12 United States Patent

Gao et al.

US010514929B2

US 10,514,929 B2
Dec. 24, 2019

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER INSTRUCTION PROCESSING
METHOD, COPROCESSOR, AND SYSTEM

(71) Applicant: HUAWEI TECHNOLOGIES CO.,
LTD., Shenzhen, Guangdong (CN)

(72) Inventors: Yunwei Gao, Beljing (CN); Xinlong
Lin, Benjng (CN); Jianfeng Zhan,
Beijing (CN)

(73) Assignee: HUAWEI TECHNOLOGIES CO.,
LTD., Shenzhen, Guangdong (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 48 days.

(21) Appl. No.: 15/844,191

(22) Filed: Dec. 15, 2017

(65) Prior Publication Data
US 2018/0107489 Al Apr. 19, 2018
Related U.S. Application Data

(63) Continuation of application No.
PCT/CN2016/073942, filed on Feb. 17, 2016.

(30) Foreign Application Priority Data
Jun. 17, 2015 (CN) i, 2015 1 0336409
(51) Inmt. CL
GO6F 9/455 (2018.01)
GO6F 15/80 (2006.01)
(Continued)

(52) U.S. CL
CPC oo GOGF 9/3885 (2013.01); GOGF 8/52
(2013.01); GOGF 9/30 (2013.01); GO6F
9/30174 (2013.01);

(Continued)

(58) Field of Classification Search
CPC GO6F 9/3885; GO6F 9/30; GO6F 9/30174;
GO6F 9/3836; GO6F 9/3863;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

6,769,121 B1* 7/2004 Koyama GOGF 9/4862
709/201
7,093,258 B1* 8/2006 Miller GO6F 9/485
718/105

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101387969 A 3/2009
CN 101546301 A 9/2009
(Continued)

OTHER PUBLICATTONS

Grimes et al. “64-Bit Processor: The Intel 1860 64-Bit Processor: A
General-Purpose CPU with 3D Graphics Capabilities” 1989 (Year:

1989).*
(Continued)

Primary Examiner — Daniel H Pan

(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(US) LLP

(57) ABSTRACT

Embodiments of the present application disclose a computer
instruction processing method, a coprocessor, and a system.
The computer instruction processing method includes:
receiving, by a coprocessor, a first istruction set migrated
by a central processing unit CPU; acquiring, according to the
first instruction set that 1s applicable to the CPU for execu-
tion, a second instruction set for execution in the coproces-
sor; and executing binary codes 1n the second 1nstruction set.
In this way, the coprocessor that executes the second nstruc-
tion set substitutes for the CPU that executes the first
istruction set, CPU load i1s reduced, and usage of the
coprocessor 1s improved.

21 Claims, 10 Drawing Sheets

fmm

The coprocessor receives a first instruction set migrated
by the CPU

/-Aélﬂz

The coprocessor obtains a second insfruction set
according to the first instruction set

/—AGOI

The coprocessor translates a regisier address of the CPU
in the binary codes included in the second instruction set
into a register address of the coprocessor

/A4[}3

The coprocessor executes the binary codes in the second
instruction set

US 10,514,929 B2

Page 2
(51) Int. CL FOREIGN PATENT DOCUMENTS
GO6F 9/38 (2018.01)
ook 930 (OIA0D N lmen
ggg ggg 88?2'8:‘; CN 102193788 A 9/2011
6 CN 102282540 A 12/2011
GO6t” 9/48 (2006.01) CN 103294540 A 9/2013
(52) U.S. Cl. CN 104050010 A 9/2014
CPC ... GO6F 9/3836 (2013.01); GO6F 93863 N 104572307 A 4/2015
(2013.01); GO6F 9/45516 (2013.01); Go6F Y5 2508433 A 672014
9/5088 (2013.01); GOoF 9/3017 (2013.01);
GO6F 9/3877 (2013.01); GO6F 9/3879 OTHER PUBLICAITONS
(2013.01); GO6F 9/45504 (2013.01); GO6F W02016202001, Gao et al. (Year: 2016).*
9/455025%(; ?5,’/2{18)55 6%%%1;’396??5‘27022;’) 134%?25 English Translation of W0O2016202001 Specification (Year: 2016).*
(2013.01); GO6F 2009/455'7 (2613 01); GO6F Felix Xiaozhu Lin et al. K2: A Mobile Operating System for
T RS Heterogeneous Coherence Domains. ASPLOS °14, Mar. 1-4, 2014.
2209/509 (2013.01) total 15 pages.
(58) Field of Classification Search Edson Bonin et al. Characterization of DBT Overhead. 2009 IEEE.

CPC .. GO6F 9/45516; GO6F 9/5088; GO6F 9/4856;
GO6F 9/4862; GO6F 9/455; GO6F
9/45504; GO6F 9/45508; GO6F 9/45337;
GO6F 9/3877, GO6F 9/3879; GOG6F
0/3887; GO6F 15/8007; GO6F 8/52; GOG6F
2209/509; GO6F 2009/4557; GO6F
16/119; GO6F 16/185; GO6F 11/3636;
GO6F 11/3652
712/22, 31, 34, 209, 227; 703/26;
717/136, 138, 140
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,167,559 B2 1/2007 Ono et al.
2008/0301415 Al1* 12/2008 Maedaooevenen.... GO6F 9/455
712/225
2009/0319662 A1 12/2009 Barsness et al.
2010/0153686 Al 6/2010 Frank
2010/0299130 A1 11/2010 Mitsuzawa et al.
2014/0019723 Al 1/2014 Yamada et al.
2014/0095832 Al 4/2014 Haber et al.
2014/0281376 Al 9/2014 Yamada et al.
2014/0375658 A1 12/2014 Lichmanov et al.
2015/0012731 Al 1/2015 Hum et al.
2015/0301848 A1 10/2015 Roehrig et al.
2015/0301955 A1* 10/2015 Yakovenko GO6F 12/14
711/163
2016/0026488 A1* 1/2016 Bondcco......... GO6F 9/4552
718/1

pp. 178-187.
Giorgis Georgakoudis et al. Fast Dynamic Binary Rewriting for

Flexible Thread Migration on Shared-ISA Heterogeneous MPSoCs,
2014 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS XIV). pp. 156-
163.

Giuseppe Coviello et al. A Coprocessor Sharing-Aware Scheduler
for Xeon Phi-based Compute Clusters,2014 IEEE 28th International
Parallel and Distributed Processing Symposium.pp. 337-346.

Yusuke Suzuki et al. GPUvm: Why Not Virtualizing GPUs at the

Hypervisor? 2014 USENIX Annual Technical Conference.Jun. 19-20,
2014. pp. 109-120.

Rob Lyerly et al. Compiler Support for Application Migration 1n
Heterogeneous-ISA Platforms,Eurosys. Apr. 2015 total 2 pages.
Takaaki Miyajima et al. Courier: A Toolchain for Application
Acceleration on Heterogencous Platforms, IPSJ Transactions on
System LSI Design Methodology vol. 8 Aug. 2015. pp. 105-115.
Nabil Hallou et al. Dynamic Re-Vectorization of Binary Code.
International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS XV). IEEE 2015. pp.
228-237.

Tong L1 et al. Operating system support for overlapping-isa hetero-
geneous multi-core architectures, IEEE 2009. total 12 pages.
Toshio Suganuma et al. A Dynamic Optimization Framework for a
Java Just-in-Time Compiler, ACM 2001. pp. 180-194.

Eric G. What public disclosures has Intel made about Knights
Landing? Intel. Retrieve from the internet: https://software.intel.
com/en-us/articles/what-disclosures-has-intel-made-about-knights-

landing. Nov. 25, 2014. total 10 pages.

* cited by examiner

U.S. Patent Dec. 24, 2019 Sheet 1 of 10 US 10,514,929 B2

System 100

./

Binary code obtained
through compilation

Binary code

according to an instruction
set of the coprocessor

Binary code obtained

through compilation
according to an instruction >

set of the central
processing unit

Operating system

Central processing unit Coprocessor
101 102

FIG. 1

U.S. Patent Dec. 24, 2019 Sheet 2 of 10 US 10,514,929 B2

System 200

.

| I
s - LI - | |
Binary code Binary code | Translated
included in a : |
I binary code |
process : |
First operating Second operating
System system
Central processing unit Coprocessor
201 202
FIG. 2
Instruction set Instruction set
supported by the supported by the
central processing unit COProcessor
First part of AAAA AAAA
instruction Translati
| ranslation
subsets \ BBBB BIB1BI1BI
Second part 4 CCCC CCCC
of instruction
subsets DDDD DDDD
Translation
Third part of EEEE X
Instruction
subsets

FI1G. 3

U.S. Patent Dec. 24, 2019 Sheet 3 of 10 US 10,514,929 B2

/A401

The coprocessor receives a first struction set migrated
by the CPU

A402
v -

The coprocessor obtains a second instruction set
according to the first instruction set

KA4O3

The coprocessor executes the binary codes in the second
instruction set

F1G. 4

U.S. Patent Dec. 24, 2019 Sheet 4 of 10 US 10,514,929 B2

A402

A4021
The coprocessor matches, in a preset translation table, /

operation codes of the binary codes in the first instruction set,
and 1f an operation code of a first binary code in the first
instruction set 1s found in the translation table, translates the
operation code of the first binary code into an operation code
of a second binary code according to a match item

corresponding to the operation code of the first binary code in
the translation table, and obtains the second binary code, and

the coprocessor obtains the second 1nstruction set according to

at least one second binary code that 1s obtained

| A4022
If an operation code of a third binary code in the first /
instruction set 1s not found in the translation table, the

coprocessor uses the third binary code as a binary code 1n the
second 1nstruction set

FIG. 5

U.S. Patent Dec. 24, 2019 Sheet 5 of 10 US 10,514,929 B2

A401

f

The coprocessor receives a first instruction set migrated
by the CPU

A402
; a

The coprocessor obtains a second instruction set
according to the first instruction set

A601
, a

The coprocessor translates a register address of the CPU
in the binary codes included in the second instruction set
into a register address of the coprocessor

A403
; a

The coprocessor executes the binary codes in the second
instruction set

FIG. 6

U.S. Patent Dec. 24, 2019 Sheet 6 of 10 US 10,514,929 B2

«

The coprocessor receives an address of the to-be-
migrated first instruction set that 1s sent by the CPU

A401
/AZIO] 1

A4012
Y S

The coprocessor acquires the first instruction set by/
accessing the memory of the CPU based on the address of
the first instruction set

FI1G. 7

U.S. Patent Dec. 24, 2019 Sheet 7 of 10 US 10,514,929 B2

A403

\ |
/ A801

[

The coprocessor executes the binary codes in the second
Instruction set in sequence

A802
Y /

K
It a binary code 1dentification exception 1s detected during
execution of the second instruction set, determine a fourth
binary code that triggers the exception

/ A803
v [

Translate the fourth binary code into an intermediate code,
and then translate the intermediate code into a fifth binary
code that 1s applicable to the second operating system

i /A804

Execute the fifth binary code, and continue to execute a
binary code after the fourth binary code in the second
instruction set

FIG. 8

U.S. Patent Dec. 24, 2019 Sheet 8 of 10 US 10,514,929 B2

/ A901

[

Send an instruction set back-migration request to the CP

A902
Y S

/
Receive a back-migration reject instruction sent by the
CPU
FIG. 9

A403

e

B1001

/

The coprocessor executes the binary codes in the second
instruction set in sequence

B1002

Y

{
If a binary code 1dentification exception 1s detected
during execution of the second instruction set, determine
a sixth binary code that triggers the exception

B1003
Y S

/

Acquire, according to binary codes starting from the sixth
binary code in the second instruction set, a third
instruction set that 1s applicable to the first operating
system, and migrate the third instruction set to the CPU

FIG. 10

U.S. Patent Dec. 24, 2019 Sheet 9 of 10 US 10,514,929 B2

/131101

[

Send an instruction set back-migration request to the CP

B1102
Y S

/
Recelve an instruction set back-migration response sent
by the CPU
FIG. 11
202
Coprocessor
2021
First instruction
set recelving unit
2022
Second 1nstruction
set obtaining unit
2023
Second 1nstruction
set execution unit

FIG. 12

U.S. Patent Dec. 24, 2019 Sheet 10 of 10 US 10,514,929 B2

202
Coprocessor
2021
First instruction
set recelving unit
2022

Second
instruction set
obtaining unit

!

2024
Register address /
translation unit

Second 2023
instruction set

execution unit

FIG. 13

1401 1402

Coprocessor Memory

1403

FIG. 14

US 10,514,929 B2

1

COMPUTER INSTRUCTION PROCESSING
METHOD, COPROCESSOR, AND SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of International Appli-
cation No. PCT/CN2016/073942, filed on Feb. 17, 2016,

which claims priority to Chinese Patent Application No.
201510336409.5, filed on Jun. 17, 2015, both of which are

hereby incorporated by reference 1n their entireties.

TECHNICAL FIELD

Embodiments of the present application relate to the field
of computers, and 1n particular, to a computer instruction
processing method, a coprocessor, and a system.

BACKGROUND

Currently, a coprocessor (coprocessor) 1s a chip and 1s
mainly used to substitute for a central processing unit (CPU)
to process a specific task. Because the coprocessor and the
central processing unit have some differences 1n an instruc-
tion set, a program running on the coprocessor generally
needs to be complied independently by using a compiler, and
requires certain code adjustment. In the prior art, for codes
ol a certain application, labels are generally attached to the
codes of the application, and the labels are used to distin-
guish which codes are executed by the CPU, and which
codes are executed by the coprocessor. First, all codes of the
application are compiled, which 1ncludes that codes
executed by the CPU and codes executed by the coprocessor
are compiled differently according to labels. After the codes
are compiled, during running of a process of the application
on the CPU, if the process runs to a compiled code that needs
to be executed by the coprocessor, the CPU pauses the
execution of the process of the application, sends, to the
coprocessor, the compiled code that needs to be executed by
the coprocessor, and offloads (oflload) the code at the label
to the coprocessor for execution.

As can be known from above, in the prior art, after
compilation of the codes of the application 1s completed,
which part of compiled codes are executed by the CPU and
which compiled codes are executed by the coprocessor are
definite, but any code cannot be sent to the coprocessor for
execution according to a requirement. Consequently, actual
usage of the coprocessor 1s low, and CPU load cannot be
reduced properly.

SUMMARY

In view of this, the present application provide a computer
istruction processing method, a coprocessor, and a system,
where a CPU may migrate a computer instruction to a
COprocessor running an operating system, so that the copro-
cessor executes the computer instruction to reduce CPU
load.

According to a first aspect, the present application pro-
vides a computer 1nstruction processing method, applied to
a processor system, where the processor system includes a
coprocessor and a central processing unit CPU, a first
operating system runs on the CPU, and a second operating
system runs on the coprocessor; and the method includes:

receiving, by the coprocessor, a first instruction set
migrated by the CPU, where the first instruction set 1s used
to mstruct the CPU to execute computer operations in the

10

15

20

25

30

35

40

45

50

55

60

65

2

first operating system, and the first instruction set 1s a set of
binary codes that are applicable to the first operating system;

obtaining, by the coprocessor, a second instruction set
according to the first instruction set, where binary codes 1n
the second 1nstruction set are used to instruct the coproces-
sor to execute the computer operations 1n the second oper-
ating system; and

executing, by the coprocessor, the binary codes in the
second 1nstruction set.

With reference to the first aspect, in a {first possible
implementation manner, the obtaining, by the coprocessor, a
second 1nstruction set according to the first imstruction set
includes:

matching, by the coprocessor, in a preset translation table,
operation codes of the binary codes 1n the first instruction
set, and 1 an operation code of a first binary code 1n the first
mstruction set 1s found 1n the translation table, translating
the operation code of the first binary code into an operation
code of a second binary code according to a match item
corresponding to the operation code of the first binary code
in the translation table, obtaining the second binary code,
and obtaining, by the coprocessor, the second instruction set
according to at least one second binary code that 1s obtained,
where the translation table includes a correspondence
between different operation codes that are respectively gen-
erated for the first operating system and the second operating
system by compiling a same computer instruction, and the
second binary code 1s a binary code that 1s applicable to the
second operating system.

With reference to the first aspect or the first possible
implementation manner of the first aspect, in a second
possible implementation manner, before the executing, by
the coprocessor, the binary codes 1n the second instruction
set, the method further includes:

translating, by the coprocessor, a register address of the
CPU 1n the binary codes included in the second instruction
set into a register address of the coprocessor.

With reference to the first possible implementation man-
ner of the first aspect or the second possible implementation
manner of the first aspect, 1n a third possible implementation
manner, the obtaining, by the coprocessor, a second 1nstruc-
tion set according to the first instruction set, further includes:

1 an operation code of a third binary code in the first
instruction set 1s not found 1n the translation table, using, by
the coprocessor, the third binary code as a binary code in the
second 1nstruction set.

With reference to the first aspect or the first possible
implementation manner of the first aspect or the second
possible implementation manner of the first aspect or the
third possible implementation manner of the first aspect, in
a fourth possible implementation manner, the first imstruc-
tion set 1s migrated to the coprocessor by the CPU when
CPU usage of the CPU 1s greater than a first threshold.

With reference to the fourth possible implementation
manner of the first aspect, in a fifth possible implementation
manner, the receiving, by the coprocessor, a first instruction
set migrated by the CPU includes:

receiving, by the coprocessor, an address of the to-be-
migrated first instruction set that 1s sent by the CPU, where
the address of the first instruction set 1s a storage address of
the first instruction set in a memory of the CPU, and the
address of the first instruction set 1s sent to the coprocessor
by the CPU when memory usage of the CPU 1s less than or
equal to a second threshold; and

acquiring, by the coprocessor, the first mstruction set by
accessing the memory of the CPU based on the address of
the first mstruction set.

US 10,514,929 B2

3

With reference to the first aspect or the first possible
implementation manner of the first aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the first aspect, 1n a sixth possible
implementation manner, the first instruction set 1s sent to the
coprocessor by the CPU when memory usage of the CPU 1s
greater than a second threshold.

With reference to the first aspect or the first possible
implementation manner of the first aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the first aspect or the fourth possible
implementation manner of the first aspect or the fifth pos-
sible implementation manner or the sixth possible imple-
mentation manner of the first aspect, 1 a seventh possible
implementation manner, the executing, by the coprocessor,
the binary codes 1n the second instruction set includes:

executing, by the coprocessor, the binary codes in the
second 1nstruction set 1n sequence;

if a binary code 1dentification exception 1s detected during
execution of the second 1nstruction set, determining a fourth
binary code that triggers the exception;

translating the fourth binary code into an intermediate
code, and then translating the intermediate code into a fifth
binary code that 1s applicable to the second operating
system; and

executing the fifth binary code, and continuing to execute
a binary code after the fourth binary code in the second
instruction set.

With reference to the seventh possible implementation
manner of the first aspect, 1n an eighth possible implemen-
tation manner, before the translating the fourth binary code
into an intermediate code, the method further includes:

sending an instruction set back-migration request to the
CPU; and

receiving a back-migration reject instruction sent by the
CPU.

With reference to the first aspect or the first possible
implementation manner of the first aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the first aspect or the fourth possible
implementation manner of the first aspect or the fifth pos-
sible implementation manner or the sixth possible imple-
mentation manner of the first aspect, 1n a ninth possible
implementation manner, the executing, by the coprocessor,
the binary codes 1n the second instruction set includes:

executing, by the coprocessor, the binary codes in the
second 1nstruction set in sequence;

if a binary code 1dentification exception 1s detected during
execution of the second instruction set, determining a sixth
binary code that triggers the exception; and

acquiring, according to binary codes starting from the
sixth binary code in the second instruction set, a third
instruction set that 1s applicable to the first operating system,
and migrating the third nstruction set to the CPU.

With reference to the ninth possible implementation man-
ner of the first aspect, in a tenth possible implementation
manner, before the acquiring, according to binary codes
starting from the sixth binary code 1n the second 1nstruction
set, a third instruction set that 1s applicable to the first
operating system, the method further includes:

sending an instruction set back-migration request to the
CPU; and

receiving an instruction set back-migration response sent
by the CPU.

According to a second aspect, the present application
provides a coprocessor, applied to a processor system, where
the processor system includes the coprocessor and a central

10

15

20

25

30

35

40

45

50

55

60

65

4

processing unit CPU that runs a first operating system,
where a second operating system runs on the coprocessor;
and the coprocessor includes:

a {irst instruction set receiving unit, configured to receive
a first instruction set migrated by the CPU, where the first
instruction set 1s used to instruct the CPU to execute
computer operations 1n the first operating system, and the
first instruction set 1s a set of binary codes that are applicable
to the first operating system;

a second instruction set obtaining unit, configured to
obtain a second instruction set according to the first imstruc-
tion set, where binary codes 1n the second instruction set are
used to instruct the coprocessor to execute the computer
operations 1n the second operating system; and

a second 1instruction set execution unit, configured to
execute the binary codes 1n the second instruction set.

With reference to the second aspect, in a first possible
implementation manner, that the second instruction set
obtaining unit 1s configured to obtain a second 1nstruction set
according to the first instruction set includes:

the second nstruction set obtaining unit 1s configured to
match, 1 a preset translation table, operation codes of the
binary codes 1n the first istruction set, and 11 an operation
code of a first binary code 1n the first instruction set 1s found
in the translation table, translate the operation code of the
first binary code into an operation code of a second binary
code according to a match 1tem corresponding to the opera-
tion code of the first binary code in the translation table,
obtain the second binary code, and obtain the second instruc-
tion set according to at least one second binary code that 1s
obtained, where the translation table includes a correspon-
dence between different operation codes that are respec-
tively generated for the first operating system and the second
operating system by compiling a same computer instruction,
and the second binary code 1s a binary code that 1s applicable
to the second operating system.

With reference to the second aspect or the first possible
implementation manner of the second aspect, 1n a second
possible 1mplementation manner, the coprocessor further
includes:

a register address translation unit, configured to translate
a register address of the CPU 1n the binary codes included
in the second instruction set into a register address of the
COProcessor.

With reference to the first possible implementation man-
ner of the second aspect or the second possible implemen-
tation manner ol the second aspect, mn a third possible
implementation manner, the second instruction set obtaining
unit 1s further configured to: 1f an operation code of a third
binary code 1n the first mnstruction set 1s not found 1n the
translation table, use, by the coprocessor, the third binary
code as a binary code 1n the second instruction set.

With reference to the second aspect or the first possible
implementation manner of the second aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the second aspect, in a fourth possible
implementation manner, the first instruction set 1s migrated
to the coprocessor by the CPU when CPU usage of the CPU
1s greater than a first threshold.

With reference to the fourth possible implementation
manner of the second aspect, 1n a {ifth possible implemen-
tation manner, that the first mstruction set recerving unit 1s
configured to receive a first instruction set migrated by the
CPU 1ncludes:

the first instruction set receiving unit 1s configured to
receive an address of the to-be-migrated first instruction set
that 1s sent by the CPU, and acquire the first instruction set

US 10,514,929 B2

S

by accessing a memory of the CPU based on the address of
the first instruction set, where the address of the first
instruction set 1s a storage address of the first instruction set
in the memory of the CPU, and the address of the first
istruction set 1s sent to the coprocessor by the CPU when
memory usage of the CPU 1s less than or equal to a second
threshold.

With reference to the second aspect or the first possible
implementation manner of the second aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the second aspect, in a sixth possible
implementation manner, the first instruction set 1s sent to the
coprocessor by the CPU when memory usage of the CPU 1s
greater than a second threshold.

With reference to the second aspect or the first possible
implementation manner of the second aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the second aspect or the fourth possible
implementation manner of the second aspect or the fifth
possible implementation manner or the sixth possible imple-
mentation manner of the second aspect, 1n a seventh possible
implementation manner, that the second instruction set
execution unit 1s configured to execute the binary codes 1n
the second 1nstruction set includes:

the second 1nstruction set execution unit 1s configured to:
execute the binary codes in the second mstruction set in
sequence; and 1f a binary code identification exception 1s
detected during execution of the second mstruction set,
determine a fourth binary code that triggers the exception,
translate the fourth binary code into an mtermediate code,
then translate the intermediate code 1nto a fifth binary code
that 1s applicable to the second operating system, execute the
fifth binary code, and continue to execute a binary code after
the fourth binary code in the second instruction set.

With reference to the seventh possible implementation
manner of the second aspect, 1n an eighth possible 1mple-
mentation manner, the second 1nstruction set execution unit
1s further configured to: betfore translating the fourth binary
code into the intermediate code, send an instruction set
back-migration request to the CPU, and receive a back-
migration reject instruction sent by the CPU.

With reference to the second aspect or the first possible
implementation manner of the second aspect or the second
possible implementation manner or the third possible imple-
mentation manner of the second aspect or the fourth possible
implementation manner of the second aspect or the fifth
possible implementation manner or the sixth possible imple-
mentation manner of the second aspect, in a ninth possible
implementation manner, that the second instruction set
execution unit 1s configured to execute the binary codes 1n
the second 1nstruction set includes:

the second 1nstruction set execution unit 1s configured to:
execute the binary codes 1n the second instruction set in
sequence; 1 a binary code identification exception 1s
detected during execution of the second mstruction set,
determine a sixth binary code that triggers the exception;
and acquire, according to binary codes starting from the
sixth binary code in the second instruction set, a third
instruction set that 1s applicable to the first operating system,
and migrate the third instruction set to the CPU.

With reference to the ninth possible implementation man-
ner of the second aspect, 1n a tenth possible implementation
manner, the second instruction set execution unit 1s further
configured to: before acquiring, according to the binary
codes starting from the sixth binary code in the second
instruction set, the third 1nstruction set that 1s applicable to
the first operating system, send an instruction set back-

10

15

20

25

30

35

40

45

50

55

60

65

6

migration request to the CPU, and receive an instruction set
back-migration response sent by the CPU.

According to a third aspect, the present application pro-
vides a coprocessor, where the coprocessor 1s connected to
a memory by using a bus, the memory 1s configured to store
a computer execution instruction, and the coprocessor reads
the computer execution instruction stored 1n the memory to
execute the computer nstruction processing method accord-
ing to the first aspect or any possible implementation manner
of the first aspect.

According to a fourth aspect, the present application
provides a processor system, where the processor system
includes a central processing unit CPU and a coprocessor, a
first operating system runs on the CPU, and a second
operating system runs on the coprocessor, where

the CPU 1s configured to migrate a first instruction set to
the coprocessor; and

the coprocessor 1s configured to execute the computer
instruction processing method according to the first aspect or
any possible implementation manner of the first aspect.

In the foregoing solutions, for a first istruction set that 1s
obtained through compilation and 1s applicable to a first
operating system for execution, a coprocessor acquires,
according to the first istruction set, a second instruction set
for execution in the coprocessor. In this way, the coprocessor
that executes the second instruction set substitutes for a CPU
that executes the first instruction set, CPU load 1s reduced,

and usage of the coprocessor 1s improved.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a schematic diagram of a logical structure of a
system 1n an application scenario i which a compiled
binary code 1s allocated according to the prior art;

FIG. 2 1s a schematic diagram of a logical structure of a
system 1n an application scenario of a computer 1nstruction
processing method;

FIG. 3 1s a schematic diagram of a correspondence
between computer instructions in an instruction set of a
central processing unit and computer instructions in an
istruction set of a coprocessor;

FIG. 4 1s an exemplary flowchart of a computer instruc-
tion processing method;

FIG. 5 1s an optional exemplary flowchart of step A402;

FIG. 6 1s another exemplary flowchart of a computer
instruction processing method;

FIG. 7 1s an optional exemplary flowchart of step A401;

FIG. 8 1s an optional exemplary tlowchart for handling a
binary code exception in step A403;

FIG. 9 1s an optional exemplary tlowchart for handling a
binary code exception 1n step A403;

FIG. 10 1s an optional exemplary flowchart for handling
a binary code exception 1n step A403;

FIG. 11 1s an optional exemplary flowchart for handling
a binary code exception in step A403;

FIG. 12 1s a schematic diagram of a logical structure of a
coprocessor 202;

FIG. 13 1s a schematic diagram of an optional logical
structure of a coprocessor 202; and

FIG. 14 1s a schematic diagram of a logical structure of a
system 1ncluding a coprocessor 1401 and a memory 1402.

DESCRIPTION OF EMBODIMENTS

The following clearly describes the technical solutions 1n
the embodiments of the present application with reference to
the accompanying drawings in the embodiments of the
present application.

US 10,514,929 B2

7

Referring to FIG. 1, FIG. 1 shows a system 100 provided
in the prior art. The system 100 includes a central processing
unit (CPU) 101 and a coprocessor 102, where an 1instruction
set supported by the central processing unit 101 1s different
from an instruction set supported by the coprocessor 102. In
addition, an operating system (for example, an operating
system that supports an X86 1nstruction set) 1s mstalled on
the central processing umt 101, but no operating system 1s
installed on the coprocessor 102. When source code of a
program running on the central processing unit 101 1s
compiled, source code to be processed by the coprocessor
102 1s compiled according to the instruction set of the
coprocessor 102, and a binary code obtained through com-
pilation 1s identifiable and executable by the coprocessor
102, but there may be a binary code that 1s unidentifiable by
the central processing unit 101; source code to be processed
by the central processing unit 101 1s compiled according to
the instruction set of the central processing unit 101, and a
binary code obtained through compilation 1s 1dentifiable and
executable by the central processing unit 101, but there may
be a binary code that 1s umdentifiable by the coprocessor
102. Theretfore, even 1f load of the central processing unit
101 1s heavy, the coprocessor 102 cannot substitute for the
central processing unit 101 to execute the binary code to be
executed by the central processing unit 101.

Referring to FIG. 2, FIG. 2 shows a system 200 provided
by an embodiment of the present application. The system
200 1ncludes a central processing unit 201 and a coprocessor
202. The coprocessor 202 has a control capability. The
central processing unit 201 and the coprocessor 202 respec-
tively run an operating system. In comparison with the prior
art 1n which no operating system 1s installed on the copro-
cessor 102, an operating system 1s installed on the copro-
cessor 202 1n the present application, a process may run on
the coprocessor 202, and the operating system of the copro-
cessor 202 may perform process scheduling. In this way, the
central processing unit 201 and the coprocessor 202 may
migrate processes to each other.

Optionally, the system 200 may be located on one data
processing device. Positions 1n which the central processing,
unit 201 and the coprocessor 202 included 1n the system 200
are disposed on the data processing device are not limited 1n
this embodiment of the present application. The central
processing unit 201 1s connected to the coprocessor 202.
How a connection between the central processing unit 201
and the coprocessor 202 included in the system 200 is
implemented on the data processing device 1s not limited 1n
this embodiment of the present application. After being
connected, the central processing unit 201 and the copro-
cessor 202 may transmit data to each other.

For example, the data processing device includes a bus.
The central processing unit 201 and the coprocessor 202
included 1n the system 200 are both connected to the bus.
The central processing unit 201 exchanges data with the
coprocessor 202 by using the bus. If the bus meets a
requirement for data transmission between the central pro-
cessing unit 201 and the coprocessor 202, a specific type of
the bus and a supported bus protocol are not limited, where
the requirement for data transmission includes a data trans-
mission speed and a data transmission format. In addition,
with development of the times, the central processing unit
201 and the coprocessor 202 included in the system 200 may
be connected by using another medium, and the medium 1s
used to increase a speed of data exchange between the
central processing unit 201 and the coprocessor 202. In
specific implementation, the medium may be used to replace
the bus for connecting the central processing unit 201 to the

10

15

20

25

30

35

40

45

50

55

60

65

8

coprocessor 202, or the medium and the bus coexist and are
both used to exchange data between the central processing
umt 201 and the coprocessor 202.

For example, in the system 200, the central processing
unit 201 1s implemented by using an X86 processor, and the
coprocessor 202 1s implemented by using an Intel many
integrated core (MIC) architecture. The X86 processor 1s
connected to the MIC by using a peripheral component
interconnect express (PCI-E) bus, and the X86 processor
exchanges data with the MIC by using the PCI-E bus.

Optionally, the central processing unit 201 and the copro-
cessor 202 1n the system 200 are not located in a same
device, the central processing unit 201 1s communicatively
connected to the coprocessor 202, and the central processing
umt 201 exchanges data with the coprocessor 202 by using
messages.

Referring to FIG. 2, in an application scenario of a
computer instruction processing method provided by the
present application, an instruction set supported by the
central processing unit 201 and an instruction set supported
by the coprocessor 202 include some different computer
instructions, a first operating system running on the central
processing unit 201 supports the instruction set of the central
processing unit 201, and the second operating system run-
ning on the coprocessor 202 supports the instruction set of
the coprocessor 202; 11 the first operating system 1s the same
as the second operating system, the first operating system
and the second operating system both support the 1instruction
set of the central processing unit 201 and the instruction set
of the coprocessor 202; 11 the first operating system does not
support the instruction set of the coprocessor 202, or the
second operating system does not support the mstruction set
of the central processing unit 201, the first operating system
and the second operating system are different operating
systems.

Relative to the instruction set supported by the coproces-
sor 202, the instruction set supported by the central process-
ing unit 201 may be divided into three parts of instruction
subsets, including a first part of instruction subsets, a second
part of instruction subsets, and a third part of instruction
subsets.

For each computer 1nstruction included 1n the first part of
instruction subsets, the same computer instruction 1s also
included 1n the istruction set of the coprocessor 202; 1n
addition, a binary code supported by the central processing
umt 201 and representing the computer instruction is the
same as a binary code supported by the coprocessor 202 and
representing the computer instruction. Using FIG. 3 as an
example, a binary code “AAAA” represents a computer
instruction 1n the first part of istruction subsets, and the
instruction set supported by the coprocessor also includes
the computer mstruction, and 1 addition, the binary code
“AAAA” also represents the computer instruction in the
instruction set supported by the coprocessor; similar to the
binary code “AAAA”, a binary code “CCCC” and a binary
code “DDDD” that represent two other computer instruc-
tions 1n the first part of instruction subsets also represent the
two computer istructions included 1n the mstruction set of
the coprocessor.

For each computer instruction included in the second part
ol 1mstruction subsets, the same computer instruction 1s also
included in the nstruction set of the coprocessor 202;
however, a binary code supported by the central processing
umt 201 and representing the computer instruction 1s dif-
ferent from a binary code supported by the coprocessor 202
and representing the computer mnstruction. Using FIG. 3 as
an example, a binary code “BBBB” represents a certain

US 10,514,929 B2

9

computer 1nstruction in the second part of instruction sub-
sets, and the instruction set supported by the coprocessor
also includes the computer instruction; however, a binary

code supported by the coprocessor and representing the

computer instruction 1s “B1B1B1B1”, and “BBBB” and
“B1B1B1B1” are different binary codes.

Each computer instruction included in the third part of
instruction subsets 1s not included 1n the 1nstruction set of the
coprocessor 202. Using FIG. 3 as an example, a blnary code
“BEEEE” represents a certain computer instruction in the
third part of instruction subsets, and the 1nstruction set of the
coprocessor does not include the computer instruction;
therefore, for the binary code “EEEE”, a binary code cor-
responding to the computer instruction cannot be found in
the 1nstruction set of the coprocessor.

In this embodiment of the present application, if the
central processing unit 201 migrates a process to the copro-
cessor 202, the coprocessor 202 receives data that 1s related
to the process and migrated by the central processing unit
201, where the data includes binary codes required for
executing the process and further includes a process status of
the process or the like. In each binary code required for
executing the process, an operation code of the binary code
1s a binary code representing a computer instruction, and the
binary code may further include an operand, where the
operand 1s also represented by a binary code.

For a computer instruction in the second part of instruc-
tion subsets, a binary code supported by the central process-
ing unit 201 and representing the computer instruction 1s
different from a binary code supported by the coprocessor
202 and representing the computer instruction. In view of
this, in the computer 1nstruction processing method provided
by the present application, a translation table is created for
the second part of instruction subsets, and binary code
translation 1s performed by using the translation table, so
that a binary code supported by the central processing unit
201 and representing a computer instruction in the second
part of 1nstruction subsets 1s translated into a binary code
supported by the coprocessor and representing the computer
instruction. In this way, the coprocessor 202 can 1dentify a
translated binary code, and during runming of the migrated
process, execute the translated binary code to implement a
function of a computer instruction. For each computer
instruction 1ncluded in the third part of instruction subsets,
a binary code representing the computer instruction cannot
be 1dentified 1n the computer instruction processing method
provided by the present application, and an exception that
the binary code cannot be identified (an operation code of
the binary code 1s a binary code representing the computer
instruction) occurs. In this case, there are two solutions.

A first solution 1s to migrate the process back to the central
processing unit 201.

A second solution 1s to first translate the binary code that
triggers the exception into one or more 1ntermediate codes,
then translate each intermediate code into a binary code
supported by the coprocessor 202, and starting from the
translated binary code, continue to run the process. Optional
specific implementation through intermediate code transla-
tion 1s: determining, according to an operation code (which
belongs to a binary code representing a computer instruction
in the third part of instruction subsets) in the binary code that
triggers the exception, an operation code represented by
cach intermediate code, and if an operand 1s represented by
an mtermediate code, determining, according to an operand
in the binary code that triggers the exception, an operand
represented by the intermediate code and corresponding to
cach operation code; then determining, according to the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

operation code represented by the intermediate code, each
operation code 1n the binary code supported by the copro-
cessor 202; and determining, according to the operand
represented by the intermediate code, the operand corre-
sponding to each operation code 1n the binary code sup-
ported by the coprocessor 202.

Optionally, the central processing unit 201 1s set as a
first-choice device for executing the process, and the copro-
cessor 202 1s set as a second-choice device for executing the
process. First, the central processing unit 201 executes the
process. IT one of the following case occurs during execution
ol the process, the process 1s migrated to the coprocessor
202, mcluding:

In a first case, during execution of the process, when a
binary code to be executed by the coprocessor 202 1s
identified, the central processing unit 201 migrates the
process to the coprocessor 202, and the coprocessor 202 runs
the process to execute the binary code; optionally, the
coprocessor 202 feeds back an execution result of the
process to the central processing unit 201.

In a second case, when CPU usage of the central pro-
cessing unit 201 1s excessively high, one or more processes
are screened out (for example, a process with highest CPU
usage 1s screened out); the process that 1s screened out 1s
migrated to the coprocessor 202; and the coprocessor 202
translates, according to the translation table, binary codes
required for executing the process, and then executes trans-
lated binary codes to run the process. A translation action 1s
specifically: performing traversal matching and search for
the binary codes required for executing the process, and
optionally, performing traversal matching and search
sequentially according to an execution sequence of the
binary codes, to match and find whether any binary code
supported by the central processing unit 201 and recorded 1n
the translation table exists; and 11 a binary code 1s matched
and found, replacing the found binary code, according to the
translation table, with a binary code supported by the
coprocessor 202 and representing a same computer instruc-
tion.

In a third case, when memory usage of a memory used by
the central processing unit 201 1s excessively high, one or
more processes are screened out (for example, a process
with highest memory usage 1s screened out); the process that
1s screened out 1s migrated to the coprocessor 202; and the
coprocessor 202 translates, according to the translation
table, binary codes required for executing the process, and
then executes the process aiter translation.

In an embodiment of the present application, how a
coprocessor runs a process migrated from a CPU 1s
described in detail. For ease of description, for example, the
coprocessor 1s implemented by using a MIC, and the central
processing unit 1s implemented by using an X86 processor.
The X86 processor 1s connected to the MIC by using a
PCI-E bus. A general-purpose operating system (for
example, an operating system that supports an X86 instruc-
tion set) runs on the X86 processor. A customized uOS
operating system runs on the MIC. The X86 processor and
the MIC respectively have independent memories and reg-
isters.

In this embodiment, the register of the X86 processor 1s
a 128-bit register. For example, the X86 processor includes
sixteen 128-bit XMM registers, where the XMM register 1s
a vector register and supports a Streaming SIMD Exten-
s1omns, (SSE) mstruction set. A Chinese name of the SIMD 1s
single-instruction [stream] multiple-data stream, and a full
English name of the SIMD 1s Single Instruction Multiple
Data. That 1s, the X86 processor may use the SSE instruction

US 10,514,929 B2

11

set to operate an XMM register group to perform a 128-bit
vector operation. Alternatively, the register of the X86
processor 1s a 256-bit register. For example, the X86 pro-
cessor includes sixteen 256-bit YMM registers, where the
YMM register 1s a vector register and supports an advanced
vector extensions (AVX) istruction set. That 1s, the X86
processor may use the AVX instruction set to operate a
YMM register group to perform a 256-bit vector operation,
for example, operate the YMM register group to perform a
floating-point operation.

The register of the MIC 1s a 512-bit register. For example,
the MIC includes thirty-two 512-bit ZMM registers, where
the ZMM register 1s a vector register, and a ZMM register
group may be operated to perform a 512-bit vector opera-
tion. In addition, the register of the MIC also supports the
SSE 1nstruction set and the AVX 1nstruction set.

In this embodiment, 1n order that the MIC 1s compatible
with an operation of a register operated by the X86 proces-
sor, the MIC selects 16 registers from the 32 registers,
supports a 128-bit operation (for example, supports an
operation of the SSE instruction set), and supports a 256-bit
operation (for example, supports an operation of the AVX
instruction set); optionally, the MIC uses low 256 bits of
sixteen 512-bit registers, and performs a 128-bit operation or
performs a 256-bit operation to get compatible with an
operation of a register operated by the X86 processor. In this
way, for a process migrated by the X86 processor, the MIC
replaces a binary code representing a register of the X86
processor, 1 binary codes that are required for executing the
process, with a binary code representing a register selected
by the MIC, that 1s, a binary code pointing to a register of
the X86 processor 1s replaced with a binary code pointing to
a register selected by the MIC, and the register of the MIC
may be used to perform an operation without making any bit
adjustment and operation rule adjustment for operation data.
For example, the MIC replaces a binary code representing an
XMM register of the X86 processor, in the binary codes
migrated by the X86 processor, with a binary code repre-
senting a register selected by the MIC, and the MIC executes

B

a binary code representing a computer instruction in the SSE
instruction set, and operates 16 registers selected by the MIC
to perform a 128-bit vector operation. For another example,
the MIC replaces a binary code representing a YMM register
of the X86 processor, in the binary codes migrated by the
X86 processor, with a binary code representing a register
selected by the MIC, and the MIC executes a binary code
representing a computer instruction 1n the AVX 1nstruction
set, and operates 16 registers selected by the MIC to perform
a 256-bi1t vector operation.

In this way, for the process migrated from the X86
processor to the MIC, after the MIC replaces the binary code
representing the register of the X86 processor, in the binary
codes required for executing the process, with the binary
code representing the register selected by the MIC, the
register of the MIC 1s used to run the migrated process.

In addition, 1in this embodiment, a translation table 1s
created, and matching i1s performed in the translation table
by the MIC. Specifically, the translation table 1s created for
the computer instructions included 1n the foregoing second
part ol mstruction subsets. This 1s because the binary codes
supported by the X86 processor and representing the com-
puter instructions are different from the binary codes sup-
ported by the MIC and representing the computer nstruc-
tions. A method for creating the translation table 1is:
respectively adding, in the translation table, the binary codes
supported by the X86 processor and representing the com-

puter instructions and the binary codes supported by the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

MIC and representing the computer istructions, and deter-
mining, in the translation table, mapping relationships
between the binary codes supported by the X86 processor
and representing the computer instructions and the binary
codes supported by the MIC and representing the computer
istructions. As an example of the translation table, Table 1
lists five computer istructions as follows:

TABLE 1

Computer Binary code supported Binary code supported by the
instruction by the X86 processor MIC
FXSAVE “01111011110111010000* “00001111101011101111”
FXRSTOR “11011101” “00001111101011100001”
RDPMC “0000111100110001” and “0000111100110011”

“00001111001100107
FSUB “1101100011100000 “0000111101011100”

“FXSAVE” 1 Table 1 1s an instruction for saving a
floating point status, and 1s used to save a status of a
floating-point operation unit (FPU) register. A binary code

supported by the X86 processor and representing

“FXSAVE” 1s “01111011110111010000”. A binary code
supported by the MIC and representing “FXSAVE” 1s
“00001111101011101111”.

“FXRSTOR™ 1n Table 1 1s an istruction for restoring the
floating point status, and 1s used to restore the saved status
of the FPU register to the FPU register. A binary code
supported by the X86 processor and representing “FXR-
STOR” 1s “11011101”. A binary code supported by the MIC
and representing “FXRSTOR”™ 1S
“00001111101011100001™.

“RDPMC” 1 Table 1 1s an instruction for reading a
performance monitoring counter, and 1s used to read a
performance monitoring counter. There are two binary codes

supported by the X86 processor and representing
“RDPMC”, which include “0000111100110001” and
“0000111100110010”. There 1s only one binary code sup-
ported by the MIC and representing “RDPMC”, which 1s
“0000111100110011.

“FSUB” 1n Table 1 1s a floating-point subtraction instruc-
tion, and 1s used to perform a subtraction operation on a
floating-point number. A binary code supported by the X86

Processor and representing “FSUB” 1S
“1101100011100000”. A binary code supported by the MIC

and representing “FSUB” 15 “0000111101011100™.

In this way, after the translation table 1s loaded into the
u0S operating system running on the MIC, for the data that
1s related to the process and acquired by the MIC from the
X86 processor during migration of the process from the X86
processor to the MIC, the binary codes required for execut-
ing the process are extracted from the data related to the
process, and in the binary codes, binary codes corresponding
to computer instructions included in the second part of
instruction subsets are matched and replaced according to
the translation table, and replaced with binary codes sup-
ported by the MIC and representing the computer instruc-
tions 1n the translation table, and then the MIC can 1dentif 1y
the replaced binary codes. Therefore, accuracy and efli-
ciency ol executing the migrated process by the MIC are
improved to some extent.

In this embodiment, there are two conditions for trigger-
ing the X86 processor to migrate a process to the MIC. One
condition 1s that CPU usage of the X86 processor 1s detected
to be greater than a first threshold. The other condition 1s that
memory usage of a memory used by the X86 processor 1s
detected to be greater than a second threshold. In specific

US 10,514,929 B2

13

implementation, the operating system of the X86 processor
runs a code segment to implement a momtoring module, and
uses the monitoring module to detect load of the X86
processor, which includes: detecting CPU usage of the X86
processor, and detecting memory usage of the memory used
by the X86 processor. When the monitoring module detects
that either of the foregoing two conditions 1s met, one certain
Or MOre Processes are suspended, memory space used by the
process 1s locked, and the process 1s migrated to the MIC.

When the X86 processor migrates a process to the MIC,
iI migration of the process from the X86 processor to the
MIC 1s triggered because memory usage of the memory used
by the X86 processor 1s greater than the second threshold,
data related to the process in the memory used by the X86
processor 1s sent to the MIC, regardless of whether CPU
usage of the X86 processor 1s greater than the first threshold.
Correspondingly, the MIC stores the recerved data related to
the process 1 the memory used by the MIC, and then
extracts, from the data related to the process and stored in the
memory of the MIC, binary codes required for executing the
process. IT a binary code (a binary code corresponding to a
computer 1struction included in the second part of mstruc-
tion subsets) supported by the CPU 1n the translation table
1s found 1n all the extracted binary codes, the binary code 1s
replaced with a binary code supported by the MIC and
representing the computer instruction in the translation
table, and the replaced binary code 1s updated and stored to
the memory of the MIC. In this way, all the binary codes
stored 1n the memory of the MIC and corresponding to the
computer instructions included 1n the second part of 1mstruc-
tion subsets are replaced, according to the translation table,
with the binary codes supported by the MIC and represent-
ing the computer 1nstructions.

When the X86 processor migrates the process to the MIC,
iI migration of the process from the X86 processor to the
MIC 1s triggered because CPU usage of the X86 processor
1s greater than the first threshold and memory usage of the
memory used by the X86 processor 1s less than or equal to
the second threshold, a storage address for storing the data
related to the process 1n the memory of the X86 processor 1s
sent to the MIC. Correspondingly, the MIC divides a storage
space from the memory used by the MIC, and establishes an
address mapping relationship between a storage address
included in the storage space and the received storage
address (the storage address for storing the data related to the
process 1n the memory of the X86 processor). Then, the MIC
accesses, according to the address mapping relationship by
using the PCI-E bus, the data related to the process 1n the
memory of the X86 processor, and extracts, from the data
related to the process, the binary codes required for execut-
ing the process. If a binary code (a binary code correspond-
ing to a computer instruction included in the second part of
instruction subsets) supported by the CPU 1in the translation
table 1s found 1n the extracted binary codes, the binary code
1s replaced with a binary code supported by the MIC 1n the
translation table, and the replaced binary code 1s updated and
stored to the memory of the X86 processor. In this way, all
the binary codes stored 1n the memory of the X86 processor
and corresponding to the computer 1nstructions included 1n
the second part of mstruction subsets are replaced, according
to the translation table, with the binary codes supported by
the MIC and representing the computer instructions. Further,
the MIC uses the memory of the CPU according to the
address mapping relationship to run the process.

The following describes specific implementation about
how the MIC ftranslates a binary code according to the

translation table:

10

15

20

25

30

35

40

45

50

55

60

65

14

The uOS operating system of the MIC runs a code
segment to implement a translation module, and the trans-
lation module loads the translation table.

For each process migrated by the X86 processor, the
translation module executes all binary codes required for
executing the process, and matches and finds whether any
binary code supported by the X86 processor exists 1n the
translation table, and every time a binary code 1s matched
and found, translates, according to the translation table, the
binary code into a binary code supported by the MIC, until
traversal search 1s completed.

For example, for an exclusive OR 1nstruction (XOR), a
binary code supported by the X86 processor varies with a
compared object. If two register values are compared, the
binary code supported by the X86 processor for the exclu-
stive OR 1nstruction 1s represented by “00110017. If a
register value and a value stored 1n the memory are com-
pared, the binary code supported by the X86 processor for
the exclusive OR 1instruction 1s represented by “00110007.
However, binary codes supported by the MIC for the exclu-
stive OR instruction (XOR) are all represented by
“0011000”. In order that the MIC can 1dentify and compare
the exclusive OR 1instructions of the two register values, a
mapping relationship between 0011001 and “0011000 1s
recorded 1n the translation table. If the translation module
matches and finds, according to the translation table,
“0011001” from the binary codes included in the process
migrated by the X86 processor, the translation module
replaces “0011001” in the binary codes included i the
process with “0011000” according to the translation table.

For another example, for the “RDPMC” 1nstruction for
reading a performance monitoring counter, binary codes
supported by the X86 processor for the “RDPMC” instruc-
tion are “0000111100110001” and *“0000111100110010.
There 1s only one binary code supported by the MIC and
representing “RDPMC”, which 1s “0000111100110011.
Theretfore, a mapping, relationship between
“0000111100110001” and “0000111100110011” 1s recorded
in the translation table, and a mapping relationship between
“0000111100110010” and “0000111100110011” 1s recorded
in the translation table. If the translation module matches
and finds, according to the ftranslation table,
“0000111100110001” from the binary codes included in the
process migrated by the X86 processor, the translation
module replaces “0000111100110001” in the binary codes
included 1n the process with “0000111100110011” accord-
ing to the translation table. If the translation module matches
and finds, according to the ftranslation table,
“0000111100110010” from the binary codes included 1n the
process migrated by the X86 processor, the translation
module replaces “0000111100110010”” in the binary codes
included 1n the process with “0000111100110011” accord-
ing to the translation table.

In this embodiment, during migration of the process from
the X86 processor to the MIC, the MIC not only acquires the
data related to the process from the memory used by the X86
processor, but also acquires a register value related to the
process from the register of the X86 processor, and dumps
the acquired register value to a corresponding register of the
MIC. When the MIC runs the process, the MIC first extracts
a process status of the process from the data related to the
process and stored in the memory of the MIC, where the
process status includes status information necessary for
running of the process, such as a process priority, a process
identifier, and a stack pointer. Then, starting from a process
running node that 1s determined according to the process
status, the MIC uses the register of the MIC, and executes

US 10,514,929 B2

15

the process based on the data (the data includes the binary
codes translated according to the translation table) related to
the process and stored in the memory of the MIC.

In this embodiment, the uOS operating system of the MIC
runs a code segment to 1mplement an exception handling
module, and the exception handling module can intercept an
exception that occurs i a process executed by the MIC,
including an exception triggered because the process runs to
an unidentifiable binary code. Optionally, during execution
of the process by the MIC, 11 the exception handling module
detects that execution of the process 1s exceptional, the
exception handling module suspends the process, and gen-
erates and records exception information about exceptional
execution of the process.

For example, binary codes of the computer instructions
included in the foregoing third part of instruction subsets are
not included 1n the instruction set of the MIC, and the MIC
cannot 1dentify the binary codes corresponding to the com-
puter istructions; 1n addition, the translation table also does
not record the binary codes of the computer instructions
included 1n the third part of instruction subsets, and the
binary codes of the computer instructions included 1n the
third part of mstruction subsets cannot be translated, accord-
ing to the translation table, into the binary codes correspond-
ing to the computer mstructions in the instruction set of the
MIC. Therefore, the MIC cannot 1dentify a binary code that
uses the binary code as an operation code. If the process runs
to the binary code, an exception that the binary code cannot
be 1dentified 1s triggered.

The exception handling module detects a process execu-
tion exception triggered by an instruction identification
exception, suspends the process, and uses the following
three optional exception handling manners to perform
exception handling;:

In a first manner, starting from the binary code that
triggers the exception, the exception handling module
migrates the suspended process back to the X86 processor,
which specifically includes: performing, according to the
translation table, operation code (represented by the binary
code) matching on the binary codes required for executing
the back-migrated process 1n the memory (which may be the
memory of the MIC or the memory of the X86 processor),
translating the found binary code into a binary code sup-
ported by the X86 processor, and using the translated binary
code to update the corresponding binary code in the
memory. If the updated binary codes required for executing
the back-migrated process are stored in the memory of the
MIC, the updated binary codes required for executing the
back-migrated process are dumped to the memory of the
X86 processor. A dumping implementation manner 1is:
dumping, by means of data communication between the
MIC and the X86 processor, the updated binary codes
required for executing the back-migrated process and stored
in the memory of the MIC, to the memory of the X86
processor. In addition, a binary code representing a register
of the MIC 1n the binary codes required for executing the
back-migrated process 1s replaced with a binary code rep-
resenting a register of the X86 processor, and the replaced
binary code 1s used to update the binary code stored 1n the
memory and representing the register of the MIC; 1 addi-
tion, a register value related to the back-migrated process
and stored 1n the register of the MIC 1s dumped to the
register of the X86 processor. In this way, the X86 processor
may use its register and memory to run the back-migrated
process.

In a second manner, the exception handling module

determines whether the suspended process belongs to the

10

15

20

25

30

35

40

45

50

55

60

65

16

process migrated by the X86 processor to the MIC; if the
suspended process belongs to the process migrated by the
X86 processor to the MIC, the exception handling module
identifies the binary code that triggers the exception, and
translates the binary code that triggers the exception into an
intermediate code of a stmulator (such as a simics simulator
or a gemu simulator), then translates the intermediate code
into a binary code supported by the MIC, and continues to
execute the process starting from the binary code obtained
through translation.

In a third manner, the exception handling module sends a
process back-migration request to the X86 processor, to
notily the X86 processor that back-migration of the process
that 1s currently executed exceptionally 1s expected; the X86
processor responds to the process back-migration request,
and determines usage of the X86 processor currently moni-
tored by the monitoring module and memory usage of the
memory of the X86 processor currently monitored. If a
determining result of the X86 processor 1s that the usage of
the X86 processor 1s less than the first threshold, and that the
memory usage ol the memory of the X86 processor 1s less
than or equal to the second threshold, the X86 processor
teeds back a process back-migration nstruction to the MIC;
if a determining result of the X86 processor 1s that the usage
of the X86 processor 1s greater than the first threshold, or 1f
a determining result of the X86 processor 1s that the memory
usage of the memory of the X86 processor 1s greater than the
second threshold, the X86 processor feeds back a process
back-migration reject mstruction to the MIC.

In the third manner, if the exception handling module
receives the process back-migration instruction fed back by
the X86 processor, the exception handling module migrates
the suspended process back to the X86 processor. An imple-
mentation manner of migrating the process from the MIC
back to the X86 processor 1s the same as the foregoing first
implementation manner, and 1s not further described herein.

In the third manner, if the exception handling module
receives the back-migration reject mnstruction fed back by
the X86 processor, the exception handling module does not
migrate the suspended process back to the X86 processor,
and determines whether the suspended process belongs to
the process migrated by the X86 processor to the MIC; 11 the
suspended process belongs to the process migrated by the
X86 processor to the MIC, the exception handling module
identifies the binary code that triggers the exception, and
translates the binary code that triggers the exception into an
intermediate code of a stmulator (such as a simics simulator
or a gemu simulator), then translates the intermediate code
into a binary code supported by the MIC, and continues to
execute the process starting from the binary code obtained
through translation. Optionally, if the suspended process
does not belong to the process migrated by the X86 proces-
sor to the MIC, the MIC directly outputs exception infor-
mation, where a reason why the suspended process does not
belong to the process migrated by the X86 processor to the
MIC may be: the X86 processor has a process, a code
segment that needs to be executed by the MIC 1s 1dentified
during execution of the process, and the code segment 1s
executed by the MIC instead, but the MIC creates a new
process to execute the code segment and an exception
OCCUrS.

In this embodiment, the following computer instructions
supported by the X86 processor are not supported by the
MIC, including the following 22 computer instructions: a
conditional move instruction “CMOV”, an instruction
“CMPXCHGI16B” for comparing and exchanging 16 bytes,

a floating-point conditional move instruction “FCMOVcc”,

US 10,514,929 B2

17

an 1nstruction “FCOMI” for comparing tloating-point values
and setting load tlags, an instruction “FCOMIP” for com-
paring tloating-point values, setting load flags, and popping,
an instruction “FUCOMI” for inversely comparing floating-
point values and setting load {flags, an 1nstruction
“FUCOMIP” for inversely comparing tloating-point values,
setting load flags, and popping, an instruction “IN” for
inputting from a port, an instruction “INS” for inputting a
string from a port, an mstruction “INSB” for inputting a byte
string from a port, an struction “INSD” for imnputting a
doubleword string from a port, an mstruction “INSW” for
inputting a word string {from a port, a momtoring instruction
“MONITOR”, a thread synchronization 1nstruction
“MWAIT”, an instruction “OUT” for outputting to a port, an
instruction “OUTS” for outputting a string to a port, an
instruction “OUTSB” for outputting a byte string to a port,
an istruction “OUTSD” for outputting a doubleword to a
port, an 1nstruction “OUTSW” for outputting a word string,
to a port, a pause instruction “PAUSE”, a system entry
mstruction “SYSENTER”, and a system exit instruction
“SYSEXIT”; the 22 computer instructions may be classified
into three types.

A first type 1s a computer instruction that may be split into
two actions, and includes the conditional move instruction
“CMOV?”, the mstruction “CMPXCHG16B” for comparing
and exchanging 16 bytes, the floating-point conditional
move struction “FCMOVcc”, the instruction “FCOMI” for
comparing floating-point values and setting load flags, the
instruction “FCOMIP” for comparing tloating-point values,
setting load flags, and popping, the mstruction “FUCOMI”
for mversely comparing floating-point values and setting
load ﬂags and the instruction “FUCOMIP” for inversely
companng floating-point values, setting load flags, and
popping. If a process exception occurs because the MIC
executes a binary code including a computer instruction of
the first type, and the MIC needs to continue to execute the
process, the MIC translates the binary code including the
computer instruction of the first type mto an intermediate
code, where the intermediate code 1s a binary code including
two actions, and i1n the instruction set of the MIC, there are
corresponding computer instructions for the two actions
respectively. Then, the mntermediate code 1s translated into a
binary code supported by the MIC, where an operation code
of each binary code 1n the binary codes supported by he
MIC represents a corresponding computer nstruction in the
instruction set of the MIC. In this way, the MIC can 1dentily
and execute the translated binary code. Using the condi-
tional move struction “CMOV”™ as an example, the MIC
cannot 1dentity a binary code that uses a binary code
representing the conditional move 1nstruction as an operand,
and therefore, the exception handling module translates, by
using an intermediate code, the binary code into a binary
code supported by the MIC, which includes the following
translation of the instruction 1n a binary code form: a
condition decision 1nstruction and a move instruction rep-
resented by an intermediate code are determined according
to the conditional move 1nstruction, and then the condition
decision 1nstruction and the move instruction represented by
the mtermediate code are translated mto a condition decision
istruction and a move 1nstruction (MOV) that can be
identified by the MIC; the MIC first executes the condition
decision 1nstruction to determine whether a move condition
1s met, and 1f the move condition 1s met, executes the move
istruction (MOV).

A second type 1s a computer istruction for reading data
or writing data by using a port, and includes the instruction

“IN” for mputting from a port, the mstruction “INS” for

5

10

15

20

25

30

35

40

45

50

55

60

65

18

inputting a string from a port, the instruction “INSB” for
inputting a byte string from a port, the instruction “INSD”
for inputting a doubleword string from a port, the instruction
“INSW” for inputting a word string {from a port, the moni-
toring 1nstruction “MONITOR”, the thread synchromization
instruction “MWAIT”, the mstruction “OUT” for outputting
to a port, the mnstruction “OUTS” for outputting a string to
a port, the mstruction “OUTSB” for outputting a byte string
to a port, the instruction “OUTSD” for outputting a double-
word to a port, and the mstruction “OUTSW” for outputting
a word string to a port. If a process exception occurs because
the MIC executes an 1nstruction of the second type, and the
MIC continues to execute the process, there are two cases
for handling. The first case 1s that data 1s written by using a
port, and 1n this case, the MIC notifies the X86 processor to
write data from a target port specified by the computer
istruction; the second case 1s a computer instruction for
reading data, and 1n this case, the MIC first notifies the X86
processor to read data from a target port specified by the
computer mstruction to the memory, and then accesses the
memory to acquire the data.

A third type includes the pause instruction “PAUSE”, the
system entry mstruction “SYSENTER”, and the system exit
mstruction “SYSEXIT”. The three instructions are added
later. To enhance performance, the pause instruction
“PAUSE” 1s to reduce a performance loss of a spin lock, and
the system entry instruction “SYSENTER” and the system
exit instruction “SYSEXIT”™ are to reduce a loss 1n switching
between a kernel mode and a user mode. The third type of
computer instruction 1s optimization of the original X86
istruction set, but the MIC does not support the optimiza-
tion. If a process exception 1s triggered when the MIC
executes the pause istruction “PAUSE” represented by a
binary code, and the MIC continues to execute the process,
the MIC may continue to run the process by executing the
spin lock represented by a binary code instead of executing
the pause instruction “PAUSE” represented by the binary
code. If a process exception 1s triggered during execution of
the system entry 1nstruction “SYSENTER” represented by a
binary code, the MIC may continue to run the process by
executing a switch instruction used for switching from the
user mode to the kernel mode and represented by a binary
code, instead of executing the system entry instruction
“SYSENTER” represented by the binary code. If a process
exception 1s triggered during execution of the system exit
istruction “SYSEXIT” represented by a binary code, the
MIC may continue to run the process by executing a switch
instruction used for switching from the kernel mode to the
user mode and represented by a binary code, instead of
executing the system exit mstruction “SYSEXIT™ repre-
sented by the binary code.

In this embodiment, 1 the MIC smoothly completes
execution of the process migrated by the X86 processor, the
MIC may feed back an execution result to the X86 proces-
sor, or may control to directly output an execution result,
where an output manner includes but i1s not limited to:
presenting the execution result by using a data output
module such as a display module or executing other actions
based on the execution result.

In this embodiment, after running the uos operating
system, the MIC may perform process scheduling. Then,
when load 1s heavy (usage of the X86 processor 1s greater
than the first threshold, and/or usage of the memory of the
X86 processor 1s greater than the second threshold), the X86
processor migrates a process that 1s screened out to the MIC
for execution, so that the load of the X86 processor 1s shared.
In particular, for a process with heavy load, the X86 pro-

US 10,514,929 B2

19

cessor may migrate the process to the MIC for execution,
which prolongs a useful life of the X86 processor, and
turther ensures that sutlicient resources can be allocated to
cach process, and ensures execution efliciency of each
process. 5

In an embodiment of the present application, based on the
foregoing system 200 and an improvement made on how the
coprocessor runs the process migrated from the CPU in the
foregoing embodiment, this embodiment makes adaptive
extensions on the technical solution of the foregoing 10
embodiment, and provides, from a perspective of a copro-
cessor 202, a basic process implemented by using a com-
puter instruction processing method. FIG. 4 1s an exemplary
work process of the computer instruction processing
method, but for ease of description, only parts related to this 15
embodiment of the present application are shown.

The computer mstruction processing method provided by
this embodiment 1s applied to a processor system. The
processor system 1ncludes a coprocessor and a central pro-
cessing unit CPU. A first operating system runs on the CPU, 20
and a second operating system runs on the coprocessor. The
first operating system 1s an operating system supporting an
instruction set of the CPU, and the second operating system
1s an operating system supporting an instruction set of the
COProcessor. 25

After running the second operating system, the coproces-
sor may use the second operating system to run processes
and threads, perform scheduling between processes, and
perform scheduling between threads; further, the CPU may
migrate one or more processes to the coprocessor. In this 30
embodiment, a first process 1s defined as a single process
migrated from the CPU to the coprocessor. In addition, the
CPU may further migrate one or more threads to the
coprocessor. In this embodiment, a first thread 1s defined as
a single thread migrated from the CPU to the coprocessor. 35

Still further, not only processes and threads may be
migrated between the CPU and the coprocessor, but also one
or more binary codes may be migrated. A first instruction set
1s defined 1n this embodiment. If the CPU migrates a process
to the coprocessor, the first instruction set refers to binary 40
codes required for executing the process; 1 the CPU
migrates a thread to the coprocessor, the first instruction set
refers to binary codes required for executing the thread; 1
the CPU migrates one or more binary codes to the copro-
cessor, the first mstruction set refers to a set of binary codes 45
migrated by the CPU to the coprocessor.

The binary codes included in the first istruction set are
obtained by compiling source code according to the mstruc-
tion set of the CPU. Whether the compilation 1s executed by
the first operating system 1s not limited. The compilation 50
may be executed by the first operating system, or the first
operating system obtains the first instruction set after
another compiler completes the compilation. In addition, the
source code 1s not limited herein, and a programming
language used to compile the source code 1s not limited. 55

As shown 1n FIG. 4, the computer instruction processing
method provided by this embodiment includes step A401,
step A402, and step A403.

Step A401: The coprocessor receives a first instruction set
migrated by the CPU, where the first instruction set 1s used 60
to mstruct the CPU to execute computer operations in the
first operating system, and the first instruction set 1s a set of
binary codes that are applicable to the first operating system.

In this embodiment, a condition for triggering the CPU to
migrate the first instruction set to the coprocessor 1s not 65
limited. The CPU may even migrate the first instruction set
to the coprocessor under any condition.

20

For example, once the CPU receives an istruction set
migration 1struction during execution of the first instruction
set, the CPU migrates the first instruction set to the copro-
cessor, where the instruction set migration instruction 1s
triggered by any one of the following three conditions:

A first condition 1s manually triggering the instruction set
migration instruction. For example, both the CPU and the
coprocessor are itegrated 1n a data processing device, and
a manual operation on the data processing device triggers
the 1nstruction set migration instruction.

A second condition 1s: the CPU determines, according to
CPU usage, whether to migrate the first instruction set to the
coprocessor, and 1f CPU usage of the CPU 1s greater than a
first threshold, triggers the 1nstruction set migration instruc-
tion.

A third condition 1s: the CPU determines, according to
memory usage of a memory used by the CPU, whether to
migrate the first mnstruction set to the coprocessor, and 1t
memory usage of the memory in the CPU 1s greater than a
second threshold, triggers the instruction set migration
istruction.

It should be noted that, because the first instruction set 1s
obtained by compiling the source code according to the
binary codes representing the instruction set of the CPU, and
an operation code of each binary code 1n the first instruction
set obtained through compilation belongs to a binary code
representing the mstruction set of the CPU, each binary code
representing a computer mstruction in the first instruction set
can be identified and executed by the CPU. Generally, a
binary code representing a computer instruction triggers a
computer operation. For example, when a process running
on an X86 processor runs to a binary code
“1101100011100000”, a computer operation of a subtraction
operation on a floating-point number 1s performed; for
another example, when a process running on the X86
processor executes a binary code “11011000111000007, a
computer operation of restoring a stored status of an FPU
register to the FPU register 1s performed.

It should be noted that, each binary code in the first
instruction set not only includes an operation code, but also
may include an operand. The operation code 1s represented
by a binary code, and the operand 1s also represented by a
binary code.

In this embodiment, the CPU migrates the first instruction
set to the coprocessor, and the coprocessor executes step
Ad401 to receive the first instruction set migrated by the
CPU. For example, the CPU sends the first instruction set to
the coprocessor during migration of a first process to the
coprocessor, and the coprocessor executes step A401 to
receive the first instruction set migrated by the CPU.

Step A402: The coprocessor obtains a second nstruction
set according to the first instruction set, where binary codes
in the second 1nstruction set are used to istruct the copro-
cessor to execute the computer operations in the second
operating system.

Specifically, as mentioned above, the instruction set of the
CPU 1s divided into a first part of instruction subsets, a
second part of instruction subsets, and a third part of
instruction subsets. The instruction set of the coprocessor
does not include the third part of istruction subsets. There-
fore, the mstruction set of the coprocessor 1s different from
the 1nstruction set of the CPU. In addition, for a computer
instruction mcluded 1n the second part of imstruction subsets,
a binary code supported by the central processing unit 201
and representing the computer instruction 1s different from a
binary code supported by the coprocessor 202 and repre-
senting the computer istruction. Therefore, neither the

US 10,514,929 B2

21

binary code representing the computer instruction included
in the second part of instruction subsets nor the binary code
representing the computer instruction included in the third
part of mstruction subsets can be i1dentified and executed by
the coprocessor. In view of this, this embodiment provides
step A402 1n which the second 1nstruction set 1s obtained by

translating a part of binary codes or all binary codes in the
first 1nstruction set. Relative to the first instruction set, the
second 1nstruction set includes more binary codes that can
be 1dentified and executed by the coprocessor, and the
second instruction set has higher 1identifiability and execut-
ability. Stmilar to the first instruction set, each binary code
included in the second instruction set triggers a computer
operation. A binary code included in the second instruction
set triggers a computer operation. In addition, in this
embodiment, the computer operations expected to be trig-
gered by the second instruction set and executed by the
coprocessor are the same as the computer operations trig-
gered by the first instruction set and executed by the CPU.

Optionally, 1f the first mstruction set includes a binary
code representing a computer instruction (a computer
instruction 1n the first part of instruction subsets), 1 step
A402, when the second instruction set 1s acquired according,
to the first instruction set, the binary code included 1n the
first instruction set 1s directly acquired and added to the
second 1nstruction set.

Optionally, 1t the first mstruction set includes a binary
code representing a computer instruction (a computer
instruction 1n the second part of instruction subsets), 1 step
A402, when the second instruction set 1s acquired according
to the first instruction set, the binary code included 1n the
first instruction set 1s translated into a binary code supported
by the coprocessor and representing the computer nstruc-
tion, and the translated binary code 1s acquired and added to
the second 1nstruction set.

Optionally, if the first mstruction set includes a binary
code representing a computer instruction (a computer
instruction 1n the thurd part of instruction subsets), in step
A402, when the second 1nstruction set 1s acquired according,
to the first mstruction set, the binary code included in the
first instruction set 1s directly acquired and added to the
second 1nstruction set.

It should be noted that, i the CPU migrates the first
process to the coprocessor, the coprocessor not only receives
the first instruction set required for executing the first
process, but also acquires other data related to the first
process from the CPU, including a process status of the first
process and a register value related to the first process; the
process status includes status information necessary for
running of the process, such as a process priority, a process
identifier, and a stack pointer; the coprocessor stores the
register value related to the first processor to a register of the
coprocessor. In addition, 1t the register of the coprocessor
and a register of the CPU do not belong to a same type of
register, 1 step A402, when the second instruction set 1s
acquired according to the first instruction set, a register
address of the CPU 1n the binary codes in the first instruction
set needs to be further replaced with a register address of the
coprocessor, and the replaced register address of the copro-
cessor 1s acquired and added to the second instruction set.
Optionally, 1f the register of the coprocessor and the register
of the CPU belong to the same type of register, in step A402,
when the second nstruction set 1s acquired according to the
first 1nstruction set, the register address of the CPU in the
binary codes in the first mstruction set 1s directly acquired
and added to the second instruction set.

10

15

20

25

30

35

40

45

50

55

60

65

22

It should be noted that, if the CPU muigrates a first thread
to the coprocessor, the coprocessor not only recerves the first
instruction set required for executing the first thread, but also
acquires other data related to the first thread from the CPU,
including a thread status of the first thread and a register
value related to the first thread. The coprocessor stores the
register value related to the first thread to the register of the
coprocessor. Similar to the case 1n which the CPU migrates
the first instruction set required for executing the first thread
to the coprocessor, herein it 1s also determined, according to
whether the register of the coprocessor and the register of the
CPU belong to the same type of register, whether the register
address of the CPU or the register address of the coprocessor
1s acquired and added to the second instruction set when the
second 1nstruction set 1s acquired according to the first
instruction set in step A402.

It should be noted that, 1f the first mnstruction set migrated
by the CPU to the coprocessor 1s a set of binary codes, the
coprocessor further acquires, from the CPU, other data
required for executing the first mstruction set, including a
register value related to the first instruction set. The copro-
cessor stores the register value related to the first instruction
set to the register of the coprocessor. Similar to the case 1n
which the CPU mugrates the first instruction set required for
executing the first thread to the coprocessor, herein 1t 1s also
determined, according to whether the register of the copro-
cessor and the register of the CPU belong to the same type
of register, whether the register address of the CPU or the
register address of the coprocessor 1s acquired and added to
the second 1instruction set when the second instruction set 1s
acquired according to the first mstruction set 1n step A402.

Step A403: The coprocessor executes the binary codes in
the second 1nstruction set.

If the CPU mugrates the first instruction set required for
executing the first process to the coprocessor, the second
operating system determines, on the coprocessor, a process
running node of a second process according to the process
status of the first process and the register value. Starting
from the process running node, the register of the coproces-
sor 1s used, and the binary codes 1n the second 1nstruction set
are executed to run the second process.

If the CPU migrates the first instruction set required for
executing the first thread to the coprocessor, the second
operating system determines, on the coprocessor, a thread
running node of a second thread according to the thread
status of the first thread and the register value. Starting from
the thread running node, the register of the coprocessor 1s
used, and the binary codes 1n the second instruction set are
executed to run the second thread.

If the first mstruction set migrated by the CPU to the
coprocessor 1s a set of binary codes, the coprocessor uses the
register of the coprocessor, and executes the second 1nstruc-
tion set.

In this embodiment, for the first instruction set migrated
by the CPU, even 1 the first instruction set obtained through
compilation according to the struction set of the CPU
includes binary codes that cannot be identified by the
coprocessor, the coprocessor executes step A402, and a part
or all of the binary codes can be translated, and correspond-
ingly, the second 1nstruction set 1s generated. An 1dentifica-
tion rate of the second instruction set that can be identified
by the coprocessor 1s greater than an identification rate of the
first instruction set that can be identified. The coprocessor
executes the second instruction set, which reduces load
required for running the first mstruction set.

Optionally, 11 the coprocessor completes execution of the
second 1nstruction set 1 step A403, the coprocessor deter-

US 10,514,929 B2

23

mines, according to a specific application scenario, whether
to feed back an execution result of the second 1nstruction set
to the CPU; 1f the CPU executes other computer operations
according to the result, the coprocessor feeds back the result
to the CPU; 1f the coprocessor executes other computer
operations according to the result, the coprocessor may not
feed back the result to the CPU. For example, for the
execution result of the second instruction set, if a next
computer operation 1s that the CPU controls a display
module to display the execution result, the coprocessor feeds
back the execution result to the CPU; 11 the coprocessor can
directly control the display module, and a next computer
operation 1s that the coprocessor controls the display module
to display the execution result, the coprocessor may not need
to feed back the execution result to the CPU, but directly
controls the display module to display the execution result.

Optionally, for a scenario 1n which the first instruction set
includes a binary code representing a computer instruction
in the second part of instruction subsets, step A402 1s further
refined. Referring to FIG. 5, that the coprocessor obtains a
second 1nstruction set according to the first istruction set
includes:

Step A4021: The coprocessor matches, 1n a preset trans-
lation table, operation codes of the binary codes 1n the first
instruction set, and 1f an operation code of a first binary code
in the first mstruction set 1s found in the translation table,
translates the operation code of the first binary code 1nto an
operation code of a second binary code according to a match
item corresponding to the operation code of the first binary
code 1n the translation table, and obtains the second binary
code, and the coprocessor obtains the second instruction set
according to at least one second binary code that 1s obtained,
where the translation table includes a correspondence
between different operation codes that are respectively gen-
erated for the first operating system and the second operating
system by compiling a same computer instruction, and the
second binary code 1s a binary code that 1s applicable to the
second operating system.

Specifically, for each computer instruction included 1n the
second part of istruction subsets, the instruction set sup-
ported by the coprocessor also 1includes the same computer
instruction. However, a binary code supported by the CPU
and representing the computer instruction 1s different from a
binary code supported by the coprocessor and representing
the computer instruction. In order for the coprocessor to
identify the computer instruction, a translation table 1is
created. The translation table records a correspondence of
cach computer instruction for each computer mstruction 1n
the second part of instruction subsets. The correspondence
of the computer instruction includes a binary code supported
by the CPU and representing the computer instruction, and
a binary code supported by the coprocessor and representing
the computer instruction.

In this embodiment, a specific computer instruction 1s
defined as a computer istruction with the correspondence
recorded 1n the translation table. Therefore, 1n this embodi-
ment, the correspondence of each computer instruction
included 1n the second part of mstruction subsets 1s added to
the translation table, and each computer instruction included
in the second part of instruction subsets 1s a specific com-
puter instruction.

After the second operating system of the coprocessor
loads the translation table, for the first instruction set
migrated from the CPU to the coprocessor in step A401,
cach binary code in the first instruction set 1s traversed
according to the translation table 1n step A4021 to match and
find whether a first binary code exists. An operation code of

10

15

20

25

30

35

40

45

50

55

60

65

24

the first binary code 1s a binary code supported by the CPU
and recorded in the translation table (namely, a binary code
supported by the CPU and representing a computer instruc-
tion 1n the second part of instruction subsets).

When the coprocessor obtains the second nstruction set
according to the first mstruction set, in step A4021, for each
first binary code in the first instruction set, an operation code
in the first binary code i1s replaced with a match 1tem
corresponding to the operation code recorded in the trans-
lation table, where the match 1tem 1s a binary code supported
by the coprocessor and representing a specific computer
istruction (a specific computer nstruction represented by
the operation code in the first binary code). A binary code
obtained by replacing the operation code 1s used as a second
binary code. In the second binary code, the match item 1s an
operation code of the second binary code. The second binary
code 1s acquired and added to the second instruction set.
Therefore, it can be known that, when the coprocessor
obtains the second instruction set according to the first
instruction set, each first binary code 1n the {first instruction
set 1s translated into a corresponding second binary code,
and the second binary code 1s acquired and added to the
second 1nstruction set.

For example, for an exclusive OR struction (XOR), a
binary code supported by the CPU and representing the
exclusive OR mstruction varies with a compared object. If
two register values are compared, a binary code of the
exclusive OR 1nstruction 1s represented by “0011001”. If a
register value and a value 1n the memory are compared, a
binary code of the exclusive OR instruction 1s represented
by “0011000”. However, 1n the coprocessor, binary codes of
the exclusive OR 1nstruction (XOR) are all represented by
“0011000”. A mapping relationship between “0011001” and
“0011000” 1s recorded in the translation table. The copro-
cessor finds, according to the translation table, “0011001”
from the operation code of the first binary code of the first
instruction set, and uses “0011000 as the operation code of
the second binary code. If the second binary code has an
operand, how to generate an operand of the second binary
code according to the operand of the first binary code 1s not
limited herein.

In addition, when the coprocessor obtains the second
instruction set according to the first instruction set, the
coprocessor finds, according to the translation table, other
binary codes that do not belong to the first binary codes.
Which manner 1s used to acquire binary codes correspond-
ing to other binary codes and add the binary codes to the
second instruction set 1s not limited.

Further, optionally, for a scenario 1n which a binary code
of a computer instruction in the first part of instruction
subsets and/or the third part of instruction subsets included
in the first instruction set 1s processed i step A402, step
A402 1s further refined. Referring to FIG. 3, that the copro-
cessor obtains a second instruction set according to the first
instruction set further includes:

Step A4022: If an operation code of a third binary code in
the first 1nstruction set 1s not found 1n the translation table,
the coprocessor uses the third binary code as a binary code
in the second instruction set.

Specifically, the third binary code belongs to another
binary code that i1s not the first binary code and is found in
the first instruction set during traversal search according to
the translation table in step A4021.

If an operation code of a certain binary code 1n the first
instruction set 1s a binary code representing a computer
instruction in the first part of instruction subsets, the opera-
tion code of the binary code 1s not found in the translation

US 10,514,929 B2

25

table; 1f an operation code of a certain binary code 1n the first
instruction set 1s a binary code representing a computer
instruction 1n the third part of instruction subsets, the opera-
tion code of the binary code 1s not found 1n the translation
table. Therefore, the operation code of the third binary code 5
may be a binary code representing a computer mnstruction in
the first part of nstruction subsets, or may be a binary code
of a computer istruction in the third part of instruction
subsets.

When the coprocessor obtains the second instruction set 10
according to the first instruction set, for the binary code
(namely, the third binary code) whose operation code 1n the
first instruction set cannot be found in the translation table,
the third binary code 1s directly acquired from the first
instruction set and added to the second instruction set 1n step 15
A4022.

Optionally, step A402 may include step A4021 and/or step
A4022. Whether step A4021 or step A4022 1s executed
during execution of step A402 1s determined according to a
specific implementation scenario. In an implementation sce- 20
nario, 1f no specific computer instruction exists 1n the first
instruction set, and the CPU and the coprocessor use a same
type of register to execute the process, step A402 includes
step A4022; 11 the first instruction set includes a specific
computer 1nstruction, step A4021 1s included during execu- 25
tion of step A402. FIG. 5 shows a schematic diagram in
which step A4021 and/or step A4022 needs to be executed
in step A402.

Further, optionally, 11 step A4021 and step A4022 need to
be executed 1n step A402, step A4021 may be first executed 30
and then A4022 1s executed, or step A4021 and step A4022
are executed concurrently.

In a specific example of concurrent execution ol step
A4021 and step A4022, when a first binary code 1s found by
traversing the first instruction set according to the translation 35
table, every time whether a binary code 1n the first instruc-
tion set 1s a first binary code 1s determined, execution of step
A4021 or step A4022 1s determined according to a deter-
mimng result. Specifically, 1t the determining result 1s that
the binary code 1s a first binary code, step A4021 1s executed, 40
so that a second binary code corresponding to the first binary
code 1s acquired and added to the second instruction set. If
the determining result 1s that the binary code 1s a third binary
code, step A4022 1s executed, so that the third binary code
1s directly acquired and added to the second instruction set. 45

Optionally, a sequence of searching for the first binary
code by traversing the {irst instruction set according to the
translation table 1s an execution sequence of each binary
code 1n the first 1nstruction set.

In an optional extension, there may be one or more 50
correspondences (a binary code supported by the CPU and
representing a computer instruction, and a binary code
supported by the coprocessor and representing the computer
instruction) recorded 1n the translation table. The foregoing
translation table used 1n step A4021 records the correspon- 55
dence that matches each computer instruction in the second
part of instruction subsets, but a quantity of correspondences
in the translation table herein may be less than that recorded
in the translation table used 1n step A4021. Therefore, the
translation table herein may be updated, for example, the 60
correspondence that matches a certain computer instruction
in the second part of istruction subsets 1s added to the
translation table, or one or more of the correspondences are
deleted from the translation table. Therefore, an alternative
step A4021 1s provided, that 1s, when step A4021 1s 65
executed, the translation table herein 1s used to replace the
translation table used above.

26

Optionally, for a scenario 1n which the register of the CPU
and the register of the coprocessor are not the same type of
register, the computer instruction processing method 1s
optionally refined. Referring to FIG. 6, before the coproces-
sor executes the binary codes 1n the second instruction set,
the method further includes step A601.

Step A601: The coprocessor translates a register address
of the CPU 1n the binary codes included in the second
istruction set 1nto a register address of the coprocessor.

Specifically, the register address of the CPU 1s represented
by a binary code, and the register address of the coprocessor
1s represented by a binary code. The register of the CPU and
the register of the coprocessor are not the same type of
register, and the binary code representing the register
address of the CPU 1s diflerent from the binary code
representing the register address of the coprocessor.

In order that the coprocessor uses 1ts own register to run
the second instruction set, the coprocessor finds, before
executing the second instruction set, whether the binary
codes 1n the second instruction set include the register
address of the CPU:; 11 the register address 1s found, replaces,
according to a match and replacement relationship, the
register address of the CPU that 1s found in the second
instruction set with the corresponding register address of the
coprocessor, where the match and replacement relationship
1s a mapping relationship between the register address of the
coprocessor and the register address of the CPU.

Optionally, 1n an alternative solution for step A601, when
the coprocessor obtains the second instruction set according
to the first instruction set in step A402, step A602 1s
executed, where the register address of the CPU in the
binary codes 1included 1n the first instruction set 1s translated
into the register address of the coprocessor, and the register
address of the coprocessor 1s acquired and added to the
second instruction set. In this case, an execution sequence of
the alternative solution of step A602 and step A4021 1s not
limited. Generally, the alternative solution and step A4021
are executed concurrently.

Optionally, the register of the CPU 1s a 128-bit register or
a 256-bit register, and the register of the coprocessor 1s a
512-bit register.

Still further, optionally, the register of the CPU 1s a
128-bit XMM register or a 256-bit YMM register, and the
register of the coprocessor 1s a 256-bit ZMM register.
Regardless of the register of the CPU or the register of the
coprocessor, when the second instruction set 1s executed, the
register 1s used to store a computer mstruction, data, and an
address. In comparison with execution of the second 1nstruc-
tion set based on the XMM register or based on the YMM
register, when the second instruction set 1s executed based
on the ZMM register, an execution speed of the second
instruction set can be increased, and execution of the second
instruction set can be completed 1n advance.

Further, optionally, a computer mstruction that uses the
register of the CPU 1n the first instruction set belongs to a
vector struction, and a computer instruction that uses the
register ol the coprocessor in the second instruction set
belongs to a vector mstruction. When the second instruction
set 1s obtained according to the first instruction set in step
Ad402, the vector imstruction that uses the register of the
coprocessor 1s correspondingly acquired according to the
vector mstruction that uses the register of the CPU 1n the first
instruction set, and 1s added to the second instruction set.

Optionally, the first instruction set 1s migrated to the
coprocessor by the CPU when CPU usage of the CPU 1s

greater than the first threshold.

US 10,514,929 B2

27

Specifically, the CPU executes the first instruction set, and
optionally may further concurrently execute one or more
other binary codes. If the CPU usage 1s greater than the first
threshold, which represents that the CPU usage 1s exces-
sively high, the first instruction set i1s migrated to the
coprocessor to reduce CPU load.

The following uses the first process as an example to
describe how to screen out the first instruction set migrated
to the coprocessor. Certainly, a manner of screening out the
first process 1s also applicable to screening out the {first
thread; the manner of screenming out the first process 1s
described as follows: i the CPU runs only one process, the
process 1s the first process. If the CPU runs a plurality of
processes concurrently, several optional refined implemen-
tation manners are provided for determiming the first process
from the plurality of processes executed by the CPU:

In a first optional refined implementation manner, when
CPU usage of the CPU 1s greater than the first threshold
currently, one or more {first processes are selected from
processes whose priorities are lower than a priority thresh-
old, and preferably, a process with a lowest priority 1is
selected as the {first process.

In a second optional refined implementation manner,
when CPU usage of the CPU 1s greater than the first
threshold currently, one or more first processes are selected
from processes whose CPU usage 1s greater than a usage
threshold, and preferably, a process with highest CPU usage
1s selected as the first process.

Further, optionally, referring to FIG. 7, that the coproces-
sor recerves a lirst mstruction set migrated by the CPU 1n
step A401 includes step A4011 and step A4012.

Step A4011: The coprocessor receives an address of the
to-be-migrated first mstruction set that 1s sent by the CPU,
where the address of the first instruction set 1s a storage
address of the first instruction set 1n a memory of the CPU,
and the address of the first imstruction set i1s sent to the
coprocessor by the CPU when memory usage of the CPU 1s
less than or equal to a second threshold.

Step A4012: The coprocessor acquires the first instruction
set by accessing the memory of the CPU based on the
address of the first instruction set.

Specifically, that CPU usage of the CPU 1s greater than
the first threshold but memory usage of the memory used by
the CPU 1s less than or equal to the second threshold
represents that CPU usage 1s excessively high but memory
usage ol the memory used by the CPU 1s not excessively
high. In this case, the CPU sends the address of the first
instruction set to the coprocessor. Optionally, the address of
the first instruction set 1s a physical address of the first
instruction set stored in the memory of the CPU. After the
coprocessor receives the address of the first instruction set 1n
step A4011, the coprocessor executes step A4012 to access
the memory of the CPU according to the address of the first
istruction set and read the first instruction set from the
memory of the CPU, then executes step A402 to acquire the
second 1nstruction set according to the first imstruction set,
and stores the acquired second 1nstruction set to the memory
of the CPU. An optional specific manner 1s replacing the first
instruction set in the memory of the CPU with the acquired
second 1nstruction set.

A specific optional implementation manner of step A4011
and step A4012 1s: when CPU usage 1s greater than the first
threshold and memory usage of the memory used by the
CPU 1s less than or equal to the second threshold, the CPU
sends a storage address of data related to the first instruction
set 1n the memory of the CPU to the coprocessor; afterward,
the coprocessor accesses the memory of the CPU according,

10

15

20

25

30

35

40

45

50

55

60

65

28

to the storage address by using a bus (such as a PCI-E bus),
reads the data related to the first instruction set from the
memory of the CPU, extracts the first instruction set from
the data related to the first instruction set, then executes step
A402 to acquire the second instruction set according to the
first instruction set, stores the acquired second 1nstruction set
to the memory of the CPU, and uses the memory of the CPU
to execute the second instruction set.

The data related to the first instruction set includes the first
instruction set, and further includes other data required for
executing the first instruction set, such as a running status
(the process status of the first process) of the first instruction
set.

Optionally, the first mnstruction set 1s sent to the copro-
cessor by the CPU when memory usage of the CPU is
greater than the second threshold.

Specifically, 1f memory usage of the memory used by the
CPU 1s greater than the second threshold, 1t represents that
memory usage of the memory used by the CPU 1s exces-
sively high. In this case, regardless of whether CPU usage of
the CPU 1s greater than the first threshold, the CPU migrates
the first instruction set to the coprocessor, and 1n step A401,
the first nstruction set 1s recerved and stored to the memory
of the coprocessor.

A specific optional implementation manner 1s: when
memory usage of the memory used by the CPU i1s greater
than the second threshold, the CPU reads the data related to
the first istruction set from the memory used by the CPU,
and sends the data related to the first instruction set to the
coprocessor; the coprocessor recerves the data related to the
first 1instruction set, and stores the data related to the first
istruction set to the memory of the coprocessor; then the
coprocessor extracts the first instruction set from the data
related to the first instruction set, executes step A402 to
acquire the second instruction set according to the first
istruction set, stores the acquired second instruction set to
the memory of the coprocessor, and uses the memory of the
coprocessor to execute the second instruction set.

Optionally, 1f an exception occurs during execution of the
second 1nstruction set 1n step A403, any optional manner 1n
the following four optional manners may be used for han-
dling.

In a first optional manner, referring to FIG. 8, that the
coprocessor executes the binary codes in the second instruc-
tion set 1n step A403 specifically mncludes step A801, step
A802, step A803, and step A804.

Step A801: The coprocessor executes the binary codes in
the second 1nstruction set 1n sequence.

Step A802: If a binary code identification exception 1s
detected during execution of the second instruction set,
determine a fourth binary code that triggers the exception.

Step A803: Translate the fourth binary code mnto an
intermediate code, and then translate the intermediate code
into a fifth binary code that i1s applicable to the second
operating system, where the fifth binary code 1s one or more
binary codes.

Step A804: Execute the fifth binary code, and continue to
execute a binary code after the fourth binary code in the
second 1nstruction set.

Specifically, the second 1nstruction set 1s acquired accord-
ing to the first instruction set 1n step A402. Although the
binary codes in the second 1nstruction set are used to mstruct
the coprocessor to execute the computer operations in the
second operating system, not every binary code in the
second 1nstruction set can be 1dentified by the coprocessor,
and a binary code identification exception may be triggered
when the coprocessor executes a binary code that cannot be

US 10,514,929 B2

29

identified. In this embodiment, a binary instruction trigger-
ing a binary code exception 1s defined as the fourth binary
code.

A scenar1o 1 which a binary code 1n the second instruc-
tion set cannot be 1dentified 1s: 1f a binary code representing
cach computer instruction in the third part of instruction
subsets 1n the first mstruction set 1s directly acquired and
added to the second instruction set in step A402, when the
coprocessor runs the second instruction set, a binary code
identification exception 1s triggered because the coprocessor
cannot 1dentily the binary code during execution of a binary
code that uses the binary code as an operation code. There-
fore, the binary code belongs to the fourth binary code.

When the coprocessor executes the binary codes in the
second 1nstruction set 1n sequence 1n step A801, 11 a binary
code identification exception 1s detected i step A802, a
fourth binary code that triggers the binary code 1dentification
exception 1s determined; then the fourth binary code is
translated into an intermediate code in step A803, and then
the intermediate code 1s translated 1nto a fifth bmary code
that can be identified by the coprocessor; then the fifth
binary code 1s executed, and execution of a binary code after
the fourth binary code in the second struction set 1s
continued 1n step A804. The intermediate code has a map-
ping relationship with the fourth binary code, where the
mapping relationship may be a correspondence between one
or more intermediate codes and one fourth binary code. In
addition, the intermediate code further has a mapping rela-
tionship with the fifth binary code. A specific representation
form of the intermediate code 1s not limited when a condi-
tion that the intermediate code has mapping relationships
with both the fourth binary code and the fifth binary code 1s
met. For example, a Java bytecode 1s used as an intermediate
code, and when the fourth binary code 1s translated into a
corresponding Java bytecode, a mapping relationship
between the fourth binary code and the corresponding Java
bytecode 1s determined; when the corresponding Java byte-
code 1s translated into the fifth binary code, a mapping
relationship between the corresponding Java bytecode and
the fifth binary code i1s determined. Similarly, during trans-
lation of the fourth binary code into the fifth binary code 1n
step A803, an mtermediate code 1n a simics simulator may
be further selected for implementation, or an intermediate
code 1n a gemu simulator may be further selected for
implementation.

For example, the MIC does not support 22 computer
istructions such as CMOV, OUT, PAUSE, and SYSEXIT
included 1n the foregoing third part of mstruction subsets.
When the MIC executes the fourth binary code that uses the
binary code representing the computer instruction as an
operation code, the MIC cannot identify the fourth binary
code, and a bimary code identification exception occurs.
Using a conditional move struction (CMOV) as an
example, a binary code 1dentification exception 1s triggered
when the MIC executes the fourth binary code that uses a
binary code representing the conditional move instruction as
an operation code. The binary code 1dentification exception
1s detected 1n step A802, and a condition decision instruction
and a move 1nstruction represented by an intermediate code
are determined according to the conditional move nstruc-
tion 1n step A803; then the condition decision instruction and
the move instruction represented by the mtermediate code
are respectively translated mto a condition decision nstruc-
tion and a move mstruction (MOYV) that can be identified by
the MIC. The MIC first executes the condition decision
istruction in step A804 to determine whether the move
condition 1s met, and 1f the move condition 1s met, executes

10

15

20

25

30

35

40

45

50

55

60

65

30

the move nstruction (MOYV), and then executes the binary
code after the fourth binary code in the second 1nstruction
set. It should be noted that, operands respectively carried 1n
the condition decision instruction and the move nstruction
represented by the intermediate code are determined accord-
ing to an operand carried in the conditional move instruction
(CMOYV), and then operands respectively carried in the
condition decision instruction and the move instruction
(MOYV) that can be 1dentified by the MIC are determined
according to the operands respectively carried 1n the condi-
tion decision instruction and the move 1nstruction repre-
sented by the intermediate code. According to the foregoing,
classification of the 22 computer instructions, for the com-
puter instructions included 1n the first type and the third type,

the fourth binary code that uses the binary code representing
the computer 1nstruction as an operatlon code can be trans-
lated 1nto the fifth binary code by using an intermediate code
in step A803. There may be one or more fifth binary codes
translated from one fourth binary code, and the quantity of
fifth binary codes 1s not limited herein.

Optionally, an exception occurs when the second instruc-
tion set 1s executed in step A403, execution of the second
instruction set 1s paused, and exception information 1s out-
put, where the exception information includes the fourth
binary code that triggers the exception, an exception type, an
exceptional execution result, and the like. In optional spe-
cific implementation, status information of execution of the
second 1nstruction set 1s written 1nto a running log of the
second 1nstruction set in real time, where exception infor-
mation of an exception that occurs during execution of the
second 1nstruction set 1s also written 1nto the running log of
the second 1nstruction set. If 1t 1s determined, accordmg to
the exception information, that the exception 1s a binary
code 1dentification exception, the fourth binary code that
triggers the exception 1s determined according to the excep-
tion information in step A802.

In the first optional manner, even 1f a binary code 1den-
tification exception occurs when the coprocessor executes
the second instruction set, the fourth binary code can be
translated indirectly, by using an intermediate code, into the
fifth binary code supported by the coprocessor, and execu-
tion of the second instruction set 1s continued, starting from
the fifth binary code. Theretore, the exception 1s effectively
overcome, and normal execution of the second instruction
set 1s ensured. By analogy, every exception that occurs
during execution of the second instruction set can be eflec-
tively overcome, and execution of the second 1nstruction set
1s continued every time aiter the exception i1s overcome.

Optionally, for improving execution eih

iciency of the
coprocessor, an extended instruction set supported only by
the coprocessor 1s generally developed for a special appli-
cation of the coprocessor, where a computer instruction
(represented by a binary code) included in the extended
instruction set 1s supported only by the coprocessor but not
supported by the CPU. A mapping relationship between an
operation code represented by an intermediate code and one
or more computer instructions 1n the instruction set sup-
ported by the coprocessor 1s predetermined, and a mapping
relationship between the operation code represented by the
intermediate code and one or more computer instructions
included 1n the extended instruction set may be determined.
Theretore, for step A803 of translating the intermediate code
into the fifth binary code, the operation code of the fifth
binary code may be a binary code representing a computer
instruction 1n the extended instruction set. In this way, after
the fourth binary code 1s indirectly translated into a binary
code that uses a binary code representing a computer

US 10,514,929 B2

31

instruction included in the extended instruction set as an
operation code, not only the exception indicated by the
exception information can be resolved, but also efliciency of
executing the second instruction set by the coprocessor can
be 1mproved.

In a second optional manner, referring to FIG. 9, before
the fourth binary code 1s translated into the intermediate
code 1n step A803, step A901 and step A902 are included.

Step A901: Send an mstruction set back-migration request
to the CPU.

Step A902: Receive a back-migration reject instruction

sent by the CPU.

Specifically, a binary code 1dentification exception occurs
when the second instruction set 1s executed in step A403,
and step A901 1s executed to send an 1nstruction set back-
migration request to the CPU. The CPU responds to the
instruction set back-migration request, determines whether
to migrate the second instruction set back to the CPU for
execution, and 1f determining not to migrate back the second
istruction set, feeds back a back-migration reject instruc-
tion to the coprocessor. The coprocessor receives the back-
migration reject mstruction 1n step A902, and executes step
A803 to translate the fourth binary code into an intermediate
code.

An optional manner of responding to the instruction set
back-migration request by the CPU 1s: determining, accord-
ing to CPU load, whether to migrate the second 1nstruction
set back to the CPU for execution, where the CPU load
includes CPU usage, and memory usage of the memory used
by the CPU. If CPU usage of the CPU 1s greater than the
third threshold, or 1if memory usage of the memory used by
the CPU 1s greater than a fourth threshold, the back-
migration reject instruction 1s sent to the coprocessor.

In a third optional manner, referring to FIG. 10, that the
coprocessor executes the binary codes in the second 1nstruc-
tion set 1in step A403 1ncludes step B1001, step B1002, and
step B1003.

Step B1001: The coprocessor executes the binary codes 1n
the second instruction set in sequence.

Step B1002: If a binary code 1dentification exception 1s
detected during execution of the second mstruction set,
determine a sixth binary code that triggers the exception.

Step B1003: Acquire, according to binary codes starting
from the sixth binary code in the second instruction set, a
third istruction set that 1s applicable to the first operating
system, and migrate the third instruction set to the CPU.

Specifically, the second instruction set 1s acquired accord-
ing to the first instruction set 1n step A402, where not every
binary code 1n the second instruction set can be 1dentified by
the coprocessor. A binary code i1dentification exception 1s
triggered when the coprocessor executes a binary code that
cannot be 1dentified. In this embodiment, a binary instruc-
tion that triggers the binary code exception 1s defined as the
s1xth binary code. The definition of the sixth binary code and
the definition of the fourth binary code are based on a same
principle. Refer to the related explanation about the fourth
binary code 1n the first optional manner. Likewise, 11 a binary
code representing each computer instruction in the third part
ol instruction subsets 1n the first istruction set 1s directly
acquired and added to the second instruction set 1 step
A402, when the coprocessor runs the second nstruction set,
a binary code identification exception 1s triggered because
the coprocessor cannot identity the binary code during
execution of a binary code that uses the binary code as an
operation code. Therefore, the binary code belongs to the
sixth binary code.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Different from the first optional manner, during execution
of the binary codes 1n the second 1nstruction set in sequence
in step B1001 by the coprocessor, after the sixth binary code
that triggers the exception 1s determined 1f the binary code
identification exception 1s detected i1n step B1002, step
B1003 1s executed to handle the binary code i1dentification
exception.

That the coprocessor acquires, according to binary codes
starting from the sixth binary code in the second 1nstruction
set, a third instruction set that 1s applicable to the first
operating system in step B1003 1s based on a same 1mple-
mentation principle as step A402 of obtaining the second
instruction set according to the first instruction set. Refer to
the related explanation about step A402 and the related
explanation about the optional refinement of step A402, for

example, the related explanations about step A4021 and step
A4022. Corresponding to step A4021, when the third

istruction set that 1s applicable to the first operating system
1s acquired according to the binary codes starting from the
s1xth binary code 1n the second instruction set in step B1003,
cach binary code starting from the sixth binary code 1n the
second 1nstruction set 1s traversed according to the transla-
tion table, to match and find whether a seventh binary code
exists, where an operation code of the seventh binary code
1s a binary code supported by the coprocessor and recorded
in the translation table. The operation code in the seventh
binary code 1s replaced with a match 1tem corresponding to
the operation code and recorded in the translation table,
where the match item 1s a binary code supported by the CPU
and representing a specific computer mstruction (a specific
computer instruction represented by the operation code 1n
the seventh binary code). The binary code with the replaced
operation code 1s used as an eighth binary code. In the eighth
binary code, the match item 1s an operation code of the
eighth binary code, and the eighth binary code 1s acquired
and added to the third instruction set. Theretfore, 1t can be
known that, when the third instruction set that 1s applicable
to the first operating system 1s acquired according to the
binary codes starting from the sixth binary code in the
second 1instruction set 1n step B1003, each seventh binary
code starting from the sixth binary code in the second
instruction set 1s translated into a corresponding eighth
binary code, and the eighth binary code 1s acquired and
added to the third instruction set.

In addition, optionally, 11 the register of the coprocessor
and the register of the CPU are not the same type of register,
there are two processing manners:

The first processing manner 1s processing by the copro-
cessor. Specifically, when the third instruction set that is
applicable to the first operating system 1s acquired according
to the binary codes starting from the sixth binary code 1n the
second instruction set 1 step B1003, and step B1003 1s
executed to translate the register address of the coprocessor
included 1n the binary codes starting from the sixth binary
code 1n the second 1nstruction set mto the register address of
the CPU, and the register address of the CPU 1s acquired and
added to the third instruction set. In this case, an execution
sequence of acquiring the eighth binary code according to
the translation table and translating the register address in
the first processing manner 1s not limited, and 1s generally
concurrent execution.

The second processing manner 1s processing by the CPU.
Specifically, after the CPU receives the third istruction set
migrated by the coprocessor in step B1003, the CPU
replaces the register address of the coprocessor 1n the third
instruction set with the register address of the CPU.

US 10,514,929 B2

33

Optionally, 1f the second instruction set 1s stored in the
memory of the CPU, the second 1nstruction set stored in the
memory of the CPU 1s replaced with the third instruction set
according to the storage address of the second instruction set
in the memory of the CPU 1n step B1003. If the second
istruction set 1s stored 1n the memory of the coprocessor,
the third instruction set 1s migrated to the CPU 1n step
B1003, so that the CPU stores the third instruction set 1n the
memory of the CPU.

In this optional manner, a binary code identification
exception 1s triggered when the coprocessor executes the
sixth binary code, and therefore, the coprocessor migrates
the second 1nstruction set that 1s not executed completely to
the CPU; during migration of the second instruction set that
1s not executed completely to the CPU, 11 data related to the
second 1nstruction set that 1s not executed completely 1s
stored 1n the memory of the coprocessor, the data related to
the second instruction set that 1s not executed completely
and stored in the memory of the coprocessor 1s sent to the
CPU, where the data related to the second instruction set that
1s not executed completely includes the third 1nstruction set
migrated to the CPU, so that the CPU stores, in the memory
of the CPU, the data related to the second instruction set that
1s not executed completely. In addition, the coprocessor
turther sends a register value related to the second 1nstruc-
tion set that 1s not executed completely to the CPU, and the
CPU stores, 1n the register of the CPU (corresponding to the
register address in the third instruction set), the register
value related to the second instruction set that i1s not
executed completely.

In a fourth optional manner, referring to FIG. 11, before
the third instruction set that 1s applicable to the first oper-
ating system 1s acquired according to the binary codes

starting from the sixth binary code 1n the second 1nstruction
set 1 step B1003, step B1101 and step B1102 are further

included.

Step B1101: Send an instruction set back-migration
request to the CPU.

Step B1102: Receive an instruction set back-migration
response sent by the CPU.

Specifically, a binary code 1dentification exception occurs
when the second instruction set 1s executed 1n step A403,
and step B1101 1s executed to send an instruction set
back-migration request to the CPU. The CPU responds to
the 1nstruction set back-migration request, determines
whether to migrate the second instruction set back to the
CPU for execution, and 1f determining to migrate back the
second 1nstruction set, feeds back an instruction set back-
migration response to the coprocessor. The coprocessor
receives the istruction set back-migration response 1n step
B1003, and executes step B1003 to acquire, according to the
binary codes starting from the sixth binary code in the
second 1nstruction set, the third instruction set that 1s appli-
cable to the first operating system.

An optional manner of responding to the instruction set
back-migration request by the CPU 1s: determining, accord-
ing to CPU load, whether to migrate the second 1nstruction
set back to the CPU for execution, where the CPU load
includes CPU usage, and memory usage of the memory used
by the CPU. If CPU usage of the CPU 1s less than or equal
to a fifth threshold, and memory usage of the memory used
by the CPU 1s less than or equal to a sixth threshold, the
instruction set back-migration response 1s sent to the copro-
CEeSSOor.

In an embodiment of the present application, FIG. 12 1s a
schematic diagram of an optional logical structure of a
coprocessor 202 1n the embodiment. The coprocessor 202 1s

10

15

20

25

30

35

40

45

50

55

60

65

34

applied to a processor system. The processor system
includes the coprocessor 202 and a central processing unit
(CPU) that runs a first operating system, where a second
operating system runs on the coprocessor 202.

The coprocessor 202 includes:

a first 1nstruction set receiving umt 2021, configured to
receive a first instruction set migrated by the central pro-
cessing unit, where the first instruction set 1s used to nstruct
the central processing unit to execute computer operations in
the first operating system, and the first instruction set 1s a set
of binary codes that are applicable to the {first operating
system:

a second 1nstruction set obtaining umt 2022, configured to
obtain a second instruction set according to the first imstruc-
tion set, where binary codes 1n the second 1nstruction set are
used to mstruct the coprocessor 202 to execute the computer
operations 1n the second operating system; and

a second 1nstruction set execution unit 2023, configured to
execute the binary codes 1n the second instruction set.

Optionally, that the second instruction set obtaining unit
2022 1s configured to obtain a second 1nstruction set accord-
ing to the first istruction set includes:

the second instruction set obtaining umt 2022 1s config-
ured to match, in a preset translation table, operation codes
of the binary codes in the first instruction set, and 1f an
operation code of a first binary code 1n the first instruction
set 1s found 1n the translation table, translate the operation
code of the first binary code into an operation code of a
second binary code according to a match item corresponding
to the operation code of the first binary code in the trans-
lation table, obtain the second binary code, and obtain the
second instruction set according to at least one second
binary code that 1s obtained, where the translation table
includes a correspondence between diflerent operation
codes that are respectively generated for the first operating
system and the second operating system by compiling a
same computer 1mstruction, and the second binary code 1s a
binary code that 1s applicable to the second operating
system.

Optionally, referring to FIG. 13, the coprocessor 202
further includes:

a register address translation unit 2024, configured to
translate a register address of the central processing unit in
the binary codes included 1n the second instruction set into
a register address of the coprocessor 202.

Optionally, the second instruction set obtaining unit 2022
1s Turther configured to: 11 an operation code of a third binary
code 1n the first istruction set 1s not found 1n the translation
table, use, by the coprocessor 202, the third binary code as
a binary code 1n the second instruction set.

Optionally, the first instruction set 1s migrated to the
coprocessor 202 by the central processing unit when CPU
usage ol the central processing unit 1s greater than a first
threshold.

Optionally, that the first instruction set recerving unit 2021
1s configured to receive a first instruction set migrated by the
central processing unit includes:

the first instruction set receiving unit 2021 1s configured
to recerve an address of the to-be-migrated {first instruction
set that 1s sent by the central processing unit, and acquire the
first 1nstruction set by accessing a memory of the central
processing unit based on the address of the first mstruction
set, where the address of the first instruction set 1s a storage
address of the first instruction set in the memory of the
central processing unit, and the address of the first mstruc-
tion set 1s sent to the coprocessor 202 by the central

US 10,514,929 B2

35

processing unit when memory usage of the central process-
ing unit 1s less than or equal to a second threshold.
Optionally, the first instruction set 1s sent to the copro-
cessor 202 by the central processing unit when memory
usage of the central processing unit 1s greater than a second

threshold.

Optionally, that the second instruction set execution unit
2023 1s configured to execute the binary codes 1n the second
instruction set includes:

the second 1nstruction set execution unit 2023 1s config-
ured to: execute the binary codes in the second instruction
set 1n sequence; and 1f a binary code identification exception
1s detected during execution of the second instruction set,
determine a fourth binary code that triggers the exception,
translate the fourth binary code into an intermediate code,
then translate the intermediate code 1nto a fifth binary code
that 1s applicable to the second operating system, execute the
fifth binary code, and continue to execute a binary code after
the fourth binary code 1n the second instruction set.

Optionally, the second 1nstruction set execution unit 2023
1s Turther configured to: before translating the fourth binary
code into the intermediate code, send an instruction set
back-migration request to the central processing umt, and
receive a back-migration reject instruction sent by the cen-
tral processing unit.

Optionally, that the second instruction set execution unit
2023 1s configured to execute the binary codes 1n the second
instruction set includes:

the second 1nstruction set execution unit 2023 1s config-
ured to: execute the binary codes 1n the second instruction
set 1n sequence; 1f a binary code 1dentification exception 1s
detected during execution of the second instruction set,
determine a sixth binary code that triggers the exception;
and acquire, according to binary codes starting from the
sixth binary code in the second instruction set, a third
instruction set that 1s applicable to the first operating system,
and migrate the third instruction set to the central processing
unit.

Optionally, the second 1nstruction set execution unit 2023
1s further configured to: before acquiring, according to the
binary codes starting from the sixth binary code in the
second 1nstruction set, the third 1nstruction set that 1s appli-
cable to the first operating system, send an instruction set
back-migration request to the central processing umt, and
receive an instruction set back-migration response sent by
the central processing umnit.

In an embodiment of the present application, FIG. 14 1s a
schematic diagram of a hardware structure of a coprocessor
1401 provided by the embodiment, and shows the hardware
structure of the coprocessor 1401.

As shown 1 FIG. 14, the coprocessor 1401 1s connected
to a memory 1402 by using a bus 1403, the memory 1402
1s configured to store a computer execution instruction, and
the coprocessor 1401 reads the computer execution instruc-
tion stored in the memory 1402 to execute the computer
instruction processing method provided by the foregoing
embodiment. For specific implementation of the computer
instruction processing method, refer to related descriptions
about the computer instruction processing method 1n the
foregoing embodiment. No further description 1s provided
herein.

The coprocessor 1401 may use an Intel many integrated
core (MIC) architecture, a microprocessor, an application-
specific integrated circuit (ASIC), or one or more integrated
circuits, and 1s configured to execute a related program to
implement the technical solution provided by the foregoing

10

15

20

25

30

35

40

45

50

55

60

65

36

method embodiment, including executing the computer
instruction processing method provided by the foregoing
embodiment.

The memory 1402 may be a read-only memory (ROM),
a static storage device, a dynamic storage device, or a
random access memory (RAM). The memory 1402 may
store an operating system and other application programs.
When the technical solution provided by the foregoing
method embodiment 1s 1implemented by using soitware or
firmware, program code used for implementing the technical
solution provided by the foregoing method embodiment 1s
stored 1n the memory 1402, including storing program code
of the computer instruction processing method that 1s pro-
vided by the foregoing embodiment and applied to the
coprocessor 1401 in the memory 1402, and the program
code 1s executed by the coprocessor 1401.

The bus 1403 may include a channel, and 1s configured to
transier information between each component in the copro-
cessor 1401 and the memory 1402.

It should be noted that, although only the coprocessor
1401, the memory 1402, and the bus 1403 are shown 1n the
coprocessor 1401 shown 1n FIG. 14, during specific imple-
mentation, persons skilled in the art should understand that
the coprocessor 1401 further includes other components
necessary for implementing normal runmng, for example, a
communications interface. In addition, according to a spe-
cific requirement, persons skilled in the art should under-
stand that the coprocessor 1401 may further include a
hardware component that implements other additional func-
tions. In addition, persons skilled in the art should under-
stand that, the coprocessor 1401 may also include only a
component necessary for implementing the {foregoing
method embodiment, but does not need to include all
components shown in FIG. 14.

In an embodiment of the present application, a system 200
1s provided. Referring to FIG. 1, the coprocessor system 200
includes a central processing unit 201 (CPU) and a copro-
cessor 202, where a first operating system runs on the CPU,
and a second operating system runs on the coprocessor 202,
where

the central processing unit 201 1s configured to migrate a
first nstruction set to the coprocessor 202; and

the coprocessor 202 1s configured to execute the computer
instruction processing method provided by the foregoing
embodiment or the optional refined manners of the forego-
ing embodiment.

In the several embodiments provided in the present appli-
cation, 1t should be understood that the disclosed system,
device, and method may be implemented 1n other manners.
For example, the described device embodiment 1s merely
exemplary. For example, the module and unit division 1is
merely logical function division and may be other division
during implementation. For example, a plurality of modules,
units or components may be combined or integrated into
another system, or some features may be ignored or not
performed. In addition, the displayed or discussed mutual
couplings or direct couplings or communication connections
may be implemented through some interfaces. The indirect
couplings or communication connections between the
devices or modules may be implemented in electronic,
mechanical, or other forms.

The modules described as separate parts may or may not
be physically separate, and parts as modules may or may not
be physical modules, may be located 1n one position, or may
be distributed on a plurality of network modules. Some or all
of the modules may be selected according to actual needs to
achieve the objectives of the solutions of the embodiments.

US 10,514,929 B2

37

In addition, functional modules 1n the embodiments of the
present application may be integrated into one processing
module, or each of the modules may exist alone physically,
or two or more modules are integrated into one module. The
integrated module may be implemented 1n a form of hard-
ware, or may be implemented in a form of hardware in
addition to a soitware functional module.

When the foregoing mtegrated module 1s implemented in
a form of a software functional module, the mtegrated unit
may be stored 1n a computer-readable storage medium. The
software functional module 1s stored in a storage medium
and 1ncludes several instructions for instructing a computer
device (which may be a personal computer, a server, or a
network device) to perform some of the steps of the methods
described 1n the embodiments of the present application. The
foregoing storage medium includes: any medium that can
store program code, such as a USB flash drive, a removable
hard disk, a read-only memory (Read-Only Memory, ROM),
a random access memory (Random Access Memory, RAM),
a magnetic disk, or an optical disc.

In summary, what 1s described above 1s merely exemplary
embodiments of the technical solutions of the present appli-
cation, but 1s not intended to limait the protection scope of the
present application. Any modification, equivalent replace-
ment, or improvement made without departing from the
spirit and principle of the present application shall fall
within the protection scope of the present application.

What 1s claimed 1s:

1. A computer instruction processing method for a pro-
cessor system, wherein the processor system comprises a
coprocessor and a central processing unit (CPU), a first
operating system that runs on the CPU, and a second
operating system that runs on the coprocessor, wherein the
method comprises:

receiving, by the coprocessor, a first instruction set appli-

cable to instruct the CPU to perform computer opera-
tions 1n the first operating system;

obtaining, by the coprocessor and according to the first

istruction set, a second nstruction set for the copro-
cessor to perform the computer operations in the sec-
ond operating system;

translating, by the coprocessor, a register address of the

CPU 1n the second instruction set 1into a register address
of the coprocessor; and

executing, by the coprocessor, the second 1nstruction set.

2. The method according to claim 1, wherein the obtaining
COmMprises:

matching, by the coprocessor, an operation code of a first

binary code in the first instruction set with a match item
in a preset translation table, wherein the preset trans-
lation table comprises a correspondence between dii-
ferent operation codes that are respectively generated
for the first operating system and the second operating
system by compiling a same computer instruction;
translating the operation code of the first binary code into
an operation code of a second binary code of the second
instruction set according to the match 1tem, wherein the
second binary code 1s applicable to the second operat-
ing system.

3. The method according to claim 2, wherein a binary
code in the second instruction set is obtained as a third
binary code 1n the first mnstruction set, wherein the preset
translation table does not include an operation code of the
third binary code.

4. The method according to claim 1, wheremn the first
instruction set 1s recerved as a migration by the CPU when

CPU usage of the CPU 1s greater than a first threshold.

10

15

20

25

30

35

40

45

50

55

60

65

38

5. The method according to claim 4, wherein an address
of the first mstruction set 1s received as a storage address 1n
a memory ol the CPU, wherein the address of the first
instruction set 1s sent to the coprocessor by the CPU when
memory usage of the CPU 1s less than or equal to a second
threshold, and wherein the receiving comprises

accessing the memory of the CPU based on the address of

the first istruction set.

6. The method according to claim 1, wherein the first
istruction set 1s sent to the coprocessor by the CPU when
memory usage ol the CPU 1s greater than a second threshold.

7. The method according to claim 1, wherein the second
instruction set 1s executed in sequence, the method further
comprising;

detecting a binary code 1dentification exception during an

execution of the second instruction set;

determining a fourth binary code that triggers the binary

code 1dentification exception;

translating the fourth binary code into an intermediate

code;
translating the mtermediate code into a fifth binary code
that 1s applicable to the second operating system; and

executing the fifth binary code, and continuing to execute
a binary code after the fourth binary code in the
sequence of the second struction set.

8. The method according to claim 7, wherein the method
further comprises:

sending an 1nstruction set back-migration request to the

CPU; and
recerving a back-migration reject instruction sent by the
CPU.

9. The method according to claim 1, wherein the second
mstruction set 1s executed 1n sequence, and wherein the
method further comprises:

detecting a binary code identification exception during an

execution of the second instruction set;

determining a sixth binary code that triggers the binary

code 1dentification exception; and

acquiring, according to binary codes starting from the

s1xth binary code 1n the sequence of the second 1nstruc-
tion set, a third instruction set that 1s applicable to the
first operating system, and migrating the third instruc-
tion set to the CPU.

10. The method according to claim 9, wherein the method
further comprises:

sending an instruction set back-migration request to the

CPU; and

recerving an instruction set back-migration response sent

by the CPU.

11. A coprocessor 1n a processor system, wherein the
processor system comprises a central processing unit (CPU)
and a coprocessor, wherein a first operating system that runs
on the CPU, and a second operating system that runs on the
coprocessor; and wherein the coprocessor 1s configured to:

receive a first struction set applicable to instruct the

CPU to perform computer operations in the first oper-
ating system;
obtain according to the first instruction set, a second
istruction set for the coprocessor to perform the com-
puter operations in the second operating system;

translate a register address of the CPU in the second
istruction set into a register address of the coproces-
sor; and

execute the second instruction set.

12. The coprocessor according to claim 11, wherein the
coprocessor 1s configured to:

US 10,514,929 B2

39

match an operation code of a first binary code 1n the first
instruction set with a match i1tem 1n a preset translation
table, wherein the preset translation table comprises a
correspondence between different operation codes that
are respectively generated for the first operating system
and the second operating system by compiling a same
computer mstruction; and

translate the operation code of the first binary code mnto an

operation code of a second binary code of the second
instruction set according to the match 1tem, wherein the
second binary code 1s applicable to the second operat-
ing system.

13. The coprocessor according to claim 12, wherein a
binary code in the second instruction set 1s obtained as a
third binary code in the first instruction set, wherein the
preset translation table does not include an operation code of
the third binary code.

14. The coprocessor according to claim 11, wherein the
first struction set 1s received as a migration by the CPU
when CPU usage of the CPU 1s greater than a first threshold.

15. The coprocessor according to claim 14, wherein an
address of the first instruction set 1s received as a storage
address 1n a memory of the CPU, wherein the address of the
first struction set 1s sent to the coprocessor by the CPU
when memory usage of the CPU 1is less than or equal to a
second threshold, and wherein the coprocessor 1s configured
to access the memory of the CPU based on the address of the
first 1nstruction set.

16. The coprocessor according to claim 11, wherein the
first 1nstruction set 1s sent to the coprocessor by the CPU
when memory usage of the CPU 1s greater than a second
threshold.

17. The coprocessor according to claim 11, wherein the
second 1nstruction set 1s executed 1n sequence, and wherein
the coprocessor 1s further configured to

detect a binary code identification exception during an

execution of the second instruction set;

determine a fourth binary code that triggers the binary

code 1dentification exception;

translate the fourth binary code mto an intermediate code;

translate the intermediate code into a fifth binary code that

1s applicable to the second operating system;

5

10

15

20

25

30

35

40

40

execute the fifth binary code and a binary code after the
fourth binary code in the sequence of the second
instruction set.

18. The coprocessor according to claim 17, wherein the
coprocessor 1s configured to send an instruction set back-
migration request to the CPU, and receive a back-migration
reject instruction sent by the CPU.

19. The coprocessor according to claim 11, wherein the
second 1nstruction set 1s executed 1n sequence; and wherein
the coprocessor 1s configured to detect a binary code 1den-
tification exception during an execution of the second
instruction set; determine a sixth binary code that triggers
the binary code identification exception; and acquire,
according to binary codes starting from the sixth binary code
in the sequence of the second 1nstruction set, a third instruc-
tion set that 1s applicable to the first operating system, and
migrate the third instruction set to the CPU.

20. The coprocessor according to claim 19, wherein the
coprocessor 1s configured to send an instruction set back-
migration request to the CPU, and receive an instruction set
back-migration response sent by the CPU.

21. A processor system, wherein the processor system
comprises a central processing unit (CPU) and a coproces-
sor, a first operating system that runs on the CPU, and a
second operating system that runs on the coprocessor,
wherein

the CPU 1s configured to migrate a first instruction set to

the coprocessor, the first istruction set applicable to
instruct the CPU to perform computer operations in the
first operating system; and

the coprocessor 1s configured to:

receive the first instruction set,

obtain, according to the first instruction set, a second
istruction set for the coprocessor to perform the com-
puter operations in the second operating system,

translate a register address of the CPU in the second
istruction set into a register address of the coproces-
sor, and

execute the second instruction set.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

