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MOTION ADAPTIVE SPEECH
RECOGNITION FOR ENHANCED VOICE
DESTINATION ENTRY

RELATED APPLICATION

This application 1s the U.S. National Stage of Interna-
tional Application No. PCT/US2015/035110, filed Jun. 10,

2015, which designates the U.S., and was published 1n
English. The entire teachungs of the above application 1is
incorporated herein by reference.

BACKGROUND OF THE INVENTION

Automatic speech recogmition (ASR) generally means
converting an acoustic signal (sound) into a sequence of
words (text). Following the statistical approach, one typi-
cally collects speech statistics to train language models and
acoustic models which are subsequently employed during
speech recognition. In general, language models relate to the
probability of particular word sequences and acoustic mod-
¢ls relate to sounds 1n a language. Speech recognition can
also be enhanced by semantic models 1n order to generate a
semantic representation (meaning) of the recognized text.
Voice destination entry (VDE) 1s one of the main applica-
tions for ASR 1n vehicles, e.g., cars, and on mobile phones.

SUMMARY OF THE INVENTION

A method for motion adaptive speech processing includes
dynamically estimating a motion profile that 1s representa-
tive of a user’s motion based on data from one or more
resources associated with the user, and effecting processing,
of a speech signal received from the user, the processing
taking 1nto account the estimated motion profile to produce
an interpretation of the speech signal.

The data from the one or more resources can include
sensor data and data from a non-speech resource associated
with the user. For example, the sensor data may include at
least one member selected from the group consisting of
position, speed, acceleration, direction, and a combination
thereotf. Further, the data from the non-speech resource can
include at least one member selected from the group con-
s1sting of navigation system data, address book data, calen-
dar data, motion history data, crowd sourced data, configu-
ration data, and a combination thereof. For example, the data
from the non-speech resource can include imnformation about
an event at a particular time and location, ¢.g., a rock concert
in a city at six o’clock in the evening.

In an embodiment, dynamically estimating the motion
profile includes computing a motion weight vector using the
data from the one or more resources associated with the user.
Further, dynamically estimating the motion profile can
include interpolating a plurality of models using the motion
welght vector to generate a motion adaptive model.

As used herein, a model, including a motion adaptive
model, can be a language model, an acoustic model, a
semantic model, or a combination thereof. For example, a
multilingual acoustic model may be particularly useful when
crossing (language) borders. A semantic model can give an
interpretation of all or a portion of an uftterance. For
example, a user may say, “Play music from Madonna.” A
semantic model can give an interpretation for the word
“Madonna,” which can be an artist. The semantic model can
also be used to classily the entire utterance, e.g., to provide
the mterpretation: “This 1s music-related and the user prob-
ably likes to listen to some music using his music player.”
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In an embodiment, computing the motion weight vector
includes determining a relation between the non-speech
resource and a language resource associated with the plu-
rality of models, e.g., a plurality of language models. Alter-
natively or in addition, at least one of the models can be
associated with a geographic area or with at least one of
geographic area, time and date. Interpolating the models,
¢.g., the language models, can result 1n a probability that the
user 1s or will be located in the geographic area. For
example, 1n a use-case where the user 1s driving car and the
user’s route 1s considered, the mterpolation can result in a
probability of where the user will be at lunch time. In
another use-case example, there 1s an event at a particular
venue and many people are driving to/from this event at a
certain time, so that they search for similar things 1n that
area, such as restaurants, parking spaces, etc. The same
place, and time, but at a different date (1.e., without an event)
may be less relevant to speech recognition of users’ voice
queries. One reason for the reduced relevance can be that
users would generally not be looking for a parking space
there without an event, because the venue 1s far away from
a city, from other points of interest, etc. Alternatively or 1n
addition, dynamically estimating the motion profile can
turther include mterpolating the motion adaptive model with
a background model, e.g., a background language model.

Interpolating one model with another model can include
combining the models into an interpolated (e.g., combined)
model. For example, two grammars, each being a model
related to a geographical area, can be combined and then
used to process a speech signal.

The speech signal received from the user can include at
least one of a voice audio signal, a video signal, e.g., from
the user’s mouth or face, and data from gestures, e.g., for
text entry.

The speech signal can be received from the user while the
user 1s 11 motion.

The user need not be 1n motion when the speech signal 1s
received. For example, location of the user 1tself can be used
for motion adaptive ASR, the user’s direction (and speed)
being 0. For example, the user may be looking for something
in the user’s vicinity, speaking into a smartphone.

A system for motion adaptive speech processing includes
a motion profile estimator at a client and a processor. The
motion profile estimator 1s configured to estimate a motion

profile that 1s representative ol a user’s motion dynamically
based on data from one or more resources associated with
the user. The processor 1s configured to eflect processing of
a speech signal recerved from the user, ¢.g., while 1n motion,
the processing taking into account the estimated motion
profile to produce an interpretation of the speech signal.

In an embodiment, the motion profile estimator 1s con-
figured to compute a motion weight vector using the data
from the one or more resources associated with the user.
Further, the motion profile estimator can be configured to
interpolate a plurality of models using the motion weight
vector to generate a motion adaptive model. At least one of
the models can be associated with a geographic area, and the
motion profile estimator can interpolate the models to pro-
duce a probability that the user 1s or will be located 1n the
geographic area. Alternatively or 1 addition, the motion
profile estimator can be further configured to interpolate the
motion adaptive model with a background model.

In general, automatic speech recognition (ASR) can be
understood as a process of analyzing a speech signal to
obtain a textual representation of the speech. For example,
a user may utter, “Where 1s Berlin?” The transcription of the
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utterance may be “where 1s berlin™ and the mterpretation can
be “berlin”+“direction to go.”

In an embodiment of the system for motion adaptive
speech processing, the processor 1s configured to perform
automatic speech recognition (ASR) of the speech signal at
the client using the estimated motion profile, the ASR
producing the interpretation of the speech signal.

In another embodiment, the processor 1s configured to
send the speech signal and estimated motion profile to a
cloud service to perform ASR of the speech signal using the
estimated motion profile, the ASR producing the interpre-
tation of the speech signal.

In yet another embodiment, the processor 1s configured to
send the speech signal to a cloud service for ASR, receive
results of the ASR from the cloud service, and re-rank the
results using the estimated motion profile to produce the
interpretation of the speech signal.

A computer program product includes a non-transitory
computer readable medium storing instructions for performs-
ing a method for motion adaptive speech processing, the
instructions, when executed by a processor, cause the pro-
cessor to dynamically estimate a motion profile that is
representative of a user’s motion based on data from one or
more resources associated with the user, and effect process-
ing of a speech signal received from the user, e.g., while 1n
motion, the processing taking into account the estimated
motion profile to produce an interpretation of the speech
signal.

Embodiments of the present invention may have many
advantages. Currently, the language model adaptation for
certain domains 1s limited to small user-dependent content
such as contact lists. Adaptation methods based on past user
queries or user content that 1s dertved from other applica-
tions typically does not work for address destination entry
because of the great diversity of addresses. Embodiments of
the present invention incorporate the individual motion
profile of the user to constrain the search space to user-
relevant destinations. This directly leads to an increasing
accuracy. Also, this personalizes the search space based on
the user’s behavior.

Today, crowd sourced data 1s used to guess the popularity
of named entities such as points of interest. This approach,
however, has drawbacks. On the one hand, crowd sourced
data 1s not available 1n real-time. On the other hand, 1t 1s still
unclear 1f there 1s a correlation between crowd sourced data,
¢.g., WIKIPEDIA® click-through rate for certain addresses,
and voice queries. Popularity measures derived from web-
pages are not necessarily related to voice destination queries.
For some applications, a certain portion of the search space
can be activated or deactivated via a dialog, ¢.g., the system
or the user activates the city or state where the user is
staying. In contrast, embodiments of the present invention
use a continuous adaptation process based on the user’s
motion profile. For example, 1f a user 1s leaving a city on the
highway, i1t 1s more likely that an address 1s entered which
1s somewhere on the current driving direction, e.g., the next
city. On the other hand, 1t can be recognized that the user 1s
currently looking for an address 1n his vicinity by analyzing
the user’s motion profile. In this case, the speech recognizer
can focus on these addresses which are more likely to be
relevant to the user. It 1s also possible to incorporate infor-
mation from the navigation system, e¢.g., when the user 1s
currently on route to a destination. The absence of a motion
profile will lead to using the generalized approach that 1s
currently deployed for all users. Hence, the novel embodi-
ments can serve the current functionality, which 1s usetul for
backwards compatibility and product diversity.
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Dynamically estimating a user’s motion profile and inter-
polating language models based on the motion profile 1s
particularly useful for cross-border navigation. This 1s a
distinct advantage 1n regions that include multiple countries
with different languages, such as in Furope, where cross-
border navigation presents a complex, multi-lingual prob-
lem.

Embodiments use motion profiles to improve speech
recognition and can be applied for natural language under-
standing. Advantageously, methods for motion adaptive
speech processing can improve the accuracy of voice des-
tination entry individually for each user. Such methods are
close to the behavior of a human assistant and, for at least
that reason, will further contribute to increase the acceptance
ol voice enabled applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated 1n the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to
scale, emphasis instead being placed upon illustrating
embodiments of the present invention.

FIG. 1 1s a schematic diagram of a method and system for
motion adaptive speech processing;

FIG. 2 15 a schematic diagram illustrating language model
estimation;

FIG. 3 1s a schematic diagram illustrating motion weight
computation based on a user’s position, speed and direction;

FIG. 4 1s a schematic diagram illustrating motion weight
computation for uncertain speed or direction measures;

FIG. 5 1s a schematic diagram 1illustrating motion weight
computation based on a user’s route;

FIG. 6 illustrates an example embedded use-case for
motion adaptive speech recognition;

FIG. 7 1llustrates an example hybrid use-case for motion
adaptive speech recognition;

FIG. 8 1llustrates an example of re-ranking of automatic
speech recognition (ASR) results for motion adaptive speech
recognition.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

A description of example embodiments of the mvention
follows.

Voice destination entry, e.g., address entry by voice, 1s
challenging in at least two aspects: First, the large amount of
postal addresses (e.g., more than 10 Million for the US) and
points of interest (e.g., more than 3 Million for the US)
requires a speech recognizer to operate close to the acous-
tical resolution limit (e.g., a vocabulary size greater than 2
Million words). The number of addresses and number of
points of interest are growing, not at least because users can
set their own points of interest. Second, the sparse amount
of training data makes 1t difficult to estimate reliable statis-
tical models to constrain the search space by incorporating
syntactical knowledge.

Currently, a trade-ofl between dialog stages and destina-
tion coverage 1s olten employed to achieve a usable accu-
racy. Both dialog stages and destination coverage have an
impact on the user’s experience using voice for destination
entry. Typically, increasing the number of dialog stages can
decrease the user experience. Also, increasing the destina-
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tion coverage typically results 1n a loss ol recognition
accuracy due to the increased model space.

The methods and systems described therein provide a
solution that closes the gap between dialog and one-shot
voice destination entry for mobile phones and car head-
units.

Crowd sourced data 1s used on a daily basis to estimate
named entity popularities. This data 1s used to constrain the
search space 1n order to achieve a more precise recognition
on common named entities, such as common addresses. The
disadvantage of using crowd sourced data 1s a performance
degradation on less common named entities, e.g., for small
and un-popular regions. This drawback 1s sometimes
resolved by incorporating dialog stages to activate and
deactivate certain regions.

Artificial data 1s sometimes used to estimate a statistical
language model or a grammar for different regions, e.g., for
the U.S., Europe, etc. Embodiments of the present approach
can estimate a statistical language model or a grammar for
small regions, e.g., for cities mm Germany. Furthermore,
embodiments can provide for on-the-fly interpolation of
cach region model, for example, by utilizing a user’s motion
profile, as further described below.

Also commonly used 1s a limitation on a syntactical level,
e.g., by requiring that the address has to be spoken 1n a
certain order, such as, “‘street-city-state.” This approach of
syntactical constraints 1s not applicable for other domains,
such as point of interest search, where a human-intuitive
order 1s often not determinable.

Embodiments of the present approach build upon com-
monly used online adaptation methods. Certain embodi-
ments may be employed 1n recommendation systems, e.g.,
for delivering personalized advertising on mobiles.

Embodiments of the current approach can include or
utilize the analysis of sensor data, such as speed and distance
measurements. Such analysis typically involves digital sig-
nal processing, and may require processing strategies that
increase robustness, i order to deal with unpredictable
behavior, e.g., to deal with wrong sensor data, and to detect
wrong sensor data at all.

A method and corresponding system that incorporate a
motion profile of a user to improve speech recognition 1s
described. Although the method 1s described for voice
destination entry, 1t can be extended to other domains. An
example 1s voice restaurant search. The method can enhance
the recognition of restaurants 1f the motion profile allows to
conclude that the user 1s somewhere 1n the pedestrian area of
a city around lunchtime. This can enhance the one-shot
voice destination entry experience for the user.

In an embodiment, the method continuously interpolates
a set of statistical language models by analyzing the motion
profile(s) of the speaker. The statistical model can be based
on one or more Markov n-gram models; 1t can also be based
on one or more statistical grammars. For example, one or
more statistical language models are estimated for region(s)
under consideration, e.g., for cities, states, countries. The
current behavior of the user can be achieved, e.g., estimated,
by a uniform interpolation of all or a portion of these models.
Activation and deactivation capability can be achieved by
binary interpolation weights. For example, the current city
has a weight of ‘1’—activated—whereas all others are ‘0’
welghted—disabled. A continuous interpolation weight vec-
tor can be estimated based on the speaker’s (e.g., the user’s)
motion profile.

In a particular example, the processing can include the
tollowing procedures:
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a) Generate a weight vector, e.g., Ifrequently or on

demand, of the speech recognizer:

gather sensor data—e.g., current speed, direction and
the like

generate a motion profile—e.g., driving for one hour,
still on track according to the navigation system

analyze motion—e.g., most likely on a highway, look-
ing for a service station

generate a motion weight vector—e.g., enhance points
of interest 1n the next region

b) Recognize speech:

update the motion interpolation weight—e.g., pass the
motion weight vector to the recognizer

stream, or otherwise send, the speech to the recog-
nizer—e.g., into the cloud or locally

evaluate results—e.g., display to the user or enter into
the navigation system.

Online adaptation methods are well known in speech
recognition for both pre-filter search technology and speech
decoding based, for example, on a weighted fimite state
transducer. These adaptation methods are used to interpolate
between certain domains, e.g., based on dialog stages or a
topic detection method. Embodiments of the present inven-
tion can utilize these methods to incorporate motion profiles
during speech recognition. However, embodiments of the
present approach are not limited to online speech adaptation;
they can also be used as a re-ranking technique, e.g., for
processing third-party result lists according to the user’s
motion profile. Hence, the methods and systems according
to the present imnvention are also applicable 1f the speech
recognizer cannot be touched (e.g., modified). For example,
the motion adaptive speech processing described herein can
be applied as an add-on to existing systems and deployments
where the core ASR functionality cannot be modified.

The motion profile can be estimated from various sensors,
such as space-based satellite navigation systems, accelera-
tion sensors, speed measurements, altimeters, etc. The infor-
mation can be analyzed together with a map and aligned
with other mformation sources, e.g., the navigation history
or favorite places and activities from the user profile. In this
way, the analyzer can incorporate the current route, alterna-
tive routes, or places and locations which might be of
interest for the user.

All or any portion of this mformation can be used to
generate an aligned weight vector with the set of available
statistical language models. For example, one can analyze
and align the weight vector statistically. However, because
insuilicient training data may be available, an 1nitial starting
point may need to be derived manually. The developer has
to determine the default mode, e.g., no movement at all, and
its 1mpact on speech recogmition, e.g., activation of the
current region or uniform distribution of the weight vector.
It 1s also configurable what the behavior should be while
driving slow, fast, winding, etc. The motion profile analyses
can be customized or dependent on certain other criteria. For
example, the analyses may be different for luxury cars,
family cars and sports cars.

The technique 1s suited for embedded use-cases to reduce
the required computational power and to increase the accu-
racy, e.g., for point of interest search. In particular, hybnd
use-cases can benelit from this approach. The motion profile
can be estimated on the client and passed as one or more
interpolation weights to the server. The server uses the
interpolation weight(s) to personalize its broad combined
address and point of interest statistical language model. In
this way, the server can prevent 1ts current behavior and
generalization approaches on the one hand. On the other
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hand, the server can deliver accurate and personalized
speech solutions for certain customers, e.g., automotive
premium car manufactures.

Features that distinguish embodiments of the present
approach from other approaches include the estimation of 5
statistical models for certain geographical regions indepen-
dently from each other, the interpolation procedure that
enables a continuous adaptation based on the user’s motion
profile, and the hybrid use-case to address both speech
recognition for the broad crowd and enhanced user-adapted 10
speech recognition for dedicated customers.

FIG. 1 1s a schematic diagram of a method and system for
motion adaptive speech processing. The method and system
can be described in terms of resources and modules that
utilize the resources 1n a process. Among the resources are, 15
for example, Global Positioning System (GPS) 105, speed
110, navigation system 115, direction 120, and configuration
125. The resources associate with the user can be raw sensor
measurements and pre-processed data to derive the user’s
behavior. The raw sensor measurements, e€.g., data from GPS 20
105 and 1n-vehicle sensors, can be used to determine the
speed 110 and direction 120. The navigation system 115 can
provide possible driving routes and destinations. Using
configuration 125, the user, the customer or both can adjust
the 1mpact of motion adaptation 1n various ways. The 25
resources 105, 110, 115 and 125 are typically dynamic
resources that, along with the dynamic motion weight com-
putation, make up the dynamic aspect of the system of FIG.

1. Other resources and modules 1llustrated in FIG. 1 are
typically considered static, or at least do not update as 30
frequently as the dynamic resources. The static resources
and modules can provide a fall back mode if no dynamic
resources or processing are available.

Additional resources include a language model position
database (“LM Position DB”) 130, a language model data- 35

base (“LLM DB”) 135, a point of interest or address database
(“POl/address DB with geolocations™) 140. The database
130 stores the reference geolocation for each of the N
language models, illustrated as LM-1-location, LM-2-loca-
tion and LM-N-location. The language model database 135 40
1s a database collection of N language models, 1llustrated as
LM-1, LM-2 and LM-N. The point of interest and address
database 140 1s a database collection of addresses, points of
interest, etc.

Some embodiments optionally include a background lan- 45
guage model (“LM™) 145 and field data (e.g., crowd sourced
data) 150. The optional resources 145 and 150 provide
background language for backwards compatibility and to
serve users who do not provide any motion data.

Among the processing modules that can be employed by 50
the example system and method illustrated in FIG. 1 are:
select a region 1535, generate training data 160, 162, estimate
a language model (“estimate LM™) 165, 167, motion weigh
computation 170, first language model interpolation (“LM
interpolation 1) 175, second language model iterpolation 55
(“LM mterpolation 2””) 180, and motion adaptive automatic
speech recognition (“MA-ASR™) 185. Some modules, such
as modules 160,162, are typically executed “ofi-line,” that
1s, not with every query or user transaction. For an embed-
ded system, modules 160 and 162 may even be executed 60
once at system production time. Other processing modules,
such as modules 170, 175, are typically executed with every
user transaction.

The select region module 155 can specily certain regions,
¢.g. cities, depending on the available data resources. The 65
selection can be performed by a human expert or automati-
cally by the system. The selection 155 can specily a par-
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ticular database, e.g., database 140, or a particular set of
points of interest and addresses 1n the database 140 to be
used by other processing modules, including those that
generate training data and estimate language models. The
training data generation module 160, and the optional mod-
ule 162, can generate voice destination queries based on
statistical grammars and natural language phrases. The lan-
guage model estimation module 1635, and the optional mod-
ule 167, can perform language model estimation, for
example, using a Markov n-gram model or a statistical
grammar.

The motion weight computation module 170 evaluates the
sensor measurements and data from non-speech resources.
The module then computes the relation between these non-
speech resources and the language resources. The module
further computes a motion interpolation weight vector 172
for speech recognition.

The interpolation modules 175, 185 can merge N lan-
guage models (e.g., LM-1 to LM-N) for speech recognition.
In one example, e.g., for the use-case “driving a car,” the
first 1nterpolation module 175 can interpolate N language
models according to the motion 1nterpolation weight vector
172 to generate a motion adaptive language model 177. The
interpolation module can also interpolate language models
from several motion interpolated language models, e.g., for
the use-case ““a user’s route.” The impact of the interpolation
at module 173 1s configurable by the user, the customer or
both. For example, the user or customer can disable motion
adaptive speech recognition. The user or customer can also
configure different behaviors for diflerent cars (luxury car,
sports car, value car, rented car, Sport Utility Vehicle, etc.)
and/or user-profiles (e.g., based on age, business, etc.). One
or the other configuration can have a relatively strong bias
to motion adaptation and/or other models and/or using a
different weight computation. For example, one configura-
tion can enhance locations in the vicinity of the car’s
location, while another configuration can enhance destina-
tions which are near the highway, but not directly there (e.g.,
a better restaurant). The user, customer or both can also
choose the modes or models that are to be considered. For
example, the event-model may be not relevant for a business
use-case. In contrast, a motion adaptive hotel-model can be
particularly relevant for a business or rental car use-case.

In one example, the second interpolation module 180
interpolates the motion adaptive language model 177 with a
background language model 145 to generate a motion adap-
tive language model 179. This interpolation enables back-
wards compatibility without the need of a dedicated set-up.
As with module 175, the mmpact of the interpolation at
module 180 1s configurable (1235) by the user, the customer,
or both.

As 1illustrated 1 FIG. 1, the motion adaptive automatic
speech recognizer 185 processes a speech signal 190 using
a motion adaptive language model 177, 179 to produce an
ASR result 195. The ASR result 195 can be presented to the
user, €.g., as an terpretation of the speech signal. Option-
ally, the ASR result can be used to update field data 150,
which 1n turn can be used to update database 140.

The above described system and method for motion
adaptive speech processing provide several advantageous
features. For example, the motion adaptive speech recogni-
tion 1s customizable by the customer and its users. Diflerent
use-cases are realizable, such as an embedded use-case, a
cloud use-case or a hybrid use-case. Example use-cases are
described below, for example, with reference to FIGS. 6-8.

As described above, the example system and method
illustrated 1n FIG. 1 1includes features that can provide
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backwards compatibility and increased accuracy for those
users who do not provide motion data. For example, the
generated motion adaptive language model(s) can be re-used
to enhance voice destination entry for users who do not
provide motion profiles. 5

Embodiments can employ motion history and crowd
source data in the processing of a speech signal. Using the
user’s motion history can increase the recognition accuracy
for past voice queries according to the user’s motion behav-
ior. For example, embodiments can compute an exponential 10
decaying average (e.g., a moving average) over motion
interpolation weights from a user and use the resulting
motion interpolation weight vector for motion adaptive
speech recognition. Using crowd sourced data can include
using motion behavior of the crowd to increase the recog- 15
nition accuracy using the background language model. For
example, embodiments can compute an average motion
interpolation weight vector over all users. Embodiments can
also use live traflic data, for example, to increase the
recognition accuracy by evaluating live traflic data using the 20
background language model. For example, embodiments
can compute respective motion interpolation weight vectors
for one or more traflic-hot spots. In general, embodiments
can include any combination of the following features:
motion adaptive speech recognition based on motion behav- 25
1or of the crowd, motion adaptive speech recognition that 1s
personalized for each user, and motion adaptive speech
recognition based on live trathic data (e.g., instead of click-
through rates from webpages).

FI1G. 2 1s a schematic diagram illustrating language model 30
estimation. In the example shown language models are
estimated for a region 205 that includes cities 210-1 through
210-14, and 210-N (collectively 210). For each city, there 1s
a corresponding entry, e.g., entries 215-1, 215-2, etc. up to
215-N, 1n a database 140. The entry includes a list of points 35
of mterest (POIs), addresses or both. Along with the points
of interest and addresses, the database 140 stores the respec-
tive geolocations of the points of interest and addresses. For
example, for city 210-1 (“Hanover”), the database 140
includes a list 215-1 of points of interest and addresses along 40
with their respective geolocations. Similarly, there are
respective lists of points of interest and addresses 215-2,
215-N for cities 210-2 (*Bieleteld”) and 210-N (*Jena”).
The method generates training data (160) for each list of
points of interest addresses and, from the training data, 45
estimates a language model (165). Thus, 1n the example
shown for the cities 210-1, 210-2 and 210-N, generation of
the tramming data results 1n respective language models
LM-1, LM-2 and LM-N, which are stored 1n the language
model database (“LM DB”) 135. As illustrated at 225, 50
training data can be generated using natural language under-
standing (NLU) phrases.

FIG. 3 1s a schematic diagram illustrating motion weight
computation based on a user’s position, speed and direction.
An example use-case 1s a user driving a car. Input for the 55
motion weight computation can include locations of lan-
guage models (“LM-n-locations”, where n=1-N) for the
region 205 of iterest, e.g., cities 210-1, 210-02, etc. up to
210-N, and the driver’s position, direction, and speed. Speed
1s a hint whether the user 1s driving 1n a city and 1s looking 60
for something 1n the city or whether the user 1s driving on the
highway and might look for something at the user’s desti-
nation (or something ‘ahead of the user’). For example,
grven the user’s position 315, direction 320 and speed, voice

destination queries are, for example, more likely for the 65
cities 210-5 (*Kassel”) and 210-4 (“Gottingen™) than for the

cities 210-N (*Jena™) and 210-6 (“Halle™), since the user 1s

10

driving 1n a direction that 1s away from the latter cities. Note,
however, that the probability for voice queries for points of
interest and addresses 1n the city 210-N (“Jena”) 1s not zero,
because the user might just be driving 1n the wrong direc-
tion.

In one example, the computation includes the following

procedures:
a) Estimate the driver’s direction 320;

b) Compute the vectors (e.g., 325-1, 325-2, etc. through
325-N) from the driver’s location 315 to each of the
LM-n-locations and scale those vectors with the driv-
er’s direction 320 and speed;

¢) Compute the distances (e.g., D, D, D, ;) between
the driver and LM-n-locations;

d) Compute the motion interpolation weight vector, e.g.:

/ \

1
D,
1
2.5
o /

In the above computation, n=1-N, for all the cities in the
region 2035, D, 1s the distance to a city from the user’s current
position, and con represents the probability 1in a direction of
a particular city. The example computation 1s a linear
estimator, but a logarithmic estimator can also be used.

FIG. 4 1s a schematic diagram illustrating motion weight
computation for uncertain speed or direction measures. An
example use-case 1s slow motion driving (or walking) with
just GPS available. Input for the motion weight computation
can include locations of language models (LM-n-locations)
for a region 2035, e.g., cities 210-1, 210-2, etc. through
210-N, and the user’s (e.g., the driver’s) position. The user’s
current position 1s shown at 415. The estimated probable
next position of the user 1s 1llustrated as areas of decreasing
likelihood 420, 425, 430, 435 and 440 (the thinner the outer
boundary line, the smaller the likelihood). Although discrete
areas are shown, the likelithood may vary on a continuum.
For example, voice destination queries for addresses 1n cities
210-N (*Jena™), 210-6 (“Halle”), 210-1 (“Hannover”) and
210-2 (“Bieleteld”) are comparable likely, as the locations of
these cities all fall into the same area 435. QQueries with
addresses 1n cities 210-7 (“Erturt™), 210-5 (*Kassel”), 210-4
(“Gottingen”™), or 210-3 (*“Paderborn™), the cities falling on
or 1nto area 430, are more likely than queries in cities falling
into area 435, e.g., 210-N (“Jena™), 210-6 (“Halle™), 210-1
(“Hannover”) and 210-2 (“Bieleteld”).

In one example, the computation of the motion weight
includes the following procedures:

a) Compute a probable next position of the user by using

a tracking method, e.g., a Kalman-filter with Gaussian
distributions;

b) Compute the weight at each LM-n-location based on
the probable next position, e.g., area 430 1s more likely
than area 4385.

For example, each entry in the weight vector (reference
points) can be assigned to one point on the map of the
region. The Kalman-filter approach provides a probability
for each of these points given the “current” position of the
user and the movement. A postponed normalization can be
used, 1f the Kalman-filter 1s more precise than the resolution
ol reference-points on the map.

FIG. 5 1s a schematic diagram 1illustrating motion weight
computation based on a user’s route. An example use-case
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1s a known route for the user. Input for the motion weight
computation can include locations of language models (LM-
n-locations) for a region 2035, e.g., cities 210-1, 210-2, etc.,
a driving route 520 of the user 515 and time 530, 535. For
example, voice destination queries with addresses 1n city
210-3 (“Paderborn™) or city 210-5 (*Kassel”) are more
likely than queries with addresses i 210-6 (*“Halle”) or
210-N (*Jena”™) for at least two reasons. First, 210-3 (“Pad-
erborn”) and 210-5 (*Kassel”) are close to the user’s route
520. Second, as shown at 535, the user will reach a location
524 near those cities at lunch time (335) and might query for
restaurants, parking and other places. As a further example,

voice destination queries for addresses in cities 210-11
(“Bochum™) and 210-10 (*Dortmund”) are more likely than

queries for addresses 1n 210-9 (“Siegen”™) or 210-12 (*“Wup-
pertal”), because 210-11 (“Bochum™) and 210-10 (“Dort-
mund”) are located at shorter distances from the route’s
endpoint 526 (e.g., the user’s destination) than 210-9 (*Sie-
gen”) or 210-12 (“Wuppertal”). In FIG. 5, distances from
positions along the user’s route 520 to cities are shown as
arrows. For positions 522, 524, and 526, the arrows have
solid, long-dashed and short-dashed lines, respectively.

In one example, the computation of the motion weight
includes the following procedures:

a) Compute the distances (e.g., D, D, D; ;) between
pomnts on the route (e.g., 522, 3524 and 526) and
[LM-n-locations;

b) Compute the motion interpolation weights for inter-
polating each vector, e.g., as described above with
reference to FIG. 3.

In part (b) above, one can first compute one mterpolation
welght vector given a set of motion weights, for example, by
using an average. In contrast, one can also compute models
for each weight set and combine them afterwards. This 1s
useful to combine motion-adaptive models with ‘other’
models, e.g., models biased on ‘domain specific’ data.

Example embodiments of embedded, cloud and hybrid
use-cases will be described. In an example embedded use-
case, language resources are processed on the cloud and
passed to the embedded device (via deployment or update),
while all other components are on the embedded device. In
an example cloud use-case, sensor measurements are passed
to the cloud and processed on the cloud; all methods and
resources are on the cloud, including the speech recognizer.
In an example hybrid use-case, the sensor measurements and
motion weight computation 1s performed on the embedded
device. The interpolation of the language model(s) and the
speech recogmition happens in the cloud. A fall back ASR 1s
used on the device for situations where no network connec-
tivity 1s available. A re-scoring of results can be performed
on the device to merge results from the cloud and embedded
recognizer. Another option 1s to run client-side recognition
in parallel with cloud-based recognition and combine the
results of each. The results can also be weighted using the
motion profile vector, e.g., reference-points can be kept in
the result or the results can be mapped to certain reference
points.

FIG. 6 illustrates an example embedded use-case for
motion adaptive speech recognition. System 600 for motion
adaptive speech processing includes client 605 and a motion
profile estimator 610 and a processor 613 at the client. The
motion profile estimator 610 1s configured to estimate a
motion profile 620 that 1s representative of a user’s motion
and that 1s dynamically based on data from one or more
resources associated with the user 635. In the example
system 600, the processor 615 1s configured to eflect pro-
cessing of a speech signal 640 received from the user 635,
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¢.g., while the user 1s 1n motion. The speech signal 1is
processed taking into account the estimated motion profile
620 to produce an interpretation 645 of the speech signal. As
shown, resources associated with the user can include posi-
tion data 622, for example, from GPS, GLONASS or other
systems or sensors; motion data 624, ¢.g., speed, accelera-
tion, etc., which can be derived data or data measured by one
Or more sensors; navigation system data 626; a user’s
personal favorites list 628; and data relating to custom
settings or user defined settings 630. Another resource
available to the automatic speech processing engine that can
be implemented on processor 615 1s a data store 632 that
stores a collection of language models and grammars for
single regions. For example, data store 632 can be database
135 described with reference to FIG. 1.

In the example embodiment shown 1n FIG. 6, the motion
profile estimator 610 1s configured to compute a motion
weilght vector using the data from the one or more resources
associated with the user. The motion vector provides a snap
shot of the user’s position and motion. The motion profile 1s
a collection of such snap shots. Further, the motion profile
estimator can be configured to interpolate a plurality of
models using the motion weight vector to generate a motion
adaptive model. At least one of the models can be associated
with a geographic area, and the motion profile estimator can
interpolate the models to produce a probability that the user
1s or will be located 1n the geographic area. Alternatively or
in addition, the motion profile estimator can be further
configured to interpolate the motion adaptive model with a
background model.

In the embodiment of the system 600 for motion adaptive
speech processing 1llustrated 1n FIG. 6, the processor 6135 1s
configured to perform automatic speech recognition (ASR)
of the speech signal 640 at the client 605 using the estimated
motion profile 620. The ASR by processor 615 produces the
interpretation 645 of the speech signal, directly or via an
intermediate ASR result.

The system 600 features an ASR engine with an on-the-1ly
language model adaptation technique. In addition, many
current deployments are realizable using this system, e.g.,
activation/deactivation, linguistic constraints, dialog and
others.

The client 605 of system 600 may be implemented on one
device, such as a smart phone or a car head umit (e.g.,
navigation system). Alternatively, the functionality of the
client 605 may be implemented in two or more devices. For
example, an aspect of client 605, (e.g., the motion profile
estimator 610) can be implemented on the car head unit and
another aspect (e.g., the processor 615 including the ASR
engine) on the smart phone. In one such scenario, the car
head unit computes the motion weight vector and commu-
nicates the vector to the smart phone. The smart phone
performs the motion adaptive ASR using the motion vector
from the car head unit and, optionally, one or more language,
grammar or other models described herein. Alternatively, the
smart phone can use the motion weight vector from the car
head unit and pass the vector and the speech signal to the
cloud for hybrid speech recognition. A hybrid use-case 1s
described below.

FIG. 7 illustrates an example hybrid-use case for motion
adaptive speech recognition. System 700 1includes client 705
and a cloud service 750 that 1s configured for motion
adaptive speech processing, e.g., a cloud voice data entry
(VDE) service using motion adaptive speech recognition.
The client 705 includes a motion profile estimator 710 and
a processor 7135. The client can be configured for enhanced
VDE with motion profiling on the client. In one example, the
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client 710 1s implemented on a car head unit. The motion
profile estimator 710 1s configured to estimate a motion
profile 720 that 1s representative of a user’s motion and 1s
dynamically based on data from one or more resources 722,
724, 726, 728 and 730 associated with the user 735. Similar
to the resources described with reference to system 600, the
resources associated with the user 1n system 700 can include
position data 722 (e.g., from GPS, GLONASS, etc.), motion
data 724 (e.g., speed, acceleration, etc.), navigation system
data 726, personal data 728 (e.g., a personal favorites list),
and data relating to custom settings or user defined settings
730. In the example system 700, the processor 715 1is
configured to eflect processing of a speech signal 740
received from the user 735, e.g., while the user 1s 1n motion.
The speech signal 740 1s processed by the cloud service 750
taking into account the estimated motion profile 720 to
produce an interpretation 745 of the speech, signal.

In the embodiment illustrated in FIG. 7, the processor 715
1s configured to send the speech signal 740 and the estimated
motion profile 720 to the cloud service 750. The cloud
service 750 performs automatic speech recognition (ASR) of
the speech signal 740 using the estimated motion profile
720. The ASR produces a result 755, which 1s sent back to
the client 707 to be handled. For example, the result 755 can
be presented to the user 735 as an interpretation 743 of the
speech signal 740. The result 755 can also go into a
background language model, e.g., to update a background
language model at the cloud service 750, so that other users
can benefit. Multiple background models are contemplated,
¢.g., models specific to restaurants, events, etc.

As further illustrated 1n FIG. 7, a client 705' that 1s
configured for basic VDE, without motion adaptive speech
recognition, can operate within system 700. The client 705’
can be implemented on a smart phone, e.g., for user who do
not have a motion profile but that can benefit from interact-
ing with cloud service 750. Client 705" includes a processor
715' configured to eflect processing of a speech signal 740
received from a user 733'. The speech signal 1s transmitted
from the client 705' to the cloud service 750, processed, and
a result 755" 1s returned to the client. The client handles the
result 755' to produce an interpretation 743" of the speech
signal, e.g., for presentation to the user.

Thus, the system 700 can serve existing customers and
users, such as described for user 735", and can adapt to and
accommodate customer- and user-dependent behavior, such
as described for the behavior (e.g., motion profile) of user
735.

FIG. 8 1illustrates an example of re-ranking of automatic
speech recognition (ASR) results for motion adaptive speech
recognition. System 800 for motion adaptive speech pro-
cessing includes a client 805 and a cloud service 850, e.g. a
cloud VDE service. The client 805 includes a motion profile
estimator 810 that 1s configured to estimate a motion profile
820. As described above, the motion profile 1s representative
of a user’s motion and i1s dynamically based on data from
one or more resources associated with the user 835.
Resources associated with the user in system 800 can
include position data 822 (e.g., from GPS, GLONASS, etc.),
motion data 824 (e.g., speed, acceleration, etc.), navigation
system data 826, personal data 828 (e.g., a personal favorites
list), and data relating to custom settings or user defined
settings 830. Similar to system 700, system 800 includes a
processor 815 at the client 805 that 1s configured to eflect
processing of a speech signal 840 received from the user
835, e¢.g., while the user 1s in motion. The speech signal 840
1s processed by the cloud service 8350, but, unlike the cloud
service 750 1 system 700, the cloud service 850 is not
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configured for motion adaptive speech recognition and does
not receive the estimated motion profile 820. Instead, pro-
cessing of speech recognition results occurs at the client 805
taking into account the estimated motion profile 820 to
produce an interpretation 845 of the speech signal.

In the embodiment 1llustrated in FIG. 8, the processor 815
1s configured to send the speech signal 840 to the cloud
service 850 for ASR, receive results 855 of the ASR from the
cloud service, and re-rank (860) the results using the esti-
mated motion profile 820 to produce the interpretation 843
of the speech signal.

System 800 can serve existing customers and users, €.g.,
user 835, and, at least the client 805 of system 800 can adapt
to and accommodate customer- and user-dependent behav-
1or, €.g., the behavior and motion profile of user 835. As
illustrated in FIG. 8, a client 805' that 1s configured for basic
VDE, but not for using motion adaptive ASR, can operate
within system 800. The client 805' can be implemented on
a smart phone or other mobile device that can interact with
cloud service 850. The client 805" includes a processor 815
that 1s configured to eflfect processing of a speech signal 840
received from the user 835'. The speech signal 1s transmitted
from the client 805' to the cloud service 850 and processed
at the cloud service. A result 835" of the processing 1is
returned to the client to produce an interpretation 845' of the
speech signal.

A system 1n accordance with the invention has been
described which enables a system, e.g., a speech recognition
system, to perform motion adaptive speech processing.
Components of such a system, for example a motion profile
estimator, an interpolation module, a motion adaptive auto-
matic speech recognizer and other systems discussed herein
may, for example, be a portion of program code, operating
on a computer processor.

Portions of the above-described embodiments of the pres-
ent mvention can be implemented using one or more com-
puter systems, for example, to permit dynamically estimat-
ing a motion profile that 1s representative of a user’s motion
and eflecting processing of a speech signal recerved from the
user while 1n motion. For example, the embodiments may be
implemented using hardware, software or a combination
thereof. When implemented 1n software, the software code
can be stored on any form of non-transient computer-
readable medium and loaded and executed on any suitable
processor or collection of processors, whether provided 1n a
single computer or distributed among multiple computers.

Further, 1t should be appreciated that a computer may be
embodied 1 any of a number of forms, such as a rack-
mounted computer, desktop computer, laptop computer, or
tablet computer. Additionally, a computer may be embedded
in a device not generally regarded as a computer but with
suitable processing capabilities, including a Personal Digital
Assistant (PDA), a smart phone or any other suitable por-
table or fixed electronic device.

Also, a computer may have one or more mput and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or
other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or 1n other audible format.

Such computers may be interconnected by one or more
networks 1 any suitable form, including as a local area
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network or a wide area network, such as an enterprise
network or the Internet. Such networks may be based on any
suitable technology and may operate according to any
suitable protocol and may include wireless networks, wired
networks or fiber optic networks.

Also, the various methods or processes outlined herein
may be coded as software that 1s executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming,
languages and/or programming or scripting tools, and also
may be compiled as executable machine language code or
intermediate code that 1s executed on a framework or virtual
machine.

In this respect, at least a portion of the invention may be
embodied as a computer readable medium (or multiple
computer readable media) (e.g., a computer memory, one or
more floppy discs, compact discs, optical discs, magnetic
tapes, flash memories, circuit configurations i Field Pro-
grammable Gate Arrays or other semiconductor devices, or
other tangible computer storage medium) encoded with one
or more programs that, when executed on one or more
computers or other processors, perform methods that imple-
ment the various embodiments of the invention discussed
above. The computer readable medium or media can be
transportable, such that the program or programs stored
thereon can be loaded onto one or more different computers
or other processors to implement various aspects of the
present invention as discussed above.

In this respect, 1t should be appreciated that one 1mple-
mentation of the above-described embodiments comprises at
least one computer-readable medium encoded with a com-
puter program (€.g., a plurality of istructions), which, when
executed on a processor, performs some or all of the
above-described functions of these embodiments. As used
herein, the term “computer-readable medium” encompasses
only a non-transient computer-readable medium that can be
considered to be a machine or a manufacture (1.e., article of
manufacture). A computer-readable medium may be, for
example, a tangible medium on which computer-readable
information may be encoded or stored, a storage medium on
which computer-readable information may be encoded or
stored, and/or a non-transitory medium on which computer-
readable information may be encoded or stored. Other
non-exhaustive examples of computer-readable media
include a computer memory (e.g., a ROM, RAM, flash
memory, or other type of computer memory), magnetic disc
or tape, optical disc, and/or other types of computer-readable
media that can be considered to be a machine or a manu-
facture.

The terms “program™ or “software™ are used herein 1 a
generic sense to refer to any type of computer code or set of
computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of the present invention as discussed above. Addi-
tionally, 1t should be appreciated that according to one aspect
of this embodiment, one or more computer programs that
when executed perform methods of the present mmvention
need not reside on a single computer or processor, but may
be distributed 1n a modular fashion amongst a number of
different computers or processors to implement various
aspects of the present mvention.

Computer-executable instructions may be in many forms,
such as program modules, executed by one or more com-
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
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abstract data types. Typically, the tunctionality of the pro-
gram modules may be combined or distributed as desired 1n
various embodiments.

The teachings of all patents, published applications and
references cited herein are incorporated by reference 1n their
entirety.

While this invention has been particularly shown and
described with references to example embodiments thereof,
it will be understood by those skilled 1n the art that various
changes 1n form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims. It should also be appreciated that the
various technical features of the embodiments that have
been described may be combined 1n various ways to produce
numerous additional embodiments.

What 1s claimed 1s:

1. A method for motion adaptive speech processing for
voice destination entry, the method comprising:

dynamically estimating a motion profile that 1s represen-
tative of a user’s motion based on data from one or
more resources associated with the user, the motion
profile being a collection of snap shots of the user’s
position and motion, the data from the one or more
resources including sensor data and data from a non-
speech resource associated with the user;

wherein dynamically estimating the motion profile
includes computing a motion weight vector using the
data from the one or more resources associated with the
user and interpolating a plurality of models using the
motion weight vector to generate a motion adaptive
model, wherein at least one of the models 1s associated
with a geographic area, and wherein interpolating the
models results 1n a probability that the user 1s or will be
located in the geographic area; and

ellecting processing of a speech signal received from the
user, the processing taking into account the estimated
motion profile by constraining a search space to user-
relevant destinations based on the motion adaptive
model to produce an interpretation of the speech signal.

2. The method according to claim 1, wherein the sensor
data include at least one member selected from the group
consisting of position, speed, acceleration, direction, and a
combination thereof.

3. The method according to claim 2, wherein the data
from the non-speech resource includes at least one member
selected from the group consisting of navigation system
data, address book data, calendar data, motion history data,
crowd sourced data, configuration data, and a combination
thereof.

4. The method according to claim 1, wherein computing,
the motion weight vector includes determining a relation
between the non-speech resource and a language resource
associated with the plurality of models.

5. The method according to claim 1, wherein dynamically
estimating the motion profile further imncludes interpolating
the motion adaptive model with a background model.

6. The method according to claim 1, wherein the speech
signal includes at least one of a voice audio signal, a video
signal and data from gestures or text entry.

7. A system for motion adaptive speech processing for
voice destination entry, the system comprising:

a motion profile estimator at a client, the estimator con-
figured to estimate a motion profile that 1s representa-
tive of a user’s motion dynamically based on data from
one or more resources associated with the user, the
motion profile being a collection of snap shots of the
user’s position and motion, the data from the one or
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more resources including sensor data and data from a
non-speech resource associated with the user;

wherein the motion profile estimator 1s configured to
compute a motion weight vector using the data from the
one or more resources associated with the user and to
interpolate a plurality of models using the motion
weight vector to generate a motion adaptive model,
wherein at least one of the models 1s associated with a
geographic area, and wherein the motion profile esti-
mator interpolates the models to produce a probability
that the user 1s or will be located 1n the geographic area;
and

a processor configured to eflect processing of a speech

signal received from the user, the processing taking into
account the estimated motion profile by constraining a
search space to user-relevant destinations based on the
motion adaptive model to produce an interpretation of
the speech signal.

8. The system according to claim 7, wherein the motion
profile estimator 1s further configured to interpolate the
motion adaptive model with a background model.

9. The system according to claim 7, wherein the processor
1s configured to perform automatic speech recognition
(ASR) of the speech signal at the client using the estimated
motion profile, the ASR producing the interpretation of the
speech signal.

10. The system according to claim 7, wherein the pro-
cessor 1s configured to send the speech signal and estimated
motion profile to a cloud service to perform automatic
speech recognition (ASR) of the speech signal using the
estimated motion profile, the ASR producing the interpre-
tation of the speech signal.

11. The system according to claim 7, wherein the proces-
sor 1s configured to send the speech signal to a cloud service
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for automatic speech recognition (ASR), receive results of
the ASR from the cloud service, and re-rank the results using
the estimated motion profile to produce the interpretation of
the speech signal.

12. A computer program product comprising a non-
transitory computer readable medium storing instructions
for performing a method for motion adaptive speech pro-
cessing for voice destination entry, the instructions, when
executed by a processor, cause the processor to:

dynamically estimate a motion profile that 1s representa-
tive of a user’s motion based on data from one or more
resources associated with the user, the motion profile
being a collection of snap shots of the user’s position
and motion, the data from the one or more resources
including sensor data and data from a non-speech
resource associated with the user;

wherein dynamically estimating the motion profile
includes computing a motion weight vector using the
data from the one or more resources associated with the
user and interpolating a plurality of models using the
motion weight vector to generate a motion adaptive
model, wherein at least one of the models 1s associated
with a geographic area, and wherein interpolating the
models results 1n a probability that the user 1s or will be
located in the geographic area; and

ellect processing of a speech signal received from the
user, the processing taking into account the estimated
motion profile by constraining a search space to user-
relevant destinations based on the motion adaptive
model, to produce an interpretation of the speech

signal.
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