plurality of first conditions being that the packet
includes fields matching one or more of the following:
a source IP address, a destination IP address, and a
destination port number stored in a database;

when the packet satisfies the one or more of the plurality
of first conditions and the second condition, insert the
message 1nto the packet and transmit the packet to the
second computing device to discover applications
within the second computing device;

10

15

20

25

30

35

40

14

in response to the packet transmitted to the second com-
puting device, receive, by the auto-discovery service
from the second computing device, a second message
within a second packet that includes internet protocol
(IP) address of a second application that exists within
the second computing device;

extract the second message from the second packet;

determine whether the second packet satisfies the one or

more of the plurality of first conditions; and

based on the second packet satistying the one or more of

the plurality of first conditions, transmait the extracted
second message to the first application.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the computer executable
instructions further cause the processor to register the sec-
ond condition with the tratflic interceptor module.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the computer executable
instructions further cause the processor to register a callback
function of the first application with the auto-discovery
Service.

15. The non-transitory computer-readable storage
medium of claim 14, wherein the computer executable
instructions further cause the processor to determine
whether the second packet recerved from the second appli-
cation satisfies the second condition.

16. 'The non-transitory computer-readable storage
medium of claim 15, wherein the computer executable
instructions further cause the processor to call the callback
function 1f the second packet received from the second
application satisfies the one or more of the plurality of first
conditions.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the second condition further
comprises whether a transmission control protocol (TCP)
SYN bit 1s set within a header of the packet.

18. The method of claim 9, wherein the packet 1s a SYN
packet and the second packet 1s a SYN-ACK packet.

19. The method of claim 18, wherein the second condition
turther comprises whether a SYN bit and an ACK bait are set
within the packet.

	Front Page
	Drawings
	Specification
	Claims

