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METHOD AND APPARATUS FOR
COMPUTING CELL DENSITY BASED
RARENESS FOR USE IN ANOMALY
DETECTION

STATEMENT OF RELATED APPLICATION

The present application claims priority from U.S. Provi-

sional Application No. 62/171,044, entitled ANOMALY
DETECTION WITH PERVASIVE VIEW OF NETWORK
BEHAVIOR, filed on Jun. 4, 2015. The contents of this
provisional application are incorporated herein by reference
in 1ts entirety.

TECHNICAL FIELD

The present disclosure relates generally to communica-
tion networks, and more particularly, to anomaly detection.

BACKGROUND

Anomaly detection 1s used to identily items, events, or
traflic that exhibit behavior that does not conform to an
expected pattern or data. Anomaly detection systems may,
for example, learn normal activity and take action for
behavior that deviates from what 1s learned as normal
behavior. Density estimation 1s a technique that may be used
for anomaly detection.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an example of a network in which
embodiments described herein may be implemented.

FIG. 2 depicts an example of a network device useful in
implementing embodiments described herein.

FIG. 3 illustrates a network behavior collection and
analytics system for use 1n anomaly detection, 1n accordance
with one embodiment.

FIG. 4 illustrates details of the system of FIG. 3, in
accordance with one embodiment.

FI1G. 5 1llustrates a process tlow for anomaly detection, in
accordance with one embodiment.

FIG. 6 1s a flowchart 1llustrating an overview of a process
tor cell density based rareness computations, in accordance
with one embodiment.

FIG. 7 illustrates an example of density based rareness
using a varying bin width histogram.

FI1G. 8 1s a graph illustrating how features are typically not
independent within the network data.

FIG. 9 1s a tflowchart illustrating a process for generating,
a time weighted binned feature density, in accordance with
one embodiment.

FI1G. 10 1s a flowchart 1llustrating a process for computing
rareness metrics, 1n accordance with one embodiment.

Corresponding reference characters indicate correspond-
ing parts throughout the several views of the drawings.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

In one embodiment, a method generally comprises receiv-
ing network data at an analytics device, grouping features of
the network data into multivariate bins, generating a density
for each of the multivariate bins, computing a rareness
metric for each of the multivariate bins based on a prob-
ability of obtaining a feature in a bin and the probability for
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2

all other of the multivariate bins with equal or smaller
density, and 1dentifying anomalies based on computed rare-
ness metrics.

In another embodiment, an apparatus generally comprises
an 1terface for receiving network data and a processor for
grouping features of the network data into multivariate bins,
generating a density for each of the multivariate bins,
computing a rareness metric for each of the multivariate bins
based on a probability of obtaining a feature 1n a bin and the
probability for all other of the multivaniate bins with equal
or smaller density, and identifying anomalies based on
computed rareness metrics.

In yet another embodiment, logic 1s encoded on one or
more non-transitory computer readable media for execution
and when executed operable to process network data, group
features of the network data into multivariate bins, generate
a density for each of the multivariate bins, compute a
rareness metric for each of the multivaniate bins based on a
probability of obtaining a feature 1n a bin and the probability
for all other of the multivariate bins with equal or smaller
density, and 1dentily anomalies based on computed rareness
metrics.

Example Embodiments

The following description 1s presented to enable one of
ordinary skill in the art to make and use the embodiments.
Descriptions of specific embodiments and applications are
provided only as examples, and various modifications will
be readily apparent to those skilled in the art. The general
principles described herein may be applied to other appli-
cations without departing from the scope of the embodi-
ments. Thus, the embodiments are not to be limited to those
shown, but are to be accorded the widest scope consistent
with the principles and features described herein. For pur-

pose ol clarity, details relating to technical material that 1s
known 1n the technical fields related to the embodiments
have not been described 1n detail.

The goal of anomaly detection is to 1dentify observations
that differ from other examples in a dataset. Density esti-
mation 1s a statistical technique that may be used {for
anomaly detection. In density estimation, an estimate of the
underlying probability density may be generated using a
sample of data. The histogram 1s one of the techniques that
may be used to estimate density. Histogram based tech-
niques for anomaly detection may be used to compute an
outlier score separately for each dimension and then aggre-
gate scores. This approach may be insuflicient for high
dimensionality network metadata due to the complex and
significant multivariate relationships between dimensions.
Kernel density techniques may be used to generate a con-
tinuous density estimate, which may be conceptualized as
smoothed histograms. This approach has drawbacks such as
complexity, selection of bandwidth and kernel, and over
smoothing, which tends to over smooth rich, spiky, distri-
butions.

The embodiments described herein provide a nonpara-
metric approach to anomaly detection based on multivariate
histograms. As described 1n detail below, rareness may be
determined based on the ordering of densities of the multi-
variate cells. In one or more embodiments, bins (cells) with
varying width are used to reduce noise where density 1s low
(wide bins) and gain precision where density 1s high (narrow
bins). The optimal number of bins may depend on the
distribution of the data and the goal of the analysis.

The term nonparametric as used herein refers to a method
that 1s not based on parameterized probabaility distributions
(distribution-free). The nonparametric approach does not
rely on data belonging to any particular distribution. Rather
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than having a fixed number of parameters, the number of
parameters may grow with the amount of data, for example.
Nonparametric approaches are flexible 1n that they support
distributions of any shape and do not impose assumptions on
the distributions of data. In the network trathc domain, using
a nonparametric approach i1s important due to the mrregular
and varying distributions observed in network metadata.

The term multivariate as used herein refers to cells,
histograms, or density estimates that are dependent on the
combination of features, rather than features independently.
The multivariate approach uses simultaneous observation
and analysis of more than one outcome variable. In the
network trailic domain, a univariate approach to anomaly
detection may not be suflicient for identifying suspicious
behavior. Since complex multivaniate relationships exist
between features, a univariate approach would likely only be
able to detect a small percentage of flows with anomalous
properties.

Density estimation 1s a flexible and powerful method for
anomaly detection that does not require assumptions or infer
meaning based on distance. This 1s especially appropnate for
the domain of network metadata since numeric distributions
exhibit unique qualities not often present 1n other domains.
Many of the numeric network metadata features (e.g., packet
count, byte size, or other features) can be conceptualized as
using a hybrid of both numeric and nominal scales of
measurement. For example, the ratio of flow byte size has
meaning (numeric), however, there are particular byte size
values that correspond to specific flow events, such as the
iitial TCP (Transmission Control Protocol) handshake
establishing a connection (nominal). Therefore, since dis-
tance based approaches are not appropriate for categorical
type information, density estimation 1s an appropriate
approach in this context. For some dimensions, the fre-
quency of the value of a feature may be more mformative
than the value of the feature.

The network traflic anomalies may be identified 1n mul-
tidimensional data with many features. The network meta-
data features may be mixed, involving categorical, binary,
and numeric features. Many of the univanate feature distri-
butions may be irregular, exhibiting spikiness and pockets of
sparsity. The scales may differ, thus limiting the use of
distance-based approaches. The features may not be inde-
pendent and exhibit irregular, multivariate relationships. The
embodiments described herein provide an anomaly detec-
tion system appropriate for data with these characteristics.

In one or more embodiments, network data may be
collected throughout a network such as a data center using
multiple vantage points. This provides a pervasive view of
network behavior, using metadata from every (or almost
every) packet. In one or more embodiments, an analytics
system provides a big data analytics platform that monitors
everything (or almost everything) while providing pervasive
security. One or more embodiments may provide visibility
from every (or almost every) host, process, and user per-
spective. The network metadata may be combined i a
central big data analytics platform for analysis. With infor-
mation about network behavior captured from multiple
perspectives, the various data sources can be correlated to
provide a powerful information source for data analytics.

The comprehensive and pervasive information about net-
work behavior that 1s collected over time and stored 1n a
central location enables the use of machine learning algo-
rithms to detect suspicious activity. Multiple approaches to
modeling normal or typical network behavior may be used
and activity that does not conform to this expected behavior
may be flagged as suspicious, and may be investigated.
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Machine learning allows for the identification of anomalies
within the network traflic based on dynamic modeling of
network behavior.

Referring now to the drawings, and first to FIG. 1, a
simplified network in which embodiments described herein
may be implemented 1s shown. The embodiments operate in
the context of a data communication network including
multiple network devices. The network may include any
number of network devices i communication via any
number of nodes (e.g., routers, switches, gateways, control-
lers, edge devices, access devices, aggregation devices, core
nodes, intermediate nodes, or other network devices), which
facilitate passage of data within the network. The nodes may
communicate over one or more networks (e.g., local area
network (LAN), metropolitan area network (MAN), wide
area network (WAN), virtual private network (VPN), virtual
local area network (VLAN), wireless network, enterprise
network, corporate network, Internet, intranet, radio access
network, public switched network, or any other network).
Network traflic may also travel between a main campus and
remote branches or any other networks.

In the example of FIG. 1, a fabric 10 comprises a plurality
of spine nodes 12a, 125 and leaf nodes 14a, 145, 14c¢, 144.
The leat nodes 14a, 145, 14¢, may connect to one or more
endpoints (hosts) 16a, 166, 16¢, 16d (e.g., servers hosting
virtual machines (VMSs) 18). The leal nodes 14a, 145, 14c,
144 are each connected to a plurality of spine nodes 12a, 125
via links 20. In the example shown 1n FIG. 1, each leaf node
14a, 145, 14c¢, 144 1s connected to each of the spine nodes
12a, 126 and 1s configured to route communications
between the hosts 16a, 165, 16¢, 16d and other network
clements.

The leat nodes 14a, 145, 14¢, 144 and hosts 16a, 165, 16¢,
164 may be 1n communication via any number of nodes or
networks. As shown in the example of FIG. 1, one or more
servers 165, 16¢c may be 1n communication via a network 28
(e.g., layer 2 (L.2) network). In the example shown 1n FIG.
1, border leat node 144 1s in commumication with an edge
device 22 (e.g., router) located 1n an external network 24
(c.g., Internet/ WAN (Wide Area Network)). The border leat
144 may be used to connect any type of external network
device, service (e.g., firewall 31), or network (e.g., layer 3

(L3) network) to the fabric 10.

The spine nodes 12a, 126 and leat nodes 14a, 145, 14c,
144 may be switches, routers, or other network devices (e.g.,
.2, L3, or L2/L.3 devices) comprising network switching or
routing elements configured to perform forwarding func-
tions. The leal nodes 14a, 145, 14¢, 14d may include, for
example, access ports (or non-fabric ports) to provide con-
nectivity for hosts 16a, 165, 16¢, 16d, virtual machines 18,
or other devices or external networks (e.g., network 24), and
tabric ports for providing uplinks to spine switches 12a, 125.

The leaf nodes 14a, 145, 14¢, 14d may be implemented,
for example, as switching elements (e.g., Top of Rack (ToR)
switches) or any other network element. The leat nodes 14a,
145, 14c, 14d may also comprise aggregation switches 1n an
end-of-row or middle-of-row topology, or any other topol-
ogy. The leal nodes 14a, 145, 14¢, 14d may be located at the
edge of the network fabric 10 and thus represent the physical
network edge. One or more of the leal nodes 14a, 145, 14c,
144 may connect Endpoint Groups (EGPs) to network fabric
10, internal networks (e.g., network 28), or any external
network (e.g., network 24). EPGs may be used, for example,
for mapping applications to the network.

Endpoints 16a, 165, 16¢, 164 may connect to network
tabric 10 via the leafl nodes 14a, 145, 14¢. In the example
shown 1n FIG. 1, endpoints 16a and 164 connect directly to
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leat nodes 14a and 14c¢, respectively, which can connect the
hosts to the network fabric 10 or any other of the leaf nodes.
Endpoints 165 and 16c connect to leal node 146 via L2
network 28. Endpoints 165, 16¢ and L2 network 28 may
define a LAN (Local Area Network). The LAN may connect
nodes over dedicated private communication links located in
the same general physical location, such as a building or
campus.

WAN 24 may connect to leaf node 144 via an L3 network
(not shown). The WAN 24 may connect geographically
dispersed nodes over long distance communication links,
such as common carrier telephone lines, optical lightpaths,
synchronous optical networks (SONETs), or synchronous
digital hierarchy (SDH) links. The Internet 1s an example of
a WAN that connects disparate networks and provides global
communication between nodes on various networks. The
nodes may communicate over the network by exchanging
discrete frames or packets of data according to predefined
protocols, such as Transmission Control Protocol (TCP)/
Internet Protocol (IP).

One or more of the endpoints may have instantiated
thereon one or more virtual switches (not shown) for com-
munication with one or more virtual machines 18. Virtual
switches and virtual machines 18 may be created and run on
cach physical server on top of a hypervisor 19 installed on
the server, as shown for endpoint 16d. For ease of 1llustra-
tion, the hypervisor 19 1s only shown on endpoint 164, but
it 1s to be understood that one or more of the other endpoints
having virtual machines 18 installed thereon may also
comprise a hypervisor. Also, one or more of the endpoints
may include a virtual switch. The virtual machines 18 are
configured to exchange communication with other virtual
machines. The network may include any number of physical
servers hosting any number of virtual machines 18. The host
may also comprise blade/physical servers without virtual
machines (e.g., host 16¢ in FIG. 1).

The term ‘host” or ‘endpoint’ as used herein may refer to
a physical device (e.g., server, endpoint 16a, 165, 16¢, 16d)
or a virtual element (e.g., virtual machine 18). The endpoint
may include any communication device or component, such
as a computer, server, hypervisor, virtual machine, container,
process (e.g., running on a virtual machine), switch, router,
gateway, host, device, external network, etc.

One or more network devices may be configured with
virtual tunnel endpoint (VTEP) functionality, which con-
nects an overlay network (not shown) with network fabric
10. The overlay network may allow virtual networks to be
created and layered over a physical network infrastructure.

The embodiments include a network behavior data col-
lection and analytics system comprising a plurality of sen-
sors 26 located throughout the network, collectors 32, and
analytics device 30. The data monitoring and collection
system may be integrated with existing switching hardware
and software and operate within an Application-Centric
Infrastructure (ACI), for example.

In certain embodiments, the sensors 26 are located at
components throughout the network so that all packets are
monitored. For example, the sensors 26 may be used to
collect metadata for every packet traversing the network
(c.g., east-west, north-south). The sensors 26 may be
installed 1n network components to obtain network traflic
data from packets transmitted from and received at the
network components and monitor all network flows within
the network. The term ‘component” as used herein may refer
to a component of the network (e.g., process, module, slice,
blade, server, hypervisor, machine, virtual machine, switch,
router, gateway, etc.).
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In some embodiments, the sensors 26 are located at each
network component to allow for granular packet statistics
and data at each hop of data transmission. In other embodi-
ments, sensors 26 may not be installed 1n all components or
portions of the network (e.g., shared hosting environment in
which customers have exclusive control of some virtual
machines 18).

The sensors 26 may reside on nodes of a data center
network (e.g., virtual partition, hypervisor, physical server,
switch, router, gateway, or any other network device). In the
example shown i FIG. 1, the sensors 26 are located at
server 16¢, virtual machines 18, hypervisor 19, leal nodes
14a, 14b, 14¢, 144, and firewall 31. The sensors 26 may also
be located at one or more spine nodes 12a, 125 or interposed
between network elements.

A network device (e.g., endpoints 16a, 165, 16d) may
include multiple sensors 26 running on various components
within the device (e.g., virtual machines, hypervisor, host)
so that all packets are monitored (e.g., packets 37a, 37b to
and from components). For example, network device 164 1n
the example of FIG. 1 includes sensors 26 residing on the
hypervisor 19 and virtual machines 18 running on the host.

The 1nstallation of the sensors 26 at components through-
out the network allows for analysis of network traflic data to
and from each point along the path of a packet within the
ACI. This layered sensor structure provides for i1dentifica-
tion of the component (i1.e., virtual machine, hypervisor,
switch) that sent the data and when the data was sent, as well
as the particular characteristics of the packets sent and
received at each point 1n the network. This also allows for
the determination of which specific process and virtual
machine 18 1s associated with a network flow. In order to
make this determination, the sensor 26 runming on the virtual
machine 18 associated with the flow may analyze the tratlic
from the virtual machine, as well as all the processes running
on the virtual machine and, based on the traflic from the
virtual machine, and the processes running on the virtual
machine, the sensor 26 can extract tlow and process nfor-
mation to determine specifically which process 1n the virtual
machine 1s responsible for the flow. The sensor 26 may also
extract user information in order to identify which user and
process 1s associated with a particular flow. In one example,
the sensor 26 may then label the process and user informa-
tion and send it to the collector 32, which collects the
statistics and analytics data for the various sensors 26 in the
virtual machines 18, hypervisors 19, and switches 14a, 145,
14c, 144.

As previously described, the sensors 26 are located to
identily packets and network flows transmitted throughout
the system. For example, 11 one of the VMs 18 running at
host 16d receives a packet 37a from the Internet 24, 1t may
pass through router 22, firewall 31, switches 14d, 14c,
hypervisor 19, and the VM. Since each of these components
contains a sensor 26, the packet 37a will be 1dentified and
reported to collectors 32. In another example, 11 packet 375
1s transmitted from VM 18 running on host 164 to VM 18
running on host 16a, sensors installed along the data path
including at VM 18, hypervisor 19, leal node 14¢, leaf node
14a, and the VM at node 16a will collect metadata from the
packet.

The sensors 26 may be used to collect information 1includ-
ing, but not limited to, network information comprising
metadata from every (or almost every) packet, process
information, user information, virtual machine information,
tenant information, network topology information, or other
information based on data collected from each packet trans-
mitted on the data path. The network traflic data may be
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associated with a packet, collection of packets, flow, group
of flows, etc. The network traflic data may comprise, for
example, VM 1D, sensor 1D, associated process 1D, associ-
ated process name, process user name, sensor private key,
geo-location of sensor, environmental details, etc. The net-
work traflic data may also include information describing
communication on all layers of the OSI (Open Systems
Interconnection) model. For example, the network traflic
data may include signal strength (1if applicable), source/
destination MAC (Media Access Control) address, source/
destination IP (Internet Protocol) address, protocol, port
number, encryption data, requesting process, sample packet,
ctc. In one or more embodiments, the sensors 26 may be
configured to capture only a representative sample of pack-
ets.

The system may also collect network performance data,
which may include, for example, information specific to file
transiers mitiated by the network devices, exchanged emails,
retransmitted files, registry access, file access, network fail-
ures, component failures, and the like. Other data such as
bandwidth, throughput, latency, jitter, error rate, and the like
may also be collected.

Since the sensors 26 are located throughout the network,
the data 1s collected using multiple vantage points (1.e., from
multiple perspectives in the network) to provide a pervasive
view ol network behavior. The capture of network behavior
information from multiple perspectives rather than just at a
single sensor located 1n the data path or in communication
with a component 1n the data path, allows data to be
correlated from the various data sources to provide a useful
information source for data analytics and anomaly detection.
For example, the plurality of sensors 26 providing data to the
collectors 32 may provide information from various network
perspectives (view V1, view V2, view V3, etc.), as shown in
FIG. 1.

The sensors 26 may comprise, for example, software
(e.g., running on a virtual machine, container, virtual switch,
hypervisor, physical server, or other device), an application-
specific integrated circuit (ASIC) (e.g., component of a
switch, gateway, router, standalone packet monitor, PCAP
(packet capture) module), or other device. The sensors 26
may also operate at an operating system (e.g., Linux, Win-
dows) or bare metal environment. In one example, the ASIC
may be operable to provide an export interval of 10 msecs
to 1000 msecs (or more or less) and the software may be
operable to provide an export interval of approximately one
second (or more or less). Sensors 26 may be lightweight,
thereby mlmmally impacting normal traflic and compute
resources 1n a data center. The sensors 26 may, for example,
sniil packets sent over 1ts host Network Interface Card (N I1C)
or individual processes may be configured to report trafiic to
the sensors. Sensor enforcement may comprise, for example,
hardware, ACl/standalone, software, IP tables, Windows
filtering platform, etc.

As the sensors 26 capture communications, they may
continuously send network trathic data to collectors 32 for
storage. The sensors may be used to collect data from
streaming data, for example. The sensors 26 may send their
records to one or more of the collectors 32. In one example,
the sensors may be assigned primary and secondary collec-
tors 32. In another example, the sensors 26 may determine
an optimal collector 32 through a discovery process.

In certain embodiments, the sensors 26 may preprocess
network trathic data before sending it to the collectors 32. For
example, the sensors 26 may remove extraneous or dupli-
cative data or create a summary of the data (e.g., latency,
packets, bytes sent per tlow, tlagged abnormal activity, etc.).
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The collectors 32 may serve as network storage for the
system or the collectors may organize, summarize, and
preprocess data. For example, the collectors 32 may tabulate
data, characterize trathic flows, match packets to identily
traflic flows and connection links, or flag anomalous data.
The collectors 32 may also consolidate network tratlic tlow
data according to various time periods.

Information collected at the collectors 32 may include, for
example, network information (e.g., metadata from every
packet, east-west and north-south), process information,
user information (e.g., user identification (ID), user group,
user credentials), virtual machine mnformation (e.g., VM 1D,
processing capabilities, location, state), tenant information
(e.g., access control lists), network topology, etc. Collected
data may also comprise packet flow data that describes
packet tlow information or 1s dertved from packet flow
information, which may include, for example, a five-tuple or
other set of values that are common to all packets that are
related 1n a flow (e.g., source address, destination address,
source port, destination port, and protocol value, or any
combination of these or other 1dentifiers). The collectors 32
may utilize various types of database structures and memory,
which may have various formats or schemas.

In some embodiments, the collectors 32 may be directly

connected to a top-of-rack switch (e.g., leal node). In other
embodiments, the collectors 32 may be located near an
end-of-row switch. In certain embodiments, one or more of
the leal nodes 14a, 145, 14c¢, 14d may each have an
associated collector 32. For example, 1f the leaf node i1s a
top-of-rack switch, then each rack may contain an assigned
collector 32. The system may include any number of col-
lectors 32 (e.g., one or more).
The analytics device (module) 30 1s configured to receive
and process network traflic data collected by collectors 32
and detected by sensors 26 placed on nodes located through-
out the network. The analytics device 30 may be, for
example, a standalone network appliance or implemented as
a VM 1mage that can be distributed onto a VM, cluster of
VMs, Software as a Service (SaaS), or other suitable distri-
bution model. The analytics device 30 may also be located
at one of the endpoints or other network device, or distrib-
uted among one or more network devices.

In certain embodiments, the analytics device 30 may
determine dependencies of components within the network
using an application dependency module. The analytics
device 30 may establish patterns and norms for component
behavior or address policy usage. In one embodiment, the
analytics device 30 may also discover applications or select
machines on which to discover applications, and then run
application dependency algorithms.

In certain embodiments, the analytics device 30 may be
implemented 1n an active-standby model to ensure high
availability, with a first analytics module functioning in a
primary role and a second analytics module functioning 1n a
secondary role. If the first analytics module fails, the second
analytics module can take over control.

As shown 1n FIG. 1, the analytics device 30 includes an
anomaly detector 34. The anomaly detector 34 may operate
at any computer or network device (e.g., server, controller,
appliance, management station, or other processing device
or network element) operable to receive network perfor-
mance data and, based on the received information, identify
features 1n which an anomaly deviates from other features.
The anomaly detector 34 may, for example, learn what
causes security violations by monitoring and analyzing
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behavior and events that occur prior to the security violation
taking place, 1n order to prevent such events from occurring
in the future.

Computer networks may be exposed to a variety of
different attacks that expose vulnerabilities of computer
systems 1n order to compromise their security. For example,
network traflic transmitted on networks may be associated
with malicious programs or devices. The anomaly detector
34 may be provided with examples of network states cor-
responding to an attack and network states corresponding to
normal operation. The anomaly detector 34 can then analyze
network traflic flow data to recognize when the network 1s
under attack. In some example embodiments, the network
may operate within a trusted environment for a period of
time so that the anomaly detector 34 can establish a baseline
normalcy. The analytics device 30 may include a database or
norms and expectations for various components. The data-
base may incorporate data from external sources. In certain
embodiments, the analytics device 30 may use machine
learning techniques to 1dentily security threats to a network
using the anomaly detector 34. Since malware 1s constantly
evolving and changing, machine learning may be used to
dynamically update models that are used to 1dentity mali-
cious tratlic patterns. Machine learning algorithms may be
used to provide for the 1dentification of anomalies within the
network traflic based on dynamic modeling of network
behavior.

The anomaly detector 34 may be used to 1dentify obser-
vations which differ from other examples i a dataset. For
example, if a training set of example data with known outlier
labels exists, supervised anomaly detection techniques may
be used. Supervised anomaly detection techmiques utilize
data sets that have been labeled as “normal” and “abnormal™
and train a classifier. In a case i which i1t 1s unknown
whether examples 1n the training data are outliers, unsuper-
vised anomaly techniques may be used. Unsupervised
anomaly detection techmiques may be used to detect anoma-
lies 1n an unlabeled test data set under the assumption that
the majority of instances in the data set are normal by
looking for 1nstances that seem to fit to the remainder of the
data set. In one or more embodiments, an unsupervised
machine learning technique 1s used to identily network
anomalies 1n multidimensional network metadata.

The anomaly detector 34 may comprise a density based
rareness module operable to compute cell density based
rareness for use 1n anomaly detection. As described below,
the embodiments may utilize an approach to anomaly detec-
tion for network behavior based on the cumulative prob-
ability of time series weighted multivanate binned feature
density estimates. Weight may depend, for example, on the
freshness of observed data (time of observation) (e.g., based
on time sensed, collected, or received). In some embodi-
ments, features may be grouped with bin (cell) boundaries
defined empirically based on umvariate transition points. A
rareness metric for each cell may be computed based on
cumulative probability of cells with equal or smaller density.
This allows for new observations to be tagged based on rare
feature combinations that are historically unusual, and there-
fore, potentially suspicious. Details of density based rare-
ness calculations for network anomaly detection are
described further below.

It 1s to be understood that the network devices and
topology shown in FIG. 1 and described above 1s only an
example and the embodiments described herein may be
implemented in networks comprising different network
topologies or network devices, or using different protocols,
without departing from the scope of the embodiments. For
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example, although network fabric 10 1s illustrated and
described herein as a leaf-spine architecture, the embodi-
ments may be implemented based on any network topology,
including any data center or cloud network fabric. The
embodiments described herein may be implemented, for
example, 1n other topologies including three-tier (e.g., core,
aggregation, and access levels), fat tree, mesh, bus, hub and
spoke, etc. The sensors 26 and collectors 32 may be placed
throughout the network as appropriate according to various
architectures. Furthermore, the density based rareness mod-
ule at anomaly detector 34 may use network data (metadata)
collected from any number of sensors either directly or via
one or more collectors, from any number of locations within
the network. Thus, the embodiments described herein for
determining cell density based rareness may be used 1n any
network topology comprising any number or arrangement of
data sensors or collectors. The network may include any
number or type of network devices that facilitate passage of
data over the network (e.g., routers, switches, gateways,
controllers, appliances), network elements that operate as
endpoints or hosts (e.g., servers, virtual machines, clients),
and any number of network sites or domains in communi-
cation with any number of networks.

Moreover, the topology illustrated 1n FIG. 1 and described
above 1s readily scalable and may accommodate a large
number of components, as well as more complicated
arrangements and configurations. For example, the network
may include any number of fabrics 10, which may be
geographically dispersed or located 1n the same geographic
area. Thus, network nodes may be used 1n any suitable
network topology, which may include any number of serv-
ers, virtual machines, switches, routers, appliances, control-
lers, gateways, or other nodes iterconnected to form a large
and complex network, which may include cloud or fog
computing. Nodes may be coupled to other nodes or net-
works through one or more interfaces employing any suit-
able wired or wireless connection, which provides a viable
pathway for electronic communications.

FIG. 2 1llustrates an example of a network device 40 that

may be used to implement the embodiments described
herein. In one embodiment, the network device 40 1s a
programmable machine that may be implemented in hard-
ware, software, or any combination thereof. The network
device 40 includes one or more processor 42, memory 44,
network interface 46, and analytics/anomaly detection/den-
sity based rareness modules 48 (analytics module 30,
anomaly detector 34 shown 1n FIG. 1).

Memory 44 may be a volatile memory or non-volatile
storage, which stores various applications, operating sys-
tems, modules, and data for execution and use by the
processor 42. For example, one or more analytics/anomaly
detection/density based rareness components (e.g., module,
device, code, logic, software, firmware, etc.) may be stored
in memory 44. The device may include any number of
memory components.

Logic may be encoded 1n one or more tangible media for
execution by the processor 42. For example, the processor
42 may execute codes stored i a computer-readable
medium such as memory 44 to perform the processes
described below with respect to FIGS. 5, 6, 9, and 10. The
computer-readable medium may be, for example, electronic
(e.g., RAM (random access memory), ROM (read-only
memory), EPROM (erasable programmable read-only
memory)), magnetic, optical (e.g., CD, DVD), electromag-
netic, semiconductor technology, or any other suitable
medium. The network device may include any number of
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processors 42. In one example, the computer-readable
medium comprises a non-transitory computer-readable
medium.

The network interface 46 may comprise any number of
interfaces (linecards, ports) for receiving data or transmit-
ting data to other devices. The network interface 46 may
include, for example, an Ethernet interface for connection to
a computer or network. As shown 1n FIG. 1 and described
above, the iterface 46 may be configured to receive net-
work data collected from a plurality of sensors 26 distributed
throughout the network. The network interface 46 may be
configured to transmit or receive data using a variety of
different communication protocols. The interface may
include mechanical, electrical, and signaling circuitry for
communicating data over physical links coupled to the
network. The network device 40 may further include any
number of input or output devices.

It 1s to be understood that the network device 40 shown in
FIG. 2 and described above 1s only an example and that
different configurations of network devices may be used. For
example, the network device 40 may further include any
suitable combination of hardware, software, processors,
devices, components, modules, or elements operable to
tacilitate the capabilities described herein.

FIG. 3 1llustrates an example of a network behavior data
collection and analytics system in accordance with one
embodiment. The system may include sensors 26, collectors
32, and analytics module (engine) 30 described above with
respect to FIG. 1. In the example shown i FIG. 3, the
system further includes external data sources 50, policy
engine 52, and presentation module 54. The analytics mod-
ule 30 receives input from the sensors 26 via collectors 32
and from external data sources 50, while also interacting
with the policy engine 52, which may receive mput from a
network/security policy controller (not shown). The analyt-
ics module 30 may provide mput (e.g., via pull or push
notifications) to a user interface or third party tools, via
presentation module 54, for example.

In one embodiment, the sensors 26 may be provisioned
and maintained by a configuration and 1mage manager 55.
For example, when a new virtual machine 18 1s instantiated

or when an existing VM migrates, configuration manager 535
may provision and configure a new sensor 26 on the VM
(FIGS. 1 and 3).

As previously described, the sensors 26 may reside on
nodes of a data center network. One or more of the sensors
26 may comprise, for example, software (e.g., piece of
soltware running (residing) on a virtual partition, which may
be an instance of a VM (VM sensor 26a), hypervisor
(hypervisor sensor 26b), sandbox, container (container sen-
sor 26c¢), virtual switch, physical server, or any other envi-
ronment 1n which software 1s operating). The sensor 26 may
also comprise an application-specific ntegrated circuit
(ASIC) (ASIC sensor 26d) (e.g., component ol a switch,
gateway, router, standalone packet monitor, or other network
device including a packet capture (PCAP) module (PCAP
sensor 26¢) or similar technology), or an mndependent unit
(e.g., device connected to a network device’s monitoring
port or a device connected 1n series along a main trunk (link,
path) of a data center).

The sensors 26 may send their records over a high-speed
connection to one or more of the collectors 32 for storage.
In certain embodiments, one or more collectors 32 may
receive data from external data sources 50 (e.g., whitelists

50a, IP watch lists 505, Who 1s data 50¢, or out-of-band data.
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In one or more embodiments, the system may comprise a
wide bandwidth connection between collectors 32 and ana-
lytics module 30.

As described above, the analytics module 30 comprises an
anomaly detector 34, which may use machine learning
techniques to identify security threats to a network. The
analytics module 30 may include examples of network states
corresponding to an attack and network states corresponding
to normal operation. The anomaly detector 34 can then
analyze network traflic flow data to recognize when the
network 1s under attack. The analytics module 30 may store
norms and expectations for various components 1n a data-
base, which may also incorporate data from external sources
50. The analytics module 30 may then create access policies
for how components can interact using policy engine 52.
Policies may also be established external to the system and
the policy engine 52 may incorporate them into the analytics
module 30. As described below, the anomaly detector 34
may be configured for cell density based rareness compu-
tations. Details of processing that may be performed by the
anomaly detector 34 are described below with respect to
FIGS. §, 6, 9, and 10.

The presentation module 54 provides an external interface
for the system and may include, for example, a serving layer
54a, authentication module 545, web front end and UI (User
Interface) 54c¢, public alert module 544, and third party tools
54¢. The presentation module 54 may preprocess, summa-
rize, filter, or organize data for external presentation.

The serving layer 34a may operate as the interface
between presentation module 54 and the analytics module
30. The presentation module 534 may be used to generate a
webpage. The web front end 54¢ may, for example, connect
with the serving layer 54a to present data from the serving
layer in a webpage comprising bar charts, core charts, tree
maps, acyclic dependency maps, line graphs, tables, and the
like. In one example, the presentation module 54 may be
used to present histograms, such as shown in FIG. 7, for use
in calculating density based rareness as described below.

The public alert module 544 may use analytic data
generated or accessible through analytics module 30 and
identily network conditions that satisiy specified criteria and
push alerts to the third party tools 54e. One example of a
third party tool 54e 1s a Security Information and Event
Management (SIEM) system. Third party tools 54¢ may
retrieve information from serving layer 54a through an API
(Application Programming Interface) and present the infor-
mation according to the SIEM’s user interface, for example.

FIG. 4 1llustrates an example of a data processing archi-
tecture of the network behavior data collection and analytics
system shown in FIG. 3, 1n accordance with one embodi-
ment. As previously described, the system includes a con-
figuration/image manager 55 that may be used to configure
or manage the sensors 26, which provide data to one or more
collectors 32. A data mover 60 transmits data from the
collector 32 to one or more processing engines 64. The
processing engine 64 may also receive out of band data 50
or APIC (Application Policy Infrastructure Controller) noti-
fications 62. Data may be received and processed at a data
lake or other storage repository. The data lake may be
configured, for example, to store 275 Thbytes (or more or
less) of raw data. The system may include any number of
engines, including for example, engines for identifying
flows (tlow engine 64a) or attacks including DDoS (Dis-
tributed Denial of Service) attacks (attack engine 645, DDoS
engine 64c¢). The system may further include a search engine
644 and policy engine 64e. The search engine 64d may be
configured, for example to perform a structured search, an
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NLP (Natural Language Processing) search, or a visual
search. Data may be provided to the engines from one or
more processing components.

The processing/compute engine 64 may further include
processing component 64f operable, for example, to identify
host traits 64g and application traits 64/ and to perform
application dependency mapping (ADM 64/). The process
64/ may include, for example, a density based rareness
computation process described below. The DDoS engine 64¢
may generate models online while the ADM 64/ generates
models offline, for example. In one embodiment, the pro-
cessing engine 1s a horizontally scalable system that includes
predefined static behavior rules. The compute engine may
receive data from one or more policy/data processing com-
ponents 64i.

The trathic monitoring system may further include a
persistence and API (Application Programming Interface)
portion, generally indicated at 66. This portion of the system
may include various database programs and access protocols
(e.g., Spark, Hive, SQL (Structured Query Language) 664,
Katka 665, Druid 66¢c, Mongo 66d4), which interface with
database programs (e.g. IDBC (JAVA Database Connectiv-
ity) 66e¢, altering 66/, RoR (Ruby on Rails) 66g). These or
other applications may be used to i1dentily, organize, sum-
marize, or present data for use at the user interface and
serving components, generally indicated at 68, and
described above with respect to FIG. 3. User interface and
serving segment 68 may include various interfaces, includ-
ing for example, ad hoc queries 684, third party tools 685,
and full stack web server 68¢, which may receive mput from
cache 684 and authentication module 68e.

It 1s to be understood that the system and architecture
shown 1 FIGS. 3 and 4, and described above 1s only an
example and that the system may include any number or
type of components (e.g., databases, processes, applications,
modules, engines, interfaces) arranged in various configu-
rations or architectures, without departing from the scope of
the embodiments. For example, sensors 26 and collectors 32
may belong to one hardware or software module or multiple
separate modules. Other modules may also be combined 1nto
tewer components or further divided into more components.
Furthermore, the density based rareness computations
described herein may be performed in systems comprising
different architectures or components, without departing
from the scope of the embodiments.

FIG. 5 illustrates an overview of a process flow for
anomaly detection, 1n accordance with one embodiment. As
described above with respect to FIG. 1, the data may be
collected at sensors 26 located throughout the network to
monitor all packets passing through the network (step 80).
The data may comprise, for example, raw flow data. The
data collected may be big data (1.e., comprising large data
sets having different types of data) and may be multidimen-
sional. The data may be captured from multiple perspectives
within the network to provide a pervasive network view. The
data collected may include network information, process
information, user information, and host information, for
example.

In one or more embodiments the data source undergoes
cleansing and processing at step 82. In data cleansing,
rule-based algorithms may be applied and known attacks
removed from the data for input to anomaly detection. This
may be done to reduce contamination of density estimates
from known malicious activity, for example.

Features are 1dentified (derived, generated) for the data at
step 84. Raw features may be used to derive consolidated
signals. The collected data may comprise any number of
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features. Features may be expressed, for example, as vec-
tors, arrays, tables, columns, graphs, or any other represen-
tations. For example, dertved logarithmetic transformations
may be produced for many of the numeric features. The
network metadata features may be mixed and involve cat-
cgorical, binary, and numeric features, for example. The
teature distributions may be irregular and exhibit spikiness
and pockets of sparsity. The scales may differ, features may
not be independent, and may exhibit 1rregular relationships.
The embodiments described herein provide an anomaly
detection system appropriate for data with these character-
istics. In one or more embodiments, a nonparametric, scal-
able method 1s defined for identifying network traflic
anomalies 1n multidimensional data with many features.

The raw features may be used to derive consolidated
signals. For example, from the flow level data, the average
bytes per packet may be calculated for each flow direction.
The forward to reverse byte ratio and packet ratio may also
be computed. Additionally, forward and reverse TCP flags
(such as SYN (synchromize), PSH (push), FIN (finish), etc.)
may be categorized as both missing, both zero, both one,
both greater than one, only forward, and only reverse.
Derived logarithmic transformations may be produced for
many of the numeric (right skewed) features. Feature sets
may also be derived for different levels of analysis.

In certain embodiments discrete numeric features (e.g.,
byte count and packet count) and combination features are
placed into bins of varying size (width, range) (step 86).
Bins of constant size may be used, however, using varying
bin width may be beneficial for reducing noise where
density 1s low (wide bins) and gaining precision where
density 1s high (narrow bins). The optimal number of bins
may depend on the distribution of the data. In some embodi-
ments, umvariate transition points may be used so that bin
ranges are defined by changes 1n the observed data. For
example, the features may be grouped into bins comprising
bin boundaries selected based on a probability that data
within each of the bins follows a discrete uniform distribu-
tion. Cells may be optimally defined based on distribution
characteristics, with boundaries at statistically defined uni-
variate transition points. In one example, a statistical test
may be used to 1dentity meaningiul transition points in the
distribution.

In one embodiment, bin ranges are defined by changes 1n
the observed data using a statistical approach for identifying
meaningful transition points 1n the distribution. The distri-
bution of a feature (e.g., bytes 1n network tlow) may show
regions of narrow spikes, pockets of sparseness, and areas of
smooth coverage. A statistical method may be used to
identify transitions between these different regions. The
heterogeneous distribution may be divided into bins of
which observations mternally are homogenous. Since mem-
bers of the same bin are associated with the same density
estimate (constant), each bin may be modeled given an
assumed discrete uniform distribution. For a candidate bin
boundary, a test may be performed to determine the prob-
ability of observing the set of counts within this bin given an
assumed discrete uniform distribution. If the probability
exceeds a predefined value (alpha), it 1s concluded that the
bin boundaries are appropriate. If there 1s no evidence to
suggest that the underlying data within the bin does not
follow a discrete uniform distribution, 1t 1s concluded that
the bin boundaries are acceptable. However, 11 the data
shows that the probability of observing the given frequency
counts, given a discrete uniform distribution with the bin 1s
unlikely, the bin boundaries are rejected, concluding that the
bin exhibits heterogeneous data characteristics. In this sce-
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nario, the bin may be subdivided so that each bin exhibits
data homogeneity within the bin. Bin boundaries may be
defined such that the probability of the test 1s always larger
than a predetermined value, alpha. In certain embodiments,
the Pearson chi-square (CHISQ) test of equal proportions
may be used to test the null hypothesis that the proportions
(probabilities of success) of two or more values within the
bin are the same. The above described process may be used
to optimally define multivariate cells of varying width based
on characteristics of the observed data.

The binned features may be used for density estimation
purposes (step 88). In one example, a density may be
computed for each binned feature combination to provide
density estimates. Anomalies may be identified using non-
parametric multivariate density estimation. The estimate of
multivariate density may be generated based on historical
frequencies of the discretized feature combinations to create
time series binned feature density estimates. This provides
increased data visibility and understandability, assists 1n
outlier mvestigation and forensics, and provides building
blocks for other potential metrics, views, queries, and
experiment iputs. Details of density calculations, 1n accor-
dance with one embodiment, are described below with
respect to FIG. 9.

Rareness may then be calculated based on probability of
regions with equal or smaller density (step 90). Rareness
may be determined based on an ordering of densities of the
multivariate cells. In one example, binned feature combina-
tions with the lowest density correspond to the most rare
regions. In one or more embodiments, a higher weight may
be assigned to more recently observed data and a rareness
value computed based on a cumulative probability of
regions with equal or smaller density. Instead of computing,
a rareness value for each observation compared to all other
observations, a rareness value may be computed based on
particular contexts, as described below. Rareness metrics
may also be calculated for different levels of analysis
(entities). Details of rareness computations in accordance
with one embodiment, are described below with respect to
FIG. 10.

New observations with a historically rare combination of
features may be labeled as anomalies whereas new obser-
vations that correspond to a commonly observed combina-
tion of features are not (step 92). The anomalies may
include, for example, point anomalies, contextual anoma-
lies, and collective anomalies. Point anomalies are observa-
tions that are anomalous with respect to the rest of the data.
Contextual anomalies are anomalous with respect to a
particular context (or subset of the data). A collective
anomaly 1s a set of observations that are anomalous with
respect to the data. All of these types of anomalies are
applicable to 1identifying suspicious activity in network data.
In one embodiment, contextual anomalies are defined using
members of the same 1dentifier group.

The 1dentified anomalies may be used to detect suspicious
network activity potentially indicative of malicious behavior
(step 94). The 1dentified anomalies may be used for down-
stream purposes 1ncluding network forensics, policy gen-
cration, and enforcement. For example, one or more
embodiments may be used to automatically generate optimal
signatures, which can then be quickly propagated to help
contain the spread of a malware family.

FI1G. 6 1s a flowchart 1llustrating an overview of a process
for cell based density rareness, in accordance with one
embodiment. Network data 1s received at the analytics
device 30 (step 96) (FIGS. 1 and 6). As described above,
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to provide a pervasive view of the network. For example, the
network data may be collected from a plurality of sensors
distributed throughout the network to monitor network tlows
within the network from multiple perspectives in the net-
work. As described above with respect to steps 84-86 1n FIG.
5, features are 1dentified for the network data and grouped
into multivariate bins (step 98). In one embodiment, the bins
define cells of varying width, as shown in FIG. 7 and
described below. For each binned feature combination, a
density 1s generated (step 100). The density may be a time
weighted feature density in which a higher weight 1s
assigned to more recently observed features, while stale
features are assigned lower weights (1.e., down weighted). In
one embodiment, features are weighted using an exponential
decay applied to cumulative binned feature combination
counts. Once the density 1s calculated for each cell, cells
may be ordered based on density. A rareness metric may then
be computed for each of the multivaniate bins based on a
probability of obtaining a feature (observation) in a bin and
the probability 1n bins with equal or smaller density (step
102). Anomalies may be 1dentified based on the computed
rareness metrics (step 104).

It 1s to be understood that the processes shown 1 FIGS.
5 and 6 and described above are only examples and that
steps may be added, combined, removed, or modified with-
out departing from the scope of the embodiments.

As previously described, cell boundaries may be defined
and features grouped 1into any number of multivariate bins.
As shown 1n graph 170 of FIG. 7, the bins (cells) (172a,
1726, 172c, 172d, 172e, 172/, 172g, 1724, 1721, 172;) may
have varying width (i.e., at least two bins have diflerent
widths (ranges)). The multivanate approach 1s used because
features may not be independent in the network data, as
shown 1n the example of FIG. 8. Graph 180 of FIG. 8 shows
log_twd_byte_per_packet_bin plotted with log fwd_byte_
count_bin to illustrate how these features are not indepen-
dent.

FIG. 9 1s a lowchart illustrating a process for determining,
density, 1n accordance with one embodiment. Once cell
boundaries have been defined, new observations are pro-
cessed 1n batches, based on units of time. Binned feature
combination counts (1.e., number of observations within the
bin) are obtained for each batch (step 190). The estimate of
multivariate density may be generated based on historical
frequencies of discretized {feature combinations. For
example, for each new batch, multivariate density estimates
may be obtained using all previous data within a specified
(e.g., user specified) maximum time window (step 192). In
one or more embodiments, an exponential decay may be
applied to the cumulative counts to date for each batch (step
194). This has the eflect of assigning a higher weight to more
recently observed features and a lower weight to stale
observations. For each binned feature combination, the
density may then be computed based on the total counts and
number of observations that fall within the bin (adjusted by
time series weight) (step 196).

In one example, for each batch, the frequency (F) of each
binned feature combination (1, for 1=1 . . . N binned feature
combinations) 1s calculated as the frequency for the old
batch (1 ) multiplied by e to the negative lambda plus the
count 1n the new batch (1 ). This may be expressed as:

£ :ﬁpfe_h+ﬁzf

A larger value for lambda (greater than or equal to one) may
be used except for the case 1n a particular environment in
which typical traflic patterns are expected to change rapidly
over time.
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For each binned feature combination the density (D,) may
be computed as the total counts (C,) divided by the product
of the size of the bin (the number of possible observations
that fall in the bin) (O,) and the sum of the counts (after
applying the exponential decay) (F,). This can be expressed
as:

FIG. 10 1s a flowchart 1llustrating a process for computing,
rareness, 1n accordance with one embodiment. As described

above, the binned feature combinations with lowest density
correspond to the most rare regions. Once the density 1s
calculated for each cell (as described above with respect to
FIG. 9, for example), cells are ordered based on density (step
197). For each multivariate bin, a rareness metric may be
computed as less than or equal to the probability of obtaining
an observation for the bin plus the probability of obtaining
an observation 1n all other bins with equal or smaller density
(step 199). For each new observation, this approach provides
a quantitative measure of rareness based on historical data.

Referring again to FIG. 7, the rareness associated with an
observation in the fourth bin (1724d) 1s visually shown. In
this example, the rareness computation includes the fourth
bin (1726) and all other bins with equal or smaller density
(172¢, 1722, 172i, 172j).

Once the bins (1, . . ., N) are ordered based on density
(highest to lowest density), rareness for bin (1) may be
expressed as:

R=probability of obtaining an observation i bin (1)+
probability of obtaining an observation i1n bins
(1+1, . . ., N);
where (1+1) includes all bins of equal density.

The term observation as used herein refers to observed
data (feature) (e.g., byte count, packet count, etc.). The
probability of obtaining an observation in a bin may be
defined as the number of features 1n the bin/total number of
possible features.

It 1s to be understood that the processes shown 1 FIGS.
9 and 10 and described above are only examples, and that
steps may be added, modified, combined, or removed with-
out departing from the scope of the embodiments.

In some cases, the characteristics of a particular network
flow may not appear rare when compared to all other tlows
at that time, but may appear anomalous only when compared
to other tlows received at a particular provider IP address (or
other entity). Additionally, any one of the flows 1n a port
scan or DDoS (Daistributed Denial of Service) attack may not
be rare when compared to other flows observed at that time,
but may appear anomalous as a group when compared to
typical tratlic volume observed for an IP address over time.
Therefore, it may not be suflicient to i1dentily anomalous
network flows merely as tlows with rare global feature
characteristics. Instead, each potential anomaly unit may be
compared to a variety of reference groups based on context,
level, and comparison type. The {following describes
embodiments that may be used to increase the coverage and
identification of potential malicious activity. One or more of
these embodiments (or any combination thereof) may be
used along with the above described embodiments.

In one embodiment, contextual anomalies may be defined
using members of the same identifier group. Rather than
computing a rareness value for each observation compared
to all other observations, a rareness value may be computed
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based on particular contexts. For example, a flow having
characteristics that are not unusual 1n a global sense may be
very unusual between two particular IP addresses. For
example, a particular type of flow that may be typical for a
data center, may be unexpected 11 observed between two
particular IP addresses. Another example may be a particular
type of flow that 1s typical for an IP address, but not for that
IP address” particular server port. In order to identily con-
textual anomalies, the feature combinations of each new
flow may be compared to a subset of historical flows, based
on the same contextual family.

In one example, two flow contexts are defined. Context
may be based, for example, on the same combination of the
following dimensions: (1) tenant, provider IP address, pro-
tocol, provider port and type; (2) tenant, provider IP address,
consumer IP address, protocol, provider port and type.
Rareness metrics may be calculated globally and for each of
the contexts. Rareness metrics for multiple contexts provide
a rich data source for downstream analysis. Anomaly sta-
tistics may be provided for each context, as well as feature
plots for specific contexts, and context level statistics (1.e.,
context age, new contexts, missing contexts, and context
level features over time such as proportion of anomalous
flows and typical traflic volume). This data allows users to
search for and identily anomalies using a fuller set of
perspectives or contexts.

In one embodiment, different units of analysis are used to
provide multiple views of data. In the above description,
only one level of analysis has been discussed; the raw tlow
data. However, not all anomalies can be identified using a
single unit of analysis. Some anomalies may not become
apparent unless other levels of analysis are considered. In
one or more embodiments, levels of analysis beyond the raw
flow data may be used. Other entities (levels of analysis)
may 1nclude IP addresses, applications, users, roles, or other
entities. This approach allows for the idenftification of
anomalous IP addresses, applications, users, and roles (be-
yond merely anomalous flows). One example 1s a DDoS
(Distributed Denial of Service) attack in which each flow
may have characteristics of typical traflic, yet as a group
represent an anomalous event. This may also be conceptu-
alized as a collective anomaly. For each level of analysis (or
entity), a feature set may be derived using the raw flow data
for a given time period. Each unit of analysis may have 1ts
own unique set of derived features. Example features for IP
level data include flow rate, consumer to provider byte rate,
provider to client median byte per packet, median flow
duration, consumer in-degree, distinct protocols, distinct
provider ports, etc. Other units of analysis may have other
derived features. Using the same approach described above
to compute rareness metrics for each new flow, rareness
metrics may be calculated for other levels of analysis.
Similarly, the concept of contextual anomalies applies to
other analysis units as well. For example, with IP addresses
as the unit of analysis, contextual anomalies may be deter-
mined based on members of the same tenant and EPG
combination. Using multiple views allows for a richer
landscape of data for anomaly detection and provides a data
source for analysis for multiple entity types (e.g., flows, IP
addresses, applications, users, and roles).

In one embodiment, flexible comparison types are used.
For analysis units other than flows, two comparison types
may be provided. The first 1s the type that has been described
so far, comparing a new observation against other members
of the same unit. For example, an IP address that exhibits
feature combinations that differ from other IP addresses 1n
the same EPG may be tagged as anomalous. The second type
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of comparison involves historical reference data for the
same unit (self). In this case, an IP address that exhibits
feature combinations that differ from the feature combina-
tions seen historically by this same IP address may be
identified as anomalous. Thus, an IP address (e.g., source)
may exhibit suspicious behavior both when compared to
other IP addresses in similar functions and compared to 1ts
own past behavior. Both comparisons may be used to
provide a comprehensive analysis of potential suspicious
activity. Broadening the scope of comparison types may
reduce false negatives, thus increasing the recall of mali-
cious network behavior. The additional comparison type of
self enables a set of time series plots available to the user for
cach feature.

In one embodiment, traflic patterns may be modeled based
on day of week and time of day. For example, flow start and
end times may be used to determine whether the tlow spans
a weekday day, weekday night, or weekend. Three binary
derived features may be computed to identify the presence
or absence of the flow during each time category, for
example. For each new flow, rareness 1s based on historical
flows 1n the corresponding time categories. This approach
may reduce false positives 1 environments i which net-
work traflic varies considerably based on the time of day and
day of the week, for example.

As can be observed from the foregoing, the embodiments
described herein provide numerous advantages over con-
ventional methods and systems for the application of
anomaly detection for network metadata. One or more
embodiments provide a nonparametric, scalable method for
identifying network traflic anomalies in multidimensional
data with many features. In one or more embodiments, a
multivariate approach allows more outliers to be 1dentified
based on rare combinations of features, without making any
assumptions about relationships between variables. This
allows for the detection of observations that are anomalous
only 1n their combination of features. For example, there
may be many tlows with small forward byte counts and
many flows with large reverse byte counts, but the combi-
nation of small forward byte counts and large reverse byte
counts may be rare. Since features may not be independent
in the data (unusual bivariate relationships), a multivanate
approach 1s advantageous. Binned density estimation pro-
vides a nonparametric approach, supporting distributions of
any shape. Binning allows for computational efliciency, so
that estimates can be based on a large volume of data. The
embodiments allow outliers to be identified not only at the
extremes of features, but 1n unusual pockets 1n the middle as
well. The embodiments can handle many features and of
different types (e.g., categorical, ordinal, numeric). Also,
there 1s no notion of distance to specily across various scales
and variable types. One or more embodiments support the
defining characteristics of the data while not imposing
unnecessary or inappropriate assumptions. The network
metadata collected presents distributions that are unique in
multiple aspects (e.g., lack of feature independence, features
that are not hybrids of numeric and nominal type, and
teatures that exhibit irregular and often spiky distributions).
These unique and defining data characteristics limit the
applicability of conventional methods and system, particu-
larly those that are distance based, parametric, or univanate.

Although the method and apparatus have been described
in accordance with the embodiments shown, one of ordinary
skill 1n the art will readily recogmize that there could be
variations made without departing from the scope of the
embodiments. Accordingly, it 1s mntended that all matter
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contained in the above description and shown 1n the accom-
panying drawings shall be interpreted as illustrative and not
in a limiting sense.

What 15 claimed 1s:

1. A method comprising:

recerving network data at an analytics device;

processing at the analytics device, the network data to

identily anomalies, wherein processing comprises:

grouping features of the network data into multivariate
bins at the analytics device;

generating a density for each of said multivanate bins
at the analytics device;

computing at the analytics device, a rareness metric for
each of said multivariate bins, wherein said rareness
metric 1s based on a probability of obtaining a feature
in a bin and said probability for all other of said
multivariate bins with equal or smaller density;

identifying anomalies based on computed rareness met-
rics; and

transmitting said identified anomalies to a network
device for use 1n detecting network activity poten-
tially indicative of malicious behavior.

2. The method of claim 1 wherein said multivariate bins
comprise bins of varying width.

3. The method of claim 2 wherein bin boundaries are
based on univarnate transition points.

4. The method of claim 1 wherein said density comprises
a time weighted binned feature density.

5. The method of claim 4 wherein generating said time
weighted binned feature density comprises applying an
exponential decay to the features based on time of obser-
vation.

6. The method of claim 1 wherein generating said density
comprises a nonparametric process.

7. The method of claim 1 wherein computing said rare-
ness metric comprises computing rareness for different time
categories corresponding to different days and time of day.

8. The method of claim 1 further comprising comparing,
the features to historical features corresponding to a same
type of feature.

9. The method of claim 1 wherein said rareness metric 1s
computed based on a context.

10. The method of claim 9 wherein said context 1s based
on a tenant, a provider IP (Internet Protocol) address, a
protocol, and a provider port and type.

11. The method of claim 1 wherein said rareness metric 1s
computed for different umts of analysis.

12. The method of claim 11 wherein said units of analysis
are selected from a group consisting of IP (Internet Protocol)
address, applications, users, and roles.

13. The method of claim 11 further comprising comparing
said rareness metrics for one unit of analysis at different time
periods.

14. The method of claim 1 wherein said probability
comprises a cumulative probability taking into account
historical data.

15. The method of claim 1 wherein the network data 1s
collected from a plurality of sensors distributed throughout
a network to monitor network flows within the network from
multiple perspectives in the network.

16. An apparatus comprising;:

an interface for recerving network data; and

a processor for grouping features of the network data into

multivariate bins, generating a density for each of said
multivariate bins, computing a rareness metric for each
of said multivariate bins, wherein said rareness metric
1s based on a probability of obtaining a feature 1n a bin
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and said probability for all other of said multivanate
bins with equal or smaller density, 1dentifying anoma-
lies based on computed rareness metrics; and transmuit-
ting said 1dentified anomalies for use 1n detecting
network activity potentially indicative of malicious
behavior.

17. The apparatus of claim 16 wherein said multivariate
bins comprise bins of varying width.

18. The apparatus of claam 16 wheremn said density
comprises a time weighted binned feature density and said
probability comprises a cumulative probability, and wherein
generating said density comprises a nonparametric process.

19. One or more non-transitory computer-readable media
including logic encoded therein and when executed operable
to:

process network data at an analytics device;

group features of the network data into multivariate bins;

generate a density for each of said multivariate bins;

compute a rareness metric for each of said multivanate
bins, wherein said rareness metric 1s based on a prob-
ability of obtaining a feature 1 a bin and said prob-
ability for all other of said multivariate bins with equal
or smaller density;

identily anomalies based on computed rareness metrics;

and

transmit said 1dentified anomalies to a network device for

use 1n detecting network activity potentially indicative
ol malicious behavior.

20. The non-transitory computer-readable media of claim

19 wherein said multivariate bins comprise bins of varying

width.
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