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CODE BLOCK RESYNCHRONIZATION FOR
DISTRIBUTED MULTI-MIRROR ERASURE
CODING SYSTEM

BACKGROUND

Distributed systems allow multiple clients 1n a network to
access a pool of shared resources. For example, a distributed
storage system allows a cluster of host computers to aggre-
gate local disks (e.g., SSD, PCl-based flash storage, SATA,
or SAS magnetic disks) located 1n or attached to each host
computer to create a single and shared pool of storage. This
pool of storage (sometimes referred to herein as a “data-
store” or “‘store”) 1s accessible by all host computers 1n the
cluster and may be presented as a single namespace of
storage entities (such as a hierarchical file system namespace
in the case of files, a flat namespace of unique identifiers 1n
the case of objects, etc.). Storage clients in turn, such as
virtual machines spawned on the host computers may use
the datastore, for example, to store virtual disks that are
accessed by the virtual machines during their operation.
Because the shared local disks that make up the datastore
may have different performance characteristics (e.g., capac-
ity, input/output per second (IOPS) capabilities, etc.), usage
of such shared local disks to store virtual disks or portions
thereol may be distributed among the virtual machines based
on the needs of each given virtual machine. Accordingly, 1n
some cases, a virtual disk may be partitioned nto different
chunks or stripes that are distributed among and stored by
local disks of hosts 1n the datastore.

In addition, as a way to provide fault-tolerance i a
distributed storage system, erasure coding technologies are
employed to implement redundancies in data storage. In
such a system, 1f one or more of the host computers of the
distributed storage system fails or goes ofiline, the data
stored by those host computers can be resynced or recon-
structed after they come back online, using the data stored
in the other host computers. However, resyncing or recon-
structing of the data 1s sometimes not performance eflicient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates an example computing environment in
which embodiments may be practiced.

FIG. 2 illustrates an example hierarchical structure of
objects organized within an object store that represent a
virtual disk.

FIG. 3 illustrates components of a VSAN module.

FIG. 4 illustrates an example of applying erasure coding
to a virtual disk object.

FIG. S illustrates operations for resyncing a block of an
erasure coded virtual disk object, according to one or more
embodiments.

DETAILED DESCRIPTION

FIG. 1 illustrates a computing environment 100 1n which
embodiments may be practiced. As shown, computing envi-
ronment 100 1s a software-based “virtual storage areca net-
work™” (VSAN) environment that leverages the commodity
local storage housed 1n or directly attached (heremaftter, use
of the term “housed” or “housed 1n” may be used to
encompass both housed 1n or otherwise directly attached) to
host servers or nodes 111 of a cluster 110 to provide an
aggregate object store 116 to virtual machines (VMs) 112
running on the nodes. The local commodity storage housed
in or otherwise directly attached to the nodes 111 may
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2

include combinations of solid state drives (SSDs) 117 and/or
magnetic or spmning disks 118. In certain embodiments,
SSDs 117 serve as a read cache and/or write builer 1n front
of magnetic disks 118 to increase I/O performance. As
further discussed below, each node 111 may include a
storage management module (referred to herein as a “VSAN
module”) i order to automate storage management work-
flows (e.g., create objects 1 the object store, etc.) and
provide access to objects 1n the object store (e.g., handle I/O
operations to objects in the object store, etc.) based on
predefined storage policies specified for objects 1n the object
store. For example, because a VM may be mitially config-
ured by an administrator to have specific storage require-
ments for 1ts “virtual disk” depending on its intended use
(e.g., capacity, availability, IOPS, etc.), the administrator
may deflne a storage profile or policy for each VM speci-
tying such availability, capacity, IOPS and the like. As
further described below, the VSAN module may then create
an “object” for the specified virtual disk by backing 1t with
physical storage resources of the object store based on the
defined policy.

A virtualization management platform 105 1s associated
with cluster 110 of nodes 111. Virtualization management
plattorm 105 enables an administrator to manage the con-
figuration and spawning of VMs on the various nodes 111.
As depicted 1n the embodiment of FIG. 1, each node 111
includes a virtualization layer or hypervisor 113, a VSAN
module 114, and hardware 119 (which includes the SSDs
117 and magnetic disks 118 of a node 111). Through
hypervisor 113, a node 111 1s able to launch and run multiple
VMs 112. Hypervisor 113, 1n part, manages hardware 119 to
properly allocate computing resources (e.g., processing
power, random access memory, etc.) for each VM 112,
Furthermore, as described below, each hypervisor 113,
through its corresponding VSAN module 114, provides
access to storage resources located in hardware 119 (e.g.,
SSDs 117 and magnetic disks 118) for use as storage for
virtual disks (or portions thereot) and other related files that
may be accessed by any VM 112 residing 1n any of nodes
111 in cluster 110.

In one embodiment, VSAN module 114 1s implemented as
a “VSAN” device driver within hypervisor 113. In such an
embodiment, VSAN module 114 provides access to a con-
ceptual “VSAN™ 115 through which an administrator can
create a number of top-level “device” or namespace objects
that are backed by object store 116. For example, during
creation of a device object, the admimstrator specifies a
particular file system for the device object (such device
objects heremafter also thus referred to “file system
objects™) such that, during a boot process, each hypervisor
113 in each node 111 discovers a /vsan/ root node for a
conceptual global namespace that 1s exposed by VSAN
module 114. By accessing APIs exposed by VSAN module
114, hypervisor 113 can then determine all the top-level file
system objects (or other types of top-level device objects)
currently residing in VSAN 115. When a VM (or other
client) attempts to access one of the file system objects,
hypervisor 113 may then dynamically “auto-mount™ the file
system object at that time. In certain embodiments, file
system objects may Ifurther be periodically “auto-un-
mounted” when access to objects in the file system objects
cease or are 1dle for a period of time. A file system object
(e.g., /vsan/Is_namel, etc.) that 1s accessible through VSAN
115 may, for example, be implemented to emulate the
semantics of a particular file system such as VMware Inc.’s
distributed or clustered file system, VMFS, which 1s
designed to provide concurrency control among simultane-
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ously accessing VMs. Because VSAN 115 supports multiple
file system objects, 1t 1s able provide storage resources
through object store 116 without being confined by limita-
tions of any particular clustered file system. For example,
many clustered file systems can only scale to support a 5
certain amount of nodes 111. By providing multiple top-
level file system object support, VSAN 115 overcomes the
scalability limitations of such clustered file systems.

As described 1n further detail in the context of FIG. 2
below, a file system object, may, 1itself, provide access to a 10
number of virtual disk descriptor files accessible by VMs
112 running in cluster 110. These virtual disk descriptor files
contain references to virtual disk “objects™ that contain the
actual data for the virtual disk and are separately backed by
object store 116. A wvirtual disk object may itself be a 15
hierarchical or “composite” object that 1s further composed
of “component” objects (again separately backed by object
store 116) that reflect the storage requirements (e.g., capac-
ity, availability, IOPs, etc.) of a corresponding storage pro-
file or policy generated by the administrator when mnitially 20
creating the virtual disk. Each VSAN module 114 (through
a cluster level object management or “CLOM” sub-module,
in embodiments as further described below) communicates
with other VSAN modules 114 of other nodes 111 to create
and maintain an m-memory metadata database (e.g., main- 25
tained separately but 1n synchronized fashion in the memory
of each node 111) that contains metadata describing the
locations, configurations, policies and relationships among
the various objects stored in object store 116. This in-
memory metadata database 1s utilized by a VSAN module 30
114 on a node 111, for example, when an administrator first
creates a virtual disk for a VM as well as when the VM 1s
running and performing I/O operations (e.g., read or write)
on the virtual disk. As further discussed below 1n the context
of FIG. 3, VSAN module 114 (through a document object 35
manager or “DOM” sub-module, in one embodiment as
turther described below) traverses a hierarchy of objects
using the metadata in the m-memory database 1n order to
properly route an I/O operation request to the node (or
nodes) that houses (house) the actual physical local storage 40
that backs the portion of the virtual disk that 1s subject to the
I/0 operation.

FIG. 2 illustrates an example hierarchical structure of
objects organized within object store 116 that represent a
virtual disk. As previously discussed above, a VM 112 45
running on one of nodes 111 may perform I/O operations on
a virtual disk that 1s stored as a hierarchical or composite
object 200 1n object store 116. Hypervisor 113 provides VM
112 access to the virtual disk by interfacing with the abstrac-
tion of VSAN 115 through VSAN module 114 (e.g., by 50
auto-mounting the top-level file system object correspond-
ing to the virtual disk object). For example, VSAN module
114, by querying 1ts local copy of the in-memory metadata
database, 1s able to identily a particular file system object
205 (e.g., a VMES file system object in one embodiment, 55
etc.) stored 1n VSAN 113 that stores a descriptor file 210 for
the virtual disk. It should be recognized that the file system
object 205 may store a variety of other files consistent with
its purpose, such as virtual machine configuration files and
the like when supporting a virtualization environment. In 60
certain embodiments, each file system object may be con-
figured to support only those virtual disks corresponding to
a particular VM (e.g., a “per-VM” {ile system object).

Descriptor file 210 includes a reference to composite
object 200 that 1s separately stored 1n object store 116 and 65
conceptually represents the virtual disk (and thus may also
be sometimes referenced herein as a virtual disk object).

4

Composite object 200 stores metadata describing a storage
organization or configuration for the virtual disk (sometimes
referred to herein as a virtual disk “blueprint™) that suits the
storage requirements or service level agreements (SLAs) 1n
a corresponding storage profile or policy (e.g., capacity,
availability, IOPs, etc.) generated by an administrator when
creating the virtual disk.

Depending on the desired level of fault tolerance or
performance efhliciency, a virtual disk blueprint 215 may
direct that composite object 200 be stored 1n datastore 1n a
variety of ways. FIG. 2 shows composite object 200 that
includes a virtual disk blueprint 215 describing a RAID 1
configuration where two mirrored copies of the virtual disk
(e.g., mirrors) are each further striped 1n a RAID 0 configu-
ration. Data striping refers to segmenting logically sequen-
tial data, such as a wvirtual disk. Each stripe contains a
plurality of data blocks and one or more code blocks. In
addition, one or more data and code blocks of the virtual disk
are further grouped into chunks. Composite object 200 may
thus contain references to a number of “leal” or “compo-
nent” objects 220, corresponding to each chunk. The meta-
data accessible by VSAN module 114 in the in-memory
metadata database for each component object 220 (1.e., for
cach chunk) provides a mapping to or otherwise 1dentifies a
particular node 111, 1n cluster 110 that houses the physical
storage resources (e.g., magnetic disks 118, etc.) that actu-
ally store the chunk (as well as the location of the chunk
within such physical resource).

FIG. 3 illustrates components of a VSAN module 114. As
previously described, in certain embodiments, VSAN mod-
ule 114 may execute as a device driver exposing an abstrac-
tion of a VSAN 115 to hypervisor 113. Various sub-modules
of VSAN module 114 handle different responsibilities and
may operate within either user space 313 or kernel space 320
depending on such responsibilities. As depicted in the
embodiment of FIG. 3, VSAN module 114 includes a cluster
level object management (CLOM) sub-module 325 that
operates 1n user space 315. CLOM sub-module 3235 gener-
ates virtual disk blueprints during creation of a virtual disk
by an admimstrator and ensures that objects created for such
virtual disk blueprints are configured to meet storage profile
or policy requirements set by the administrator. In addition
to being accessed during object creation (e.g., for virtual
disks), CLOM sub-module 325 may also be accessed (e.g.,
to dynamically revise or otherwise update a virtual disk
blueprint or the mappings of the virtual disk blueprint to
actual physical storage in object store 116) on a change made
by an administrator to the storage profile or policy relating
to an object or when changes to the cluster or workload
result 1n an object being out of compliance with a current
storage profile or policy.

In one embodiment, 1f an administrator creates a storage
profile or policy for a composite object such as virtual disk
object 200, CLOM sub-module 325 applies a variety of
heuristics and/or distributed algorithms to generate virtual
disk blueprint 215 that describes a configuration 1n cluster
110 that meets or otherwise suits the storage policy (e.g.,
RAID configuration to achieve desired redundancy through
mirroring and access performance through striping, which
nodes’ local storage should store certain portions/partitions/
chunks of the virtual disk to achieve load balancing, etc.).
For example, CLOM sub-module 3235, 1n one embodiment,
1s responsible for generating blueprint 215 describing the
RAID 1/RAID 0 configuration for virtual disk object 200 1n
FIG. 2 when the wvirtual disk was first created by the
administrator. As previously discussed, a storage policy may
specily requirements for capacity, 10PS, availability, and
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reliability. Storage policies may also specily a workload
characterization (e.g., random or sequential access, 1/0
request size, cache size, expected cache hit ration, etc.).
Additionally, the adminmistrator may also specily an atlinity
to VSAN module 114 to preferentially use certain nodes 111
(or the local disks housed therein). For example, when
provisioning a new virtual disk for a VM, an administrator
may generate a storage policy or profile for the virtual disk
specilying that the virtual disk have a reserve capacity of
400 GB, a reservation of 150 read IOPS, a reservation o1 300
write IOPS, and a desired availability of 99.99%. Upon
receipt of the generated storage policy, CLOM sub-module
325 consults the in-memory metadata database maintained
by 1ts VSAN module 114 to determine the current state of
cluster 110 1n order generate a virtual disk blueprint for a
composite object (e.g., the virtual disk object) that suits the
generated storage policy. As further discussed below, CLOM
sub-module 325 may then communicate the blueprint to 1ts
corresponding distributed object manager (DOM) sub-mod-
ule 340 which interacts with object space 116 to implement
the blueprint by, for example, allocating or otherwise map-
ping component objects (e.g., chunks) of the composite
object to physical storage locations within various nodes 111
of cluster 110.

In addition to CLOM sub-module 325 and DOM sub-
module 340, as turther depicted 1in FIG. 3, VSAN module
114 may also include a cluster monitoring, membership, and
directory services (CMMDS) sub-module 335 that main-
tains the previously discussed in-memory metadata database
to provide mformation on the state of cluster 110 to other
sub-modules of VSAN module 114 and also tracks the
general “health” of cluster 110 by monitoring the status,
accessibility, and visibility of each node 111 1n cluster 110.
The m-memory metadata database serves as a directory
service that maintains a physical mventory of the VSAN
environment, such as the various nodes 111, the storage
resources in the nodes 111 (SSD, magnetic disks, etc.)
housed therein and the characteristics/capabilities thereof,
the current state of the nodes 111 and there corresponding
storage resources, network paths among the nodes 111, and
the like. As previously discussed, 1n addition to maintaining,
a physical mventory, the nm-memory metadata database
turther provides a catalog of metadata for objects stored 1n
object store 116 (e.g., what composite and component
objects exist, what component objects belong to what com-
posite objects, which nodes serve as “coordinators” or
“owners” that control access to which objects, quality of
service requirements for each object, object configurations,
the mapping of objects to physical storage locations, etc.).
As previously discussed, other sub-modules within VSAN
module 114 may access CMMDS sub-module 335 (repre-
sented by the connecting lines 1n FIG. 3) for updates to learn
of changes in cluster topology and object configurations. For
example, as previously discussed, during virtual disk cre-
ation, CLOM sub-module 325 accesses the in-memory
metadata database to generate a virtual disk blueprint, and in
order to handle an I/O operation from a running VM 112,
DOM sub-module 340 accesses the mm-memory metadata
database to determine the nodes 111 that store the compo-
nent objects (e.g., chunks) of a corresponding composite
object (e.g., virtual disk object) and the paths by which those
nodes are reachable in order to satisfy the 1/0O operation.

As previously discussed, DOM sub-module 340, during
the handling of I/O operations as well as during object
creation, controls access to and handles operations on those
component objects in object store 116 that are stored 1n the
local storage of the particular node 111 in which DOM
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sub-module 340 runs as well as certain other composite
objects for which its node 111 has been currently designated
as the “coordinator” or “owner.” For example, when han-
dling an I/O operation from a VM, due to the hierarchical
nature ol composite objects 1n certain embodiments, a DOM
sub-module 340 that serves as the coordinator for the target
composite object (e.g., the virtual disk object that 1s subject
to the I/O operation) may need to further communicate
across the network with a different DOM sub-module 340 1n
a second node 111 (or nodes) that serves as the coordinator
for the particular component object (e.g., chunk, etc.) of the
virtual disk object that 1s stored in the local storage of the
second node 111 and which 1s the portion of the virtual disk
that 1s subject to the I/O operation. If the VM 1ssuing the /O
operation resides on a node 111 that 1s also different from the
coordinator of the virtual disk object, the DOM sub-module
340 of the node running the VM would also have to
communicate across the network with the DOM sub-module
340 of the coordinator. In certain embodiments, 1f the VM
issuing the I/0 operation resides on node that 1s different
from the coordinator of the virtual disk object subject to the
I/O operation, the two DOM sub-modules 340 of the two
nodes may to communicate to change the role of the
coordinator of the virtual disk object to the node running the
VM (e.g., thereby reducing the amount of network commu-
nication needed to coordinate I/O operations between the
node running the VM and the node serving as the coordi-
nator for the virtual disk object).

DOM sub-modules 340 also similarly communicate
amongst one another during object creation. For example, a
virtual disk blueprint generated by CLOM module 3235
during creation of a virtual disk may include information
that designates which nodes 111 should serve as the coor-
dinators for the virtual disk object as well as its correspond-
ing component objects (chunks, etc.). Each of the DOM
sub-modules 340 for such designated nodes 1s issued
requests (e.g., by the DOM sub-module 340 designated as
the coordinator for the virtual disk object or by the DOM
sub-module 340 of the node generating the virtual disk
blueprint, etc. depending on embodiments) to create their
respective objects, allocate local storage to such objects (if
needed), and advertise their objects to their corresponding
CMMDS sub-module 335 1n order to update the in-memory
metadata database with metadata regarding the object. In
order to perform such requests, DOM sub-module 340
interacts with a log structured object manager (LSOM)
sub-module 350 that serves as the component n VSAN
module 114 that actually drives communication with the
local SSDs and magnetic disks of 1ts node 111. In addition
to allocating local storage for component objects (as well as
to store other metadata such a policies and configurations for
composite objects for which 1ts node serves as coordinator,
etc.), LSOM sub-module 350 additionally monitors the tlow
of I/O operations to the local storage of its node 111, for
example, to report whether a storage resource 1s congested.

FIG. 3 also depicts a reliable datagram transport (RDT)
sub-module 345 that delivers datagrams of arbitrary size
between logical endpoints (e.g., nodes, objects, etc.), where
the endpoints may potentially be over multiple paths. In one
embodiment, the underlying transport 1s TCP. Alternatively,
other transports such as RDMA may be used. RDT sub-
module 345 1s used, for example, when DOM sub-modules
340 communicate with one another, as previously discussed
above to create objects or to handle I/O operations. In certain
embodiments, RDT module 345 interacts with CMMDS
module 335 to resolve the address of logical endpoints
dynamically 1n order to maintain up-to-date location infor-
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mation in the in-memory metadata database as well as to
create, remove, or reestablish connections based on link
health status. For example, if CMMDS module 335 reports
a link as unhealthy, RDT sub-module 345 may drop the
connection 1n favor of a link in better condition.

As described above, 1n some cases, one or more nodes 111
within node cluster 110 may fail or go oflline, resulting 1n a
loss of the data and/or code blocks stored by such nodes. In
such cases, the distributed storage system or VSAN envi-
ronment 100 has to be able to tolerate such a failure and
elliciently reconstruct the missing data blocks. In some other
cases, a node 111 may go oflline temporarily and then come
back online resulting in some out-of-sync data blocks.
Similarly, in such cases, the distributed storage system has
to be configured with fault tolerance technologies to resync
such out-of-sync data and/or code blocks. Accordingly, to
increase performance efliciency and fault tolerance, distrib-
uted storage systems (e.g., VSAN environment 100) may
implement a variety of fault tolerance technologies, such as
the various levels of RAID and/or erasure coding, etc. As
described above 1n relation to FIG. 2, depending on the
required level of performance and fault tolerance, virtual
disk blueprint 215 may direct that composite object 200 be
distributed 1n one of several ways. In some embodiments,
one or a combination of RAID levels (e.g. RAID 0 to RAID
6) 1s used, where each RAID level or a combination thereof
provides a different level of fault tolerance and performance
enhancement. Referring back to FIG. 2, for example, FIG. 2
illustrates an example of the application of RAID 1, which
entails creating a replica of composite object 200. This 1s to
ensure that a second copy (e.g., branch object 2005) of
composite object 200 1s still available 11 a first copy (e.g.,
branch object 200a) 1s lost due to some sort of failure (e.g.
disk failure etc.).

In addition to RAID 1, FIG. 2 also illustrates the appli-
cation of RAID 0 to the two copies of composite object 200
(branch object 2004 and branch object 2005, created as a
result of RAID 1). Under RAID 0, each copy of composite
object 200 1s partitioned into smaller data stripes and dis-
tributed across local storage resources of various nodes in
the datastore. In some cases, striping a copy ol composite
object 200 over local storage resources of various nodes
enhances performance as compared to storing the entire
copy of composite object 200 mm a single node. This 1s
because striping the data means that smaller amounts of data
are written to or read from local storage resources of
multiple nodes 1n parallel, thereby reducing the amount of
time to complete a particular read or write operation. How-
ever, multiplying the number of nodes used to store the
various chunks of data increases the probability of failure,
and thus data loss.

Accordingly, to achieve a higher level of fault tolerance,
in some embodiments, erasure coding 1s applied. Erasure
coding (EC) 1s a method of data protection in which each
copy ol composite object 200 1s partitioned into stripes,
expanded and encoded with redundant data pieces, and
stored across different nodes of the datastore. For example,
a copy ol composite object 200 1s organized or partitioned
into stripes, each of which 1s broken up mto N equal-sized
data blocks. Without applying EC, the N data blocks are
distributed across different nodes of the datastore, such that
the original stripe 1s reconstructable by putting the N data
blocks together. However, 1n some cases, one or more nodes,
cach hosting one of the N data blocks of composite object
200, may fail or go oflfline. In such cases, data loss may
result and there may be no way of recovering such data
block absent any fault tolerance mechanisms.
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In some embodiments, to address such situations and
provide fault tolerance, erasure codes are used to encode an
additional M equal-sized code block(s) (interchangeably
referred to as “parity blocks™) from the original N data
blocks, where N 1s a larger number than M. The M equal-
s1zed code block(s) then provide fault tolerance and enable
reconstruction of one or more lost data blocks in the same
stripe should one or more of the underlying nodes fail. More
specifically, each code block includes parity values com-
puted from the N data blocks 1n the same stripe using an
erasure coding algorithm. An application of an exclusive OR
(1.e., XOR) operation to the N data blocks of the stripe, for
computing a code block, 1s one example of applying an
erasure coding algorithm, in which case the computed code
block contains the XOR of data corresponding to the N data
blocks 1n the stripe. In such an example, 11 one of the N data
blocks 1s lost due a failure of 1ts underlying node, 1t 1s then
able to be reconstructed by performing an XOR operation of
the remaining data blocks as well as the computed code
block in the same stripe. Depending on the level of fault
tolerance desired, different erasure codes are applied in
creating the one or more M code blocks. RAID 5 and RAID
6 are common examples of applying erasure coding. In
RAID 5, an exclusive OR (1.e. XOR) operation 1s performed
on multiple data blocks to compute a single parity block. An
example of the application of RAID 5 in a distributed
storage system 1s 1llustrated in FIG. 4.

FIG. 4 shows each copy of composite object 200 being
crasure coded with a 3+1 ratio, such that each copy is
partitioned into multiple stripes (e.g. stripes 1A-NA, stripes
1B-NB), where each stripe 1s further broken up into 3 data
blocks (N) and 1 code block (M) (e.g. 3+1 ratio). It 1s

important to note that the (3+1) EC ratio 1s merely an
example and 1s not imntended to limit the scope of the present
disclosure. For example, under RAID 5, a larger number of
data blocks, such as 5 or 6 or 10 data blocks, may be used
to generate a single code block, resulting in EC ratios of
(5+1), (6+1), or (10+1), etc., respectively.

In the example of FIG. 4, using the (3+1) EC ratio, each
data or code block includes 1 MB of data such that each data

stripe comprises 4 MB of data. In other embodiments, the
data or code blocks may have other sizes, ranging from 0.1
MB to 10 GB, or higher. As turther illustrated 1n FIG. 4, the
data and code blocks 1n each stripe are distributed across
different nodes (e.g. node 111a through node 111/%). For
example, chunk A comprises all data or code blocks of
branch object 200q that are stored in node 111a, while chunk
B includes all data or code blocks of branch object 2004 that
are stored 1n node 1115. In some embodiments, each chunk
1s 1 GB 1n size.

As shown 1n FIG. 4, the data and code blocks of each
stripe of each copy of the composite object are distributed
across diflerent chunks based on a defined distribution logic
(1.e., virtual disk blueprint 215), which in this case 1s the
logic of RAID 5. This defined distribution logic for distrib-
uting data and code blocks of a branch object 1s applied at
the time when the branch object 1s being written stripe by
stripe. For branch object 200a, whose metadata defines a
logical address space 401 for 1ts data blocks and a logical
address space 402 for 1ts code blocks, when the first three
data blocks (data blocks 0, 1, and 2) of stripe 1A are ready
to be written, a code block 1s first generated by applying an
EC (e.g., XOR operation) to the three data blocks resulting
in code block (code block 0). Subsequently, the defined

distribution logic described above 1s applied to direct the
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order of distribution for the three data blocks (data blocks 0,
1, and 2) and one code block (code block 0) across the
chunks.

Under the defined distribution logic of RAID 5, code
blocks of each stripe of data are distributed across different

chunks, such that, for instance, code block 0 of stripe 1A 1s
stored 1n chunk D of node 1114 while code block 1 of stripe
2A 1s stored 1n chunk C of node 111¢. This 1s because, 1f all

the code blocks were stored in one node, such as node 1114,
all the code blocks may be lost in the event that node 1114
tails and, therefore, the corresponding data blocks may no
longer be reconstructable 1n case of multiple node failures.
Accordingly, continuing with the example of branch object
200q above, the first three data blocks and the code block are
distributed sequentially such that data block 0 1s stored 1n

chunk A, data block 1 i1s stored 1n chunk B, data block 2 1s
stored 1n chunk C, and code block 0 1s stored 1in chunk D.

Moving to the next stripe, stripe 2A, the next three data
blocks 3-5 and code block 1, generated using data blocks
3-5, are distributed across the nodes 1n a similar manner,
except they are stored 1n chunks D, A, B, and C, respectively.
For the next stripe, data blocks 6-8 and code block 2
generated using data blocks 6-8 are stored in chunks C, D,
A, and B, respectively. Similarly, data blocks 9-11 and code
block 3 generating using data blocks 9-11 are stored in
chunks B, C, D, and A, respectively. Subsequent blocks of
stripes are distributed across the nodes according to the
defined distribution logic described above.

In the event that a data block 1s lost or needs to be
resynced due to a node failing or going ofiline, the data
blocks may be reconstructed or resynced by performing an
XOR of the related blocks 1 a corresponding stripe on the
remaining operational disk drives or nodes. Accordingly,
any N number of blocks, including a code block, are
suilicient to reconstruct or resync a data block. For example,
il node 11156 goes oflline and disconnects from the system,
after node 1115 comes back online and reconnects to the
distributed storage system, some or all blocks in chunk B of
branch object 200a (e.g. data block 1 of stripe 1A and data
block 5 of stripe 2A, etc.) may need to be resynchronized.
This 1s because during the time period when node 1115 1s
oflline, any write request to one or more blocks of chunk B
will fail, resulting in the one or more blocks of chunk B
being out-of-sync.

In one embodiment, whether a data block within a chunk
needs resyncing or not 1s indicated by a resyncing bitmap for
that chunk, which 1s created from tracking bitmaps that are
instantiated when that chunk went ofifline. For example,
assuming that node 111a 1s selected as a coordinating node
for branch object 200q, when a node (e.g., node 1115H)
storing a chunk of the branch object 200q goes ofiline, DOM
sub-module 340 of VSAN module 114 of a coordinating
node (e.g., node 111a) records a LSN (latest write sequence
number) at the time the chunk that went offline and persists
this information to all the online nodes. In addition, DOM
sub-module 340 of each of the online nodes creates a
tracking bitmap corresponding to the recorded LSN, and
updates that tracking bitmap each time 1t performs a write
operation to a chunk of that node.

At the time the offline node comes back online, DOM
sub-module 340 of the coordinating node creates a resyncing
bitmap for the entire logical address space of the out-of-sync
chunk. In some embodiments, each bit 1n the resyncing
bitmap corresponds to a block 1n the logical address space of
the out-of-sync chunk. In one embodiment, DOM sub-
module 340 of the coordinating node creates the resyncing,
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bitmap based on the recorded. LSN and the tracking bitmaps
corresponding to the recorded LSN as follows.

First, DOM sub-module 340 of the coordinating node
iitializes all bits of the resyncing bitmap to zero. Then.
DOM sub-module 340 of the coordinating node locates a
block 1n one of the chunks associated with the recorded
LSN+1. After determining this oflset, DOM sub-module 340
of the coordinating node traverses the blocks of all the
chunks, beginming with the block 1n one of the chunks
associated with the recorded LSN+1 until all of the bits 1n
the tracking bitmaps have been accounted for. The order of
traversal 1s determined according to the defined distribution
logic (e.g., A-B-C-D, D-A-B-C, C-D-A-B, R-C-D-A). Dur-
ing the traversal, DOM sub-module 340 of the coordinating
node sets the bit 1n the resyncing bitmap corresponding to
cach block of the out-of-sync chunk that 1s traversed to one.

FIG. 4 shows branch object 200 being mirrored or dupli-
cated 1nto two copies by applying RAID 1. In some embodi-
ments, other mirroring methodologies are used, such that
branch object 200 1s mirrored into more than two copies (e.g.
3, 4, 3, etc. copies). The mirroring allows an additional level
of fault tolerance such that in the event that a node fails, 1n
addition to being able to resync an out-of-sync data block
using the remaining data and code blocks, data may be
fetched from a mirrored copy of branch object 200. Accord-
ing to one or embodiments, resyncing of data or code blocks
1s carried out by fetching a copy of the corresponding
data/code block from a mirrored copy.

FIG. 5 illustrates operations for resyncing a block of an
crasure coded virtual disk object (e.g., branch object 2004a),
according to one or more embodiments. As described above,
a node in a distributed storage system may go offline
temporarily and come back online. This may result 1n one or
more data and/or code blocks 1n a chunk of a branch object
stored 1n the node going out-of-sync.

The operations begin at 505 responsive to DOM sub-
module 340 of a coordinating node (e.g., node 111a) detect-
ing that a node (e.g., node 1115) that had been offline
reconnected. Upon detecting the reconnection, DOM sub-
module 340 creates the resyncing bitmap corresponding to
the logical address space of the chunk of the reconnected
node, as described above.

At 510, DOM sub-module 340 selects an out-of-sync
block of the reconnected node to resync. To select an
out-of-sync block, DOM sub-module 340 examines the
resyncing bitmap created at 505 for bits set to one. For each
bit set to one, DOM sub-module 340 locates a block
corresponding to that bit 1n the logical address space of the
chunk, and selects that block as an out-of-sync block. At
515, DOM sub-module 340 determines whether the out-ot-
sync block 1s a data block or a code block, by examining
logical address space 401 of data blocks and logical address
space 402 of code blocks. If the out-of-sync block maps to
logical address space 401, then the out-of-sync block 1is
determined to be a data block. On the other hand, il the
out-of-sync block maps to logical address space 402, then
the out-of-sync block i1s determined to be a code block.

IT the selected block 1s a code block, DOM sub-module
340 locates the code block 1n logical address space 402, and
locates the corresponding block (hereimafter referred to as
“mirrored code block™) at 530 1n the logical address space of
code blocks of the mirrored branch object (e.g., branch
object 2005), which includes a pointer to a physical location
of the code block 1n one of nodes 111e to 111/4. Then, at 535,
DOM sub-module 340 determines 1f the mirrored code block
1s available. If the mirrored code block 1s available, DOM
sub-module 340 at 540 instructs the node storing contents of
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the mirrored code block to transmit the contents to the
reconnected node for storage 1n a location corresponding to
the code block 1n the reconnected node. If, however, the
mirrored data block 1s not available, such as when the node
storing the contents of such mirrored code block has also 5
failed, DOM sub-module 340 at 545 reconstructs the code
block by performing an XOR operation on three data blocks
of the same stripe as the code block, and transmitting the
results of the XOR operation to the reconnected node for
storage 1n a location corresponding to the code block 1n the 10
reconnected node. After the code block 1s resynced, 1n some
embodiments, DOM sub-module 340 updates the bit corre-
sponding to the code block 1n the resyncing bitmap by, for
example, setting it back to zero, to indicate that the corre-
sponding block 1s no longer out-oi-sync. 15

If the selected block 1s a data block, DOM sub-module
340 at 550 resyncs 1t by locating the block 1n logical address
space 401, locating the corresponding block (hereinafter
referred to as “mirrored data block™) 1n the logical address
space of data blocks of the mirrored branch object (e.g., 20
branch object 2006), which includes a pointer to a physical
location of the data block 1n one of nodes 111e to 111/, and
instructing the node storing the contents of the mirrored data
block to transmit the contents to the reconnected node for
storage 1n a location corresponding to the data block 1n the 25
reconnected node. In situations where the mirrored data
block 1s not available, such as when the node storing
contents of the mirrored data block has also failed, DOM
sub-module 340 reconstructs the data block by performing
an XOR operation on the other two data blocks and code 30
block of the same stripe, and transmitting the results of the
XOR operation to the reconnected node for storage in a
location corresponding to the data block in the reconnected
node. After the data block 1s resynced, 1 some embodi-
ments, DOM sub-module 340 updates the bit corresponding 35
to the data block in the resyncing bitmap by, for example,
setting 1t back to zero to indicate that the corresponding
block 1s no longer out-of-sync.

After 540, 545, and 550, the tflow of operations returns to
510 so long as there 1s another block to be resynced. 40
Otherwise, the flow terminates.

Embodiments described above may be extended to dis-
tributed storage systems having more than two copies of
composite object 200. In addition, embodiments described
above similarly apply 1n cases where an application of an 45
crasure coding algorithm results in more than one code
block, such as ones employing a 6+2 coding scheme or a 9+3
coding scheme.

The various embodiments described herein may employ
various computer-implemented operations involving data 50
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transierred, 55
combined, compared, or otherwise mampulated. Further,
such manipulations are often referred to 1n terms, such as
producing, 1dentifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments may be useful machine operations. In addi- 60
tion, one or more embodiments also relate to a device or an
apparatus for performing these operations. The apparatus
may be specially constructed for specific required purposes,
or 1t may be a general purpose computer selectively acti-
vated or configured by a computer program stored in the 65
computer. In particular, various general purpose machines
may be used with computer programs written 1n accordance
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with the teachings herein, or 1t may be more convenient to
construct a more specialized apparatus to perform the
required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers, and the like.

One or more embodiments may be implemented as one or
more computer programs Or as one or more computer
program modules embodied in one or more computer read-
able media. The term computer readable medium refers to
any data storage device that can store data which can
thereafter be input to a computer system computer readable
media may be based on any existing or subsequently devel-
oped technology for embodying computer programs 1n a
manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a tlash memory device), a CD
(Compact Discs), CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled
computer system so that the computer readable code 1is
stored and executed 1n a distributed fashion.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, the methods
described may be used in conjunction with virtualizations
that do not correspond directly to any particular hardware
system. Virtualization systems in accordance with the vari-
ous embodiments, implemented as hosted embodiments,
non-hosted embodiments, or as embodiments that tend to
blur distinctions between the two, are all envisioned. Fur-
thermore, various virtualization operations may be wholly or
partially implemented 1n hardware. For example, a hardware
implementation may employ a look-up table for modifica-
tion of storage access requests to secure non-disk data.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include compo-
nents of a host, console, or guest operating system that
performs virtualization functions. Plural instances may be
provided for components, operations or structures described
herein as a single instance. Finally, boundaries between
various components, operations and datastores are some-
what arbitrary, and particular operations are 1llustrated in the
context of specific illustrative configurations. Other alloca-
tions of functionality are envisioned and may fall within the
scope of one or more embodiments. In general, structures
and functionality presented as separate components 1n exem-
plary configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modi-
fications, additions, and improvements may fall within the
scope of the appended claims(s). In the claims, elements
and/or steps do not imply any particular order of operation,
unless explicitly stated in the claims

We claim:

1. A method of resynchronizing a node of a distributed
storage system with other nodes of the distributed storage
system, comprising:

identifying an out-of-sync block of the node;

determining that the out-of-sync block 1s a code block,

wherein the code block 1s generated by performing an
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erasure coding operation on data blocks which are

stored 1n the other nodes, wherein:

determining that the out-of-sync block 1s a code block
1s based on determining that the out-of-sync block
maps to an address space maintained for code blocks
including the out-of-sync block, and

the address space maintained for code blocks 1s differ-
ent from an address space maintained for a plurality
of data blocks including the data blocks;

locating a mirrored code block 1 an address space

maintained for mirrored code blocks; and

storing contents associated with the mirrored code block

in a storage location of the out-of-sync block.

2. The method of claim 1, further comprising:

determining that the contents of the mirrored code block

can be read from a storage location of the mirrored code
block:

based on the determining:

reading the contents of the mirrored code block from
the storage location of the mirrored code block,
wherein the contents associated with the mirrored
code block comprise the read contents.

3. The method of claim 1, further comprising;:

determining that the contents of the mirrored code block

cannot be read from a storage location of the mirrored
code block:

based on the determiming:

reconstructing the contents of the mirrored code block
from the data blocks which are stored in the other
nodes, wherein the contents associated with the
mirrored code block comprise the reconstructed con-
tents.

4. The method of claim 1, wherein

a storage location of the mirrored code block 1s 1dentified

in the address space maintained for mirrored code
blocks based on the storage location of the out-of-sync
block in the address space maintained for code blocks
including the out-of-sync block.

5. The method of claim 4, turther comprising;:

maintaining first metadata for the code blocks including

the out-of-sync block, the first metadata defining the
address space maintained for code blocks including the
out-of-sync block; and

maintaining second metadata for the plurality of data

blocks including the data blocks which are stored in the
other nodes, the second metadata defiming the address
space maintained for the plurality of data blocks includ-
ing the data blocks which are stored in the other nodes.

6. The method of claim 1, wherein 1dentifying the out-
of-sync block of the node comprises:

generating a resynching bitmap of blocks of the node, the

resynching bitmap indicating which blocks of the node
are out-of-sync based on write operations that were
carried out in the other nodes while the node was
oflline.

7. The method of claim 6, wherein generating the resynch-
ing bitmap comprises generating the resynching bitmap
using a plurality of tracking bitmaps instantiated to keep
track of the write operations carried out 1n the other nodes
while the node was ofiline.

8. A non-transitory computer readable storage medium
comprising instructions that are executable in a computer
system to cause the computer system to perform a method of
resynchromizing a node of a distributed storage system with
other nodes of the distributed storage system, the method
comprising;

identifying an out-of-sync block of the node;
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determining that the out-of-sync block 1s a code block,
wherein the code block 1s generated by performing
an erasure coding operation on data blocks which are
stored 1n the other nodes, wherein:
determining that the out-of-sync block 1s a code
block 1s based on determining that the out-of-sync
block maps to an address space maintained for
code blocks including the out-of-sync block, and
the address space maintained for code blocks 1is
different from an address space maintained for a
plurality of data blocks including the data blocks;
locating a mirrored code block in an address space
maintained for mirrored code blocks; and
storing contents associated with the mirrored code
block 1n a storage location of the out-of-sync block.
9. The non-transitory computer readable storage medium
of claim 8, wherein the method further comprises:
determining that the contents of the mirrored code block
can be read from a storage location of the mirrored code
block;
based on the determining:
reading the contents of the mirrored code block from
the storage location of the mirrored code block,
wherein the contents associated with the mirrored
code block comprise the read contents.
10. The non-transitory computer readable storage medium
of claim 8, wherein the method further comprises:
determining that the contents of the mirrored code block
cannot be read from a storage location of the mirrored
code block:
based on the determining:
reconstructing the contents of the mirrored code block
from the data blocks which are stored in the other
nodes, wherein the contents associated with the
mirrored code block comprise the reconstructed con-
tents.
11. The non-transitory computer readable storage medium
of claim 8, wherein
a storage location of the mirrored code block 1s identified
in the address space maintained for mirrored code
blocks based on the storage location of the out-of-sync
block 1n the address space maintained for code blocks
including the out-of-sync block.
12. The non-transitory computer readable storage medium
of claim 11, wherein the method further comprises:
maintaining first metadata for the code blocks including
the out-of-sync block, the first metadata defining the
address space maintained for code blocks including the
out-of-sync block; and
maintaining second metadata for the plurality of data
blocks including the data blocks which are stored in the
other nodes, the second metadata defining the address
space maintained for the plurality of data blocks includ-
ing the data blocks which are stored 1n the other nodes.
13. The non-transitory computer readable storage medium
of claim 8, wherein identifying the out-of-sync block of the
node comprises:
generating a resynching bitmap of blocks of the node, the
resynching bitmap indicating which blocks of the node

are out-of-sync based on write operations that were
carrted out 1n the other nodes while the node was

offline.
14. The non-transitory computer readable storage medium
of claam 13, wherein generating the resynching bitmap

comprises generating the resynching bitmap using a plural-
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ity of tracking bitmaps instantiated to keep track of the write
operations carried out 1n the other nodes while the node was
oifline.

15. A computer system for resynchronizing a node of a
distributed storage system with other nodes of the distrib-
uted storage system, comprising:

a memory; and

a processor configured to:

identify an out-of-sync block of the node;
determine that the out-of-sync block 1s a code block,
wherein the code block 1s generated by performing
an erasure coding operation on data blocks which are
stored 1n the other nodes, wherein:
the processor being configured to determine that the
out-of-sync block 1s a code block 1s based on
determining that the out-of-sync block 1s a code
block 1s based on determining that the out-of-sync
block maps to an address space maintained for
code blocks including the out-of-sync block, and
the address space maintained for code blocks 1is
different from an address space maintained for a
plurality of data blocks including the data blocks;
locate a mirrored code block 1n an address space
maintained for mirrored code blocks; and
store contents associated with the mirrored code block
in a storage location of the out-of-sync block.

16. The computer system of claim 15, wherein the pro-
cessor 1s further configured to:

determine that the contents of the mirrored code block can

be read from the storage location of the mirrored code
block:

based on the determining:

read the contents of the mirrored code block from the
storage location of the mirrored code block, wherein
the contents associated with the mirrored code block
comprise the read contents.

17. The computer system of claim 15, wherein the pro-
cessor 1s further configured to:

determine that the contents of the mirrored code block

cannot be read from a storage location of the mirrored

code block:
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based on the determining:

reconstruct the contents of the mirrored code block
from the data blocks which are stored in the other
nodes, wherein the contents associated with the
mirrored code block comprise the reconstructed con-
tents.

18. The computer system of claim 15, wherein:

a storage location of the mirrored code block 1s 1dentified
in the address space maintained for mirrored code
blocks based on the storage location of the out-of-sync
block 1n the address space maintained for code blocks
including the out-of-sync block.

19. The computer system of claim 18, wherein the pro-
cessor 1s further configured to:

maintain {irst metadata for the code blocks including the
out-of-sync block, the first metadata defimng the
address space maintained for code blocks including the
out-of-sync block; and

maintain second metadata for the plurality of data blocks
including the data blocks which are stored 1n the other
nodes, the second metadata defining the address space

maintained for the plurality of data blocks including the
data blocks which are stored in the other nodes.

20. The computer system of claim 135, wherein the pro-
cessor being configured to 1dentify the out-of-sync block of
the node comprises the processor being configured to:

generate resynching bitmap of blocks of the node, the
resynching bitmap indicating which blocks of the node
are out-ol-sync based on write operations that were
carried out in the other nodes while the node was

Bl

ottline.

21. The computer system of claim 20, wherein the pro-
cessor being configured to generate the resynching bitmap
comprises the processor being configured to generate the
resynching bitmap using a plurality of tracking bitmaps
instantiated to keep track of the write operations carried out
in the other nodes while the node was ofiline.
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