12 United States Patent

Arye et al.

US010509785B2

(10) Patent No.: US 10,509,785 B2
45) Date of Patent: *Dec. 17, 2019

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(51)

(52)

POLICY-DRIVEN DATA MANIPULATION IN
TIME-SERIES DATABASE SYSTEMS

Applicant: Timescale, Inc., New York, NY (US)

Inventors: Matvey Arye, New York, NY (US);
Michael J. Freedman, Princeton, NJ
(US); Robert Kiefer, Hoboken, NJ
(US); Ajay A. Kulkarni, New York,
NY (US); Erik Nordstrom, Stockholm
(SE)

Assignee: Timescale, Inc., New York, NY (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 16/109,644
Filed: Aug. 22, 2018

Prior Publication Data

US 2019/0188204 Al Jun. 20, 2019

Related U.S. Application Data

Continuation of application No. 15/907,103, filed on
Feb. 27, 2018, now Pat. No. 10,073,903,

(Continued)
Int. CL
GO6F 16/30 (2019.01)
GO6F 16/2455 (2019.01)
(Continued)
U.S. CL

CPC ... GO6F 16/24554 (2019.01); GO6F 16/2264
(2019.01); GOGF 16/2272 (2019.01);

(Continued)

(38) Field of Classification Search
CPC e GO6F 17/30486

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,740,762 B2 * 8/2017 Horowitz GO6F 16/278
2007/0198591 Al 8/2007 Teng et al.
(Continued)

OTHER PUBLICATTONS

PCT International Search Report and Written Opinion, PCT Appli-
cation No. PCT/US2018/019990, dated Jun. 11, 2018, 28 pages.

(Continued)

Primary Examiner — Mahesh H Dwiveds
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT

A database system stores data as hypertables that represent
partitioned database tables. Fach hypertable comprises
chunks of data that may be distributed across multiple
locations, each location comprising at least a storage device.
The database system provides an interface that allows data-
base queries seamlessly to hypertables as well as standard
tables. The database system dynamically creates chunks as
records are added to a hypertable. The database system
defines a new partitioming strategy if the storage configura-
tion ol the database system 1s changed by adding new
locations or removing existing locations. The records added
to the hypertable before the storage configuration was
changed continue to be stored as chunks distributed accord-
ing to the previous partitioning policy.

48 Claims, 13 Drawing Sheets

System Environment

100

Cliant Davice

Client Device
120b

Browser

120D

Database System 110

Query Processor
130

@ata Stn@

Metadata
155

N

Chunk Management
Module 170

~
\Eata Store 145

Hypertable
160

US 10,509,785 B2

Page 2

Related U.S. Application Data 2012/0254174 Al

2012/0254175 Al

o ot 2013/0080393 Al

(60) 5201;1(5)11071131 application No. 62/464,289, filed on Feb. 5013/0103657 Al

’ ' 2014/0172866 Al

2015/0134796 Al

(51) Int. CL 2015/0149413 Al
GO6F 16727 (2019.01) 2015/0347555 AL*
GO6F 16/951 (2019.01))

GO6F 16/22 (2019.01) 2016/0085839 Al

GO6F 16/2458 (2019.01) 2016/0350397 Al

(52) U.S. CL 2017/0046412 Al

CPC ... GO6F 16/2282 (2019.01); GO6F 16/2477 2017/0322996 Al
(2019.01); GOGF 16/27 (2019.01); GOG6F gggfggﬁgﬂ if)
16/278 (2019.01); GO6F 16/951 (2019.01) 5019/0171907 Al *

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0091691 Al
2008/0162409 Al
2010/0318587 Al

4/2008 Tsuji
7/2008 Mener et al.

12/2010 Seet et al.

10/201
10/201
3/201
4/201
6/201
5/201
5/201

12/201

h h Ln I Lo L o b

3/2016

12/201

2/201
11/201
11/201
12/201

4/201

O =] =~ -1 O

Mitra et al.
Horowitz et al.
Bird et al.
[kawa et al.
Lin et al.
Theimer et al.
[ee et al.

VVas v, GO6F 16/278

707/662
D’Halluin GO6F 16/278

707/747
Rice et al.
Levy et al.

Horowitz et al.
Horowitz GO6F 11/1474
Joo et al.

Ryanc...cooe GO6F 16/278

OTHER PUBLICATTIONS

PCT Invitation to Pay Additional Fees, PCT Application No.
PCT/US2018/019990, Apr. 3, 2018, 2 pages.

* cited by examiner

U.S. Patent Dec. 17, 2019 Sheet 1 of 13 US 10,509,785 B2

System Environment
100

Client Device
120a

Client Device
120b

Browser

Browser

1254 125h

Database System 110

Query Processor Chunk Management
130 Module 170

Data Store 145

etadata Store 14(C

Hypertable

Metadata
155

160

FIG. 1

US 10,509,785 B2

Sheet 2 of 13

Dec. 17, 2019

U.S. Patent

[7 ‘]] :eoedg
Gl ‘2] mwi]

101 ¢ AUNYY

[7 ‘S] :e0edg
[9 ‘0] :ewi]

201 AUNYY

¢ Ol

[Y ‘r] :eoedg

L

G ‘Z] }ewi]

012 UnyyH

[Y ‘r] :e0edS
[9 ‘0] :ewi]

q0 L HUNYYH

[| 'v] :e0eds
G /] mwi]

POLZ HUNYH

[| 'v] :20BdS

L

[9 ‘0] :ewi]

e0 L ¢ AUNYYH

09T °|qenadAH

US 10,509,785 B2

Sheet 3 of 13

Dec. 17, 2019

U.S. Patent

10CY

POCY 902V

9GG 1
e1EPE]S|IN

s)yUNYH .
01¢C |

._.ola Uoic BO1T |

qcG1L

elepeloi

JOTE 9PON WISAS aseqele(

4sce

eGal

elepelaN

€ Old

syUNYD

e0T€ °PON
Wa3sAS aseqgele(

U.S. Patent Dec. 17, 2019 Sheet 4 of 13 US 10,509,785 B2

Query Processor 130

uer Ex tion
Connector Query —CUto

Parser Engine
410
T 415 435

Quer
Query ’ Query Plan

Store 455

Planner Optimizer
425 430

FIG. 4A

Chunk Management Module 170

Chunk Chunk

Selection Creation

Module Module
445 450

FIG. 4B

U.S. Patent Dec. 17, 2019 Sheet 5 of 13

510

Recelve INSERT_query for Inserting
one or more records

US 10,509,785 B2

Repeat for each record to|be inserted

220

Provide dimension attributes of
record as Input to selection function

230
Execute selection function to identify
a chunk for storing record

540

Does record match
existing chunk

YES

NO

060
Determine sets of values of
dimension attributes for a new
chunk for storing record

/0

Create a new chunk

Insert record In the new chunk
created

Insert record In the
existing chunk

590

FIG. 5

U.S. Patent Dec. 17, 2019 Sheet 6 of 13 US 10,509,785 B2

10

Recelve query

620
Determine sets of chunks that may
contribute to the results of the query

Repeat for each chunk

630
Determine location of chunk

620
Perform query on
local chunk

Send query to remote location

6/0
Recelve result of query from chunk

80

Perform post processing of result

Send result to requestor

FIG. 6

US 10,509,785 B2

Sheet 7 of 13

Dec. 17, 2019

U.S. Patent

(9)2 oI5

[Z ‘1] :eoedsg [S ‘IN] :@0eds [71 '©] :e0edg
GL /] swi] Gl ‘2] swn] G ‘2] swn]
BOl¢C 101¢

[Z ‘1] :@0eds [S ‘NI :@oedSs 1 '©] :e0eds
[9 ‘0] BwiIL [9 ‘0] swi] [9 ‘0] swi]
POlC 201¢ q0l¢

POT/ UOIeso 5017 UOI}EO0

(V)2 ©I4

[Z ‘1] :@0edSg [S ‘] :80edS [1 '©] :eoedg
[9 ‘0] :BwI] [9 ‘0] :ewi] [9 ‘0] :ewi]

POL L UOLEDO] 901/ UOljeo0]

q01 Z UOLEO0]

q01 Z UOlEO0]

[4 ‘v] :e0edS
g1 /] mwi]

[4 ‘v] :e0edS
[9 ‘0] swi]
e0l¢

el / uolieoo]

OTT WolsAs aseqele(

[4 ‘v] :e0edg
[9 ‘0] :ewiI]

B0}/ Uoleoso

OTT Wa1sAg asegele(

US 10,509,785 B2

Sheet 8 of 13

Dec. 17, 2019

(7 ‘A] :e0edg
2 ‘9] ‘ewi]
U0lLe

[N ‘D] :e0edg
2 ‘91] ‘swi]
Wole

501/ Uoljeso

L

[d ‘] :2oedg
2 ‘91] ‘swi]

0LC

[7 ‘1] :20edg
G /] mwi]
Jol¢

[7 ‘1] :e0edg
[9 ‘0] swi]
POI¢C

POl L U000]

(D). Ol

[7 1] :e@0edS
72 ‘91] ‘swi]
MOLC

[S ‘] :eoedg
G ‘7] ewi]
DOT¢C

[S ‘] :eoedg
[9 ‘0] :swi]
201¢

501/ UOIE00

[H ‘3] :e0edg
2 ‘91] swil
101C

[7 ‘9] :e0edg
G /] ;ewi]
101¢C

[7 '©] :90eds
[9 ‘0] :BwI]
aolc

q01 L UOLEQO]

[‘v] :e0edg
72 ‘91] ‘swi]

I0LC

[4 v] :@0edS
G ‘7] ewi]
01¢

[4 ‘v] :90edS
[9 ‘0] :swi]
e0l¢

E01 Uoljeso

U.S. Patent

TT Wa1SAS aseqele(

U.S. Patent Dec. 17, 2019 Sheet 9 of 13 US 10,509,785 B2

Repeat

810
Recelve requests to INSERT records In
database table

820
Create a first plurality of chunks and
assign to a first plurality of locations
pbased on a first partitioning policy

830
Recelve Indication of addition of one or
more new locations to database system

840
Create a second plurality of chunks and
assign to locations based on a second
partitioning policy

Repeat

820
Recelve requests to INSERT records In
database table

860
Store records In a chunk determined
based on the dimension attributes of the

record.

FIG. 8

U.S. Patent Dec. 17, 2019 Sheet 10 of 13 US 10,509,785 B2

=
=
—
-
), O O O O
N s O O O O
I_ >\ A < A b
~ X X X X
S 3 [z [[[z
= ® - - - -
© @
@
£ Jo
0 -
_E> : .
S 2
®© AN "
—
5 @ e
D & b LL
fall =
O
0
-
Y — Ol
— ~
tg)
-
L % © o O
o, <~ A <~
g\L o ¥ 2 ¥
= X X X
- @ D [[z
(O - - -
O
©
il
©
-

Timeline 900

U.S. Patent Dec. 17, 2019 Sheet 11 of 13 US 10,509,785 B2

1010

Determine value of time attribute In
record

1020

1030
Create chunk based
on the first partitioning

policy

Create chunk based on the second
partitioning policy

1050
Store record in a the created chunk

FIG. 10

U.S. Patent Dec. 17, 2019 Sheet 12 of 13 US 10,509,785 B2

=
g
L |
e [\ o 5 5
N s - - D |
|_ i <) i <~ |
b N ~— -— ~—
' X X
& A 7 & [
— 4y
1= 3 O O O
©
£ ©
i— N
.
O
‘*‘é —
5 g N
DO e - \
T ©
O L
% - -
Y E| |
- A |
- = [o ;
(G s O
- D A |
- U) -
= T
@ A [
= @ a
= ©
e
D
)

Timeline 1100

U.S. Patent Dec. 17, 2019 Sheet 13 of 13 US 10,509,785 B2

1202
Processor

1919 1220 1206

Memory

Graphics Adapter Controller Hub

Memory

1208 1216

1222

/O Controller Network

Storage Device
Hub Adapter

Keyboard Pointi Device

FIG. 12

US 10,509,785 B2

1

POLICY-DRIVEN DATA MANIPULATION IN
TIME-SERIES DATABASE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of the U.S. patent
application Ser. No. 15/907,1035, filed on Feb. 27, 2018,
which claims the benefit of U.S. Provisional Application No.
62/464,289, filed on Feb. 27, 2017, each of which 1s incor-

porated by reference 1n 1ts entirety.

BACKGROUND

This disclosure relates generally to efliciently storing and
processing data in a database system, and in particular to
storing and processing time series data i a partitioned
database system.

Time-series data 1s generated and processed in several
contexts: momtoring and developer operations (DevOps),
sensor data and the Internet of Things (Io'T), computer and
hardware monitoring, fitness and health monitoring, envi-
ronmental and farming data, manufacturing and industrial
control system data, financial data, logistics data, application
usage data, and so on. Often this data 1s high 1n volume, for
example, individual data sources may generate high rates of
data, or many different sources may contribute data. Fur-
thermore, this data 1s complex in nature, for example, a
source may provide multiple measurements and labels asso-
ciated with a single time. The volume of this stored data
often increases over time as data 1s continually collected.
Analytical systems typically query this data to analyze the
past, present, and future behavior of entities associated with
the data. This analysis may be performed for varied reasons,
including examining historical trends, monitoring current
performance, 1dentifying the root cause of current problems,
and anticipating future problems such as for predictive
maintenance. As a result, operators are not inclined to delete
this potentially valuable data.

Conventional systems fail to support the high write rates
that are typical of many of these applications, which span
across industries. For example, 1n Internet of Things (IoT)
settings including industrial, agricultural, consumer, urban,
or facilities, high write rates result from large numbers of
devices coupled with modest to high write rates per device.
In logistics settings, both planming data and actuals comprise
time series that can be associated with each tracked object.
Monitoring applications, such as in development and opera-
tions, may track many metrics per system component. Many
torms of financial applications, such as those based on stock
or option market ticker data, also rely on time-series data.
All these applications require a database that can scale to a
high 1ngest rate.

Further, these applications often query their data 1n com-
plex and arbitrary ways, beyond simply fetching or aggre-
gating a single metric across a particular time period. Such
query patterns may 1nvolve rich predicates (e.g., complex
conjunctions 1n a WHERE clause), aggregations, statistical
functions, windowed operations, JOINs against relational
data, subqueries, common table expressions (CTEs), and so
forth. Yet these queries need to be executed efliciently.

Therefore, storing time-series data demands both scale
and eflicient complex queries. Conventional techmques fail
to achieve both of these properties 1n a single system. Users
have typically been faced with the trade-ofl between the
horizontal scalability of “NoSQL” databases versus the
query power of relational database management systems

10

15

20

25

30

35

40

45

50

55

60

65

2

(RDBMS). Existing solutions for time-series data require
users to choose between either scalability or rich query

support.

Traditional relational database systems that support data-
base query languages such as SQL (structured query lan-
guage) have difliculty handling high ingest rates: They have
poor write performance for large tables, and this problem
only becomes worse over time as data volume grows lin-
carly 1n time. Further, any data deletion requires expensive
“vacuuming”’ operations to defragment the disk storage
associated with such tables. Also, out-of-the-box open-
source solutions for scaling-out RDBMS across many serv-
ers are still lacking.

Existing NoSQL databases are typically key-value or
column-oriented databases. These databases often lack a
rich query language or secondary index support, however,
and suflfer high latency on complex quernies. Further, they
often lack the ability to join data between multiple tables,
and lack the reliability, tooling, and ecosystem of more
widely-used traditional RDBMS systems.

Distributed block or file systems avoid the need to pre-
define data models or schemas, and easily scale by adding
more servers. However, they pay the cost for their use of
simple storage models at query time, lacking the highly
structured indexes needed for fast and resource-eflicient
queries.

Conventional techmques that also fail to support an
existing, widely-used query language such as SQL and
instead create a new query language, require both new
training by developers and analysts, as well as new customer
interfaces or connectors to integrate with other systems.

SUMMARY

The above and other 1ssues are addressed by a computer-
implemented method, computer system, and computer read-
able storage medium for dynamically creating chunks for
storing records being added to a hypertable representing a
partitioned database table. Embodiments of the method
comprise receiving an insert request by a database system
and processing the insert request. The 1nsert request 1denti-
fies a hypertable and one or more 1nput records for 1nserting
in the hypertable. Each record has a plurality of attributes
including a set of dimension attributes that include a time
attribute. The hypertable 1s partitioned into a plurality of
chunks based on the dimension attributes. A chunk is speci-
fied using a set of values for each dimension attribute. For
each record stored in the chunk, the value of each dimension
attribute maps to a value from the set of values for that
dimension attribute. A determination 1s made whether an
input record should be stored 1n a new chunk or an existing
chunk. For each new chunk being created, sets of values
corresponding to each dimension attribute are determined
and the new chunk 1s created for storing the mput record.
The hypertable 1s updated by storing the input record in the
new chunk. The data stored in the updated hypertable 1s
processed 1n response to subsequent queries that identify the
hypertable.

Embodiments of a computer readable storage medium
store instructions for performing the steps of the above
method. Embodiments of a computer system comprise one
or more computer processors and a computer readable
storage medium storing mstructions for performing the steps
of the above method.

The features and advantages described 1n this summary
and the following detailed description are not all-inclusive.
Many additional features and advantages will be apparent to

US 10,509,785 B2

3

one of ordinary skill in the art in view of the drawings,
specification, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the embodiments can be readily under-
stood by considering the following detailed description 1n
conjunction with the accompanying drawings.

FIG. 1 1s a block diagram of a system environment in
which the database system operates, 1n accordance with an
embodiment.

FI1G. 2 1llustrates partitioning of data of a database table,
in accordance with an embodiment.

FIG. 3 shows processing of queries 1n a database system
comprising a plurality of database nodes, 1n accordance with
an embodiment.

FIG. 4A shows the system architecture of a query pro-
cessor, 1n accordance with an embodiment.

FIG. 4B shows the system architecture of a chunk man-
agement module, in accordance with an embodiment.

FIG. 5 illustrates the process of inserting records into a
hypertable stored across a plurality of database system
nodes, 1n accordance with an embodiment.

FIG. 6 1s a flowchart of the process of executing a query
for processing records stored in a hypertable, 1n accordance
with an embodiment.

FIGS. 7(A-C) illustrate partitioming of data of a database
table to adapt to addition of locations to the database system
according to an embodiment of the invention.

FIG. 8 shows a flowchart illustrating the process of
moditying a data partitioning policy of a database system in
response to addition of new locations to the database system,
in accordance with an embodiment.

FIG. 9 illustrates selection of partitioning policy for
creating chunks based on time attribute of the record,
according to an embodiment.

FIG. 10 shows a flowchart of the process for selection of
partitioning policy for creating chunks based on time attri-
bute of the record, according to an embodiment.

FIG. 11 1illustrates selection of partitioning policy for
creating chunks based on time of receipt of a record by the
database system, according to an embodiment.

FI1G. 12 shows an architecture of a computer that may be

used for implementing a database system node, in accor-
dance with an embodiment.

DETAILED DESCRIPTION

Embodiments of the invention include a database system
that supports a standard query language like SQL and
exposes an 1interface based on a hypertable that partitions the
underlying data across servers and/or storage devices. The
database system allows users to interact with data as if 1t
were stored 1n a conventional database table, hiding the
complexity of any data partitioning and query optimization
from the user. Embodiments of the database system make a
query language like SQL scalable for time-series data. The
database system combines the best features of both RDBMS
and NoSQL databases: a clustered scale-up and scale-out
architecture and rich support for complex queries. Scaling
up corresponds to running on larger individual servers, for
example, machines with high numbers of CPUs or cores, or
servers with greater RAM and disk capacity. Scaling up also
includes increasing storage capacity ol an existing database
system by adding additional storage devices. Scaling out
comprises increasing storage capacity of the database sys-
tem by adding additional servers, for example, by sharding

10

15

20

25

30

35

40

45

50

55

60

65

4

the dataset over multiple servers, as well as supporting
parallel and/or concurrent requests across the multiple serv-
ers.

System Environment

FIG. 1 1s a block diagram of a system environment in
which the database system operates, in accordance with an
embodiment. The system environment comprises a database
system 110, one or more client devices 120, and a network
115.

The database system 110 comprises a query processor
130, a metadata store 140, and a data store 145. The database
system 110 may 1nclude other components, for example, as
illustrated 1n FIG. 2. The database system 110 receives
database queries, for example, queries specified using SQL
and processes them. The database system 110 may support
standard SQL features as well as new user-defined functions,
SQL extensions, or even non-SQL query languages such as
declarative programming languages, a REST interface (e.g.,
through H1TP), or others.

The data store 145 stores data as tuples (also referred to
as records) that may be stored as rows of data, with each row
comprising a set of attributes. These attributes typically have
a name associated with them (e.g., “time”, “device_1d”,
“location”, “temperature”, “error_code”) and a type (e.g.,
string, integer, float, boolean, array, json, jsonb (binary
1son), blob, geo-spatial, etc.), although this 1s not necessary
in all cases. Attributes may also be referred to herein using
the terms “fields”, “columns” or “keys”.

The data store 145 may store records i a standard
database table that stores data 1 one or more files using
conventional technmiques used by relational database sys-
tems. The data store 145 may also store data 1n a partitioned
database table referred to as a hypertable. A hypertable 1s a
partitioned database table that provides an interface of a
single continuous table—represented by a virtual view—
such that a requestor can query 1t via a database query
language such as SQL. A hypertable may be defined with a
standard schema with attributes (or fields or column) names
and types, with at least a time attribute specifying a time
value. The hypertable 1s partitioned along a set of dimension
attributes including the time attributes and zero or more
other dimension attributes (sometimes referred to as the
hypertable’s “space” attributes). These dimension attributes
on which the hypertable 1s partitioned are also referred to as
“partitioming key(s)”, “partition key(s)”, or “partitioning
fields.” A hypertable may be created using a standard SQL
command for creating a database table. Furthermore, queries
to the hypertable may be made using database queries, for
example, SQL queries.

The database system splits the hypertable into chunks.
Each chunk stores a subset of records of the hypertable. A
chunk may also be referred to herein as a data chunk or a
partition. The database system 110 may distribute chunks of
a hypertable across a set of one or more locations. A location
may represent a storage medium for storing data or a system
that comprises a storage medium {for storing data, for
example, a server. The storage medium may be a storage
device, for example, a disk. The database system 110 may
store data on multiple storage devices attached to the same
server or on multiple servers, each server attached with one
or more storage devices for storing chunks. A storage device
may be attached to a remote server, for example, 1n a
cloud-based system and a server of the database system
provided access to the remote storage device for storing
chunks.

The database system can store multiple hypertables, each

with different schemas. Chunks within the same hypertable

US 10,509,785 B2

S

often have the same schema, but may also have different
schemas. The database system may also include standard
database tables, 1.¢., traditional non-partitioned tables stored
in the same database. Operations are performed against any
of these tables, including multiple tables 1n a single query.

For example, this can mnvolve a SELECT that JOINS data

between a hypertable and a standard non-partitioned table,
or between two hypertables, or any more complex combi-
nation thereof. Or, 1t may involve inserting data ito a
hypertable and a standard non-partitioned table, or between
two hypertables, or more complex combinations, as a single
transaction.

In some embodiments, the database system 110 1s com-
prised of one or more database system nodes (also referred
to as database servers or just servers) that are connected over
a network. Each node may include the same or similar
components from FIG. 1, such as a query processor 130,
metadata store 140, and data store 145. The details of a
database system node are described 1n FIG. 2. The metadata
store 140 stores metadata describing the data stored in the
data store 143 including descriptions of various hypertables
and standard non-partitioned tables. The description
includes various attributes of each table, the description of
vartous chunks of a hypertable, and so on. The query
processor 130 receives and processes queries as further
described herein.

The database system 110 may be connected to requesters
issuing database queries to the database system 110. A
requestor may be any source of the database queries, for
example, a client device 120, a webserver, application
server, user workstation, or a server or machine that 1is
sending the query on behall on another origin (e.g., an
intermediate server or middleware layer acting as a queue,
bufler, or router such as for INSERTS, or an application
acting on behalf of another system or user).

This connection from the requester often occurs over the
network 115, although it can also be on the same server
executing the database system. For example, the network
115 enables communications between the client device 120
or any other requestor and the database system 110. In one
embodiment, the network uses standard communications
technologies and/or protocols. The data exchanged over the
network can be represented using technologies and/or for-
mats 1ncluding the open database connectivity (ODBC)
format, the Java database connectivity (JDBC) format, the
PostgreSQL foreign data wrapper (FDW) format, the Post-
greSQL dblink format, the external data representation
(XDR) format, the Google Protocol Bufler (protobut) for-
mat, the Apache Avro format, the hypertext markup lan-
guage (HTML), the extensible markup language (XML),
Javascript object notation (JSON), eftc.

The client device 120 can be a personal computer (PC), a
desktop computer, a laptop computer, a notebook, a tablet
PC executing an operating system. In another embodiment,
the client device 120 can be any device having computer
functionality, such as a personal digital assistant (PDA),
mobile telephone, smartphone, wearable device, etc. The
client device can also be a server or workstation, including
running in a backoflice environment, within an enterprise
datacenter, or within a virtualized cloud datacenter. The
client device executes a client application for interacting
with the database system 110, for example, a browser 125,
a database shell, a web service application (such as .NET,
Djagno, Ruby-on-Rails, Hibernate), a message broker (such
as Apache Katka or RabbitMQ)), a visualization application,
and so forth.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 and the other figures use like reference numerals
to 1dentily like elements. A letter after a reference numeral,
such as “120A,” indicates that the text refers specifically to
the element having that particular reference numeral. A
reference numeral 1n the text without a following letter, such
as “120,” refers to any or all of the elements 1n the figures
bearing that reference numeral (e.g. “120” in the text refers
to reference numerals “120A” and/or “120N” in the figures).

FIG. 2 illustrates partitioning of data as chunks for a
hypertable, 1n accordance with an embodiment. Each of
these chunks correspond to a portion of the entire dataset
organized according to some partitioning function mvolving
one or more ol a record’s attributes. The attributes of the
record that are used for partitioning the hypertable as chunks
are referred to as dimension attributes. Accordingly, a chunk
corresponds to an “n-dimensional” split of the hypertable
(for n=1).

The database system 110 may implement a chunk as a file.
In one embodiment, each chunk 1s implemented using a
standard database table that 1s automatically placed on one
of the locations (e.g., storage devices) of one of the database
nodes (or replicated between multiple locations or nodes),
although this detail may not be observable to users. In other
embodiments, the placement of chunks on locations and/or
database nodes 1s specified by commands or policies given
by database administrators or users.

One of the dimension attributes 1s a time attribute that
stores time-related values. The time attribute can be any data
that can be comparable (i.e., has a > and = operator), such
that data can be ordered according to this comparison
function. Further, new records are typically associated with
a higher time attribute, such that this value 1s commonly
increasing for new records. Note that this value can be
specified 1n the data record, and need not (and often does
not) correspond to when data 1s inserted into the database.
The following values may be used as a time attribute:
datetime timestamps (including with or without timezone
information), UNIX timestamps (1n seconds, microseconds,
nanoseconds, etc.), sequence numbers, and so on. In an
embodiment, the hypertable 1s also split along a dimension
attribute that represents a distinct identifier for objects or
entities described 1n the database table (e.g., a device 1d that
identifies devices, a server 1d that identifies servers, the
ticker symbol of a financial security, etc.).

A chunk 1s associated with a set of values corresponding
to each dimension attribute. For example, a hypertable may
have two dimension attributes d1 and d2. For a given chunk
C1, the dimension attribute d1 1s associated with a set of
values S1 and the dimension attribute d2 1s associated with
a set of values S2. Accordingly, each record stored 1n the
chunk C1 has a dimension attribute value that maps to a
value 1n the set of values corresponding to the dimension
attribute. For example, assume that a hypertable includes
attributes time, device, and temperature. Also assume that
time 1s a dimension attribute and a chunk 1s associated with
a range of time [0:00:00-11:59:59.999]. If an put record
has values {time: “1:00:00”, device: “A”, temperature: 65},
the chunk may store the mput record since the value of the
time dimension “1:00:00” falls within the range associated
with the chunk, 1.e., [0:00:00-11:59:59.999].

A set of values corresponding to a dimension attribute
may represent a range of values but 1s not limited to ranges.
For example, the set of values may represent a plurality of
ranges that are not contiguous. Alternatively, the set of
values may be specified by enumerating one or more values.
For example, a dimension attribute ¢c1 may represent colors

(e.g., “red”, “blue”, “green”, “yellow”), and a chunk may

US 10,509,785 B2

7

store records that have the value of dimension attribute c1
from the set {“red”, “blue”} and another chunk may store
records that have the value of dimension attribute ¢l from
the set {“green”, “yellow”}.

A given value of a dimension attribute may map to a value
in the set of values corresponding to that dimension 1f the
given value 1s identical to a value in the set of values.
Alternatively, a given value v1 of a dimension attribute may
map to a value v2 1n the set of values corresponding to that
dimension 1f the value v2 1s obtained by applying a trans-
formation (for example, a function) to the given value vl1.
For example, database system 110 may use a hash partition-
ing strategy where the set of values corresponding to a
dimension 1s specified as a range/set of values obtained by
applying a hash function to the dimension attribute values.
Accordingly, 11 a dimension attribute value 1s represented as
vx, and H represents a hash function, a chunk Cx may be
associated with a range R[x1, x2] (or set) of values for
H(vx). Accordingly, the chunk may store a record with
dimension attribute value v1 1if H(vl) lies 1n the range [x1,
x2].

In an embodiment, the set of values may correspond to a
plurality of dimension attributes. For example, the hash
function specified 1n the above example may receive two or
more inputs, each corresponding to a distinct dimension
attribute, 1.e., H(v1, v2, . . .). Accordingly, a dimension of
a chunk may be defined as a composite attribute comprising
a plurality of dimension attributes of the hypertable.

FIG. 2 shows a hypertable 160 split into a plurality of
chunks 210 along two dimension attributes, a time attribute
and another dimension attribute referred to as the space
attribute. In thus example, each chunk 1s associated with a
time range comprising a start time and an end time, and a
space range comprising a contiguous range ol alphabetical
characters. For example, chunk 210a stores a set of records
that have the value of time attribute within the range [0, 6]
and the value of space attribute within the range [A, I].
Similarly, chunk 2105 stores a set of records that have the
value of time attribute within the range [0, 6] and the value
ol space attribute within the range [J, R], and so on.

Different types of queries can be made to a hypertable,
including those that only read from the hypertable (e.g.,
database SELECT statements), as well as those that modity
the hypertable (e.g., database INSERT, UPDATE, UPSERT,
and DELETE statements). Writes are typically sent to the
chunks comprised of the latest time interval (but do not need
to be), while queries may slice across multiple dimension
attributes, for example, both time and space.

Although hypertables and chunks are referred to herein as
tables, this term 1s not meant to be limiting, and a chunk
could refer to a number of storage representations, including
a traditional relational database table, a virtual database
view, a materialized database view, a set of structured
markup language (e.g., XML), a set of serialized structured
data (e.g., JSON, Google Protocol Buflers, Apache Avro,
Apache Parquet), or flat files (e.g., with comma- or tab-
separated values).

Distributed Execution of Queries

FIG. 3 shows processing of queries 1n a database system
comprising a plurality of database nodes, 1n accordance with
an embodiment. A database system node 310a receives
database queries and may send one or more queries to
chunks (that may be implemented as physical tables of the
data), which are stored on the coordinator database system
node or on other database system nodes. A database system
node does not 1ssue a query to a chunk 1f 1t determines that
the chunk 1s not needed to satisiy the query. This determi-

10

15

20

25

30

35

40

45

50

55

60

65

8

nation uses additional metadata about the chunk, which may
be maintained separate from or along with each chunk’s
data. Each database system node can also maintain addi-
tional metadata to allow it to efliciently determine a chunk’s
time 1nterval and partitioming field’s keyspace. The database
system may maintain the metadata separate from or along
with a chunk.

As shown in FIG. 3, the database system node 310q
receives a first database query 320. The database system
node 310a determines that the data required for processing
the recerved database query 1s on one or more database
system nodes 310a, 3105, and 310c¢. The database system
node 310a further sends queries 325a and 3255 for process-
ing the first query to the database system nodes 3105 and
310c¢, respectively. All three database system nodes 310a,
31056, and 310c¢ process their respective queries using one or
more chunks of data stored on their respective nodes. In the
example, 1llustrated 1n FIG. 3, if the database system node
310a determines that the data required for processing the
first query 1s stored only on database system nodes 310a and
31056 but not on 310c¢, the database system node 310q sends
a query for processing to 3105 but not to 310c. In other
embodiments of the system, the queries 325a and 32556 sent
to the other nodes 3106 and 310c¢ are the same as the first
query 320, and the queries or requests sent to the other nodes
can be 1 a different query language, format, or communi-
cation protocol as the first query. In some embodiments of
the system, the queries 3254 and 325b maybe 1dentical to
cach other, while in others they are different. Further, 1n
other embodiments, node 310a does not store chunks itself,
but only processes the query 320 and 1ssues the correspond-
ing queries 325 to other database nodes.

The database system node 310a that receives the database
query may determine that the query to the hypertable does
not mnvolve a particular chunk’s data—{for example, because
the query specified a time period different than that associ-
ated with the chunk, or if the query specifies a dimension
attribute (e.g., an IP address, device ID, or some location
name) that 1s associated with a different chunk. In this
situation, the first database system node does not issue a
query to this particular chunk (which may be located on
itself or on a different node). This determination by both the
first database system node and any other database system
nodes may be performed by the query processor 130 present
on each database system node that processes queries.

Any database system node may receive a query from a
requester and the query processor 130 running on this
database system node determines how to plan and execute
the query across the entire cluster of one or more nodes. This
database system node sends a query (a “subquery”) to zero
or more other nodes in the system. Subsequently, the data-
base system node(s) that receive a subquery from the first
database system node include a query processor 130 that
determines how to plan and execute the query locally.

In an embodiment, this process 1s extended to additional
levels of subqueries and 1involved planners. In an embodi-
ment, the database system performs this partitioning in a
recursive fashion. For example, the chunk that is being
stored on one of the nodes could itself be further partitioned
in time and/or by an additional partitioning key (either the
same or different than the partitioning key at a higher level),
which 1tself could be distributed among the node (e.g., on
different disks) or even to other nodes. In such a scenario, a
chunk can act as another hypertable.

In some embodiment, the database system performs the
query processing using only the query processor 130 on the
first database system node. Accordingly, the complete query

-

US 10,509,785 B2

9

plan 1s generated by the first node and sent to nodes that are
determined to store chunks processed by the query. The
remaining nodes that recerve the query plan (or some portion
thereot) simply execute the received query plan without
having to generate a portion of the query plan. In other
embodiments, the database system implements less homog-
enous functionality across nodes, such that a first set of one
or more nodes recetves queries and plans and executes the
queries against a second disparate set of one or more nodes
that store the chunks.
System Architecture

FIG. 4A shows the system architecture of a query pro-
cessor, 1n accordance with an embodiment. The query pro-
cessor 130 comprises components including a connector
410, a query parser 415, a query planner 425, a query
optimizer 430, an execution engine 435, and a query plan
store 455. A query processor 130 receives a query in some
query language, such as SQL, which specifies the tables or
datasets on which the query will apply (1.e., read or write

data). A query or database query may represent a request to
read data (e.g., SELECT statements 1n SQL) or modily data
(e.g., INSERT, UPDATE, and DELETE statements 1n SQL)
from the database.

The query parser receives this request and translates 1t to
a query representation that 1s easier to process. For example,
the query parser 415 may generate a data structure repre-
senting the query that provides access to the information
specified 1n the query. The query optimizer 430 performs
transformation of the query, for example, by rewriting
portions of the query to improve the execution of the query.
The query planner takes this machine-readable representa-
tion of the query, which 1s typically declarative in nature,
and generates a plan specitying how the query should be
executed against the stored data, which may be stored 1n
memory (e.g., RAM, PCM) and/or on some type ol non-
volatile storage media (e.g., flash SSD, HDD). The query
processor 130 stores the generated plan 1n the query plan
store 455. The execution engine 435 executes the query
against the stored data, and returns the results to the
requester. The connector 410 allows the query processor 130
to connect to remote systems, for example, to access data
stored 1n remote systems.

FIG. 4B shows the system architecture of a chunk man-
agement module, 1n accordance with an embodiment. The
chunk management module 170 further comprises a chunk
selection module 445, and a chunk creation module 450. The
chunk selection module 445 implements a chunk selection
function that determines a chunk for storing a given record.
The chunk selection module 445 determines whether an
existing chunk can be used for storing the record. IT the
chunk selection module 445 determines that none of the
existing chunks can be used for storing the record, the chunk
selection module 445 determines that a new chunk needs to
be created and invokes the chunk creation module 450 for
creating the chunk. If the chunk selection module 445
determines that a new chunk needs to be created, the chunk
selection module 445 determines various parameters
describing the new chunk. For example, the chunk creation
module 450 determines the sets of values corresponding to
different dimension attributes of the records that define the
chunk boundaries. Accordingly, records stored in the chunk
have dimension attribute values such that each dimension
attribute has a value that maps to a value 1n the set of values
corresponding to the chunk’s dimension. For example, 11 a
chunk has two dimension attributes, based on time and a
device 1d, then each record stored in the chunk has a time
attribute that falls within the chunk’s time range and a device

5

10

15

20

25

30

35

40

45

50

55

60

65

10

1d from the set of device 1ds associated with the chunk. The
chunk creation module 450 determines a location for creat-
ing the chunk and creates the chunk on the location.

The database system 110 stores in the metadata store 140,
metadata 135 describing the chunk. The metadata for a
chunk 1ncludes information associating the chunk with the
hypertable. Other type of metadata describing the chunk
includes a name of the chunk, the various sets of values of
the dimension attributes (for example, time ranges for the
time attribute, and so on), information describing constraints
and indexes for the chunk, and so on. The database system
110 may store other metadata associated with the chunk,
e.g., access statistics and data distribution statistics to aid
query planning.

A hypertable may be associated with certain policy con-
figurations, for example, indexes, constraints, storage
parameters (e.g., fillfactor settings, parallel worker settings,
autovacuum settings, etc.), foreign key relationships, and so
on. In an embodiment, each chunk of the hypertable imple-
ments the policy configurations of the hypertable containing
the chunk. Accordingly, when creating a chunk, the chunk
creation module 450 may also create structures such as
indexes for the chunk and update metadata to specily

constraints, foreign key relationships, and any other policy
configurations for the chunk. Examples of constraints
defined for a chunk include UNIQUE, NOT NULL, CHECK
CONSTRAINT (1.e., timestamp between range), FOREIGN
KEY, and EXCLUSION constraints. The chunk manage-
ment module 170 continues to manage the chunk once 1t 1s
created, for example, by reindexing old chunks periodically,
moving old chunks to slower storage devices over time,
adding secondary constraints through dynamic inspection,
and so on.

In an embodiment, the chunk management module 170
monitors the sizes of the chunks that were recently created.
A recently created chunk (or a recent chunk) refers to a
chunk that was created within a threshold time interval of the
current time. The size of the threshold time interval may be
configurable. The size represents the amount of data that 1s
stored 1n the chunk, for example, the chunk’s size of bytes,
its number of rows, and so on. The chunk management
module 170 adjusts sets of values of the dimension attributes
for new chunks being created based on the size of the
recently created chunks. Accordingly, if the chunk manage-
ment module 170 determines that one or more recently
created chunks store data that exceeds certain high threshold
values, the chunk management module 170 adjusts the sets
of values of one or more dimensions so that they have fewer
clements than the corresponding sets of values of the
recently created chunks. For example, 11 the chunk manage-
ment module 170 determines that the recently created
chunks had a range of 12 hours for the time attribute, the
chunk management module 170 may decrease the range of
time attributes of new chunks being created to be 10 hours.
Alternatively, if the chunk management module 170 deter-
mines that one or more recently created chunks store data
that 1s below certain low threshold values, the chunk man-
agement module 170 adjusts the sets of values of one or
more dimensions so that they have more elements than the
corresponding sets of values of the recently created chunks
that were below the low size thresholds. For example, 11 the
chunk management module 170 determines that the recently
created chunks had a range of 12 hours for the time attribute
and stored very few records, the chunk management module
170 may increase the range of time attributes of new chunks
being created to be 15 hours.

US 10,509,785 B2

11

In an embodiment, the chunk management module 170
monitors one or more performance metrics for the chunks
that were recently created. The chunk management module
170 adjusts the sets of values of dimension attributes for new
chunks being created based on the performance metrics for
the chunks that were recently created. For example, the
chunk management module 170 may monitor insert rate and
query execution time. For example, 1f the chunk manage-
ment module 170 determines that for the current sizes of
chunks the 1nsert rate of records has fallen significantly (e.g.,
since the database system has started swapping to disk), then
the chunk management module 170 determines the sets of
values of dimension attributes of new chunks being created
such that the new chunks are smaller.

In an embodiment, chunk management module 170 keeps
statistics describing chunks processed by each distinct
query, for example, the number of chunks processed by each
query. The chunk management module 170 uses this statis-
tical information to determine sets of values for dimension
attributes of new chunks being created so as to improve
performance. In an embodiment, the chunk management
module 170 monitors the dimension attribute boundaries
specified 1n queries. If the chunk management module 170
determines that commonly received queries have certain
pattern of boundaries, for example, a pattern of time align-
ment (e.g., typical queries request data for a day between
midnight and midnight), then the chunk management mod-
ule 170 aligns newly created chunks to match these bound-
aries. As another example, 1f the current chunks have one
hour time attribute ranges and the chunk management mod-
ule 170 determines that the queries are typically accessing
data at an interval of a size of a full day, the chunk
management module 170 increases the chunk sizes to reach
a size more aligned with the access patterns, yet one that still
retains a high insert rate. For example, the chunk manage-
ment module 170 may increase the time attribute range to be
12 hours, e.g., 11 12 hours gives a higher insert rate compared
to a 24-hour range.

In an embodiment, the chunk management module 170
determines the sets of values of the dimension attributes of
chunks being created based on ranges of dimension attri-
butes specifies 1n queries received by the database system.
For example, if the chunk management module 170 1is
creating chunks with time attribute ranges from 11 pm to 11
pm, and the chunk management module 170 determines that
the queries received are accessing data from midnight to
midnight, the chunk management module 170 shiits the time
range of the chunks being created to match the time ranges
of the queries. This improves the performance of queries by
avoiding the need to unnecessarily scan two chunks rather
than one.

In an embodiment, the chunk management module 170
distributes chunks across a plurality of locations based on
the properties of the storage media of each location. The
chunk management module 170 identifies the storage
medium for storing the new chunk and accesses properties
of the storage medium, for example, properties describing a
rate of access of data stored on the storage medium. The
chunk management module 170 determines a number of
chunks from the plurality of chunks being assigned to a
location based on the properties of the storage medium
corresponding to that location. For example, the chunk
management module 170 accesses metrics describing the
rate at which a storage medium accesses random data.
Certain storage mediums, e.g., solid-state drives (SSDs) and
random-access memory (RAM), can handle random reads
much better than spinning hard disk drives (HDDs). Accord-

10

15

20

25

30

35

40

45

50

55

60

65

12

ingly, the chunk management module 170 assigns more
chunks from the plurality of chunks to a location having a
storage medium with faster access time for random accesses.
In one embodiment, the chunk creation module 450
creates a new chunk—and “closes” an existing one—when
the existing chunk approaches or exceeds some threshold
s1ze (e.g., 1 bytes on disk or in memory, 1n 1ts number of
rows, etc.). Each chunk 1s represented by a start and end time
(defimng 1ts interval). With a purely size-based approach,
however, the database system would not know a prion the
end time of a newly-created chunk. Thus, when a chunk 1s
first created, the chunk’s end time 1s unset; any row having
time greater than (or equal to) the start time 1s associated
with the chunk. However, when a chunk’s size approaches
or exceeds some threshold, the query planner 425 closes the
chunk by specilying its end time, and the chunk creation
module 450 creates a new chunk. This new chunk starts at
the time the old chunk ends. With this approach, the chunk
has an indeterminate end time for a chunk until 1t 15 closed.
A sitmilar logic 1s applied to an indeterminate start-time. It 1s
also possible for an initial chunk to have both an indeter-
minate start and end time. An embodiment of the database
system performs this determination and chunk creation
asynchronously or 1n the background, while another per-
forms these actions during the process of inserting a (set of)
row(s) from the received batch to the chunk. The creation of
the new chunk at insert time can happen 1n a variety of ways:
before mserting the rows (the query planner 425 decides that
the exasting chunk 1s too full already, and creates a new
chunk to insert into); after inserting the rows 1nto the chunk;
or in the middle of inserting the rows (e.g., the query planner
425 decides the chunk only has space for a subset of the
rows, so the subset 1s 1nserted into the current chunk and the
remainder of the set 1s iserted into a newly created chunk).
In other embodiments, the database system defines a
chunk as having a particular time interval (that 1s, both a start
and end time) when the chunk is created. Then the system
creates a new chunk when needed, e.g., when new data 1s to
be 1nserted to a time interval that does not yet exist. In one
embodiment, the database system also employs a maximum
s1ze even with this approach, so that, for example, a second
chunk 1s created with the same time interval as the first
chunk 1f the size 1s approached or exceeded on the first
chunk, and the query planner 425 writes new data to only
ne of the chunks. Once a second chunk 1s created, the
database system may rebalance data from the first to second
chunk. In another embodiment, rather than overlap the time

intervals of the first and second chunk, the first chunk’s end

time 1s modified when the second chunk 1s created so that
they remain disjoint and their time intervals can be strictly
ordered. In another embodiment, the database system per-
forms such changes asynchronously, so that an over-large
chunk 1s split mto a first and second chunk as a “back-
ground” task of the system. Further, in another embodiment,
this second chunk 1s created when an insert occurs to a time
value that 1s sufliciently close to the end of a chunk’s time
range, rather than only when a record’s dimension attributes
(e.g., time) fall outside the dimensions of any existing
chunks. In general, many of the vanations of the database
system’s chunk management may be performed either syn-
chronously at insert time or asynchronously as a background
task. Size- and interval-based chunking 1s further described
below.

In an embodiment, the chunk creation module 450 per-
forms collision detection to ensure that the new chunks(s)
have sets of dimension attributes that are disjoint from
existing chunks. For example, assume that the chunk cre-

US 10,509,785 B2

13

ation module 1s creating chunks with a time range spanning
24 hours. If the previous chunk stored data with time
attribute values until midnight (exclusive) on a date January
1, the chunk creation module 450 next creates chunks with
time attribute values from midnight (inclusive) on January 2
to the following midmight (exclusive). As another example,
if the chunk creation module 450 is creating chunks with
18-hour intervals of time attribute, 11 the previously created
chunk covered a time interval from midnight to 3 am, the
chunk creation module 450 next creates a new 18-hour
chunk spanming a time interval from 3 am to 9 pm for the
time attribute. The chunk creation module 450 can create
multiple chunks having the same time range but having
different sets of values for other dimension attributes.

The chunk creation module 450 may adjust chunk bound-
aries based on various criteria, some of which may be
conflicting. As an example, consider that the database sys-
tem has one chunk with a time interval that ends at 3 am, and
another chunk from noon to the following midnight. The
database system may next receive a request to insert a record
having a time attribute value of 4 am. Even 1f the chunk
creation module 450 may be creating chunks with a time
range spanning 12 hours, 1n this scenario, the chunk creation
module 450 may create a new chunk spanning only a 9 hour
time 1nterval from 3 am to noon in order to enforce dis-
jointness. In some embodiments, the chunk management
module 170 determines after a chunk 1s created that the
ranges (or set of values) of the chunk are likely to overlap
other chunks created. In these embodiments, the chunk
management module 170 modifies the existing ranges of the
chunk to ensure that the ranges are disjoint from other
chunks.

In some embodiments, across different partitions, the
database system may align chunk start and end times or
maintain them independently. In other words, the system
may create and/or close all of a hypertable’s chunks at the
same time, or diflerent partitions can be managed distinctly
from one another. In other embodiments, there may be
special overflow chunks where data that cannot be placed 1n
some existing chunks 1s placed either temporarily or per-
manently.

The system architecture illustrated 1n these figures (for
example, FIGS. 1-4) are meant to be illustrative; other
embodiments may include additional or fewer components,
some of these components might not always be present (e.g.,
a query parser or cache), or these components may be
combined or divided 1n a variety of way (e.g., the query
planner, query optimizer, and execution engine). It 1s under-
stood that such a representation or division would not
change the overall structure and function of the database
system. For example, one would understand that the meth-
ods described herein could be implemented in a system that
includes one component performing both query planning
and executing, or 1 a system that includes a separate
component for planning, which then passes the plan to an
executor engine for execution.

Inserting Data 1n a Hypertable

FIG. 5 1llustrates the process of mserting records into a
hypertable stored across a plurality of database system
nodes, 1n accordance with an embodiment. The database
system 110 receives 510 an 1nsert query (which we also call
an 1nsert request). The nsert query identifies a database
table, for example, a hypertable, chunk, or a standard
non-partitioned database table and specifies one or more
records to be inserted into the database table. The database
system 110 may store records as a hypertable comprising a
plurality of chunks, each chunk stored 1n a distinct location.

10

15

20

25

30

35

40

45

50

55

60

65

14

Upon recerving 510 the insert query, the query parser 415
parses the msert query. The query planner 425 processes the
query, and determines 1f the query specifies a hypertable,
chunk, or a standard non-partitioned database table. If the
msert query specifies a standard database table or a chunk,
the query planner 425 executes the insert on the specified
chunk or the standard database table in conjunction with the
execution engine 4335 and returns the result(s).

If the query specifies a hypertable, the query processor
130 performs the following steps for each record specified 1n
the insert request. The query processor 130 identifies the
values of the dimension attributes 1n the mput record. The
query processor 130 determines whether the iput record
should be stored 1n an existing chunk or in a new chunk that
needs to be created. In an embodiment, the query processor
130 determines whether the one or more dimension values
of the 1nput record map to values from the set of dimension
attribute values of existing chunks storing data of the
hypertable; this determination 1s made to decide whether the
record can be stored 1 an existing chunk.

In an embodiment, the query processor 130 provides 520
the dimension attributes as mput to a selection function of
the chunk selection module 445 that determines whether the
record should be stored 1n an existing chunk or whether a
new chunk needs to be created for storing the record. If the
selection function finds an existing chunk that matches the
record, the selection function outputs information 1dentify-
ing the existing chunk. It the selection function determines
that none of the existing chunks can be used to store the
record, the selection function outputs a value (for example,
a negative number) indicating that a new chunk needs to be
created. The chunk creation module 450 determines 540
based on the output of the selection function, 1f the record
matches an existing chunk. I the chunk creation module 450
determines 540 that the record matches an existing chunk,
the chunk selection module 445 also 1dentifies the location
of the existing chunk, for example, whether the existing
chunk 1s local (1.e., on the current database system node) or
remote (1.e., on another database system node). This location
can specily a location explicitly or mmplicitly, including
specifying a name of a local database table, the name of a
remote database table, the name or network address or a
remote server, and so on. Accordingly, the query processor
130 1inserts 550 the record 1n the existing chunk.

If the chunk creation module 450 determines 540 based
on the output of the selection function that a new chunk
needs to be created for storing the record, the chunk creation
module 450 determines 560 a configuration of the new
chunk comprising sets of values corresponding to different
dimension attributes for the new chunk. The chunk creation
module 450 may further identity a location for creating the
new chunk (including i1dentifying a specific storage device
or instead identifying a specific database system node,
wherein the identified node 1n turn identifies a specific
storage device attached to 1t). The chunk creation module
450 creates a new chunk based on the configuration of the
new chunk and the identified location. The query processor
130 inserts 380 the record in the new chunk that 1s created.

The chunk selection module 445 may determine that a
record cannot be inserted 1n an existing chunk based on
various criteria. A record cannot be inserted in any existing
chunk 11 the dimension attributes of the record do not match
the configurations of any existing chunks. In some embodi-
ments, even 1f the dimension attributes of the record match
the configuration of an existing chunk, the chunk selection
module 445 may determine that the record cannot be
inserted nto the chunk based on certain policy consider-

US 10,509,785 B2

15

ations. For example, the chunk selection module 445 may
determine that the existing chunk 1s storing more than a
threshold amount of data and no new records should be
added to the chunk. Accordingly, the chunk selection mod-
ule 445 determines that the record cannot be added to the
existing chunk and the database system cannot insert the
record 1n any existing chunk.

To create a chunk locally or to msert the record 1n a chunk
stored locally, 1.e., on the current database system node
executing the above steps, the database system may perform
a Tunction call. To create a chunk remotely or to msert the
record 1n a chunk stored remotely, 1.¢., on a database system
node diflerent from the current database system node, the
database system may perform a remote call, for example, a
remote procedure call (RPC) or a remote SQL query execu-
tion. The instructions executed for creating a chunk or
mserting a record mto a chunk may also depend on the
location of the chunk, for example, the type of storage
medium used for storing the chunk.

Although FIG. 5 describes the steps in terms of a selection
function, other embodiments can use different functions to
compute different values, for example, a first function to
determine whether the record should be stored 1n an existing
chunk and a second function to describe a new chunk if the
first function determines that the record cannot be stored 1n
any existing chunk.

If multiple chunks reside on the same location, rather than
using a separate message for each imsert query, the query
processor 130 may send multiple queries m a single mes-
sage, or 1t may also send the multiple records to be nserted
in a single query 1n a single message. If the chunks involved
in an insert query reside on multiple nodes, 1n some embodi-
ment the database system node contacts a query or transac-
tion coordinator for additional information that i1s used
and/or transmitted when subsequently communicating with
other database nodes as part of the insert process.

In some embodiments, the query processor 130 handles a
lack of a timely response or an error 1n a variety of ways. If
a chunk 1s replicated between multiple nodes, or the record-
to-chunk determination process results 1n more than one
chunk, the query processor 130 1ssues an insert request to
one or more of these chunks, discussed further. Finally, the
query planner 425 collects any result(s) or status information
from the 1nsert queries, and returns some result(s) or status
information to the requester.

In some embodiments, the database system 110 performs
several steps to determine the chunk to which a record
belongs, many of which involve using metadata. First, the
query planner 425 determines the set of one of more
partitions that belong to the hypertable at the time specified
by the record (1.e., the value of the record’s time attribute).
If this partitioning 1s static, the query planner 425 uses
metadata about the hypertable itself to determine this par-
titioning.

If this partitioning changes over time, the query planner
425 uses the record’s time attribute to determine the set of
partitions. In one embodiment, this determination involves
first using the row’s time attribute value to determine a
particular epoch (time interval), then using this epoch to
determine the set of partitions. This partitioning may change
in the context of system reconfiguration (or elasticity) as
described below. Second, the query planner 425 determines
the partition (Irom amongst this set of one or more parti-
tions) to which the record belongs, using the value(s) of the
record’s dimension attribute(s). For each of the dimension
attributes used for partitioning in the hypertable, this step
may 1ivolve applying some function to 1its value to generate

10

15

20

25

30

35

40

45

50

55

60

65

16

a second value. A variety of functions may be employed for
this purpose, including hash functions (e.g., Murmur hash-
ing, Pearson hashing, SHA, MD?3, locality-sensitive hash-
ing), the identity function (1.e., simply return the iput), a
lookup 1n some range-based data structure, or some other
prefixing or calculation on the mnput. Third, using this second
value (the function’s output), the query planner 4235 deter-
mines to which partition the second value belongs. For
example, this step could involve a range lookup (e.g., find
the partition [X, y] such that the second value 1s between x
and vy, inclusive and/or exclusive), a longest-prefix match on
the partition (determine the partition that, when represented
by some binary string, has the greatest number of most
significant bits that are identical to those of the second
value), taking the second value “mod” the number of nodes
to determine the matching partition number, or the use of
consistent hashing, among other matching algorithms. If the
hypertable 1s partitioned using more than one key, then a
function could be applied to more than one mput (or
functions could be separately applied to multiple nputs),
leading to one or more second values (outputs) that would be
used to determine the partition to which a record belongs.
Finally, each partition for each dimension 1s associated to a
set of chunks (1.e., those chunks which store this partition yet
may differ 1n their time ranges); the query planner 425 then
determines a chunk from this set based on the record’s time
attribute.

Other embodiments implement the step of determining
the chunk to which a record belongs 1n alternate ways. For
example, the database system skips the process of first
determining a record’s chunk based on 1ts epoch, and instead
first determines a set of chunks associated with the record’s
time. The query planner 425 computes a function on the
record’s partition key(s) to determine the second value(s),
and compares this second value against the partition infor-
mation associated with each chunk in order to select one.
These processes can be implemented via a variety of data
structures, including hash tables, linked lists, range trees,
arrays, trees, tries, etc.

There are a variety of other optimized ways to implement
the process by which the query planner 425 inserts a batch’s
data into chunks, without changing 1ts basic functionality.
For example, rather than performing all these steps for every
record, the query planner 4235 can cache information 1t
determines during 1ts per-record analysis, such as the hyper-
table’s chunks for a given time or time period.

Other embodiments perform the steps for processing a
batch 1n different ways. For example, after determining the
first record’s chunk, the query planner 425 scans through the
rest of the batch, finding all other records associated with the
same chunk (if any exist). The query planner 425 then inserts
these records 1nto the selected chunk, and deletes them from
the batch. The query planner 425 then repeats this process:
selecting a record 1n the (now smaller) batch, scanning the
rest ol the batch to find records with a similar chunk
association, sending that set of one or more records to the
second chunk, and then repeating this process until the batch
1s empty.

The 1nsertion process above describes a record as being
associated with a single chunk. Alternatively, a record could
map to multiple chunks. For example, the chunking process
might create more than one chunk during a particular
interval (e.g., 1I the size of inserted data exceeds some
threshold), as described herein, 1n which case the selection
function chooses one, ¢.g., randomly, round robin, or based
on their sizes. As another example, the database chooses to
insert the record mto multiple chunks to replicate data for

US 10,509,785 B2

17

reliability or high availability. Such replication can be per-
formed by the query planner 425 as part of the same steps
described above, or the query planner 425 first inserts each
of the records into a primary chunk, and then the database
system 110 replicates the inserted record to the chunk’s
replica(s).

In an embodiment, the database system 110 replicates the
chunks such that different chunks of the same hypertable
may be stored with a different number of replicas. Further-
more, the database system may determine the number of
replicas for a chunk based on the age of the chunk. For
example, recent chunks may be replicated a greater number
of times than older chunks. Furthermore, older chunks that
have more than a threshold age may not be replicated. The
database system 110 may determine the age of a chunk based
on the values of the time attribute of the chunk. For example,
a chunk that stores records having time attribute within a
range [t1, 2] may be determined to be older than a chunk
that stores records having time attribute within a range [t3,
t4] 11 the time range [t1, t2] 1s older than the time range [{3,
t4], for example, 12<t3. Alternatively, the age of the chunk
may be determined based on the time of creation of the
chunk. For example, a chunk created a week ago has an age
value that 1s greater than a chunk created today.

In an embodiment, the database system replicates differ-
ent chunks to locations having different characteristics. The
database system selects a location having particular charac-
teristics based on the configuration of the chunk. For
example, the database system stores and/or replicates recent
chunks which are regularly being accessed (for inserts or
selects) on fast storage media (e.g., SSDs), while the data-
base system stores and/or replicates old chunks on slower
storage media (e.g., HDDs).

In an embodiment, the database system reuses replication
techniques that apply to the database’s underlying tables,
namely, physical replication of the entire database and
cold/hot standbys, logical replication of individual tables, as
well as backups. It also uses the database’s write-ahead log
(WAL) for consistent checkpointing. In other words, even
though replication or backup policies are defined (or com-
mands 1ssued) on the hypertable, the system performs these
actions by replicating or checkpointing the hypertable’s
constituent chunks. In another embodiment, replication and
high availability 1s implemented directly by the database
system by replicating writes to multiple chunk replicas (e.g.,
via a two-phase commit protocol), rather than by using the
database’s underlying log-based techniques.

In an embodiment, the database system allows diflerent
policies to be defined based on chunk boundaries, e.g., a
higher replication level for recent chunks, or a lower repli-
cation level on older chunks in order to save disk space.

In an embodiment, the database system also moves
chunks between locations when they age (e.g., from being
stored on faster SSDs to slower HDDs, or {from faster or
larger servers to slower or smaller servers). The database
system associates each hypertable with a threshold age
value. The database system further associates locations with
types. For example, different types of locations may have
different access time, different storage capacity, different
cost, and so on. If the database system i1dentifies a chunk of
the hypertable having an age value greater than the threshold
age value of the hypertable, the database system moves the
identified chunk from a location having a particular type to
another location having a different type. As a result the
database system may store different chunks of the same
hypertable 1 different types of location. Furthermore, the
database system automatically changes the mapping of the

10

15

20

25

30

35

40

45

50

55

60

65

18

chunks of the hypertable to locations over time as newer
chunks are recerved and existing chunks get older. In another
embodiment, this movement only happens when requested
by a command (e.g., from an external process or database
user), which specifies the age associated with the hypertable
and the locations between which to move any selected

chunks.

Processing Queries Reading Data

FIG. 6 1s a tlowchart of the process of executing a query
for processing records stored 1n a hypertable, in accordance
with an embodiment. The database system receives 610 a
query for reading data (e.g., via a SELECT statement 1n
SQL). Upon receiving a query, the query parser 415 parses
the query (optionally using a cache of parsed queries). The
query planner 425 processes the query and determines 1f any
table specified 1n the query corresponds to a hypertable,
chunk, or a standard non-partitioned database table. The
database system performs the following steps i1n these dii-
ferent scenarios, each resulting 1n some result being returned
to the requester (or some form of error if any problems
occur).

For every hypertable specified 1n the first query, the query
planner, 1n conjunction with the execution engine 435,
performs the following steps. First, the query planner 4235
analyzes the query to determine 620 the set of chunks that
may contribute results to the query’s answer. This analysis
typically involves the constraints specified by the query’s
predicates as well as metadata that the database system 110
maintains about chunks. For example, these constraints may
be based on the value of a particular field (e.g., selected rows
must have a device identifier that equals either 100 or 450),
or they may include some type of time range (e.g., selected
rows must specily that their time value 1s within the past
hour, or between July 2016 and August 2016). Metadata
stored about each chunk may specily, among other things,
the range of time and any other partitioning key(s) associ-
ated with a particular chunk. For example, a chunk might be
storing the last day of data for device 1dentifiers between O
and 200. These examples are simply illustrative and a
variety of techniques that the system may employ are
described herein. The query planner 425 uses the metadata
to determine the appropriate chunks, e.g., a device 1dentifier
of 100 will be associated with the chunk storing device
identifiers between 0 and 200.

The following steps 630, 640, 650, and 660 are repeated
for each chunk determined. The query planner 425 uses
metadata to determine the location(s)—e.g., storage devices
such as local or network-attached disk(s), or other database
system node(s)—at which these chunk(s) are being stored.
These chunks may be stored on a location local or remote to
the query planner 435. The query planner 425 determines
640 whether the chunk is stored locally or on a remote
server. If the query planner 425 determines that the chunk 1s
stored 1n a local location, the query planner 425 queries the
local chunk (e.g., via direct function calls) or else the query
planner 425 sends 660 a query to the remote location storing
the chunk (e.g., by 1ssuing SQL queries such as via foreign
data wrappers, by sending remote procedure calls (RPCs),
ctc.). Furthermore, the query planner 425 may change the
query execution or plan depending on the properties of the
location that stores them (e.g., type of disk or node). When
multiple chunks share the same location, the query planner
425 can generate a single query for the location’s set of
chunks or a separate query per chunk, and these separate
queries can be sent 1n a single message to the location or as
a separate message per query.

US 10,509,785 B2

19

The query planner 425 issues queries to these locations
and waits for their results. If some locations are not respond-

ing alter some time or return errors, the query planner 423
can take several diflerent options, including retrying a query
to the same location, retrying a query to a different location 3
that replicates the chunk, waiting indefinitely, returning a
partial result to the client, or returning an error. The query
planner 4235 receives 670 or collects the results of these
queries and merges the results. Depending on the query, the
results, metadata, and additional information, the query 10
planner 425 optionally may determine that it needs to query
additional chunks to resolve the first query (e.g., when
“walking back in time” from the latest time interval to older
intervals 1n order to find some number of values matching a
particular predicate). 15

Depending on the query, the query planner 425 may
perform 680 post-processing ol the results. Such post-
processing includes taking a union over the returned results,
performing an aggregation like a SUM or COUNT over the
results, sorting the merged results by a specific field, taking 20
a LIMIT that causes the system to only return some number
of results, and so on. It may also involve more complex
operations 1 merging the chunks’ results, e.g., when com-
puting top-k calculations across the partial results from each
chunk. Finally, the system returns the result(s) of this first 25
query. The result of the query may comprise one or more
tuples or an error code 11 the processing of the query resulted
1n an error.

In some embodiment, a query across multiple database

nodes may also involve the use of a query or transaction 30
coordinator, such that the coordination 1s contacted for
additional information that 1s used and/or transmitted when
subsequently communicating with other database nodes as
part of the query process.

A node may also receive a query to a chunk or chunks, 35
¢.g., because it 1s the recipient of a query generated by the
processing of the first query to a hypertable. For every chunk
specified 1n the query, the query planner 425 performs the
tollowing steps. The query planner 425 plans and executes
the query on the local chunk. This uses query planming 40
techniques including choosing and optimizing the use of
indexes, performing heap scans, and so forth. The query
planner 4235 recerves the results of the query. Third, depend-
ing on the query, the query planner 425 may also post-
process the results (e.g., sorting the data, performing an 45
aggregation, taking the LIMIT, etc. as described above). It
then returns the query’s result(s).

A database system node may receive a query to a tradi-
tional database table, which mvolves processing the query in
a standard way: planning and executing the query on the 50
specified table, receiving the results, post-processing the
results optionally, and returning the result(s).

The query may also specity multiple tables or joins
between tables. The database system’s processing depends
on the types of tables specified (e.g., hypertables, chunks, 55
standard non-partitioned tables) and 1s related to the steps
above, although individual steps may differ or additional
steps may be required based on the actual query.

Alternative Embodiments for Processing Queries 60
Based on Hypertables

Ideally database users should be able to interact with
time-series data as 1f 1t were 1n a simple continuous database
table. However, for reasons discussed above, using a single 65
table does not scale. Yet requiring users to manually parti-
tion their data exposes a host of complexities, e.g., forcing,

20

users to constantly specily which partitions to query, how to
compute JOINs between them, or how to properly size these
tables as workloads change.

To avoid this management complexity while still scaling
and supporting eflicient queries, the database system hides
its automated data partitioning and query optimizations
behind 1ts hypertable abstraction. Creating a hypertable and
its corresponding schema 1s performed using simple SQL
commands, and this hypertable 1s accessed as if 1t were a
single table using standard SQL commands. Further, just
like a normal database table, this schema can be altered via
standard SQL commands; transparently to the user, the
database system atomically modifies the schemas of all the
underlying chunks that comprise a hypertable.

In an embodiment, the database system provides this
functionality by hooking into the query planner of a rela-
tional database like PostgreSQL, so that 1t receives the
native SQL parse tree. It uses this tree to determine which
servers and hypertable chunks (native database tables) to
access, how to perform distributed and parallel optimiza-
tions, etc.

Many of these same optimizations even apply to single-
node deployments, where automatically splitting hyper-
tables mto chunks and related query optimizations still
provides a number of performance benefits. This 1s espe-
cially true if the chunks are distributed across the various
locations of a node (e.g., across multiple local or network-
attached disks). In an embodiment, the placement of chunks
on database nodes 1s specified by commands or policies
given by database admimistrators or users.

In an embodiment, the database system partitions its
hypertable 1n only a single dimension—by time—rather than
two or more dimensions (for example, time and space
dimensions). For example, partitioning based on a single
time dimension may be used for deployments of the data-
base system on a single node rather than a cluster of nodes.

Additionally, hypertables can be defined recursively. In
particular, a hypertable’s chunk can be further partitioned
(by the same or different partitioning key, and with the same
or different time intervals) and thus act like another hyper-
table.

Chunks are dynamically created by the runtime and sized
to optimize performance i1n both cluster and single-node
environments. Partitioning a hypertable along additional
dimension attributes (1n addition to time) parallelizes inserts
to recent time 1ntervals. Similarly, query patterns often slice
across time or space, so also result in performance improve-
ments through chunk placements disclosed herein.

The placement of these chunks can also vary based on
deployment, workload, or query needs. For example, chunks
can be randomly or purposetully spread across locations to
provide load balancing. Alternatively, chunks belonging to
the same region of the partitioning field’s keyspace (for
example, a range of values or hashed values, or a set of
consecutive values of the key), yet varying by time intervals,
could be collocated on the same servers. This avoids queries
touching all servers when performing queries for a single
object 1n space (e.g., a particular device), which could help
reduce tail latency under higher query loads and enable
cilicient joins.

The database system determines where a chunk should be
placed when 1t 1s created; this determination 1s based on a
variety of one or more metrics, mncluding performed ran-
domly or via a round-robin distribution strategy, based on
server load (e.g., request rate, CPU utilization, etc.), based
on existing usage (e.g., size ol existing chunks 1n bytes or
number of rows), based on capacity (e.g., total memory or

US 10,509,785 B2

21

storage capacity, free memory, available storage, number of
disks, etc.), based on configured policy or specified by an
administrator, and so forth. The database system or admin-
istrator may also choose to relocate (move) or replicate
chunks between servers.

Even in single-node settings, chunking still improves
performance over the vanilla use of a single database table
for both read and write quernies. Right-sized chunks ensure
that most or all of a table’s indexes (e.g., B-trees) can reside
in memory during inserts to avoid thrashing while modity-
ing arbitrary locations in those indexes. Further, by avoiding
overly large chunks, the database system avoids expensive
“vacuuming’ operations when removing data, as the system
can perform such operations by simply dropping chunks
(internal tables and/or files), rather than deleting individual
rows. For example, this removal may be the result of data
deletions (e.g., based on automated data retention policies
and procedures), or it may be the result of a large batch 1nsert
that fails or 1s mterrupted (which the non-committed rows
needing to subsequently be removed). At the same time,
avoilding too-small chunks improves query performance by
not needing to read additional tables and indexes from disk,
or to perform query planning over a larger number of
chunks.

The database system considers a few factors for deter-
mimng a chunk’s size. First, the database system maintains
metadata that specily the number of partitions 1nto which an
additional partitioning field splits a particular time interval.
For example, 10 machines each with 2 disks might use 20
partitions (or multiple partitions per server and/or disk). This
implies that the keyspace of a particular field (e.g., a device
ID, IP address, or location name) 1s divided into 20 ranges
or sets. The database system then determines to which range
(or partition) a particular value 1s associated by performing
a lookup or comparison process. In one embodiment, the
field 1s a string or binary value, and the database system
splits the keyspace by prefix of the values of the field, then
maps a value to one of these partitions based on the partition
that shares the longest common prefix. Alternatively, the
database system uses certain forms of hashing, such that the
hash output’s space 1s divided again 1nto a particular number
of ranges or sets (e.g., contiguous ranges, sets defined by
splitting the entire hash output space, sets defined by taking
the hash output space “mod” the number of nodes, sets
defined by consistent hashing, etc.). The database system
applies a hash function to the input value to yield an output
value; the database system determines the range or set that
includes the output value, which then corresponds to the
partition to which the mput value belongs. The database
system may use a variety ol functions in such a context,
including hash functions (e.g., Murmur hashing, Pearson
hashing, SHA, MD3, locality-sensitive hashing), the identity
function (1.e., simply return the input), or some other pre-
fixing or calculation on the input.

Second, once the number of partitions based on partition-
ing keys 1s determined—and 1n fact, this number can change
over time due to elasticity, discussed below—then the time-
duration of the chunk also determines 1ts size. For a constant
input rate and some given number of partitions, a chunk with
a hour-long time 1nterval will typically be much smaller than
one with a day-long interval.

In one embodiment, the database system makes the time
intervals static or manually configurable. Such an approach
1s appropriate 11 the data volumes to the system are relatively
stable (and known), and this provides the database admin-
istrator or user with control over the database system’s
operation. But, such fixed time intervals may not work as

10

15

20

25

30

35

40

45

50

55

60

65

22

well as data volumes change—e.g., a time 1nterval appro-
priate for a service pulling data from 100 devices 1s not
appropriate when that system scales to 100,000 devices—or
require care that the administrator or user change interval
s1zes over time (either to apply to future intervals or to split
existing intervals into multiple chunks).

In one embodiment, the database system determines
chunks’ time intervals dynamically based on chunk sizes,
rather than based on a fixed time interval. In particular,
during insert time, the database system determines 11 a chunk
1s approaching or has exceeded some threshold size, at
which time 1t “closes™ the current chunk and creates a new
chunk (e.g., by using the current time as the ending time of
the current chunk and as the starting time of the new chunk).

This threshold size 1s given a default in software configu-
ration, this default can be configured by the database system
administrator, and this size can be changed by the admin-
istrator or the database system’s logic during runtime (so
that chunks in the same database system can have diflerent
threshold sizes). In an embodiment, the database system
chooses the size as a function of the system’s resources, e.g.,
based on the memory capacity of the server(s), which may
also take into account the table schema to determine the
amount of indexing that would be needed and 1ts size
requirements. This tuning takes into account realized or
potential changes 1n the schema over time. For example, i
indexes are added to many fields (columns), the amount of
memory needed to store these fields changes, which leads
the database system to use smaller chunks; 1f many fields are
not imndexed, the database system may account for these
differently than a schema without any unindexed fields (as
indexes may later be added to these fields to enable more
cllicient queries). Alternatively, recognizing that the data-
base ultimately stores tables 1n {files 1n the underlying file
system that have a maximum size (e.g., 1 GB), the system
ensures that the chunk size 1s smaller than this maximum
size. In an embodiment, the size 1s chosen as a measured or
estimated result of read/write performance on the chunk
S1Z€.

In some embodiments, the database system creates a new
chunk even when the current chunk size 1s less than some
threshold (1.e., 1t 1s “approaching” the threshold, and has not
yet exceeded or equaled it), in order to leave some “Iree
space” for the possibility of out-of-time-order data that the
database system must backfill into an older chunk. When
writing to an older or “closed” chunk, different embodiments
of the database system allow the chunk to grow arbitrarily
large, create a new overlapping chunk just for the newly
written excess data, or split the existing chunk into two,
among other approaches. If overlapping chunks are created,
the database system {follows 1ts policies for writing and
reading to overlapping chunks.

In another embodiment, the database system determines a
chunks’ time intervals dynamically based on historical inter-
vals and their sizes. In this case, new chunks are created with
an end time, but that end time 1s automatically set by the
database system based on the resulting size of earlier chunks
that had a certain interval duration. For example, 1f the
database system (or user or administrator) desires chunks of
s1ze approximation 1 GB, and the previous 12 hour chunk
resulted 1n a chunk of size 1.5 GB, then the database might
create a subsequent chunk of size 6 hours. The database
system can continue to adapt the intervals of chunks during
its operation, €.g., to account for changing data volumes per
interval, to account for diflerent target sizes, etc.

In some embodiments, the database determines chunks
based on a hybnid of time intervals and threshold sizes. For

US 10,509,785 B2

23

example, the database system (or administrator) specifies
that a chunk have a pre-determined time interval-—so that, as
described above, the start and end time of a chunk are
speciflied at creation time—but also that a chunk also have
a maximum size 1n case the insert rate for that interval
exceeds some amount. This approach avoids a problem with
chunking based purely on fixed time-intervals in scenarios
where system load per interval changes over time. If the
chunk’s size approaches or exceeds 1ts maximum permitted
threshold during the middle of the current time interval, the
database system creates a new chunk that overlaps the same
interval, or the database system switches to the use of a
different time interval. For the former, both chunks represent
the same interval, so inserts could choose to write to one of
them (while reads query both of them). For the latter, the
database system may change a chunk’s time interval to
something smaller, and create a new non-overlapping chunk
to succeed 1t 1n time. As described earlier, such chunk
management may be performed synchronously or asynchro-

nously, e.g., a background task splits an over-large chunk
into two chunks.

Such chunking may also limit the pre-determined time
intervals to regular boundaries (e.g., 1 hour, 6 hours, 12
hours, 24 hours, 7 days, 14 days), rather than arbitrary ones
(e.g., 11 minutes, 57 minutes). This embodiment causes
chunk intervals to align well with periods of time on which
data might be queried or deletions might be made, e.g.,
according to a data retention policy such as “delete data
more than 12 hours old”. That way, the database system
implements such policies by dropping entire chunks once
their records are all at least 12 hours old, rather than partially
deleting individual rows within chunks: dropping entire
chunks (database tables) 1s much more eflicient than deleting
an equivalent number of rows within a table.

The database system selects these boundaries 1n a manner
that the boundaries compose well, e.g., they are multiples of
one another or are aligned 1n some other ways. The switch-
ing between various interval sizes 1s performed automati-
cally by the database runtime (e.g., in response to changing
data rates) or through configuration by a user or adminis-
trator. Similarly, rather than always closing a chunk and
creating a new one based on an automated policy, an
administrator may signal the database system to create a new
chunk or chunk interval via a configuration command.

In one embodiment, the database system also applies such
adaptation of the chunk’s configuration to non-time dimen-
s1on attributes that are used to define a chunk’s ranges. For
example, if a hypertable’s partitioning 1s also performed on
a field representing a device 1d, the database system can
increase the number of partitions (sets of values) defined on
this field from 10 to 20. Such a change, which may be
performed automatically by the database system or through
configuration by a user or administrator, can be used to
increase hypertable performance. For example, if queries
typically specity a single device 1d from which to SELECT
data, the query’s latency can be improved if the chunks that
contain the specified device include information about a
tewer other devices, which can be made to occur by increase
the number of partitions over the device 1d field.

In another embodiment, the database system can employ
different time intervals across diflerent partitions. For
example, if a hypertable’s partitioning 1s also performed on
a field representing a customer 1d (e.g., where each distinct
customer 1d 1s a separate partition), then the database system
may independently maintain diflerent time intervals (when
partitioning on the time attribute) for different customer 1ds.
Such an approach can be beneficial if different customers

10

15

20

25

30

35

40

45

50

55

60

65

24

have very different insert and select query patterns, as well
as different data retention needs.

In general, the database system employs a variety of
methods for chunk management, given that there are mul-
tiple different goals and engineering trade-oils between
approaches. These goals include optimizing sizes, aligning
time intervals for dropping chunks while retaining data
integrity, minimizing locking or other performance penalties
due to mutability, avoiding arbitrary-sized intervals, creating
chunk boundaries that are most advantageous for constraint
exclusion, increasing system parallelism, improving query
performance, and simplifying code, operation, and manage-
ment complexity, among others. Diflerent deployments of
the database system may choose to use diflerent approaches
based on their setting and needs.

Adjusting Partitioning Policies in View of System Recon-
figuration

The amount of data stored in a database systems 110
increases over time. For example, large amount of time
series data may be received by a database system 110 and
stored 1n database tables. Database systems 110 often recon-
figure the system to increase the storage capacity, for
example, by adding storage devices. Conventional systems
adapt to the change in the system configuration by moving
data. For example, a system may get reconfigured as a result
ol addition of new servers and may move some chunks of
data from existing servers to the new servers, 1n order to
ensure that the new servers are bringing additional capacity
to the system. As a result, a large amount of data 1s moved,
thereby making the system reconfiguration an expensive and
time-consuming process. This new configuration of partici-
pating servers 1s also referred to as a “view” which repre-
sents the set of servers and their configuration, such as the
servers’ capacity or number of disks. The ability of a system
to adapt to changes in computing resources so as to be able
to eflectively use all available resources 1f referred to as
clasticity.

Embodiments of the database system 110 adapt to recon-
figuration of the system without performing such data move-
ment. In particular, the database system 110 provides elas-
ticity by creating a new set of chunks and partitioning when
the database system 1s reconfigured for increasing the stor-
age capacity. The database system may use a diflerent
partitioning policy for the new set of chunks that are created
alter the system 1s reconfigured. For example, 11 the previous
partitioning policy created 20 partitions for 10 servers, the
new partitioning policy might create 30 partitions to take
into account 5 new servers that are added to the database
system. In another example, the previous partitioning policy

may create 20 partitions to place 5 partitions on each of 4
servers, but when an additional 1 server 1s added, the new
partitioning policy may then place 4 partitions on each of the
5 servers. In some embodiments, the database system dis-
tributes a plurality of chunks created such that new servers
are assigned more chunks from the plurality of chunks than
existing servers. This allows better balancing of load across
the servers. In another embodiment, new servers are
assigned larger chunks compared to chunks assigned to
existing servers. Larger chunks have configuration that
allows them to potentially store more data than smaller
chunks. Data can still be read or written to previously
created chunks or the newly created chunks. Because writes
to time-series datasets are typically made to the latest time
interval, and many query workloads also process recent data,
load balancing across the new set of servers is still main-
tamned, even without moving the existing data.

"y

US 10,509,785 B2

25

FIGS. 7(A-B) 1illustrate partitioning of data of a database
table to adapt to the addition of locations to the database
system according to an embodiment of the invention.

As 1llustrated 1n FIG. 7(A), the database system 110 can
have a plurality of storage locations 710a, 71056, 710c, and
7104. FI1G. 7 illustrates the distribution of data of a database
table with attributes comprising a time attribute and a space
attribute (recall that we use the term *“space” partitioning to
signily any partitioming over a non-time attribute). In
response to requests to msert records 1n the database table,
the database system 110 distributes data of the database table
according to a partitioming policy that assigns chunks 210 to
locations 710. In the example, configuration shown 1n FIG.
7(A), the database system 110 creates a plurality of chunks
including 210a, 2105, 210¢, and 2104 and assigns one chunk
to each location. The chunks are distributed across the
locations of the database system 110 along the time and
space attributes. Accordingly, each chunk 1s associated with
a time range and a space range and stores records that have
time and space attributes that lie within the time and space
ranges ol the chunk. In the example configuration shown in
FI1G. 7, each of the chunks 210a, 2105, 210c¢, and 210d 1s
associated with the same range of time attribute, 1.e., [0, 6]
but has a different range of the space attribute. For example,
chunk 210a has space range [A, F], the chunk 2105/ has
space range [G, L], the chunk 210¢ has space range [M, S],
and the chunk 2104 has space range [T, Z].

FIG. 7(B) shows the partitioning of the chunks of the
database table after some time has passed, such that the
database system has received requests to insert records with
a time attribute later than 6. In response to recerving requests
to 1nsert records with a time attribute of 7, for example, the
database system creates a new plurality of chunks, 201e,
2107, 210g, and 210/. The new plurality of chunks are
distributed across the locations according to the same par-
titioning policy as above. According to this partitioming,
policy, each chunk from the new plurality of chunks 1s
associated with a new time range [/, 15]. In this illustration,
the chunks stored in the same location have the same space
range. For example, both chunks 210a and 210e assigned to
location 710a have the space range [A, F], both chunks 21056
and 2107 assigned to location 71056 have the space range |G,
L], and so on. The database system could also assign chunks
with different time intervals but the same space range to
different locations.

FIG. 7(C) shows the partitioning of the chunks of the
database table after a new location 710e 1s added to the
database system 110. As a result, the database system 110
has a plurality of locations that include locations 710a, 7105,
710c, 7104, and 710e. Although FIG. 7 shows a single
location being added to the database system, more than one
locations may be added to increase the storage capacity of
the database system 110. In response to addition of the new
location, the database system 110 uses a new partitioning
policy to distribute records across the locations. Accord-
ingly, 1n response to receiving subsequent insert requests,
¢.g., with values for dimension attributes that do not map to

any of the existing chunks, the database system 110 creates
a plurality of chunks including 210, 2107, 2104, 210/, 210,

and 210x. The chunks 210, 2107, 2104, 210/ are mapped to
the locations 710a, 7105, 710¢, 7104, and chunks 210 and
2107 are both mapped to the new location 710e. In other
embodiments, the database system may assign more or
tewer chunks to the new locations that are added. Accord-
ingly, subsequent records received are distributed according
to the new partitioning policy. In the embodiment illustrated
in FI1G. 7, the database system 110 does not move any data

10

15

20

25

30

35

40

45

50

55

60

65

26

that was stored in the chunks that were created before the
new locations were added. However, the chunks that are
created responsive to the addition of the new locations are
distributed according to a new partitioning policy that bal-
ances storage of data across all available locations. In the
example, shown 1n FIG. 7(C), more chunks are assigned to
the new location(s) since the storage and computing
resources of the new locations are likely to be underutilized
compared to the existing locations that have previously
stored data. However, over time, as additional data gets
stored on the new locations, the utilization gap between the
new locations and existing locations reduces without having
to move any data from the existing locations to the new
locations.

As 1llustrated 1n FIG. 7(C), the new partitioning policy
creates a plurality of chunks that has more chunks after new
locations are added. Accordingly, each space range 1is
smaller 1n the new partitioming policy compared to the space
ranges of the portioming policy used before addition of the
new locations.

In another embodiment, the database system assigns a
larger fraction of new data to the new locations not by
assigning a larger number of chunks to those locations, as
shown 1n FIG. 7(C), but by assigning chunks with dimension
ranges that have a larger set of values. For example, rather
than having chunk 210 with the space range [Q, U] and
chunk 210z with the space range [V, Z], the database system
could create a single chunk assigned to location 710e with
a space range [Q, Z].

In some embodiments, when the database system 110
detects that new locations are being added to the database
system, the database system 110 dynamically changes the
partitioning based on the new storage configuration. In other
embodiments, the partitioning policy 1s configured by a user,
for example, a database system administrator.

A partitioning policy determines how new chunks are
created and assigned to locations for storing them. For
example, 1 a partitioming policy 1s being enforced and new
chunks need to be created (for example, to insert records
than cannot be inserted in existing chunks), a plurality of
chunks may be created and distributed according to the
partitioning policy. The partitioning policy may specily
various aspects of creation of new chunks including the
number of chunks being created, the configurations of
individual chunks being created (the configuration compris-
ing the sets of values of different dimension attributes for
cach chunk), and the mapping of the chunks to locations.

The partitioning policy may store information speciiying
various aspects of the chunk creation/distribution as meta-
data, for example, the mapping from chunks to locations
may be stored using a mapping table that explicitly stores
locations for each chunk being created. Alternatively, the
partitioning policy may specily various aspects of chunk
creation/distribution using instructions, for example, the
partitioning policy may specily mapping from chunks to
locations using a function (or a set of instructions) that
determines a location for a chunk given the chunk configu-
ration and potentially other system information as input.
Different partitioning policies may specily different map-
ping functions (or sets of mstructions). Alternatively, differ-
ent partitioning policies may use the same mapping function
(or sets of mstructions) but pass diflerent parameter values
as mput. Such mapping functions (or sets of instructions)
may include random selection, round-robin selection, hash-
based selection, selection based on the number, size, or age
of chunks being stored, selection based on the age of when
the location was added to the database system, load balanc-

US 10,509,785 B2

27

ing strategies based on server resources (including insert or
query rates, CPU capacity, CPU utilization, memory capac-
ity, free memory, etc.), load balancing strategies based on
disk resources (including total disk capacity, unused disk
space disk, disk IOPS capacity, disk I0OPS use, etc.), and
other criteria or algorithmic approaches, as well as some
combination thereol. A partitioning policy may use a com-
bination of the above techniques.

In an embodiment, a partitioning policy specifies the size
of the plurality of chunks being created. The size of the
plurality of chunks may represent the number of chunks in
the plurality of chunks being created. Alternatively, the size
of the plurality of chunks may represent the aggregate size
of chunks 1n the plurality of chunks being created, where the
s1ze ol each chunk represents a measure of the amount of
data that can potentially be stored in the chunk. The size of
a chunk 1s determined based on the configuration of the
chunk comprising the sets of values of the different dimen-
s1on attributes for records stored in the chunk. For example,
the database system may create larger or smaller chunks by
specilying larger/smaller ranges (or sets of values) for
dimension attributes respectively.

In some embodiments, the database system 110 moves
existing data under certain scenarios. For example, the
database system may enforce a policy that aligns chunks to
specific time intervals. Accordingly, the creation of new
chunks at a time based on the time that new locations are
added may result in violation of such policy. For example,
the database system may enforce a standard that chunks
have a time range of 12 hours. However, 1f the addition of
new locations to the database system occurs at 3 hours 1nto
a 12-hour time 1nterval, the database system would either not
be able to incorporate the new locations for another 9 hours,
or would have to maintain some chunks with 3 hours
intervals. Thus, 1n certain scenarios, for example, 11 the
amount of data stored in each chunk that is currently being
populated 1s below a threshold amount, the database system
moves or reallocates existing chunks rather than create new
ones responsive to addition of new location. Accordingly,
the database system moves data of the set of chunks being
currently populated with records across a new set of chunks
distributed across the new plurality of locations and contin-
ues adding records to the new set of chunks.

In another embodiment, the database system delays
enforcement of the new partitioning policy based on the new
locations added until the time matches well with chunk
alignments. This delayed action can be used both when
adding new servers, removing servers in a planned manner,
or even on server crashes (1f the system already replicates
chunks between multiple servers for high availability). For
example, 1f the system already has chunks with time ranges
that extend until midnight, and the reconfiguration time 1s at
11 pm, the database system may not create chunks based on
the new partitioning policy for 1 hour (e.g., until a record 1s
inserted with a time attribute after midnight), but the recon-
figuration will have an effect when a new set of chunks 1s
created. In such a scenario, the existing chunks are not
reconfigured and only the new chunks are allocated over the
new set of servers. However, the time range of the chunks 1s
the same before and after the addition of the new locations.

FIG. 8 shows a flowchart illustrating the process of
modilying a data partitioning policy of a database system in
response to the addition of new locations to the database
system, 1n accordance with an embodiment. The database
system 110 includes a plurality of locations, referred to as
the first plurality of locations. The database system 110
receives 810 requests to insert records in a hypertable. The

5

10

15

20

25

30

35

40

45

50

55

60

65

28

database system distributes the chunks 1n accordance with a
first partitioning policy P1. Accordingly, the database system
110 creates 820 a plurality of chunks and distributes them
across the first plurality of locations. For example, if the
database system has 5 locations, the database system 110
may create 20 chunks and store 4 chunks 1n each location.

The database system 110 distributes the chunks based on
dimension attributes of the records including at least a time
attribute. The partitioning policy specifies various aspects of
chunk/creation and distribution including the number of
chunks that may be created, the configuration of the chunks,
and the mapping of the chunks to locations. The database
system may repeat the steps 810 and 820 multiple times, for
example, until the database system 110 1s reconfigured to
change the number of locations.

The database system 110 receives an indication of the
addition of one or more new locations. For example, a new
location may be a storage device that 1s added by a system
administrator to an existing server of the database system.
Alternatively, a new location may be a new server compris-
ing one or more storage devices that 1s added to the database
system for storing as well as processing data. As another
example, a location may be storage device of a remote
system on which the database system 110 1s allowed to store
data, for example, a cloud-based storage device. The 1ndi-
cation of the addition of one or more new locations that the
database system receives may identily a specific storage
device that 1s added to the database system or may identity
a server that 1s added to the database system.

In an embodiment, the database system 110 receives the
indication of addition of a location by performing a check of
all peripheral devices and servers that can be reached by one
or more database system nodes 310. In other embodiments,
the database system 110 receives the indication by receiving
a message from a new location, by a command executed by
a database user or administrator. The addition of the loca-
tions to the database system causes the database system 110
to have a second plurality of locations that 1s more than the
number of locations 1n the first plurality of locations. The
indication of addition of the one or more locations 1is
associated with a reconfiguration time, for example, the time
that the indication 1s received or the time when the addition
of the one or more new locations was completed.

Subsequent to receiving the imndication of the addition of
one or more new locations, the database system receives
isert requests. The database system 110 creates 840 a
second plurality of chunks, for example, if the records 1n the
insert requests received cannot be inserted in existing
chunks. The database system 110 creates the second plural-
ity of chunks and assigns them to locations based on a
second partitioning policy P2. The second partitioning
policy P2 maps the second plurality of chunks to the second
plurality of locations, for example, as illustrated in FIG.
7(C). The chunks may be uniformly distributed across the
second plurality of locations. Alternatively, the number or
partition ranges of chunks assigned to the new locations may
be greater than the number or partition ranges of chunks
assigned to the existing locations. For example, more chunks
from the second plurality of chunks may be assigned to the
new locations compared to the existing locations. Alterna-
tively, chunks configured to store more data may be assigned
to new locations compared to the existing locations. A chunk
C1 may be configured to store more data compared to a
chunk C2 by specitying for chunk C1, a set of values for a
dimension attribute that has more elements compared to the
set of values for the same dimension attribute for chunk C2.

US 10,509,785 B2

29

For example, the time attribute for chunk C1 may be
speciflied to have a larger time range compared to the time
attribute for chunk C2.

The database system 110 subsequently receives 850
requests to insert data 1n the database table. The database
system 110 stores 860 the received records into chunks
based on the dimension attributes of the records. The records
may be inserted 1n chunks created either based on the first
partitioning policy or the second partitioning policy as
turther described herein in connection with FIGS. 9-12. The
database system 110 identifies a reconfiguration time T
associated with the addition of the new locations to the
database system.

In an embodiment, the database system inserts records
into chunks based on a time attribute of the record. Accord-
ingly, even though a new partitioning policy 1s defined, the
database system may receive insert requests and create
chunks based on a previous partitioning policy. For example,
the database system may receive some records very late (1.e.,
the time they are received may be significantly after the
values of the records’ time attribute), for example, due to
delay caused by network or other resources. The database
system may create chunks based on an older partitioning
policy for storing these records. Accordingly, the database
system may enforce multiple partitioning policies at the
same time, depending on the data of the records that are
received and need to be inserted in a hypertable.

FIG. 9 illustrates selection of partitioning policy for
creating chunks based on time attribute of the record,
according to an embodiment. Accordingly, independent of
the time that the 1nsert request 1s received, 1f 1nsert requests
are recerved with records having a time attribute value that
1s before the reconfiguration time T, any new chunks created
for storing the records are created based on the first parti-
tiomng policy. FIG. 9 shows a timeline 900 and various
events along the time line. For example, the database system
initially has three locations (disks) 910a, 9105, and 910¢ and
creates chunks according to partitioming policy P1. At recon-
figuration time T, a new location 9104 1s added to the
database system 110. However, 1f isert requests received
alter reconfiguration time T have time attribute values that
are before reconfiguration time T, the database system
creates chunks for storing the records (if none of the existing
chunks can store the records) according to the first parti-
tioming policy P1. Furthermore, 11 mnsert requests recerved
alter reconfiguration time T have time attribute values that
are after the reconfiguration time T, the database system
creates chunks for storing the records (11 none of the existing
chunks can store the records) according to the second
partitioning policy P2. Accordingly, the time interval T1
during which chunks are created according to the first
partitioning policy P1 can extend after the reconfiguration
time T Time interval T2 indicates the time during which
chunks are created according to the second partitioning
policy P2.

FIG. 10 shows a flowchart of the process for selection of
partitioning policy for creating chunks based on time attri-
bute of the record, according to an embodiment. The data-
base system 1mvokes the procedure shown i FIG. 10 if the
database system determines for a record being inserted that
the record cannot be stored 1n any existing chunk and a new
chunk needs to be created. The database system 110 deter-
mines 1010 the value of the time attribute of a record
received for inserting in the database table. The database
system 110 compares 1020 the value of the time attribute of
the record with the reconfiguration time T. If the database
system 110 determines that the time attribute of the record

10

15

20

25

30

35

40

45

50

55

60

65

30

1s less than the reconfiguration time T, the database system
110 creates a chunk 1030 based on the first partitioning
policy P1. I the database system 110 determines that the
time attribute of the record 1s greater than (or equal to) the
reconfiguration time T, the database system 110 creates 1040
a chunk based on the second partitioning policy P2. The
record 1s stored 1050 1n the chunk that 1s created.

FIG. 11 illustrates selection of partitioning policy for
creating chunks based on time of receipt of a record by the
database system, according to an embodiment. FIG. 11
shows a timeline 1100 and various events along the time
line. For example, the database system initially has three
locations (disks) 1110q, 11105, and 1110c¢ and creates
chunks according to partitioning policy P1. At reconfigura-
tion time T, a new location 11104 1s added to the database
system 110. The database system selects the partitioning
policy for creating chunks based on the time of arrival of the
isert request (assuming no existing chunks can be used for
storing records that are received for inserting 1n the hyper-
table). Accordingly, after reconfiguration time T (i.e., during
time interval 12), chunks are created according to the second
partitioning policy P2 whereas before reconfiguration time T
(1.e., during time terval T1), chunks are created according
to the first partitioning policy P1. Accordingly, the partition-
ing policy selected for creating chunks 1s selected indepen-
dently of the value of the time attribute of the records being
inserted. For example, 11 for any reason records having time
attribute values that correspond to time occurring belore
reconfiguration time T arrive late, 1.e., after reconfiguration
time T, the database system creates chunks according to the
second partitioming policy P2 for storing the records.
Accordingly, records with time attribute value less than
reconfiguration time T can be stored in chunks created
according to either partitioning policy P1 or P2.

In some embodiments, the database system continues to
insert records mnto a chunk that was created before recon-
figuration time T even 1f the insert request arrives after
reconfiguration time T so long as the time attribute of the
record corresponds to the time range for the chunk. In other
embodiments, the database system modifies an existing
chunk that was created according to the first partitioning
policy P1 so as to reduce the time range (1f necessary) to
correspond to the latest record 1nserted into the chunk. For
example, 1f the nsert request’s arrival time 1s 5:30 am and
the chunk’s current time range 1s until noon, the database
system 1dentifies the record with the highest value for its
time attribute 1n that chunk. Assuming that the record with
the highest time value 1n that chunk has a time of 5:45 am,
the database system modifies the end of the chunk’s time
range to a time greater than or equal to 5:45 am, for example,
6 am. Subsequently, 1f the database system receives a record
at time greater than 6 am, the database system creates a new
chunk according to the new partitioning policy P2 starting at
6 am.

In some embodiments, the database system may create
overlapping chunks as a result of reconfiguration of the
system. The database system enforces a policy that after
reconfiguration of the system, the database system does not
insert records 1n chunks created based on the first partition-
ing policy P1. As a result, after reconfiguration of the
system, the database system creates a new chunk for storing
a record based on partitioming policy P2, even if there 1s an
existing chunk created based on policy P1 that maps to the
dimension attributes of the record. As a result, a record
having a particular dimension attribute could potentially be
stored 1n a chunk C1 created based on the first partitioning
policy P1 or in a chunk C2 created based on the second

US 10,509,785 B2

31

partitioning policy P2. As a result, chunks C1 and C2 are
overlapping such that a record could map to both chunks C1
and C2, If the database system subsequently receives queries
that process a particular record R, the database system 110
determines whether the record R was stored in a chunk
created based on the first partitioning policy P1 or the second
partitioning policy P2. Accordingly, the database system 110
may have to check two possible chunks to determine where
the record R 1s stored.

In some embodiments, the database system 110 creates
the new chunks that overlap old chunks 1n terms of the time
range used for partitioning the records. As a result, even after
creation of a new set of chunks responsive to the addition of
new locations, the database system may insert records into
old chunks that were created before the addition of the
locations. While this may involve the old chunks (from the
old view) continuing to see some fraction of new 1nserts—
although this can be mitigated based on the insert policy for
overlapping chunks, e.g., one such policy prefers 1nserting
new records to the smaller-sized chunk—this overlap will
not continue 1nto future intervals. For example, continuing,
with the above example, when the database system creates
the new chunks 9 hours 1nto the existing chunks’ interval, 1t
sets the start and end times for the new chunks to be the same
as the existing chunks (1.e., 9 hours ago and 3 hours hence).
But, because the database system can employ a policy to
write to smaller-sized chunks, for example, inserts will be
made to the new chunks rather than the existing ones, even
though the two sets have overlapping time periods.

In embodiments of the database system that use a purely
s1ze-based approach to determiming when to close a chunk,
these time interval 1ssues do not arise, and the database
system then simply closes the existing chunks (even when
their size at the time of system reconfiguration may be
smaller than the standard threshold size) and creates new
ones using the new partitioming policy.

Because the new view may maintain a different set of
partitions, the database system may maintain additional
metadata that associates each of these reconfigurations 1nto
an “epoch.” In particular, each epoch may be associated with
various information, including a time period, the set of
partitions, and a system view. Then, as described above, in
order to determine a hypertable’s partitions at a particular
time, the database system might need to first determine the
epoch associated with the time, then determine the partitions
associated with this epoch. This process 1s described above
in the context of an msert method that the database system
employs.

Architecture of Computer for a Database System

FIG. 12 1s a high-level block diagram illustrating an
example of a computer 1200 for use as one or more of the
entities 1llustrated 1n FIG. 1, according to one embodiment.
[llustrated are at least one processor 1202 coupled to a
memory controller hub 1220, which 1s also coupled to an
input/output (I/0) controller hub 1222. A memory 1206 and
a graphics adapter 1212 are coupled to the memory control-
ler hub 1222, and a display device 1218 1s coupled to the
graphics adapter 1212. A storage device 1208, keyboard
1210, pointing device 1214, and network adapter 1216 are
coupled to the I/O controller hub. The storage device may
represent a network-attached disk, local and remote RAID,
or a SAN (storage area network). A storage device 1208,
keyboard 1210, pointing device 1214, and network adapter
1216 are coupled to the I/O controller hub 1222. Other
embodiments of the computer 1200 have different architec-
tures. For example, the memory 1s directly coupled to the
processor 1 some embodiments, and there are multiple

10

15

20

25

30

35

40

45

50

55

60

65

32

different levels of memory coupled to different components
in other embodiments. Some embodiments also include
multiple processors that are coupled to each other or via a
memory controller hub.

The storage device 1208 includes one or more non-
transitory computer-readable storage media such as one or
more hard drives, compact disk read-only memory (CD-
ROM), DVD, or one or more solid-state memory devices.
The memory holds istructions and data used by the pro-
cessor 1202. The pointing device 1214 1s used 1n combina-
tion with the keyboard to mput data into the computer 1200.
The graphics adapter 1212 displays images and other infor-
mation on the display device 1218. In some embodiments,
the display device includes a touch screen capability for
receiving user input and selections. One or more network
adapters 1216 couple the computer 1200 to a network. Some
embodiments of the computer have different and/or other
components than those shown in FIG. 12. For example, the
database system can be comprised of one or more servers
that lack a display device, keyboard, pointing device, and
other components, while a client device acting as a requester
can be a server, a workstation, a notebook or desktop
computer, a tablet computer, an embedded device, or a
handheld device or mobile phone, or another type of com-
puting device. The requester to the database system also can
be another process or program on the same computer on
which the database system operates.

The computer 1200 1s adapted to execute computer pro-
gram modules for providing functionality described herein.
As used herein, the term “module” refers to computer
program 1instructions and/or other logic used to provide the
specified functionality. Thus, a module can be implemented
in hardware, firmware, and/or software. In one embodiment,
program modules formed of executable computer program
instructions are stored on the storage device, loaded 1nto the

memory, and executed by the processor.
Additional Considerations

In time-series workloads, writes are typically made to
recent time 1ntervals, rather than distributed across many old
ones. This allows the database system 110 to efliciently write
batch inserts to a small number of tables as opposed to
performing many small writes across one giant table. Fur-
ther, the database systems’ clustered architecture also takes
advantage of time-series workloads to recent time intervals,
in order to parallelize writes across many servers and/or
disks to further support high data ingest rates. These
approaches improve performance when employed on vari-
ous storage technologies, including in-memory storage, hard
drives (HDDs), or solid-state drives (SSDs).

Because chunks are right-sized to servers, and thus the
database system does not build massive single tables, the
database system avoids or reduces swapping its indexes to
disks for recent time 1ntervals (where most writes typically
occur). This occurs because the database system maintains
indexes local to each chunk; when inserting new records nto
a chunk, only that chunks’ (smaller) indexes need to be
updated, rather than a giant index built across all the
hypertable’s data. Thus, for chunks associated with recent
time intervals that are regularly accessed, particularly 11 the
chunks are sized purposetully, the chunks’ indexes can be
maintained 1n memory. Yet the database system can still
ciliciently support many diflerent types of indexes on dii-
terent types of columns (e.g., based on what 1s supported by
cach node’s database engine, such as PostgreSQL), includ-
ing B-tree, B+-tree, GIN, Gi1ST, SP-Gi1ST, BRIN, Hash,
LSM Tree, fractal trees, and other types of indexes.

[

US 10,509,785 B2

33

The database system combines the transparent partition-
ing of its hypertable abstraction with a number of query
optimizations. These optimizations include those which
serve to minimize the number and set of chunks that must be
contacted to satisly a query, to reduce the amount of records
that are transferred back from a query that touches a chunk,
to specily whether raw records or aggregates results are
transferred back from a chunk, and so forth.

Common queries to time-series data include (1) slicing
across time for a given object (e.g., device 1d), slicing across
many objects for a given time interval, or (111) querying the
last reported data records across (a subset of) all objects or
some other distinct object label. While users perform these
queries as 1f interacting with a single hypertable, the data-
base system leverages internally-managed metadata to only
query those chunks that may possibly satisiy the query
predicate. By aggressively pruning many chunks and servers
to contact 1n 1ts query plan—or during execution, when the
system may have additional information—the database sys-
tem 1mproves both query latency and throughput.

Similarly, for items like unique devices, users, or loca-
tions, the database system may receive queries like “select
the last K readings for every device.” While this query can
be natively expressed in SQL using a “SELECT DIS-
TINCT” query (for finding the first or last single value per
distinct 1tem) or via windowing functions (for finding K
such values), such a query can turn ito a full table scan 1n
many relational databases. In fact, this full table scan could
continue back to the beginning of time to capture “for every
device”, or otherwise either sacrifice completeness with
some arbitrarily-specified time range or involve a large
WHERE clause or JOIN against some set of devices of
interest (which may be maintained in a manual or automated
fashion).

In some embodiments, the database system maintains
additional metadata about a hypertable’s fields 1n order to
optimize such queries. For example, the database system
records information about every distinct (different) value for
that field 1n the database (e.g., the latest row, chunk, or time
interval to which 1t belongs). The database system uses this
metadata along with 1ts other optimizations, so that such
queries for distinct 1tems avoid touching unnecessary
chunks, and perform efliciently-indexed queries on each
individual chunk. The decision to maintain such metadata
might be made manually or via automated means for a
variety ol reasons, mncluding based on a field’s type, the
cardinality of the field’s distinct items, query and workload
patterns, and so forth.

The database system may perform other query optimiza-
tions that benefit both single-node and clustered deploy-
ments. When joming data from multiple tables (either
locally or across the network, e.g., via foreign data wrap-
pers), traditional databases may first select all data matching,
the query predicate, optionally ORDER the data, then per-
torm the requested LIMIT. Instead, the database system 110
first performs the query and post-processing (e.g., ORDER
and LIMIT) on each chunk, and only then merges the
resulting set from each chunk (after which 1t performs a final
ordering and limat).

The database system 110 uses LIMIT pushdown ifor
non-aggregate queries to mimmize copying data across the
network or reading unnecessary data from tables. The data-
base system also pushes down aggregations for many com-
mon functions (e.g., SUM, AVG, MIN, MAX, COUNT) to
the servers on which the chunks reside. Primarily a benefit
for clustered deployments, this distributed query optimiza-
tion greatly mimimizes network transiers by performing

10

15

20

25

30

35

40

45

50

55

60

65

34

large rollups or GROUP_BY s 1n situ on the chunks’ servers,
so that only the computed results need to be joined towards
the end of the query, rather than raw data from each chunk.
In particular, each node i the database system performs 1ts
own partial aggregation, and then only return that result to
the requesting node.

For example, 11 the query to the database system requests
some MAX (maximum value), then the first node processing
the hypertable query sends MAX queries to other nodes;
cach receiving node performs the MAX on 1ts own local
chunks before sending the result back to the first node. This
first node computes the MAX of these local maximum
values, and returns this result. Similarly, if the hypertable
query asks for the AVG (average), then the first node sends
queries to other servers that ask for the sum and count of
some set of rows. These nodes can return their sums and
counts to the first node, which then computes the total
average from these values (by dividing the sum of sums by
the sum of counts).

The database system computes joins between hypertables
and standard relational tables. These standard tables can be
stored etther directly in the database system or accessed
from external databases, e.g., via foreign data wrappers.

The database system 110 performs joins between two
hypertables, including in a number of ways mvolving dis-
tributed optimizations, e.g., distributed joins. Such optimi-
zations include those using hash-based partitioning, as well
as those that carefully minimize data copying by only
sending data from one hypertable’s chunks to the servers
with the other’s chunks according to the join being per-
formed, optionally leveraging the metadata associated with
the chunk. Such optimizations also include placing the
chunks of hypertables that will be regularly jommed on
servers 1n a way that like keys or key ranges are commonly
collocated on the same server, to minimize sending data over
the network during joins.

The database system allows for easily defining data
retention policies based on time. For example, administra-
tors or users can use explicit commands or configure the
system to cleanup/erase data more than X weeks old. The
system’s chunking also helps make such retention policies
more ellicient, as the database system then just drops entire
chunks (internal data tables) that are expired, as opposed to
needing to delete individual rows and aggressively vacuum
the resulting tables, although the database system does
support such row-based deletions.

For efliciency, the database system enforces such data
retention policies lazily. That 1s, individual records that are
older than the expiry period might not be immediately
deleted, depending upon policy or configuration. Rather,
when all data 1n a chunk becomes expired, then the entire
chunk 1s dropped. Alternatively, the database system uses a
hybrid of dropping chunks and deleting individual rows
when performing data deletions or adhering to data retention
policies.

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration;
it 1s not itended to be exhaustive or to limit the mmvention
to the precise forms disclosed. Persons skilled 1n the relevant
art can appreciate that many modifications and variations are
possible 1 light of the above disclosure.

Some portions of this description describe the embodi-
ments of the invention in terms of algorithms and symbolic
representations of operations on information. These algo-
rithmic descriptions and representations are commonly used
by those skilled in the data processing arts to convey the
substance of their work effectively to others skilled 1n the

US 10,509,785 B2

35

art. These operations, while described functionally, compu-
tationally, or logically, are understood to be implemented by
computer programs or equivalent electrical circuits, micro-
code, or the like. Furthermore, 1t has also proven convenient
at times, to refer to these arrangements of operations as
modules, without loss of generality. The described opera-
tions and their associated modules may be embodied in
soltware, firmware, hardware, or any combinations thereof.

Any of the steps, operations, or processes described
herein may be performed or implemented with one or more
hardware or software modules, alone or in combination with
other devices. In one embodiment, a software module 1s
implemented with a computer program product comprising
a computer-readable medium containing computer program
code, which can be executed by a computer processor for
performing any or all of the steps, operations, or processes
described.

Embodiments of the invention may also relate to an
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
and/or 1t may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored 1n the computer. Such a computer program may be
stored 1n a tangible computer readable storage medium or
any type of media suitable for storing electronic instructions,
and coupled to a computer system bus. Furthermore, any
computing systems referred to in the specification may
include a single processor or may be architectures employ-
ing multiple processor designs for increased computing
capability.

Finally, the language used 1n the specification has been
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or
circumscribe the iventive subject matter. It 1s therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that issue on
an application based hereon. Accordingly, the disclosure of
the embodiments of the invention 1s intended to be illustra-
tive, but not limiting, of the scope of the invention.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving, by a database system, one or more insert

requests for inserting rows 1n a hypertable, the one or
more 1nsert requests specifying a set of mput records
for inserting 1n the hypertable, each record from the set
of records having a plurality of attributes including a
set of dimension attributes, the set of dimension attri-
butes including a time attribute, wherein the hypertable
represents a database table partitioned into a plurality
of chunks along the set of dimension attributes, each
chunk having a configuration associated with a set of
values corresponding to each dimension attribute, such
that, for each record stored in the chunk, and for each
dimension attribute of the record, the value of the
dimension attribute of the record maps to a value from
the set of values for that dimension attribute as speci-
fied by the chunk;

for at least an mput record from the set of input records,

storing the input record 1 a new chunk, wherein the
new chunk 1s created subsequent to receiving at least
one of the one or more 1nsert requests, wherein the
iput record 1s stored in the new chunk based on a
determination that the dimension attributes of the input
record match the configuration of the new chunk,
wherein the dimension attributes of the mnput record do
not match the configurations of the chunks of the
hypertable created before the new chunk;

5

10

15

20

25

30

35

40

45

50

55

60

65

36

storing one or more policies specitying actions associated
with chunks matching criteria related to configurations
of the chunks;

selecting one or more chunks subsequent to storing the
input record, the one or more chunks including the new
chunk, the selecting according to criteria specified 1n a
policy; and

performing an action associated with the one or more
selected chunks, the action specified by the policy.

2. The computer-implemented method of claim 1,
wherein the selected one or more chunks are distributed
across two or more locations, and wherein each location
corresponds to one of:

a storage device added to a server from the set of servers

used by the database system;

a storage device belonging to a new server, wherein the
new server 1s added to the set of servers used by the
database system; or

a network attached storage device of a remote server
made accessible to a server from the set of servers used
by the database system.

3. The computer-implemented method of claim 1,
wherein selecting one or more chunks according to critenia
specified 1n the policy configuration comprises, for each of
the one or more chunks, comparing the time attribute of the
chunk with a threshold value.

4. The computer-implemented method of claim 1,
wherein the criteria specified 1n the policy configuration
comprises age of the chunk, wherein age of a chunk is
determined based on the set of values associated with the
time attribute of the chunk.

5. The computer-implemented method of claim 1,
wherein the action associated with a selected chunk com-
prises deleting the selected chunk.

6. The computer-implemented method of claim 1,
wherein the action associated with a selected chunk com-
prises performing one or more of:

adding an index to the selected chunk,

dropping an mdex from the selected chunk,

reindexing the selected chunk, or

adding a constraint on the chunk.

7. The computer-implemented method of claim 1,
wherein the action associated with a selected chunk com-
prises moving the selected chunk from a first location to a
second location.

8. The computer-implemented method of claim 7,
wherein the second location i1s determined based on the
policy or the configuration of the selected chunk.

9. The computer-implemented method of claim 7,
wherein the second location 1s determined based on one or
more of: access time ol location, storage capacity of loca-
tion, cost of location, or performance of location.

10. The computer-implemented method of claim 1,
wherein the action associated with a selected chunk com-
prises moving one or more records of the chunk to another
chunk and updating the configurations of the selected chunk
and the other chunk based on the movement of the one or
more records.

11. The computer-implemented method of claim 1,
wherein a selected chunk has a plurality of replicas, each of
the plurality of replicas storing a copy of a particular record.

12. The computer-implemented method of claim 11,
wherein the action 1s performed on one or more replicas
from the plurality of replicas.

13. The computer-implemented method of claim 11,
wherein each of the plurality of replicas 1s stored i a
different location.

US 10,509,785 B2

37

14. The computer-implemented method of claim 11,
wherein the action comprises moving a replica from a first
location to a second location, where the second location has
different characteristics than the first location.

15. The computer-implemented method of claim 11,
wherein the number of replicas of a chunk are determined
based on the configuration of the chunk.

16. The computer-implemented method of claim 11,
wherein the number of replicas of the chunk 1s determined
based on a set of values associated with the time attribute for

the chunk.

17. A non-transitory computer readable storage medium
storing 1nstructions that when executed by a computer
processor, cause the computer processor to perform steps
comprising:

receiving, by a database system, one or more insert
requests for inserting rows in a hypertable, the one or
more 1nsert requests specilying a set of mput records
for inserting 1n the hypertable, each record from the set
of records having a plurality of attributes including a
set of dimension attributes, the set of dimension attri-
butes including a time attribute, wherein the hypertable
represents a database table partitioned into a plurality
of chunks along the set of dimension attributes, each
chunk having a configuration associated with a set of
values corresponding to each dimension attribute, such
that, for each record stored in the chunk, and for each
dimension attribute of the record, the value of the
dimension attribute of the record maps to a value from
the set of values for that dimension attribute as speci-
fied by the chunk;

for at least an mput record from the set of input records,
storing the input record 1 a new chunk, wherein the
new chunk 1s created subsequent to receiving at least
one of the one or more 1nsert requests, wherein the
input record 1s stored in the new chunk based on a
determination that the dimension attributes of the input
record match the configuration of the new chunk,
wherein the dimension attributes of the iput record do
not match the configurations of the chunks of the
hypertable created before the new chunk;

storing one or more policies specitying actions associated
with chunks matching criteria related to configurations
of the chunks;

selecting one or more chunks subsequent to storing the
input record, the one or more chunks including the new
chunk, the selecting according to criteria specified 1n a
policy; and

performing an action associated with the one or more
selected chunks, the action specified by the policy.

18. The non-transitory computer readable storage medium
of claim 17, wherein the selected one or more chunks are
distributed across two or more locations, and wherein each
location corresponds to one of:

a storage device added to a server from the set of servers

used by the database system;

a storage device belonging to a new server, wherein the
new server 1s added to the set of servers used by the
database system; or

a network attached storage device of a remote server
made accessible to a server from the set of servers used
by the database system.

19. The non-transitory computer readable storage medium
of claim 17, wherein instructions for selecting one or more
chunks according to criteria specified in the policy configu-
ration comprise instructions for:

10

15

20

25

30

35

40

45

50

55

60

65

38

for each of the one or more chunks, comparing the time

attribute of the chunk with a threshold value.

20. The non-transitory computer readable storage medium
of claim 17, wherein the critena specified 1n the policy
configuration comprises age of the chunk, wherein age of a
chunk 1s determined based on the set of values associated
with the time attribute of the chunk.

21. The non-transitory computer readable storage medium
of claam 17, wherein the action associated with a selected
chunk comprises deleting the selected chunk.

22. The non-transitory computer readable storage medium
of claam 17, wherein the action associated with a selected
chunk comprises performing one or more of:

adding an 1ndex to the selected chunk,

dropping an index from the selected chunk,

reindexing the selected chunk, or

adding a constraint on the chunk.

23. The non-transitory computer readable storage medium
of claim 17, wherein the action associated with a selected
chunk comprises moving the selected chunk from a first
location to a second location.

24. The non-transitory computer readable storage medium
of claim 23, wherein the second location 1s determined based
on the policy or the configuration of the selected chunk.

235. The non-transitory computer readable storage medium
of claim 23, wherein the second location 1s determined based
on one or more of: access time of location, storage capacity
of location, cost of location, or performance of location.

26. The non-transitory computer readable storage medium
of claim 17, wherein the action associated with a selected
chunk comprises moving one or more records of the chunk
to another chunk and updating the configurations of the
selected chunk and the other chunk based on the movement
of the one or more records.

277. The non-transitory computer readable storage medium
of claim 17, wherein a selected chunk has a plurality of
replicas, each of the plurality of replicas storing a copy of a
particular record.

28. The non-transitory computer readable storage medium
of claim 27, wherein the action 1s performed on one or more
replicas from the plurality of replicas.

29. The non-transitory computer readable storage medium
of claim 27, wherein each of the plurality of replicas 1is
stored 1n a different location.

30. The non-transitory computer readable storage medium
of claim 27, wherein the action comprises moving a replica
from a first location to a second location, where the second
location has different characteristics than the first location.

31. The non-transitory computer readable storage medium
of claim 27, wherein the number of replicas of a chunk are
determined based on the configuration of the chunk.

32. The non-transitory computer readable storage medium
of claim 27, wherein the number of replicas of the chunk 1s
determined based on a set of values associated with the time
attribute for the chunk.

33. A computer system comprising;

a computer processor; and

a non-transitory computer readable storage medium stor-

ing instructions that when executed by the computer

processor, cause the computer processor to perform

steps comprising:

receiving, by a database system, one or more insert
requests for inserting rows 1n a hypertable, the one or
more 1sert requests speciiying a set of input records
for mserting 1n the hypertable, each record from the
set of records having a plurality of attributes 1nclud-
ing a set of dimension attributes, the set of dimension

US 10,509,785 B2

39

attributes including a time attribute, wherein the
hypertable represents a database table partitioned
into a plurality of chunks along the set of dimension
attributes, each chunk having a configuration asso-
clated with a set of values corresponding to each
dimension attribute, such that, for each record stored
in the chunk, and for each dimension attribute of the
record, the value of the dimension attribute of the
record maps to a value from the set of values for that
dimension attribute as specified by the chunk;

for at least an mput record from the set of input records,
storing the input record in a new chunk, wherein the

new chunk 1s created subsequent to recerving at least
one of the one or more 1nsert requests, wherein the

input record 1s stored in the new chunk based on a
determination that the dimension attributes of the
input record match the configuration of the new
chunk, wherein the dimension attributes of the input
record do not match the configurations of the chunks
of the hypertable created before the new chunk;

storing one or more policies specilying actions associ-
ated with chunks matching criternia related to con-
figurations of the chunks;

selecting one or more chunks subsequent to storing the
input record the one or more chunks including the
new chunk, the selecting according to criteria speci-
fied 1 a policy; and

performing an action associated with the one or more
selected chunks, the action specified by the policy.

34. The computer-system of claim 33, wherein the
selected one or more chunks are distributed across two or
more locations, and wherein each location corresponds to
one of:

a storage device added to a server from the set of servers

used by the database system;

a storage device belonging to a new server, wherein the
new server 1s added to the set of servers used by the
database system; or

a network attached storage device of a remote server
made accessible to a server from the set of servers used
by the database system.

35. The computer-system of claim 33, wherein nstruc-
tions for selecting one or more chunks according to critena
specified 1n the policy configuration comprise instructions
for:

for each of the one or more chunks, comparing the time
attribute of the chunk with a threshold value.

10

15

20

25

30

35

40

45

40

36. The computer-system of claim 33, wherein the criteria
specified 1n the policy configuration comprises age of the
chunk, wherein age of a chunk 1s determined based on the
set of values associated with the time attribute of the chunk.

37. The computer-system of claim 33, wherein the action
associated with a selected chunk comprises deleting the

selected chunk.

38. The computer-system of claim 33, wherein the action
associated with a selected chunk comprises performing one
or more of:

adding an index to the selected chunk,

dropping an mdex from the selected chunk,

reindexing the selected chunk, or

adding a constraint on the chunk.

39. The computer-system of claim 33, wherein the action
associated with a selected chunk comprises moving the
selected chunk from a first location to a second location.

40. The computer-system of claim 39, wherein the second
location 1s determined based on the policy or the configu-
ration of the selected chunk.

41. The computer-system of claim 39, wherein the second
location 1s determined based on one or more of: access time
of location, storage capacity of location, cost of location, or
performance of location.

42. The computer-system of claim 33, wherein the action
associated with a selected chunk comprises moving one or
more records of the chunk to another chunk and updating the
configurations of the selected chunk and the other chunk
based on the movement of the one or more records.

43. The computer-system of claim 33, wherein a selected
chunk has a plurality of replicas, each of the plurality of
replicas storing a copy of a particular record.

44. The computer-system of claim 43, wherein the action
1s performed on one or more replicas from the plurality of
replicas.

45. The computer-system of claim 43, wherein each of the
plurality of replicas 1s stored 1n a different location.

46. The computer-system of claim 43, wherein the action
comprises moving a replica from a {irst location to a second
location, where the second location has different character-
istics than the first location.

4'7. The computer-system of claim 43, wherein the num-
ber of replicas of a chunk are determined based on the
configuration of the chunk.

48. The computer-system of claim 43, wherein the num-
ber of replicas of the chunk 1s determined based on a set of
values associated with the time attribute for the chunk.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

