12 United States Patent

Hijaz et al.

US010503656B2

US 10,503,656 B2
Dec. 10, 2019

(10) Patent No.:
45) Date of Patent:

(54) PERFORMANCE BY RETAINING HIGH
LOCALITY DATA IN HIGHER LEVEL

(71)

(72)

(73)

(%)

(21)

(22)

(63)

(1)

(52)

CACHE MEMORY

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventors:

Farrukh Hijaz, San Diego, CA (US);

George Patsilaras, San Diego, CA

(US)

Assignee:

Diego, CA (US)

Notice:

QUALCOMM Incorporated, San

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 15/709,884

Filed:

Sep. 20, 2017

Prior Publication Data

Mar. 21, 2019

US 2019/0087345 Al

Int. CIL.

GO6F 12/00
GO6F 12/0897
GO6F 12/0877
GO6F 12/0891
GO6F 12/0811
GO6F 12/126
GO6F 12/128
GO6F 11/34

U.S. CL
CPC

(2006.01
(2016.01
(2016.01
(2016.01
(2016.01
(2016.01
(2016.01

(2006.01

LS N L L L N S

Go6l 12/0897 (2013.01); GO6F 11/34

(2013.01); GO6F 12/0811 (2013.01); GO6F
1270877 (2013.01); GO6F 12/0891 (2013.01);

GO6F 12/126 (2013.01); GO6F 12/128
(2013.01); GO6F 2212/1024 (2013.01); GO6F
221271028 (2013.01); GO6F 2212/60 (2013.01)

(358) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,829,025 A * 10/1998 Mittal GOG6F 9/30047
711/122
2006/0230235 Al* 10/2006 O’Connor GOG6F 12/127
711/133

* cited by examiner

Primary Examiner — Daniel D Tsui

(74) Attorney, Agent, or Firm — The Marbury Law
Group/Qualcomm

(57) ABSTRACT

Various aspects include methods for implementing retaining
high locality data in a higher level cache memory on a
computing device. Various aspects may include receiving a
cache access request for a first cache line 1n the higher level
cache memory indicating a locality of the first cache line,
determining whether the access request indicates high local-
ity, and setting a high locality indicator of the first cache line
in response to determining that the cache access request
indicates high locality. Various aspects may include deter-
mining whether a lower level cache memory hit counter of
a first cache line of a first cache exceeds a lower level cache
locality threshold, setting a high locality indicator of the first
cache line 1n response to determining that the lower level
cache memory hit counter exceeds the lower level cache
locality threshold and resetting the lower level cache
memory hit counter of the first cache.

15 Claims, 19 Drawing Sheets

3“?

Receive Cacha Access Request For
Gache Lina In Higher Lavel Gache Memory

302

Determine

Whether Cache Access
Request |s Hit

Y 308

Retriave Cache Lina From Lower Lavel
Zache Memory

Determing Locality Of Cache Line In

Higher Level Cache Memory

Determineg 0

Whether Free Location
In Higher Leve| Cache
Memary

312

Find Victim Cache Line Candidate In
Higher Level Cache Memaory

A

} 314

Insert Retrieved Cache Line Into Higher
Level Cache Memuory

L

v

Execute Cache Access Requeast 316

U.S. Patent Dec. 10, 2019 Sheet 1 of 19 US 10,503,656 B2

26

Communication Storage

Component Memory

L Storage
Communication
Memory
Interface
interface

Processor Memory

FIG. 1

U.S. Patent Dec. 10, 2019 Sheet 2 of 19 US 10,503,656 B2

240

Shared System Cache

230

Cache Memory
Manager

210 AL 212
Processor Processor
PPCCO Core 0 Core 1 PPCC 1
220~ =202
214~ _~216
Processor Processor
230

Processor Shared Cache

FIG. 2

U.S. Patent Dec. 10, 2019 Sheet 3 of 19 US 10,503,656 B2

30
Receive Cache Access Request For 307
Cache Line In Higher Level Cache Memory

Determine
Whether Cache Access
Request Is Hit

NO Yes

3 S .. 308

Retrieve Cache Line From Lower Level Determine Locality Of Cache Line In

Cache Memory Higher Level Cache Memory

310

Determine
Whether Free Location
In Higher Level Cache
Memory

Yes

NO

Find Victim Cache Line Candidate In
Higher Level Cache Memory

Insert Retrieved Cache Line into Higher

Level Cache Memory

Execute Cache Access Request 316

FIG. 3

U.S. Patent Dec. 10, 2019 Sheet 4 of 19 US 10,503,656 B2

K

Determine Victim Cache Line
Candidate In Higher Level Cache

402
Memory

404

Determine
Whether Victim
Cache Line Candidate
High Locality
Indicator Set

No

Evict Victim Cache Line Candidate 406

From Higher Level Cache Memory

FIG. 4

U.S. Patent Dec. 10, 2019 Sheet 5 of 19 US 10,503,656 B2

K

Yes

202

Determine
Whether Cache
Access Request For High
Locality Cache
Line

No

.
~Determine

/Whether To Promote ™\

< Cache Line In Higher NO
N evel Cache yd
\Memory P
e
Yes
— e e Yo
N Reset High Locality Indicator Of [
~Determine 0 l Cache Line In Higher Level Cache
~~ Whether Cache Ves | Memory l
< |.ine Promote Exceeds -_— _— — —
\Cache Set Promote .~
\Threshold e
7~
No \
Set Cache Line High Locality To 602
Indicator In Higher Level Cache _FIG.6 FIG. 3

Memory

FIG. 5

U.S. Patent Dec. 10, 2019 Sheet 6 of 19 US 10,503,656 B2

X

From 506 = “Yes’

.
~Determine \('602

Whether High

< Locality Counter No
N Exceeds Demote 7~
\Threshcld yd
e
Yes
604

Reset High Locality Indicator Of
Specific Cache Line In Higher Level
Cache Memory

Reset High Locality Counter For
Higher Level Cache Memory

003
Set Cache Line High Locality

Indicator In Higher Level Cache
Memory

FIG. 6

U.S. Patent Dec. 10, 2019 Sheet 7 of 19 US 10,503,656 B2

-

102

Determine
Whether Cache
Line High Locality Counter
Exceeds Demote
Threshold

Yes

704
Reset High Locality Indicator Of

Specific Cache Line In Higher Level
Cache Memory

FIG. 7

U.S. Patent Dec. 10, 2019 Sheet 8 of 19 US 10,503,656 B2

802 804 810
820~
ST N

FIG. 8A

il

0

62

0~ ..
Tag and State Indicators -

FIG. 8B

8

320

Tag and State Indicators

FIG. 8C

U.S. Patent Dec. 10, 2019 Sheet 9 of 19 US 10,503,656 B2

800

820

e T
FIG. 8D

800

82 ______

0~
Tag and State Indicators —

FIG. 8E

300
———

320

— _ — _
Tag and State Indicators

FIG. 8F

U.S. Patent Dec. 10, 2019 Sheet 10 of 19 US 10,503,656 B2

ol
‘——

0

820
T ——
FIG. 8G
804 808

80
—n——

0
Tag and State Indicators —

82 _____

0 _
Tag and State Indicators _

FIG. 8H

804

802 804 810
320 , _ .
. N
Tag and State indicators —

FIG. 8I

U.S. Patent Dec. 10, 2019 Sheet 11 of 19 US 10,503,656 B2

820
)

Tag and State Indicators _

FIG. 8J

U.S. Patent Dec. 10, 2019 Sheet 12 of 19 US 10,503,656 B2

-~

902

Determine Victim Cache Line

Candidate In Higher Level Cache
Memory

04

Determine

VWhether Victim
Cache Line Candidate
High Locality
Indicator Set

NO

Yes

Update Victim Cache Line Candidate
Hit Counter In Higher Level Cache
Memory

Evict Victim Cache Line Candidate

From Higher Level Cache Memory

J08

Determine
Whether Victim Cache
Line Candidate Hit Counter
Exceeds Replace
Threshold

High Locality Indicator And Hit Counter
In Higher Level Cache Memory

FIG. 9

U.S. Patent Dec. 10, 2019 Sheet 13 of 19 US 10,503,656 B2

1 OOOZ

Yes

1002

Determine
Whether Victim Cache
Line Candidate Hit Counter
Exceeds Update
Threshold

No

1004 1006
Update Victim Cache Line Hit Maintain Victim Cache Line Hit

Counter In Lower Level Cache Counter In Lower Level Cache
Memory Memory

FIG. 10

U.S. Patent

Dec. 10, 2019

’I'IOOZ

1102

Determine
Whether LLC Hit
Counter Exceeds
LLC Locality
Threshold

NO

Yes

1104

Determine
Whether Cache
Line Promote Exceeds

Cache Set Promote
Threshold

No

1100

Set Cache Line High Locality
Indicator In Higher Level Cache

Memory

1108

l Send Set Cache Line High Locality I
Indicator Signal To Lower Level
'_ Cache Memory I

Sheet 14 of 19

\

—ﬁ

{ To 1202
FIG. 12
N—

e?”

US 10,503,656 B2

To 316
FIG. 3

U.S. Patent Dec. 10, 2019 Sheet 15 of 19 US 10,503,656 B2

1 ZOOC

1202

Determine
Whether LLC

Hit Counter Exceeds
Promote Replace

Threshold

NO

Yes

1208

Reset High Locality Indicator Of Maintain Cache Line High Locality

High Locality Cache Line In Cache

Set Indicator

1206
Set Cache Line High Locality

Indicator

FIG. 12

U.S. Patent Dec. 10, 2019 Sheet 16 of 19 US 10,503,656 B2

1 3001

1302
Receive Set Cache Line High

Locality Indicator Signal From
Higher Level Cache Memory

1304

Reset Cache Hit Counter In Lower

Level Cache Memory

FIG. 13

U.S. Patent

Dec. 10, 2019 Sheet 17 of 19

1 4001

1402

Determine
Whether Cache Line

High Locality Indicator
Set

1404

Determine
Whether HLC
Hit Counter Exceeds
HLC Locality
Threshold

1406

Update Cache Line Hit Counter In
Higher Level Cache Memory

To 316
FIG. 3

FIG. 14

US 10,503,656 B2

U.S. Patent Dec. 10, 2019 Sheet 18 of 19 US 10,503,656 B2

w—1510

1520

FIG. 15 1524

US 10,503,656 B2

16

Sheet 19 of 19

FIG.

Dec. 10, 2019

1700

U.S. Patent

FIG. 17

US 10,503,656 B2

1

PERFORMANCE BY RETAINING HIGH
LOCALITY DATA IN HIGHER LEVEL
CACHE MEMORY

BACKGROUND

High locality data can be evicted from level 1 (IL1) caches
due to low locality data thrashing a high locality data set of
interest, and due to suboptimal replacement policies, like a
random replacement policy. For access of the evicted high
locality data, the evicted high locality data need to be
brought back to L1 cache, potentially evicting some other
cache lines 1n the process. The high locality data basically
cycles through L1 and level 2 (L2) caches. This cycling
results 1n higher access latency as well as more energy and
bandwidth being consumed on a computing device.

SUMMARY

Various disclosed aspects may include apparatuses and
methods for implementing retaining high locality data 1n a
higher level cache memory on a computing device. Various
aspects may 1nclude recerving a cache access request for a
first cache line 1n the higher level cache memory indicating
a locality of the first cache line, determining whether the
access request indicating the locality of the first cache line
indicates that the first cache line has high locality, and
setting a high locality indicator of the first cache line 1n the
higher level cache memory in response to determining that
the cache access request indicates that the first cache line has
high locality.

Some aspects may further include selecting the first cache
line as a victim cache line candidate, determining whether
the high locality indicator of the first cache line 1s set,
evicting the first cache line 1n response to determining that
the high locality indicator of the first cache line i1s not set,
and selecting a second cache line as the victim cache line
candidate 1n response to determining that the high locality
indicator of the first cache line 1s set.

Some aspects may further include determining whether to
promote the first cache line to having high locality in
response to determining that the access request indicates that
the first cache line has high locality, in which setting a high
locality indicator of the first cache line 1n the higher level
cache memory may include setting the high locality indica-
tor of the first cache line 1n the higher level cache memory
in response to determining to promote the first cache line to
having high locality. Some aspects may further include
resetting the high locality imndicator of the first cache line in
the higher level cache memory 1n response to determining to
not promote the first cache line to having high locality.

Some aspects may further include determining whether
promoting the first cache line to having high locality exceeds
a cache set promote threshold in response to determining
that the access request indicates that the first cache line has
high locality, 1n which setting a high locality indicator of the
first cache line in the higher level cache memory may
include setting the high locality indicator of the first cache
line in the higher level cache memory in response to
determining that promoting the first cache line to having
high locality does not exceed the cache set promote thresh-
old.

Some aspects may further include resetting a high locality
indicator of a second cache line 1n the higher level cache
memory 1n response to determining that promoting the first
cache line to having high locality exceeds the cache set
promote threshold.

10

15

20

25

30

35

40

45

50

55

60

65

2

Some aspects may further include determining whether a
high locality counter for the higher level cache memory
exceeds a demote threshold, in which resetting a high
locality indicator of a second cache line in the higher level
cache memory may include resetting the high locality indi-
cator of the second cache line in the higher level cache
memory 1n response to determiming that the high locality
counter for the higher level cache memory exceeds the
demote threshold.

Some aspects may further include determining whether a
cache line high locality counter exceeds a cache line demote
threshold, and resetting the high locality indicator of the first
cache line in the higher level cache memory in response to
determining that the cache line high locality counter exceeds
a cache line demote threshold.

Some aspects may further include resetting the high
locality indicator of the first cache line 1n the higher level
cache memory 1n response to determining that the cache
access request does not 1indicate the first cache line has high
locality.

Various aspects may include apparatuses and methods for
implementing retaining high locality data 1n a higher level
cache memory on a computing device. Various aspects may
include determining whether a lower level cache memory hit
counter of a first cache line of a first cache exceeds a lower
level cache locality threshold, setting a high locality indi-
cator of the first cache line 1n response to determining that
the lower level cache memory hit counter of the first cache
line exceeds the lower level cache locality threshold, and
resetting the lower level cache memory hit counter of the
first cache.

Some aspects may further include determining whether
promoting the first cache line to having high locality by
setting the high locality indicator of the first cache line
exceeds a cache set promote threshold, 1n which setting a
high locality indicator of the first cache line may include
setting the high locality indicator of the first cache line 1n
response to determining that promoting the first cache line to
having high locality does not exceed the cache set promote
threshold.

Some aspects may further include sending a set cache line
high locality indicator signal for the first cache line, and
receiving the set cache line high locality indicator signal for
the first cache line, 1n which resetting the lower level cache
memory hit counter of the first cache may include resetting
the lower level cache memory hit counter of the first cache
in response to receiving the set cache line high locality
indicator signal for the first cache line.

Some aspects may further include determining whether
the lower level cache memory hit counter of the first cache
line exceeds a promote replace threshold in response to
determining that promoting the first cache line to having
high locality exceeds the cache set promote threshold, in
which setting a high locality indicator of the first cache line
may include setting the high locality indicator of the first
cache line 1n response to determining that the lower level
cache memory hit counter of the first cache line exceeds the
promote replace threshold. Some aspects may further
include resetting a high locality indicator of a second cache
line 1n response to determining that the lower level cache
memory hit counter of the first cache line exceeds the
promote replace threshold, and maintaining the high locality
indicator of the first cache line in response to determining
that the lower level cache memory hit counter of the first
cache line does not exceed the promote replace threshold.

Some aspects may further include selecting the first cache
line as a victim cache line candidate, determining whether

US 10,503,656 B2

3

the high locality indicator of the first cache line is set,
updating a higher level cache hit counter of the first cache
line 1n response to determining that the high locality indi-
cator of the first cache line 1s set, and evicting the first cache
line 1n response to determining that the high locality indi-
cator of the first cache line 1s not set.

Some aspects may further imnclude determining whether
the higher level cache hit counter of the first cache line
exceeds a replace threshold, and resetting the higher level
cache hit counter of the first cache line 1n response to
determining that the higher level cache hit counter of the first
cache line exceeds the replace threshold.

Some aspects may further include determining whether a
higher level cache hit counter of the first cache line exceeds
an update threshold, updating the lower level cache hait
counter of the first cache line 1n response to determining that
the higher level cache hit counter of the first cache line
exceeds the update threshold, and maintaining the lower
level cache hit counter of the first cache line 1n response to
determining that the higher level cache hit counter of the first
cache line does not exceed the update threshold.

Some aspects may further imnclude determining whether
the high locality indicator of the first cache line i1s set,
determining whether a higher level cache hit counter of the
first cache line exceeds a higher level cache locality thresh-
old 1n response to determining that the high locality indica-
tor of the first cache line 1s set, and updating the higher level
cache hit counter of the first cache line 1n response to
determining that the higher level cache hit counter of the first
cache line exceeds the higher level cache locality threshold.

Various aspects include computing devices having a pro-
cessor, a higher level cache memory, a lower level cache
memory, and a cache memory manager configured to per-
form operations of any of the methods summarized above.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and constitute part of this specification, illustrate
example aspects of various aspects, and together with the
general description given above and the detailed description
given below, serve to explain the features of the claims.

FIG. 1 1s a component block diagram illustrating a com-
puting device suitable for implementing various aspects.

FIG. 2 1s a component block diagram illustrating compo-
nents of a computing device suitable for implementing
various aspects.

FIG. 3 1s a process tlow diagram 1llustrating a method for
retaiming high locality data in a higher level cache memory
according to an aspect.

FI1G. 4 1s a process tlow diagram 1llustrating a method for
finding a victim cache line candidate in a higher level cache
memory for retaining high locality data 1n the higher level
cache memory according to an aspect.

FIG. 5 1s a process flow diagram 1llustrating a method for
determining locality of a cache line 1n a higher level cache
memory for retaining high locality data 1n the higher level
cache memory according to an aspect.

FIG. 6 1s a process tlow diagram 1llustrating a method for
determining locality of a cache line in a higher level cache
memory for retaining high locality data in the higher level
cache memory according to an aspect.

FI1G. 7 1s a process tlow diagram 1llustrating a method for
determining locality of a cache line in a higher level cache
memory for retaining high locality data in the higher level
cache memory according to an aspect.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 8A-8K are block diagrams illustrating examples of
a cache memory hierarchy system configured to retain high

locality data 1n a higher level cache memory suitable for
implementing various aspects.

FIG. 9 1s a process flow diagram illustrating a method for
finding a victim cache line candidate in a higher level cache
memory for retaining high locality data in the higher level
cache memory according to an aspect.

FIG. 10 1s a process flow diagram illustrating a method for
updating a lower level cache memory for retaining high
locality data 1n a higher level cache memory according to an
aspect.

FIG. 11 1s a process tflow diagram 1illustrating a method for
updating a higher level cache memory for retaining high
locality data in the higher level cache memory according to
an aspect.

FIG. 12 1s a process flow diagram illustrating a method for
updating a higher level cache memory for retaining high
locality data in the higher level cache memory according to
an aspect.

FIG. 13 1s a process flow diagram illustrating a method for
updating a lower level cache memory for retaining high
locality data 1n a higher level cache memory according to an
aspect.

FIG. 14 15 a process flow diagram illustrating a method for
determining locality of a cache line in a higher level cache
memory for retaining high locality data in the higher level
cache memory according to an aspect.

FIG. 15 1s a component block diagram illustrating an
example mobile computing device suitable for use with the
various aspects.

FIG. 16 1s a component block diagram illustrating an
example mobile computing device suitable for use with the
various aspects.

FIG. 17 1s a component block diagram illustrating an
example server suitable for use with the various aspects.

DETAILED DESCRIPTION

The various aspects will be described in detail with
reference to the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. References
made to particular examples and implementations are for
illustrative purposes, and are not intended to limit the scope
of the claims.

Various aspects may include methods, and computing
devices executing such methods for improving performance
by retaining high locality data in higher level cache memory.
The apparatus and methods of various aspects may include
indicators of a cache line 1n higher level cache memory (e.g.,
level 1 (L1) cache memory) and/or lower level cache
memory (e.g., level 2 (L2) cache memory) configured for
tracking locality of the cache line 1n the higher level cache
memory. The apparatus and methods of various aspects may
include new cache access requests configured to provide an
indication of the locality of a target cache line of the cache
access request. The apparatus and methods of various
aspects may include tracking locality of the cache line based
on hits of the cache line 1n the higher level cache memory.
The apparatus and methods of various aspects may include
pinning a cache line demonstrating high locality to a higher
level cache memory so that the cache line may not be evicted
from the higher level cache memory in opposition to an
eviction policy, thereby reducing cycling of the cache lines
between the higher level cache memory and a lower level
cache memory and consuming unnecessary bandwidth and

US 10,503,656 B2

S

power. The apparatus and methods of various aspects may
unpin the cache line from the higher level cache memory in
response to the cache line not demonstrating high locality.
The apparatus and methods of various aspects may promote
cache lines to a high locality state 1n the higher level cache 5
memory, demote a promoted cache line no longer demon-
strating high locality, and manage the number of promoted
cache lines 1n a cache set.

The terms “computing device” and “mobile computing
device” are used interchangeably herein to refer to any one 10
or all of cellular telephones, smartphones, personal or
mobile multi-media players, personal data assistants
(PDA’s), laptop computers, tablet computers, convertible
laptops/tablets (2-1n-1 computers), smartbooks, ultrabooks,
netbooks, palm-top computers, wireless electronic mail 15
receivers, multimedia Internet enabled cellular telephones,
mobile gaming consoles, wireless gaming controllers, and
similar personal electronic devices that include a memory,
and a programmable processor. The terms “‘computing
device” and “mobile computing device” may further refer to 20
Internet of Things (IoT) devices, including wired and/or
wirelessly connectable appliances and peripheral devices to
appliances, decor devices, security devices, environment
regulator devices, physiological sensor devices, audio/visual
devices, toys, hobby and/or work devices, IoT device hubs, 25
etc. The terms “computing device” and “mobile computing
device” may further refer to components of personal and
mass transportation vehicles. The term “computing device”
may further refer to stationary computing devices including
personal computers, desktop computers, all-in-one comput- 30
ers, workstations, super computers, mainirame computers,
embedded computers, servers, home media computers, and
game consoles.

FIG. 1 illustrates a system including a computing device
10 suitable for use with the various aspects. The computing 35
device 10 may include a system-on-chip (SoC) 12 with a
processor 14, a memory 16, a communication interface 18,
and a storage memory interface 20. The computing device
10 may further include a communication component 22,
such as a wired or wireless modem, a storage memory 24, 40
and an antenna 26 for establishing a wireless communication
link. The processor 14 may include any of a variety of
processing devices, for example a number of processor
cores.

The term “system-on-chip” (SoC) 1s used herein to refer 45
to a set of interconnected electronic circuits typically, but not
exclusively, including a processing device, a memory, and a
communication interface. A processing device may include
a variety of diflerent types of processors 14 and processor
cores, such as a general purpose processor, a central pro- 50
cessing umt (CPU), a digital signal processor (DSP), a
graphics processing unit (GPU), an accelerated processing
unit (APU), a subsystem processor of specific components
of the computing device, such as an 1mage processor for a
camera subsystem or a display processor for a display, an 55
auxiliary processor, a single-core processor, and a multicore
processor. A processing device may further embody other
hardware and hardware combinations, such as a field pro-
grammable gate array (FPGA), an application-specific inte-
grated circuit (ASIC), other programmable logic device, 60
discrete gate logic, transistor logic, performance monitoring
hardware, watchdog hardware, and time references. Inte-
grated circuits may be configured such that the components
of the integrated circuit reside on a single piece ol semi-
conductor material, such as silicon. 65

An SoC 12 may include one or more processors 14. The
computing device 10 may include more than one SoC 12,

6

thereby increasing the number of processors 14 and proces-
sor cores. The computing device 10 may also include
processors 14 that are not associated with an SoC 12.
Individual processors 14 may be multicore processors as
described below with reference to FIG. 2. The processors 14
may each be configured for specific purposes that may be the
same as or different from other processors 14 of the com-
puting device 10. One or more of the processors 14 and
processor cores of the same or different configurations may
be grouped together. A group of processors 14 or processor
cores may be referred to as a multi-processor cluster.

The memory 16 of the SoC 12 may be a volatile or
non-volatile memory configured for storing data and pro-
cessor-executable code for access by the processor 14. The
computing device 10 and/or SoC 12 may include one or
more memories 16 configured for various purposes. One or
more memories 16 may include volatile memories such as
random access memory (RAM) or main memory, cache
memory, or flash memory. These memories 16 may be
configured to temporarily hold a limited amount of data
received from a data sensor or subsystem, data and/or
processor-executable code instructions that are requested
from non-volatile memory, loaded to the memories 16 from
non-volatile memory 1n anticipation of future access based
on a variety of factors, and/or intermediary processing data
and/or processor-executable code mnstructions produced by
the processor 14 and temporarily stored for future quick
access without being stored 1n non-volatile memory.

The memory 16 may be configured to store data and
processor-executable code, at least temporarily, that 1s
loaded to the memory 16 from another memory device, such
as another memory 16 or storage memory 24, for access by
one or more of the processors 14. The data or processor-
executable code loaded to the memory 16 may be loaded 1n
response to execution of a function by the processor 14.
Loading the data or processor-executable code to the
memory 16 1n response to execution of a function may result
from a memory access request to the memory 16 that is
unsuccesstul, or a “miss,” because the requested data or
processor-executable code 1s not located 1n the memory 16.
In response to a miss, a memory access request to another
memory 16 or storage memory 24 may be made to load the
requested data or processor-executable code from the other
memory 16 or storage memory 24 to the memory device 16.
Loading the data or processor-executable code to the
memory 16 1n response to execution of a function may result
from a memory access request to another memory 16 or
storage memory 24, and the data or processor-executable
code may be loaded to the memory 16 for later access.

The storage memory 1nterface 20 and the storage memory
24 may work 1n unison to allow the computing device 10 to
store data and processor-executable code on a non-volatile
storage medium. The storage memory 24 may be configured
much like an aspect of the memory 16 in which the storage
memory 24 may store the data or processor-executable code
for access by one or more of the processors 14. The storage
memory 24, being non-volatile, may retain the information
aiter the power of the computing device 10 has been shut off.
When the power 1s turned back on and the computing device
10 reboots, the information stored on the storage memory 24
may be available to the computing device 10. The storage
memory interface 20 may control access to the storage
memory 24 and allow the processor 14 to read data from and
write data to the storage memory 24.

Some or all of the components of the computing device 10
may be arranged differently and/or combined while still
serving the functions of the various aspects. The computing

US 10,503,656 B2

7

device 10 may not be limited to one of each of the compo-
nents, and multiple instances of each component may be
included in various configurations of the computing device
10.

FIG. 2 illustrates components of a computing device
suitable for implementing various aspects. The processor 14
may 1include multiple processor types, including, for
example, a CPU and various hardware accelerators, such as
a GPU, a DSP, an APU, subsystem processor, etc. The
processor 14 may also include a custom hardware accelera-
tor, which may include custom processing hardware and/or
general purpose hardware configured to implement a spe-
cialized set of functions. The processors 14 may include any
number of processor cores 200, 201, 202, 203. A processor
14 having multiple processor cores 200, 201, 202, 203 may
be referred to as a multicore processor.

The processor 14 may have a plurality of homogeneous or
heterogeneous processor cores 200, 201, 202, 203. A homo-
geneous processor may include a plurality of homogeneous
processor cores. The processor cores 200, 201, 202, 203 may
be homogeneous 1n that, the processor cores 200, 201, 202,
203 of the processor 14 may be configured for the same
purpose and have the same or similar performance charac-
teristics. For example, the processor 14 may be a general
purpose processor, and the processor cores 200, 201, 202,
203 may be homogeneous general purpose processor cores.
The processor 14 may be a GPU or a DSP, and the processor
cores 200, 201, 202, 203 may be homogeneous graphics
processor cores or digital signal processor cores, respec-
tively. The processor 14 may be a custom hardware accel-
crator with homogeneous processor cores 200, 201, 202,
203.

A heterogeneous processor may include a plurality of
heterogeneous processor cores. The processor cores 200,
201, 202, 203 may be heterogeneous 1n that the processor
cores 200, 201, 202, 203 of the processor 14 may be
configured for different purposes and/or have diflerent per-
formance characteristics. The heterogeneity of such hetero-
geneous processor cores may include different instruction
set architecture, pipelines, operating frequencies, etc. An
example of such heterogeneous processor cores may include
what are known as “big.LITTLE” architectures in which
slower, low-power processor cores may be coupled with
more powerful and power-hungry processor cores. In similar
aspects, an SoC (for example, SoC 12 of FIG. 1) may
include any number of homogeneous or heterogeneous
processors 14. In various aspects, not all ofl the processor
cores 200, 201, 202, 203 need to be heterogeneous processor
cores, as a heterogeneous processor may include any com-
bination of processor cores 200, 201, 202, 203 including at
least one heterogeneous processor core.

Each of the processor cores 200, 201, 202, 203 of a
processor 14 may be designated a private processor core
cache (PPCC) memory 210, 212, 214, 216 that may be
dedicated for read and/or write access by a designated
processor core 200, 201, 202, 203. The private processor
core cache 210, 212, 214, 216 may store data and/or
instructions, and make the stored data and/or instructions
available to the processor cores 200, 201, 202, 203, to which
the private processor core cache 210, 212, 214, 216 1s
dedicated, for use in execution by the processor cores 200,
201, 202, 203. The private processor core cache 210, 212,
214, 216 may include volatile memory as described herein
with reference to memory 16 of FIG. 1.

Groups of the processor cores 200, 201, 202, 203 of a
processor 14 may be designated a shared processor core
cache (SPCC) memory 220, 222 that may be dedicated for

10

15

20

25

30

35

40

45

50

55

60

65

8

read and/or write access by a designated group of processor
core 200, 201, 202, 203. The shared processor core cache
220, 222 may store data and/or instructions, and make the
stored data and/or 1nstructions available to the group pro-
cessor cores 200, 201, 202, 203 to which the shared pro-
cessor core cache 220, 222 1s dedicated for use 1n execution
by the processor cores 200, 201, 202, 203 1n the designated
group. The shared processor core cache 220, 222 may
include volatile memory as described herein with reference
to memory 16 of FIG. 1.

The processor 14 may be designated a shared processor
cache memory 230 that may be dedicated for read and/or
write access by the processor cores 200, 201, 202, 203 of the
processor 14. The shared processor cache 230 may store data
and/or 1nstructions, and make the stored data and/or instruc-
tions available to the processor cores 200, 201, 202, 203, for
use 1n execution by the processor cores 200, 201, 202, 203.
The shared processor cache 230 may also function as a
bufler for data and/or instructions mmput to and/or output
from the processor 14. The shared cache 230 may include
volatile memory as described herein with reference to
memory 16 of FIG. 1.

Multiple processors 14 may be designated a shared sys-
tem cache memory 240 that may be dedicated for read
and/or write access by the processor cores 200, 201, 202,
203 of the multiple processors 14. The shared system cache
240 may store data and/or instructions, and make the stored
data and/or 1nstructions available to the processor cores 200,
201, 202, 203, for use 1n execution by the processor cores
200, 201, 202, 203. The shared system cache 240 may also
function as a bufler for data and/or instructions input to
and/or output from the multiple processors 14. The shared
system cache 240 may include volatile memory as described
herein with reference to memory 16 of FIG. 1.

A cache memory manager 250 may be communicatively
connected to a processor 14 and a cache memory 210, 212,
214, 216, 220, 222, 230, 240, and configured to control
access to the cache memory 210, 212, 214, 216, 220, 222,
230, 240, and to manage and maintain the cache memory
210, 212, 214, 216, 220, 222, 230, 240. The cache memory
manager 250 may be configured to pass and/or deny
memory access requests to the cache memory 210, 212, 214,
216, 220, 222, 230, 240 from the processor, pass data and/or
instructions to and from the cache memory 210, 212, 214,
216, 220, 222, 230, 240, and/or trigger maintenance and/or
coherency operations for the cache memory 210, 212, 214,
216, 220, 222, 230, 240, including an eviction policy. In
various aspects, the cache memory manager 250 may be a
hardware component standalone from and/or integral to the
processor 14. In various aspects, the cache memory manager
250 may be a solftware component configured to cause a
dedicated hardware component and/or the processor 14 to
execute operations for managing the cache memory 210,
212, 214, 216, 220, 222, 230, 240. In various aspects, any
number of cache memory managers 250 may be associated
with any number of cache memories 210, 212, 214, 216,
220, 222, 230, 240, including one-to-many, many-to-one,
and one-to-one configurations. The terms “cache memory
manager’ and “cache memory controller” are used inter-
changeably throughout the descriptions.

In the example illustrated 1n FIG. 2, the processor 14
includes four processor cores 200, 201, 202, 203 (i.e.,
processor core 0, processor core 1, processor core 2, and
processor core 3). In the 1llustrated example, each processor
core 200, 201, 202, 203 1s designated a respective private
processor core cache 210, 212, 214, 216 (1.¢., processor core
0 and private processor core cache 0, processor core 1 and

US 10,503,656 B2

9

private processor core cache 1, processor core 2 and private
processor core cache 2, and processor core 3 and private
processor core cache 3). The processor cores 200, 201, 202,
203 may be grouped, and each group may be designated a

shared processor core cache 220, 222 (1.e., a group of 5

processor core 0 and processor core 2 and shared processor
core cache 0, and a group of processor core 1 and processor
core 3 and shared processor core cache 1).

For ease of explanation, descriptions of various aspects
may refer to the four processor cores 200, 201, 202, 203, the
four private processor core caches 210, 212, 214, 216, two
groups of processor cores 200, 201, 202, 203, and the shared
processor core cache 220, 222 illustrated in FIG. 2. How-
ever, the four processor cores 200, 201, 202, 203, the four
private processor core caches 210, 212, 214, 216, two
groups ol processor cores 200, 201, 202, 203, and the shared
processor core cache 220, 222 illustrated in FIG. 2 and
described herein are merely provided as an example and 1n
no way are meant to limit the various aspects to a four-core
processor system with four designated private processor
core caches and two designated shared processor core
caches 220, 222. The computing device 10, the SoC 12, or
the processor 14 may individually or in combination include
tewer or more than the four processor cores 200, 201, 202,
203 and private processor core caches 210, 212, 214, 216,
and two shared processor core caches 220, 222 illustrated
and described herein.

In various aspects, a processor core 200, 201, 202, 203
may access data and/or mstructions stored in the shared
processor core cache 220, 222, the shared processor cache
230, and/or the shared system cache 240 indirectly through
access to data and/or instructions loaded to a higher level
cache memory from a lower level cache memory. For
example, levels of the various cache memories 210, 212,
214, 216, 220, 222, 230, 240 1n descending order from
highest level cache memory to lowest level cache memory
may be the private processor core cache 210, 212, 214, 216,
the shared processor core cache 220, 222, the shared pro-
cessor cache 230, and the shared system cache 240. A higher
level cache memory 210, 212, 214, 216, 220, 222, 230 may
be any cache memory of a higher level than a lower level
cache memory 220, 222, 230, 240. In various aspects, data
and/or mstructions may be loaded to a cache memory 210,
212, 214, 216, 220, 222, 230, 240 from a lower level cache
memory 220, 222, 230, 240 and/or other memory (e.g.,
memory 16, 24 1n FIG. 1) as a response to a miss the cache
memory 210, 212, 214, 216, 220, 222, 230, 240 for a
memory access request, and/or as a response to a pretfetch
operation speculatively retrieving data and/or instructions
for future use by the processor core 200, 201, 202, 203. In
various aspects, the cache memory 210, 212, 214, 216, 220,
222, 230, 240 may be managed using an eviction policy to
replace data and/or instructions stored 1n the cache memory
210, 212, 214, 216, 220, 222, 230, 240 to allow for storing
other data and/or instructions. Evicting data and/or instruc-
tions may include writing the evicted data and/or instruc-

tions evicted from a higher level cache memory 210, 212,
214, 216, 220, 222, 230 to a lower level cache memory 220,
222, 230, 240 and/or other memory.

For ease of reference, the terms “hardware accelerator,”
“custom hardware accelerator,” “multicore processor,” “pro-
cessor,” and “processor core” may be used interchangeably
herein. The descriptions of the illustrated computing device
and 1ts various components are only meant to be examples
and 1n no way limiting on the scope of the claims. Several
of the components of the illustrated example computing

device may be varniably configured, combined, and sepa-

10

15

20

25

30

35

40

45

50

55

60

65

10

rated. Several of the components may be included in greater
or fewer numbers, and may be located and connected
differently within the SoC or separate from the SoC.

FIG. 3 illustrates a method 300 for retaining high locality
data 1in a higher level cache memory according to an aspect.
The method 300 may be implemented in a computing device
in software executing 1n a processor (€.g., processor 14 1n
FIGS. 1 and 2), in general purpose hardware, in dedicated
hardware (e.g., cache memory manager 250 1n FIG. 2), or in
a combination of a software-configured processor and dedi-
cated hardware (e.g., processor 14 in FIGS. 1 and 2 and
cache memory manager 250 1n FIG. 2), such as a processor
executing software within a cache memory hierarchy man-
agement system (e.g., cache memory hierarchy system 1n
FIGS. 8A-8K) that includes other individual components
(e.g., memory 16, 24 1n FIG. 1, higher level cache memory
800, lower level cache memory 820 1n FIGS. 8A-8K), and
vartous memory/cache controllers. In order to encompass
the alternative configurations enabled in various aspects, the
hardware implementing the method 300 1s referred to herein
as a “processing device.”

In block 302, the processing device may receive a cache
access request for a cache line 1 a higher level cache
memory. The cache access request may be 1ssued for an
application executing on a computing device (e.g., comput-
ing device 10 in FIG. 1). The cache access request may
include a read, write, load, and/or store cache access request.
In various aspects, the cache access request may be config-
ured to indicate a locality of a target cache line of the cache
access request, as described further herein with reference to
the method 500 1llustrated 1n FIG. 5.

In determination block 304, the processing device may
determine whether cache access request results 1 a hit for
the targeted cache line 1n the higher level cache memory. In
various aspects, the processing device may check directly in
the higher level cache memory and/or check a snoop direc-
tory of the higher level cache memory to determine whether
the targeted cache line 1s stored in the higher level cache
memory. Determining from the check that the targeted cache
line 1s stored 1n the higher level cache memory may indicate
that the cache access request results 1n a “hit” for the targeted
cache line 1n the higher level cache memory. Determining
from the check that the targeted cache line 1s not stored 1n
the higher level cache memory may indicate that the cache
access request results 1n a “miss” for the targeted cache line
in the higher level cache memory.

In response to determining that the cache access request
does not result 1n a hit for the targeted cache line 1n the
higher level cache memory (1.e., determination block
304="No0"), the processing device may retrieve the cache
line from a lower level cache memory 1n block 306. The
processing device may make a cache access request to the
lower level cache memory for the cache line and determine
whether cache access request to the lower level cache
memory results 1n a hit in the lower level cache memory. In
response to determining that cache access request to the
lower level cache memory for the cache line results 1n a hat,
the processing device may retrieve the cache line from the
lower level cache and store the cache line 1n the higher level
cache. In response to determining that cache access request
to the lower level cache memory for the cache line does not
result 1n a hit, the processing device may retrieve the cache
line from another memory (e.g., memory 16, 24 1 FIG. 1)
and store the cache line 1n the higher level cache.

In determination block 310, the processing device may
determine whether a free location 1s available in the higher
level cache memory. The processing device may check

US 10,503,656 B2

11

directly in the higher level cache memory, may check a
snoop directory, and/or check a cache memory usage and/or
availability table for a free location in the higher level cache
memory.

In response to determining that a free location 1s not
available 1 the higher level cache memory (i.e., determi-
nation block 310=*“No""), the processing device may find a
victim cache line candidate 1n the higher level cache
memory 1n block 312. A victim cache line candidate may be
a cache line 1n the higher level cache memory that may be
evicted from the higher level cache memory, thereby freeing
a location 1n the higher level cache memory 1into which may
be inserted the cache line retrieved from the lower level
cache memory 1n block 306. In various aspects, the process-
ing device may use any eviction criteria, such as least
recently used, not most recently used, first n first out, etc. to
find the victim cache line candidate. Examples of operations
that may be mvolved 1n finding a victim cache line candidate
in the higher level cache memory 1n block 312 are described
with reference to the method 400 1llustrated in FIG. 4 and the
method 900 1llustrated 1n FIG. 9.

After finding a victim cache line candidate in the higher
level cache memory 1 block 312 or 1n response to deter-
mimng that a free location 1s available in the higher level
cache memory (i.e., determination block 310="Yes™), the
processing device may insert retrieved cache line into higher
level cache memory 1n block 314. The processing device
may write the contents of the cache line retrieved from the
lower level cache memory to the free location in the higher
level cache memory. Examples of operations that may be
involved in iserting retrieved cache line into higher level
cache memory 1n block 314 may are described with refer-
ence to the method 1100 illustrated in FIG. 11.

In response to determining that the cache access request
results 1 a hit for the targeted cache line 1n the higher level
cache memory (i.e., determination block 304=*Yes™), the
processing device may determine a locality of the cache line
in the higher level cache memory 1 block 308. In various
aspects, the processing device may interpret an mndication of
the locality of the targeted cache line from cache access
request. The indication of the locality of the targeted cache
line may include a signal accompanying the cache access
request and/or a flag set 1 a portion of the cache access
request, such as a designated bit set in a metadata of the
cache access request, indicating high locality and/or not high
locality for the targeted cache line. In various aspects, the
processing device may access the cache line in the higher
level cache memory and check a high locality indicator field
of the cache line for a high locality indicator (e.g., high
locality indicator 808 1n FIGS. 8A-8K). The processing
device may determine from the high locality indicator
whether the high locality indicator 1s set or not set, or reset.
For example, as discussed herein, a value of a binary format
high locality indicator="1" may indicate that the high local-
ity indicator 1s set indicating that the cache line has high
locality, and a value of the binary format high locality
indicator=""0" may indicate that the accessed indicator 1s not
set, or reset, indicating that the cache line does not have high
locality. Examples of operations that may be mvolved 1n
determining a locality of the cache line 1n the higher level
cache memory 1n block 308 may are described with refer-
ence to the method 500 illustrated i FIG. 5 and the method
1400 1llustrated 1n FIG. 14.

After mserting retrieved cache line into higher level cache
memory 1n block 314 or determiming a locality of the cache
line 1n the higher level cache memory 1n block 308, the
processing device may execute the cache access request for

10

15

20

25

30

35

40

45

50

55

60

65

12

the cache line 1n the higher level cache memory in block
316. In various aspects, the processing device may access
the cache line 1n the higher level cache memory and retrieve
from and/or write to the cache line data and/or instructions.

FIG. 4 illustrates a method 400 for finding a victim cache
line candidate 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 400 may be implemented 1n a
computing device in soltware executing in a processor (e.g.,
processor 14 1n FIGS. 1 and 2), 1n general purpose hardware,
in dedicated hardware (e.g., cache memory manager 250 1n
FIG. 2), or in a combination of a software-configured
processor and dedicated hardware (e.g., processor 14 in
FIGS. 1 and 2 and cache memory manager 250 in FIG. 2),
such as a processor executing software within a cache
memory hierarchy management system (e.g., cache memory
hierarchy system 1n FIGS. 8A-8K) that includes other indi-
vidual components (e.g., memory 16, 24 1n FIG. 1, higher
level cache memory 800, lower level cache memory 820 1n
FIGS. 8A-8K), and various memory/cache controllers. In
order to encompass the alternative configurations enabled 1n
various aspects, the hardware implementing the method 400
1s referred to herein as a “processing device.” The method
400 includes operations that may be involved 1n finding a
victim cache line candidate in the higher level cache
memory 1n block 312 of the method 300 as described with
reference to FIG. 3.

In block 402, the processing device may determine the
victim cache line candidate in the higher level cache
memory. In various aspects, the processing device may use
any eviction policy based on any eviction criteria, such as
least recently used, not most recently used, first in first out,
etc., to determine the victim cache line candidate.

In determination block 404, the processing device may
determine whether the victim cache line candidate high
locality indicator (e.g., high locality indicator 808 1n FIGS.
8A-8K) 1s set. The processing device may access the victim
cache line candidate 1n the higher level cache memory and
check a high locality indicator field of the victim cache line
candidate for the high locality indicator. The processing
device may determine from the high locality indicator
whether the high locality indicator 1s set or not set, or reset.
For example, as discussed herein, a value of a binary format
high locality indicator="1" may indicate that the high local-
ity indicator 1s set indicating that the cache line has high
locality, and a value of the binary format high locality
indicator="0"" may indicate that the accessed indicator 1s not
set, or reset, indicating that the cache line does not have high
locality.

In response to determining that the victim cache line
candidate high locality indicator 1s set (i.e., determination
block 404=*Yes™), the processing device may determine
another victim cache line candidate 1n the higher level cache
memory 1n block 402. The processing device using the same
eviction policy may select a next victim cache line candidate
in the higher level cache memory based on the eviction
criteria. For example, the processing device may execute the
eviction policy using an eviction queue i which victim
cache line candidates are ordered according to the eviction
criteria, and a next victim cache line candidate may be a
victim cache line candidate 1n a next position 1n the eviction
queue. In various aspects, the eviction queue may be 1mple-
mented using memory, such as a register, and/or data struc-
ture having ordered identifiers for each victim cache line
candidate in the eviction queue. In various aspects, the

US 10,503,656 B2

13

eviction queue may be implemented by assigning each
victim cache line candidate a value indicating an order for
eviction.

In response to determining that the victim cache line
candidate high locality indicator 1s not set (1.e., determina-
tion block 404="No"), the processing device may evict the
victim cache line candidate from the higher level cache
memory 1 block 406. In various aspects, the processing
device may evict the victim cache line candidate by marking
the victim cache line candidate invalid 1n the higher level
cache memory, by removing the victim cache line candidate
from the higher level cache memory, and/or overwriting the
victim cache line candidate 1n the higher level cache
memory.

FIG. 5 illustrates a method 500 for determining locality of
a cache line 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 500 may be implemented 1n a
computing device 1n software executing 1n a processor (e.g.,
processor 14 1n FIGS. 1 and 2), 1n general purpose hardware,
in dedicated hardware (e.g., cache memory manager 250 1n
FIG. 2), or in a combination of a software-configured
processor and dedicated hardware (e.g., processor 14 in
FIGS. 1 and 2 and cache memory manager 250 in FIG. 2),
such as a processor executing soltware within a cache
memory hierarchy management system (e.g., cache memory
hierarchy system in FIGS. 8 A-8K) that includes other indi-
vidual components (e.g., memory 16, 24 1n FIG. 1, higher
level cache memory 800, lower level cache memory 820 1n
FIGS. 8A-8K), and various memory/cache controllers. In
order to encompass the alternative configurations enabled 1n
various aspects, the hardware implementing the method 500
1s referred to herein as a “processing device.” The method
500 includes operations that may be involved 1n determining

a locality of the cache line 1n the higher level cache memory

in block 308 of the method 300 described with reference to
FIG. 3.

In determination block 502, the processing device may
determine whether the cache access request 1s for a high
locality cache line. In various aspects, the processing device

may interpret an indication of the locality of the targeted
cache line from cache access request. The indication of the
locality of the targeted cache line may include a signal
accompanying the cache access request and/or a flag set 1n
a portion of the cache access request, such as a designated
bit set in a metadata of the cache access request, indicating,
high locality and/or not high locality for the targeted cache
line.

Determining that the cache access request 1s for a high
locality cache line may result 1n pinning the target cache line
to the higher level cache memory, based on various opera-
tions that consider the locality of the cache line for execution
of the various operations. As discussed further herein, a
cache access request for a high locality cache line may
prompt setting the cache line high locality indicator in the
higher level memory 1n block 508. In the method 400 for
finding a victim cache line candidate in the higher level
cache memory for retaining high locality data in the higher
level cache memory, described with reference to FIG. 4, 1n
response to determining that the victim cache line candidate
high locality indicator 1s set (i.e., determination block
404="Yes”), the processing device may determine another
victim cache line candidate 1n the higher level cache
memory 1n block 402. In other words, the setting the cache
line high locality indicator may prevent eviction of the cache

10

15

20

25

30

35

40

45

50

55

60

65

14

line when 1t 1s considered as a victim cache line candidate,
thereby pinning the cache line to the higher level cache
memory.

Determining that the cache access request 1s not for a high
locality cache line may result 1n unpinning the target cache
line from the higher level cache memory, based on various
operations that consider the locality of the cache line for
execution of the various operations. As discussed further
herein, a cache access request for a not high locality cache
line may prompt resetting the cache line high locality
indicator 1n the higher level memory 1n optional block 510.
In the method 400 for finding a victim cache line candidate
in the higher level cache memory for retaining high locality
data 1n the higher level cache memory, described with
reference to FIG. 4, 1n response to determining that the
victim cache line candidate high locality indicator 1s not set
(1.e., determination block 404="No""), the processing device
may evict the victim cache line candidate from the higher
level cache memory in block 406. In other words, the
resetting the cache line high locality indicator may allow for
eviction of the cache line when it 1s considered as a victim
cache line candidate, thereby unpinning the cache line to the
higher level cache memory.

In response to determining that the cache access request
1s for a high locality cache line (i.e., determination block
502="Yes”), the processing device may determine whether
to promote the cache line in higher level cache memory in
optional determination block 504. In various aspects, a
compiler, executed by the processor, may determine whether
to promote the cache line to a high locality cache line by
allowing the processing device to set the high locality
indicator of cache line 1n the higher level cache memory 1n
block 508, as discussed further herein. The compiler may
enforce the use of directive pairs to enforce eventual unpin-
ning of a pinned cache line. The compiler may be configured
to avoid errors by a programmer that may leave a cache line
pinned to the higher level cache memory even though 1t may
no longer have high locality for an application executing on
the computing device (e.g., computing device 10 i FIG. 1).
A cache line that may not be unpinned from the higher level
cache memory by the application may be denied promotion
to a high locality cache line by not setting the high locality
indicator for the cache line and/or resetting the high locality
indicator for the cache in optional block 510, as discussed
further herein. A cache line that may be unpinned from the
higher level cache memory by the application may be
granted promotion to a high locality cache line by setting the
high locality indicator of cache line 1n block 508, as dis-
cussed further herein.

In response to determining that the cache access request
1s for a high locality cache line (i.e., determination block
502="*Yes”) or 1n response to determining to promote the
cache line 1 higher level cache memory (1.e., optional
determination block 504="*Yes™), the processing device may
determine whether the cache line promotion exceeds a cache
set promote threshold 1n optional determination block 506.
The processing device may limit a number of high locality
cache lines 1n a cache set of the higher level cache memory.
The cache lines of a cache set may be promoted to high
locality cache lines, and the processing device may track the
number of high locality cache lines in the cache set and
determine whether promoting a cache line to high locality 1n
the cache set may exceed a cache set promote threshold. The
cache set promote threshold may be configured as a limit of
the number of high locality cache lines 1n the cache set. The
cache set promote threshold may be configured as a predes-
ignated value and/or a calculated value, such as a percentage

US 10,503,656 B2

15

of a number of cache lines 1n the cache set 1n the higher level
cache memory. For example, the cache set promote thresh-
old may be 25% of the cache lines in the cache set. A
comparison of a number of cache lines including the high
locality cache lines 1n the cache set plus an additional high
locality cache line to the cache set promote threshold
resulting 1n the number of high locality cache lines exceed-
ing the cache set promote threshold may prompt the pro-
cessing device to determine to not promote the cache line 1n
the higher level cache memory. A comparison of the number
of cache lines including the high locality cache lines 1n the
cache set plus an additional high locality cache line to the
cache set promote threshold resulting in the number of high
locality cache lines not exceeding the cache set promote
threshold may prompt the processing device to determine to
promote the cache line 1n the higher level cache memory.

In response to determining that the cache line promotion
exceeds a cache set promote threshold (1.e., optional deter-
mination block 506=*Yes”), the processing device may
execute the cache access request for the cache line 1n the
higher level cache memory 1n block 316 of the method 300
as described with reference to FIG. 3. In various aspects, 1n
response to determining that the cache line promotion
exceeds a cache set promote threshold (1.e., optional deter-
mination block 506="Yes”), the processing device may also
determine whether a high locality counter exceeds a demote
threshold 1in optional determination block 602 of the method
600 as described with reference to FIG. 6.

In response to determining that the cache access request
1s for a high locality cache line (i.e., determination block
502="Yes”), in response to determining to promote the
cache line in higher level cache memory (1.e., optional
determination block 504="Yes”), or in response to deter-
mimng that the cache line promotion does not exceed a
cache set promote threshold (1.e., optional determination
block 506="No0"), the processing device may set the cache
line high locality indicator in the higher level cache memory
in block 508. The processing device may access the cache
line 1n the higher level cache memory and check the high
locality indicator field of the cache line for the high locality
indicator. The processing device may determine from the
high locality indicator whether to set or maintain the high
locality indicator for the cache line. For example, as dis-
cussed herein, a value of a binary format high locality
indicator="1" may indicate that the high locality indicator 1s
set indicating that the cache line has high locality, and a
value of the binary format high locality indicator="0" may
indicate that the accessed indicator 1s not set, or reset,
indicating that the cache line does not have high locality. In
various aspects, regardless of the value of the high locality
indicator and/or in response to determining that the high
locality indicator 1s not set, or reset, the processing device
may write a value of “1” to the high locality indicator field
to set the high locality indicator. In various aspects the
processing device may maintain a set high locality indicator
by writing a value of “1” to the high locality indicator field
and/or by not writing any value to the high locality indicator
field.

In response to determining that the cache access request
1s not for a high locality cache line (1.¢., determination block
502="No0") or 1n response to determining to not promote the
cache line in higher level cache memory (1.e., optional
determination block 504="No""), the processing device may
reset the high locality indicator of the cache line in the
higher level cache memory in optional block 510. The
processing device may access the cache line in the higher
level cache memory and check the high locality indicator

10

15

20

25

30

35

40

45

50

55

60

65

16

field of the cache line for the high locality indicator. The
processing device may determine from the high locality
indicator whether to reset or maintain the high locality
indicator for the cache line. For example, as discussed
herein, a value of a binary format high locality indicator="1"
may indicate that the high locality indicator 1s set indicating
that the cache line has high locality, and a value of the binary
format high locality indicator="0" may indicate that the
accessed indicator 1s not set, or reset, indicating that the
cache line does not have high locality. In various aspects,
regardless of the value of the high locality indicator and/or
in response to determining that the high locality indicator 1s
set, the processing device may write a value of “0” to the
high locality indicator field to reset the high locality indi-
cator. In various aspects the processing device may maintain
a not set, or reset, high locality indicator by writing a value
of “0” to the high locality indicator field and/or by not
writing any value to the high locality indicator field.

In response to determining that the cache access request
1s not for a high locality cache line (1.¢., determination block
502="No0"), 1n response to determining to not promote the
cache line 1 higher level cache memory (1.e., optional
determination block 504=“No”"), or after resetting the high
locality indicator of the cache line 1n the higher level cache
memory in optional block 510, the processing device may
execute the cache access request for the cache line in the
higher level cache memory 1n block 316 of the method 300
as described with reference to FIG. 3.

FIG. 6 1llustrates a method 600 for determining locality of
a cache line 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 600 may be implemented 1n a
computing device in soltware executing in a processor (e.g.,
processor 14 1n FIGS. 1 and 2), 1n general purpose hardware,
in dedicated hardware (e.g., cache memory manager 250 1n
FIG. 2), or in a combination of a software-configured
processor and dedicated hardware (e.g., processor 14 in
FIGS. 1 and 2 and cache memory manager 250 in FIG. 2),
such as a processor executing soltware within a cache
memory hierarchy management system (e.g., cache memory
hierarchy system in FIGS. 8A-8K) that includes other indi-
vidual components (e.g., memory 16, 24 m FIG. 1, higher
level cache memory 800, lower level cache memory 820 1n
FIGS. 8A-8K), and various memory/cache controllers. In
order to encompass the alternative configurations enabled 1n
various aspects, the hardware implementing the method 600
1s referred to herein as a “processing device.”

In optional determination block 602, the processing
device may determine whether a high locality counter
exceeds a demote threshold. In various aspect the processing
device may track a duration from demotion and/or promo-
tion of cache lines from the cache set and/or a duration a
specific cache line 1s set to high locality 1n the cache set,
referred to herein as a high locality duration. The processing,
device may update a high locality counter to track the high
locality duration for the cache set and/or the specific cache
line 1n the cache set. The processing device may compare the
high locality counter to a demote threshold configured as a
limit of a number of units for the high locality duration. The
units may be any units such as units of time, number of
executed operations, number of transistor flops, etc. A
comparison ol the high locality counter to the demote
threshold resulting 1n the high locality counter exceeding the
demote threshold may prompt the processing device to
determine to demote a cache line from the cache set and/or
the specific cache line 1n the cache set from high locality to
not high locality. A comparison of the high locality counter

US 10,503,656 B2

17

to the demote threshold resulting 1n the high locality counter
not exceeding the demote threshold may prompt the pro-
cessing device to determine to maintain the cache lines in the
cache set and maintain the high locality of the cache lines 1n
the cache set and/or of the specific cache line 1n the cache
set.

In response to determining the high locality counter does
not exceed the demote threshold (i.e., optional determination
block 602=“No”"), the processing device may repeatedly
determine whether the high locality counter exceeds the
demote threshold 1n optional determination block 602.

In response to determining the high locality counter
exceeds the demote threshold (1.e., optional determination
block 602="Yes”), the processing device may reset the high
locality indicator of a cache line 1n the cache set 1n higher
level cache memory in block 604. In various aspects, the
processing device may select any of the cache lines 1n the
cache set to reset the cache line’s high locality indicator
using any criteria, such as least recently promoted, not most
recently promoted, first promoted first demoted, etc. In
various aspects, the processing device may reset the high
locality indicator of the specific cache line 1 the cache set.
The processing device may access the cache line 1n the
higher level cache memory to reset the high locality indi-
cator. The processing device may write a value to the high
locality indicator field to reset the high locality indicator. For
example, as discussed herein, a value of the binary format
high locality indicator="0" may indicate that the accessed
indicator 1s not set, or reset, indicating that the cache line 1n
the cache set does not have high locality.

In block 606, the processing device may reset the high
locality counter. In various aspects, resetting the high local-
ity counter may include setting a starting value from which
the high locality duration may be calculated. In various
aspects, resetting the high locality counter may include
resetting a value of the high locality counter.

In block 608, the processing device may set the cache line
high locality indicator 1 higher level cache memory for the
cache line targeted by the cache access request. The pro-
cessing device may access the cache line targeted by the
cache access request 1n the higher level cache memory. The
processing device may write a value to the high locality
indicator field to set the high locality indicator. For example,
as discussed herein, a value of the binary format high
locality indicator="1" may indicate that the accessed indi-
cator 1s set, indicating that the cache line targeted by the
cache access request has high locality.

FI1G. 7 1llustrates a method 700 for determining locality of
a cache line 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 700 may be implemented 1n a
computing device in soltware executing in a processor (e.g.,
processor 14 1n FIGS. 1 and 2), 1n general purpose hardware,
in dedicated hardware (e.g., cache memory manager 250 1n
FIG. 2), or in a combination of a software-configured
processor and dedicated hardware (e.g., processor 14 in
FIGS. 1 and 2 and cache memory manager 250 in FIG. 2),
such as a processor executing soltware within a cache
memory hierarchy management system (e.g., cache memory
hierarchy system 1n FIGS. 8A-8K) that includes other 1ndi-
vidual components (e.g., memory 16, 24 1n FIG. 1, higher
level cache memory 800, lower level cache memory 820 1n
FIGS. 8A-8K), and various memory/cache controllers. In
order to encompass the alternative configurations enabled 1n
various aspects, the hardware implementing the method 700
1s referred to herein as a “processing device.”

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In determination block 702, the processing device may
determine whether a cache line high locality counter exceeds
a cache line demote threshold. In various aspects, the
processing device may track a duration a specific cache line
1s set to high locality, referred to herein as a cache line high
locality duration. The processing device may update a cache
line high locality counter to track the cache line high locality
duration for the specific cache line. The processing device
may compare the cache line high locality counter to a cache
line demote threshold configured as a limit of a number of
units for the cache line high locality duration. The units may
be any units such as umts of time, number of executed
operations, number of transistor tlops, etc. A comparison of
the cache line high locality counter to the cache line demote
threshold resulting in the cache line high locality counter
exceeding the cache line demote threshold may prompt the
processing device to determine to demote the specific cache
from high locality to not high locality. A comparison of the
cache line high locality counter to the cache line demote
threshold resulting 1n the cache line high locality counter not
exceeding the cache line demote threshold may prompt the
processing device to determine to maintain the high locality
of the specific cache line.

In response to determining the cache line high locality
counter does not exceed the cache line demote threshold
(1.e., determination block 702="No"), the processing device
may repeatedly determine whether the cache line high
locality counter exceeds the cache line demote threshold 1n
determination block 702.

In response to determining the cache line high locality
counter exceeds the cache line demote threshold (i.e., deter-
mination block 702=*Yes”), the processing device may reset
high the locality indicator of the specific cache line 1n higher
level cache memory 1n block 704. The processing device
may access the specific cache line 1n the higher level cache
memory to reset the locality indicator. The processing device
may write a value to the high locality indicator field to reset
the high locality indicator. For example, as discussed herein,
a value of the binary format high locality indicator="0" may
indicate that the accessed indicator i1s not set, or reset,
indicating that the specific cache line does not have high
locality.

FIGS. 8A-8K illustrate examples of a cache memory
hierarchy system configured to retain high locality data in a
higher level cache memory suitable for implementing vari-
ous aspects. FIGS. 8A-8K illustrate various aspects of a
cache memory hierarchy system configured to retain high
locality data 1n a higher level cache memory. The 1llustrated
aspects may include a higher level cache memory 800 (e.g.,
higher level cache memory 210, 212, 214, 216, 220, 222,
230 1in FIG. 2; e.g., level 1 (IL1) cache memory and/or level
2 (L2) cache memory), a lower level cache memory 820
(e.g., lower level cache memory 220, 222, 230, 240 1n FIG.
2; e.g., L2 cache memory and/or level 3 (L3) cache
memory), and any number of cache memory managers (not
shown; e.g., cache memory manager 2350 in FIG. 2). The
higher level cache memory 800 may be any cache memory
of a higher level than the lower level cache memory 820,
including at least a last level cache memory, which may be
a lowest level cache memory of the cache memory hierar-
chy.

FIG. 8A illustrates an example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory having a higher level cache memory
800 and a lower level cache memory 820. The higher level
cache memory 800 and the lower level cache memory 820
may divided into any number of segments configured to

US 10,503,656 B2

19

store data and/or 1nstructions of any size, such as a cache line
802, which may also be known as a cache block.

A cache line 802 may include data and/or instructions for
use by an application executed by a processor and data
configured to 1dentily and configure the cache line 802. In
various aspects, the cache line 802 may include a field for
tag and state indicators 804, a field for a higher level cache
(HLC) hit counter 806, a field for a high locality indicator
808, and/or a field for a lower level cache (LLC) hit counter
810. The tag and state indicators 804 may be configured to
identify the cache line 802 for access to the cache line 802.
The higher level cache hit counter 806 may be configured to
indicate a number of times the cache line 802 1s accessed 1n
the higher level cache memory 800, for example, while the
cache line 802 1s in the higher level cache memory 800
between an 1nsertion into the higher level cache memory 800
and an eviction from the higher level cache memory 800,
referred to herein as a tracking period. The higher level
cache hit counter 806 may also be configured to indicate a
number of times the cache line 802 1s selected as a victim
cache line candidate 1n the higher level cache memory 800,
for example, while the cache line 802 is in the higher level
cache memory 800 during a tracking period. The lower level
cache hit counter 810 may be configured to indicate a
number of times the cache line 802 achieves a designated
number of hits 1n the higher level cache memory 800 across
any number of tracking periods. The higher level cache hit
counter 806 and the lower level cache hit counter 810 may
correlate to and indicate a locality of the cache line 802. The
high locality indicator 808 may be configured to indicate a
locality state of the cache line 802, such as having high
locality and not having high locality.

In various aspects, the higher level cache memory 800
and/or the lower level cache memory 820 may be configured
as an inclusive cache memory, for which the cache line 802
in maintained 1n the higher level cache memory 800 and the
lower level cache memory 820 1n response to accesses of the
cache line 802 that store the cache line 802 1n the other of
the higher level cache memory 800 and the lower level cache
memory 820. The examples illustrated i FIGS. 8A-8K

show the higher level cache memory 800 and the lower level
cache memory 820 configured as inclusive cache memories,
tor which the higher level cache hit counter 806 and the high
locality indicator 808 for the cache line 802 may be stored
in the higher level cache memory 800, and the lower level
cache hit counter 810 for the cache line 802 may be stored
in the lower level cache memory 820.

In various aspects, the higher level cache memory 800
and/or the lower level cache memory 820 may be configured
as an exclusive cache memory, for which the cache line 802
in removed and/or invalidated in the higher level cache
memory 800 and/or the lower level cache memory 820 in
response to accesses of the cache line 802 that store the
cache line 802 1n the other of the higher level cache memory
800 and the lower level cache memory 820. For exclusive
cache memories, the higher level cache hit counter 806, the
high locality indicator 808, and the lower level cache hit
counter 810 for the cache line 802 may be stored 1n the same
of the higher level cache memory 800 or the lower level
cache memory 820 as the cache line 820 1s stored 1n at any
time. In other words, storing the higher level cache hit
counter 806, the high locality indicator 808, and the lower
level cache hit counter 810 for the cache line 802 may switch
between the higher level cache memory 800 and the lower
level cache memory 820 the cache line 820 1n correspon-

10

15

20

25

30

35

40

45

50

55

60

65

20

dence with storage of the cache line 802 switching between
the higher level cache memory 800 and the lower level cache
memory 820.

A cache memory manager (e.g., cache memory manager
250 i FIG. 2) may be configured to update and analyze the
cache line 802 1n the higher level cache memory 800 and/or
the lower level cache memory 820. In response to an access
of the cache line 802 1n the higher level cache memory 800,
the cache memory manager may be configured to update the
higher level cache hit counter 806 of the cache line 802 in
the higher level cache memory 800. In response to an
selection of the cache line 802 in the higher level cache
memory 800 as a victim cache line candidate, the cache
memory manager may be configured to update the higher
level cache hit counter 806 of the cache line 802 in the
higher level cache memory 800. The cache memory man-
ager may also be configured to update the high locality
indicator 808 of the cache line 802 1n response to the access
of the cache line 802 1n the higher level cache memory 800.
In response to an eviction of the cache line 802 from the
higher level cache memory 800, the cache memory manager
may be configured to update the lower level cache hit
counter 810 of the cache line 802 1n the lower level cache
memory 820. In various aspects, such as for exclusive cache
memories, storing the lower level cache hit counter 810 for
the cache line 802 1n the higher level cache memory 800
may prompt the cache memory manager to reset the lower
level cache hit counter 810.

In various aspects, the higher level cache hit counter 806,
the lower level cache hit counter 810, and the high locality
indicator 808 may be configured using various formats, data,
and/or symbols, including any number and/or size. For the
sake of example and ease of explanation, not meant to limit
the scope of the descriptions and claims: the higher level
cache hit counter 806 may be a 2 bit binary counter for a
range of values “00” to “11” which may indicate a number
of times the cache line 802 1s accessed 1n the higher level
cache memory 800; the lower level cache hit counter 810
may be a 2 bit binary counter for a range of values “00” to
“11” which may indicate a number of times the cache line
802 achieves a designated number of hits 1n the higher level
cache memory 800 across multiple tracking periods; and the
high locality indicator 808 may be a 1 bit binary indicator for
which a “0” value may indicate a locality state of not having
high locality and a “1”” value may indicate a locality state of
having high locality for the cache line 802.

In response to an access of the cache line 802 in the higher
level cache memory 800, the cache memory manager may
update the higher level cache hit counter 806. The cache
memory manager may increase the higher level cache hit
counter 806 1n response to the access of the cache line 802
in the higher level cache memory 800 during a tracking
period. In other words, the cache memory manager may
increase the higher level cache hit counter 806 for a hit of the
cache line 802 1n the higher level cache memory 800. The
cache memory manager may reset the higher level cache hit
counter 806 1n response to the access of the cache line 802
in the higher level cache memory 800 at the beginning of a
new tracking period. In other words, the cache memory
manager may reset the higher level cache hit counter 806 for
a miss of the cache line 802 in the higher level cache
memory 800. In various aspects, the higher level cache hit
counter 806 may be updated using various algorithms and/or
operations.

In response to an eviction of the cache line 802 from the
higher level cache memory 800, the cache memory manager
may update the lower level cache hit counter 810. The cache

US 10,503,656 B2

21

memory manager may increase the lower level cache hit
counter 810 based on a value of the higher level cache hit
counter 806 of the cache line 802 exceeding an update
threshold at the time of the eviction of the cache line 802
from the higher level cache memory 800. The update
threshold may be configured as a value for indicating a
number of hits of the cache line 802 1n the higher level cache
memory 800 during a tracking period. In various aspects, the
lower level cache hit counter 810 may be updated using
various algorithms and/or operations.

In response to an access of the cache line 802 1n the higher
level cache memory 800 and based on a value of the lower
level cache hit counter 810, the cache memory manager may
set the high locality indicator 808 at the beginning of a new
tracking period. In other words, the cache memory manager
may set the high locality indicator 808 in response to a miss
of the cache line 802 in the higher level cache memory 800
and a value of the lower level cache hit counter 810 of the
cache line 802 exceeding a lower level cache locality
threshold. The lower level cache locality threshold may be
configured as a value for indicating a number of hits of the
cache line 802 1n the higher level cache memory 800 across
any number of tracking periods. Setting the high locality
indicator 808 may include writing a “1” value to the high
locality indicator field of the cache line 802 to indicate that
the cache line 802 has high locality, and resetting the high
locality indicator 808 may include writing a “0” value to the
high locality indicator field of the cache line 802 to indicate
that the cache line 802 does not have high locality. In various
aspects, for an accessed high locality indicator 808 that i1s
already the value for setting and/or resetting the high locality
indicator 808, the cache memory manager may maintain the
value of the high locality indicator 808 by setting and/or
resetting the high locality indicator 808, and/or by skipping
setting and/or resetting the high locality indicator 808.

In response to the cache memory manager setting the high
locality indicator 808, the cache memory manager may reset
the lower level cache hit counter 810. Resetting the lower
level cache hit counter 810 may 1include writing a “00” value
to the lower level cache hit counter field of the cache line
802.

In response to a selection of the cache line 802 as a victim
cache line candidate 1in the higher level cache memory 800
and based on the high locality indicator 808 being set, the
cache memory manager may update the higher level cache
hit counter 806. The cache memory manager may increase
the higher level cache hit counter 806 in response to the
selection of the cache line 802 as a victim cache line
candidate in the higher level cache memory 800 and the set
high locality indicator 808 during a tracking period. In
various aspects, the higher level cache hit counter 806 may
be updated using various algorithms and/or operations.

In response to a selection of the cache line 802 as a victim
cache line candidate 1in the higher level cache memory 800
and based on a value of the higher level cache hit counter
806, the cache memory manager may reset the high locality
indicator 808. The cache memory manager may reset the
high locality indicator 808 in response to the selection of the
cache line 802 as a victim cache line candidate 1n the higher
level cache memory 800 and the higher level cache hait
counter 806 exceeding a replace threshold. The replace
threshold may be configured as a value for indicating a
number of selections of the cache line 802 1n the higher level
cache memory 800 as a victim cache line candidate during
a tracking period.

The descriptions of the higher level cache memory 800,
the lower level cache memory 820, the cache line 802, the

10

15

20

25

30

35

40

45

50

55

60

65

22

higher level cache hit counter 806, the high locality indicator
808, and the lower level cache hit counter 810 also apply for
like numbered elements shown 1n FIGS. 8B-8K. In various
aspects, a cache line 802 inserted into the higher level cache
memory 800 and/or the lower level cache memory 820 from
another memory (e.g., memory 16, 24 i FIG. 1) may
include a “00” value for the higher level cache memory 800
and the lower level cache hit counter 810, and a “0” value
(1.e., not having high locality) for the high locality indicator
808.

FIG. 8B illustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory 1n which the cache line 802 1s evicted
from the higher level cache memory 800, and the lower level
cache hit counter 810 may be updated. The cache line 802
may be stored in the higher level cache memory 800 and
accessed during a tracking period prompting the cache
memory manager to update the higher level cache hit
counter 806. Access to the cache line 802 in the higher level
cache 800 may be counted through updating the higher level
cache hit counter 806, for example, by increasing a value of
the higher level cache hit counter 806. Eviction of the cache
line 802 from the higher level cache memory 800 may
prompt the cache memory manager to check and compare
the higher level cache hit counter 806 to the update thresh-
old. In response to the higher level cache hit counter 806
exceeding the update threshold, the cache memory manager
may update the lower level cache hit counter 810, for
example, by increasing a value of the lower level cache hit
counter 810.

In the example illustrated in FIG. 8B, the cache line 802
in the higher level cache memory 800 may include the
higher level cache hit counter 806 exceeding the update
threshold (e.g., higher level cache hit counter 806 may have
the value “11” exceeding a update threshold value of “107),
and the not set, or reset, higher level cache hit counter 806
indicating that the cache line 802 does not have high locality.
The cache line 802 may be evicted from the higher level
cache memory 800. In response to the eviction of the cache
line 802 from the higher level cache memory 800, the cache
memory manager may compare the higher level cache hit
counter 806 to the update threshold and determine that the
higher level cache hit counter 806 exceeds (or equals) the
update threshold, and the cache memory manager may
update the lower level cache hit counter 810 in response
(e.g., increasing a value of the lower level cache hit counter
810 from “00” to “017).

FIG. 8C illustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory 1n which the cache line 802 1s accessed
in the higher level cache memory 800 following being
evicted from the higher level cache memory 800 and the
cache line 802 1s updated in the thher level cache memory
800. Access of the cache line 802 1n the higher level cache
memory 800 may result in a miss in the higher level cache
memory 800 following eviction of the cache line 802 from
the higher level cache memory 800. The miss may prompt
the cache memory manager to retrieve the cache line 802
from the lower level cache memory 820 and send 1t to the
higher level cache memory 800, and/or update the cache line
802 1n the higher level cache memory 800. Updating the
cache line 802 1n the higher level cache memory 800 may
include resetting the higher level cache hit counter 806.
Updating the cache line 802 in the higher level cache
memory 800 may also include the cache memory manager
to checking and comparing the lower level cache hit counter
810 to the lower level cache locality threshold. In response

US 10,503,656 B2

23

to the lower level cache hit counter 810 not exceeding the
lower level cache locality threshold, the cache memory
manager may update the high locality indicator 808, for
example, by resetting, or maintaining, the high locality
indicator 808.

In the example illustrated 1n FIG. 8C, the cache line 802
in the higher level cache memory 800 may 1nitially have any
value of higher level cache hit counter 806 (e.g., the higher
level cache hit counter 806 may have the value “117) and a
not set, or reset, high locality indicator 808, for example, as
described for the example illustrated 1n FIG. 8B. The access
ol the cache line 802 in the higher level cache memory 800
may prompt the cache memory manager to reset the higher
level cache hit counter 806, for example, by changing the
value of higher level cache hit counter 806 from 117 to
“00”. The access of the cache line 802 1n the higher level
cache memory 800 may prompt the cache memory manager
to compare the compare the lower level cache hit counter
810 to the lower level cache locality threshold and determine
that the lower level cache hit counter 810 does not exceed
(or equals) the lower level cache locality threshold (e.g.,
lower level cache hit counter 810 may have the value “01”
not exceeding a lower level cache locality threshold value of
“107). In response, the cache memory manager may reset, or
maintain, the high locality indicator 808, for example, by
making the high locality indicator 808 a “0” value or
maintaining the high locality indicator 808 as a “0” value.

FIG. 8D illustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory in which the cache line 802 1s evicted
from the higher level cache memory 800, and the lower level
cache hit counter 810 may be maintained. The cache line 802
may be stored in the higher level cache memory 800 and
accessed during a tracking period prompting the cache
memory manager to update the higher level cache hit
counter 806. Access to the cache line 802 1n the higher level
cache 800 may be counted through updating the higher level
cache hit counter 806, for example, by increasing a value of
the higher level cache hit counter 806. Eviction of the cache
line 802 from the higher level cache memory 800 may
prompt the cache memory manager to check and compare
the higher level cache hit counter 806 to the update thresh-
old. In response to the higher level cache hit counter 806 not
exceeding the update threshold, the cache memory manager
may maintain the lower level cache hit counter 810, for
example, by not changing a value of the lower level cache
hit counter 810.

In the example 1llustrated 1n FIG. 8D, the cache line 802
in the higher level cache memory 800 may include the
higher level cache hit counter 806 not exceeding the update
threshold (e.g., higher level cache hit counter 806 may have
the value “10” not exceeding an update threshold value of
“107), and the not set, or reset, higher level cache hit counter
806 indicating that the cache line 802 does not have high
locality. The cache line 802 may be evicted from the higher
level cache memory 800. In response to the eviction of the
cache line 802 from the higher level cache memory 800, the
cache memory manager may compare the higher level cache
hit counter 806 to the update threshold and determine that
the higher level cache hit counter 806 does not exceed (or
equals) the update threshold, and the cache memory man-
ager may maintain the lower level cache hit counter 810 1n
response (e.g., maintaining a value of the lower level cache
hit counter 810 of “01”, as described for the example
illustrated in FIG. 8B).

FIG. 8E 1llustrates the example cache memory hierarchy
system configured to retain high locality data in a higher

10

15

20

25

30

35

40

45

50

55

60

65

24

level cache memory 1n which the cache line 802 is accessed
in the higher level cache memory 800 following being
evicted from the higher level cache memory 800 and the
cache line 802 1s updated 1n the thher level cache memory
800. Access of the cache line 802 1n the higher level cache
memory 800 may result 1n a miss 1n the higher level cache
memory 800 following eviction of the cache line 802 from
the higher level cache memory 800. The miss may prompt
the cache memory manager to retrieve the cache line 802
from the lower level cache memory 820 and send 1t to the
higher level cache memory 800, and/or update the cache line
802 1n the higher level cache memory 800. Updating the
cache line 802 in the higher level cache memory 800 may
include resetting the higher level cache hit counter 806.
Updating the cache line 802 in the higher level cache
memory 800 may also include the cache memory manager
to checking and comparing the lower level cache hit counter
810 to the lower level cache locality threshold. In response
to the lower level cache hit counter 810 not exceeding the
lower level cache locality threshold, the cache memory
manager may update the high locality indicator 808, for
example, by resetting, or maintaining, the high locality
indicator 808.

In the example 1llustrated 1n FIG. 8E, the cache line 802
in the higher level cache memory 800 may 1nitially have any
value of higher level cache hit counter 806 (e.g., the higher
level cache hit counter 806 may have the value “10”) and a
not set, or reset, high locality indicator 808, for example, as
described for the example illustrated 1n FIG. 8D. The access
of the cache line 802 1n the higher level cache memory 800
may prompt the cache memory manager to reset the higher
level cache hit counter 806, for example, by changing the
value of higher level cache hit counter 806 from “10” to
“00”. The access of the cache line 802 in the higher level
cache memory 800 may prompt the cache memory manager
to compare the compare the lower level cache hit counter
810 to the lower level cache locality threshold and determine
that the lower level cache hit counter 810 does not exceed
(or equals) the lower level cache locality threshold (e.g.,
lower level cache hit counter 810 may have the value “01”
not exceeding a lower level cache locality threshold value of
“10). In response, the cache memory manager may reset, or
maintain, the high locality indicator 808, for example, by
making the high locality indicator 808 a “0” value or
maintaining the high locality indicator 808 as a “0” value.

FIG. 8F illustrates the example cache memory hierarchy
system configured to retain high locality data 1in a higher
level cache memory in which the cache line 802 1s evicted
from the higher level cache memory 800, and the lower level
cache hit counter 810 may be updated. The cache line 802
may be stored in the higher level cache memory 800 and
accessed during a tracking period prompting the cache
memory manager to update the higher level cache hit
counter 806. Access to the cache line 802 1n the higher level
cache 800 may be counted through updating the higher level
cache hit counter 806, for example, by increasing a value of
the higher level cache hit counter 806. Eviction of the cache
line 802 from the higher level cache memory 800 may
prompt the cache memory manager to check and compare
the higher level cache hit counter 806 to the update thresh-
old. In response to the higher level cache hit counter 806
exceeding the update threshold, the cache memory manager
may update the lower level cache hit counter 810, for
example, by increasing a value of the lower level cache hit
counter 810.

In the example illustrated in FIG. 8F, the cache line 802
in the higher level cache memory 800 may include the

US 10,503,656 B2

25

higher level cache hit counter 806 exceeding the update
threshold (e.g., higher level cache hit counter 806 may have
the value “11”” exceeding a update threshold value of “107),
and the not set, or reset, higher level cache hit counter 806
indicating that the cache line 802 does not have high locality.
The cache line 802 may be evicted from the higher level
cache memory 800. In response to the eviction of the cache
line 802 from the higher level cache memory 800, the cache
memory manager may compare the higher level cache hit
counter 806 to the update threshold and determine that the
higher level cache hit counter 806 exceeds (or equals) the
update threshold, and the cache memory manager may
update the lower level cache hit counter 810 1n response
(e.g., increasing a value of the lower level cache hit counter
810 from “01” to “107).

FIG. 8G 1llustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory in which the cache line 802 1s accessed
in the higher level cache memory 800 following being
evicted from the higher level cache memory 800 and the
cache line 802 1s updated in the higher level cache memory
800. Access of the cache line 802 1n the higher level cache
memory 800 may result 1n a miss in the higher level cache
memory 800 following eviction of the cache line 802 from
the higher level cache memory 800. The miss may prompt
the cache memory manager to retrieve the cache line 802
from the lower level cache memory 820 and send it to the
higher level cache memory 800, and/or update the cache line
802 i the higher level cache memory 800. Updating the
cache line 802 in the higher level cache memory may
include resetting the higher level cache hit counter 806.
Updating the cache line 802 in the higher level cache
memory 800 may also include the cache memory manager
to checking and comparing the lower level cache hit counter
810 to the lower level cache locality threshold. In response
to the lower level cache hit counter 810 exceeding the lower
level cache locality threshold, the cache memory manager
may update the high locality indicator 808, for example, by
setting the high locality indicator 808.

In the example 1llustrated 1n FIG. 8G, the cache line 802
in the higher level cache memory 800 may mitially have any
value of higher level cache hit counter 806 (e.g., the higher
level cache hit counter 806 may have the value “11””) and a
not set, or reset, high locality indicator 808, for example, as
described for the example 1llustrated 1n FIG. 8F. The access
of the cache line 802 in the higher level cache memory 800
may prompt the cache memory manager to reset the higher
level cache hit counter 806, for example, by changing the
value of higher level cache hit counter 806 from “117 to
“00”. The access of the cache line 802 in the higher level
cache memory 800 may prompt the cache memory manager
to compare the compare the lower level cache hit counter
810 to the lower level cache locality threshold and determine
that the lower level cache hit counter 810 exceeds (or equals)
the lower level cache locality threshold (e.g., lower level
cache hit counter 810 may have the value “10” equaling a
lower level cache locality threshold value of “107). In
response, the cache memory manager may set the high
locality indicator 808, for example, by making the high
locality indicator 808 a “1” value, indicating the cache line
802 has high locality.

FIG. 8H 1llustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory in which a set cache line high locality
indicator signal may be sent 1n response to setting the high
locality indicator 808 of the cache line 802. In various
aspects, the lower level cache hit counter 810 may be used

10

15

20

25

30

35

40

45

50

55

60

65

26

to determine whether to set the high locality indicator 808,
as described for the example illustrated in FIG. 8G. The
lower level cache hit counter 810 may be reset for the set
high locality indicator 808. The cache memory manager may
be prompted by setting the high locality indicator 808 to
reset the lower level cache hit counter 810, for example by
a set cache line high locality indicator signal.

In the example illustrated 1n FIG. 8H, the cache line 802
in the higher level cache memory 800 may include a set
locality indicator 808, for example, as described for the
example 1llustrated 1n FIG. 8G. The locality indicator 808
may be set as a consequence ol an access to the cache line
802 1n the higher level cache memory 800 that results 1n a
miss, as described for the example illustrated 1n FIG. 8G.
Setting the locality indicator 808 may prompt generating and
sending a set cache line high locality indicator signal con-
figured to indicate to the cache memory manager that the
locality 1indicator 808 1s set. The set cache line high locality
indicator signal may prompt the cache memory manager to
reset the lower level cache hit counter 810, for example, by
making the lower level cache hit counter 810 a “00” value.

FIG. 81 illustrates the example cache memory hierarchy
system configured to retain high locality data 1in a higher
level cache memory in which higher level cache hit counter
806 may be updated 1n response to a selection of the cache
line 802 1n the higher level cache memory 800 as a victim
cache line candidate. As discussed herein, the cache line 802
may be pinned to the higher level cache memory 800 by
having a locality indicator 808. A pinned cache line 802 may
not be evicted from the higher level cache memory 800. The
cache line 802 may remain pinned to the higher level cache
memory 800 while the locality indicator 808 1s set. While the
cache line 802 1s pinned to the higher level cache memory
800 by having the set locality indicator 808, the cache
memory manager may update and analyze the higher level
cache hit counter 806 in a different manner than when the
cache line 802 i1s unpinned from the higher level cache
memory 800 by having the not set, or reset, locality indicator
808. As described herein, when the cache line 802 1s
unpinned from the higher level cache memory 800, the
cache memory manager may update and analyze the higher
level cache hit counter 806 as 1t relates to a number of access
of the cache line 802 1n the higher level cache memory 800
during a tracking period. When the cache line 802 1s pinned
to the higher level cache memory 800, the cache memory
manager may update and analyze the higher level cache hit
counter 806 as 1t relates to a number of selections of the
cache line 802 in the higher level cache memory 800 as a
victim cache line candidate for eviction from the higher
level cache memory 800 during a tracking period. The cache
line 802 may be stored in the higher level cache memory 800
and selected as a victim cache line candidate for eviction
during a tracking period according to any eviction policy
and criteria, such as least recently used, not most recently
used, first 1n first out, etc. Selection of the cache line 802 as
a victim cache line candidate in the higher level cache
memory 800 may prompt the cache memory manager to
check the locality indicator 808 to determine whether the
locality indicator 808 1s set. Selection of the cache line 802
as a victim cache line candidate in the higher level cache
memory 800 and determining that the locality indicator 808
1s set may prompt the cache memory manager to update the
higher level cache hit counter 806. Selection of the cache
line 802 as a victim cache line candidate in the higher level
cache 800 may be counted through updating the higher level
cache hit counter 806, for example, by increasing a value of
the higher level cache hit counter 806.

US 10,503,656 B2

27

In the example illustrated in FIG. 81, the cache line 802 in
the higher level cache memory 800 may 1nitially have any
value of higher level cache hit counter 806 (e.g., the higher
level cache hit counter 806 may have the value “10”) and a
set high locality indicator 808. The 1nitial value of the higher
level cache hit counter 806 may indicate a number of
previous selections of the cache line 802 1n the higher level
cache memory 800 as a victim cache line candidate. An
additional selection of the of the cache line 802 in the higher
level cache memory 800 as a victim cache line candidate to
may prompt the cache memory manager determine whether
the high locality indicator 808 1s set. In response to deter-
mimng that the set high locality indicator 808 1s set, the
cache memory manager may update the higher level cache
hit counter 806, for example, by increasing the value of the
higher level cache hit counter 806 (e.g., increasing a value
of the hugher level cache hit counter 806 from “10 to “117).

FIG. 8K 1llustrates the example cache memory hierarchy
system configured to retain high locality data in a higher
level cache memory 1n which higher level cache hit counter
806 may be updated 1n response to a selection of the cache
line 802 1n the higher level cache memory 800 as a victim
cache line candidate. As the cache line 802 may be pinned
to the higher level cache memory 800, the cache line 802
may also be unpinned from the higher level cache memory
800. In response to updating the higher level cache hit
counter 806 for a selection of the cache line 802 as a victim
cache line candidate 1n the higher level cache 800, the cache
memory manager may be prompted to compare the higher
level cache hit counter 806 to a replace threshold. In
response to the higher level cache hit counter 806 exceeding
the replace threshold, the cache memory manager may
update the lower level cache hit counter 810, for example, by
resetting the lower level cache hit counter 810, and reset the
high locality indicator 808. Resetting the high locality
indicator 808 may allow the cache memory manager to evict
the cache line 802 from the higher level cache memory 800
in response to a subsequent selection as a victim cache line
candidate, thereby unpinning the cache line 802 from the
higher level cache memory 800.

In the example 1llustrated 1n FIG. 8K, the cache line 802
in the higher level cache memory 800 may mitially have any
value of higher level cache hit counter 806 (e.g., the higher
level cache hit counter 806 may have the value “11””) and a
set high locality indicator 808, as described for the example
illustrated 1n FIG. 81. The mitial value of the higher level
cache hit counter 806 may indicate a number of previous
selections of the cache line 802 in the higher level cache
memory 800 as a victim cache line candidate. The update to
the higher level cache hit counter 806, as described for the
example 1llustrated in FIG. 81, may prompt the cache
memory manager to compare the higher level cache hit
counter 806 to the replace threshold and determine that the
higher level cache hit counter 806 exceeds (or equals) the
replace threshold (e.g., higher level cache hit counter 80
may have the value *“11” exceeding a replace threshold value
of “107). In response to determining that the higher level
cache hit counter 806 exceeds (or equals) the replace thresh-
old the cache memory manager may update the higher level
cache hit counter 806, for example, by resetting the value of
the higher level cache hit counter 806 (e.g., resetting a value
of the higher level cache hit counter 806 to “007). In
response to determining that the higher level cache hit
counter 806 exceeds (or equals) the replace threshold the
cache memory manager may reset the high locality indicator
808, for example, by making the high locality indicator 808
a “0” value.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

FIG. 9 illustrates a method 900 for finding a victim cache
line candidate 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 900 may be implemented 1n a
computing device in soltware executing in a processor (e.g.,
processor 14 1n FIGS. 1 and 2), 1n general purpose hardware,
in dedicated hardware (e.g., cache memory manager 250 1n
FIG. 2), or in a combination of a software-configured
processor and dedicated hardware (e.g., processor 14 in
FIGS. 1 and 2 and cache memory manager 250 in FIG. 2),
such as a processor executing soltware within a cache
memory hierarchy management system (€.g., cache memory
hierarchy system in FIGS. 8A-8K) that includes other indi-
vidual components (e.g., memory 16, 24 m FIG. 1, higher
level cache memory 800, lower level cache memory 820 1n
FIGS. 8A-8K), and various memory/cache controllers. In
order to encompass the alternative configurations enabled 1n
various aspects, the hardware implementing the method 900
1s referred to herein as a “processing device.” The method
900 includes operations that may be involved 1n finding a
victim cache line candidate in the higher level cache
memory 1n block 312 of the method 300 as described with
reference to FIG. 3.

In block 902, the processing device may determine the
victim cache line candidate in the higher level cache
memory. In various aspects, the processing device may use
any eviction policy based on any eviction criteria, such as
least recently used, not most recently used, first 1n first out,
etc., to determine the victim cache line candidate.

In determination block 904, the processing device may
determine whether the victim cache line candidate high
locality indicator (e.g., high locality indicator 808 1n FIGS.
8A-8K) 1s set. The processing device may access the victim
cache line candidate 1n the higher level cache memory and
check a high locality indicator field of the victim cache line
candidate for the high locality indicator. The processing
device may determine from the high locality indicator
whether the high locality indicator 1s set or not set, or reset.
For example, as discussed herein, a value of a binary format
high locality indicator="1" may indicate that the high local-
ity indicator 1s set indicating that the cache line has high
locality, and a value of the binary format high locality
indicator=""0" may indicate that the accessed indicator 1s not
set, or reset, indicating that the cache line does not have high
locality.

In response to determining that the victim cache line
candidate high locality indicator i1s set (i.e., determination
block 904=*Yes™), the processing device may update the
higher level cache hit counter (e.g., higher level cache hit
counter 806 1n FIGS. 8A-8K) for the victim cache line
candidate in higher level cache memory 1 block 906. In
various aspects, the higher level cache hit counter may be
configured to indicate a number and/or a representation of a
number of selections of the cache line 1n the higher level
cache memory as a victim cache line candidate during a
tracking period. A representation of a number may include
a representation of a range ol numbers. In various aspects,
indicating a selection as a victim cache line candidate may
include changing a value of the higher level cache hait
counter 1n a manner that indicates at least one more selection
of the cache line 1n the higher level cache memory as a
victim cache line candidate. The processing device may
access the cache line 1n the higher level cache memory and
write a value to the higher level cache hit counter field of the
cache line to update the higher level cache hit counter. For
example, as discussed herein, a value of a binary higher level
cache hit counter may indicate a number of selections of the

US 10,503,656 B2

29

cache line in the higher level cache memory as a victim
cache line candidate, and an increased value of the binary
higher level cache hit counter may indicate a greater number
ol selections of the cache line in the higher level cache
memory as a victim cache line candidate. The processing
device may use any algorithms and/or operations to update
the higher level cache hit counter of the cache line in the
higher level cache memory.

In determination block 908, the processing device may
determine whether the higher level cache hit counter of the
victim cache line candidate exceeds a replace threshold. In
various aspects, the replace threshold may be a value rep-
resenting a limit of times a cache line pinned to the higher
level cache memory may be selected before being unpinned
from the higher level cache memory. The processing device
may compare the higher level cache hit counter of the victim
cache line candidate and the replace threshold to determine
a relationship between the higher level cache hit counter and
the replace threshold, such as whether the higher level cache
hit counter exceeds or does not equal or exceed the replace
threshold.

In response to determining that the higher level cache hit
counter of the victim cache line candidate does not exceed
the replace threshold (1.e. determination block 908=“No™"),
the processing device may reset the victim cache line
candidate high locality indicator and higher level cache hit
counter in higher level cache memory 1n block 912. The
processing device may access the victim cache line candi-
date 1n the higher level cache memory and write designated
values to the high locality indicator field and the higher level
cache hit counter field of the victim cache line candidate to
reset the high locality indicator and the higher level cache hit
counter. For example, as discussed herein, a value of the
binary format high locality indicator="0" may indicate that
the high locality indicator 1s not set, or reset. Also, as
discussed herein, a value of the binary format higher level
cache hit counter="00"” may indicate that the higher level
cache hit counter 1s not set, or reset.

After resetting the victim cache line candidate high local-
ity indicator and higher level cache hit counter in higher
level cache memory or in response to determining that the
higher level cache hit counter of the victim cache line
candidate exceeds the replace threshold (i.e. determination
block 908=*Yes), the processing device may determine
another victim cache line candidate 1n the higher level cache
memory 1n block 902. The processing device using the same
eviction policy may select a next victim cache line candidate
in the higher level cache memory based on the eviction
criteria. For example, the processing device may execute the
eviction policy using an eviction queue in which victim
cache line candidates are ordered according to the eviction
criteria, and a next victim cache line candidate may be a
victim cache line candidate 1n a next position 1n the eviction
queue. In various aspects, the eviction queue may be 1imple-
mented using memory, such as a register, and/or data struc-
ture having ordered identifiers for each victim cache line
candidate 1n the eviction queue. In various aspects, the
eviction queue may be implemented by assigning each
victim cache line candidate a value indicating an order for
eviction.

In response to determining that the victim cache line
candidate high locality indicator 1s not set (i.e., determina-
tion block 904="No"), the processing device may evict the
victim cache line candidate from the higher level cache
memory in block 914. In various aspects, the processing
device may evict the victim cache line candidate by marking
the victim cache line candidate invalid 1n the higher level

10

15

20

25

30

35

40

45

50

55

60

65

30

cache memory, by removing the victim cache line candidate
from the higher level cache memory, and/or overwriting the
victim cache line candidate in the higher level cache
memory.

FIG. 10 1illustrates a method 1000 for updating a lower
level cache memory for retaining high locality data 1n a
higher level cache memory according to an aspect. The
method 1000 may be implemented 1n a computing device in
software executing 1 a processor (e.g., processor 14 1n
FIGS. 1 and 2), in general purpose hardware, in dedicated
hardware (e.g., cache memory manager 250 1n FIG. 2), or in
a combination of a software-configured processor and dedi-
cated hardware (e.g., processor 14 in FIGS. 1 and 2 and
cache memory manager 250 1n FIG. 2), such as a processor
executing software within a cache memory hierarchy man-
agement system (e.g., cache memory hierarchy system 1n
FIGS. 8A-8K) that includes other individual components
(e.g., memory 16, 24 in FIG. 1, higher level cache memory
800, lower level cache memory 820 in FIGS. 8A-8K), and
vartous memory/cache controllers. In order to encompass
the alternative configurations enabled in various aspects, the
hardware implementing the method 1000 1s referred to
herein as a “processing device.” In various aspects, the
method 1000 may be prompted by evicting the victim cache
line candidate from the higher level cache memory 1n block
914 of the method 900 described with reference to FIG. 9.

In determination block 1002, the processing device may
determine whether the higher level cache hit counter (e.g.,
higher level cache hit counter 806 1n FIGS. 8 A-8K) for the
victim cache line candidate exceeds an update threshold. In
various aspects, the update threshold may be a value repre-
senting a number of times a cache line 1n the higher level
cache memory may be accessed to prompt updating a lower
level cache hit counter (e.g., lower level cache hit counter
810 in FIGS. 8A-8K) for the cache line 1n the lower level
cache memory corresponding to the victim cache line can-
didate 1n the higher level cache memory. The cache line 1n
the lower level cache memory corresponding to the victim
cache line candidate 1n the higher level cache memory 1s also
referred to herein as the victim cache line candidate 1n the
lower level cache memory. The processing device may
compare the higher level cache hit counter of the victim
cache line candidate and the update threshold to determine
a relationship between the higher level cache hit counter and
the update threshold, such as whether the higher level cache
hit counter exceeds or does not equal or exceed the update

threshold.

In response to determining the higher level cache hit
counter for the victim cache line candidate exceeds the
update threshold (1.e., determination block 1002=*Yes™’), the
processing device may update the lower level cache hit
counter of the victim cache line candidate 1n lower level
cache memory 1n block 1004. In various aspects, the lower
level cache hit counter may be configured to indicate a
number and/or a representation of a number of hits of the
cache line in the higher level cache memory across any
number tracking periods. A representation of a number may
include a representation of a range of numbers. In various
aspects, indicating a number of hits of the cache line 1n the
higher level cache memory may include changing a value of
the lower level cache hit counter in a manner that indicates
at least one more hit of the cache line in the higher level
cache memory. The processing device may access the victim
cache line candidate in the lower level cache memory and
write a value to the lower level cache hit counter field of the
victim cache line candidate to update the lower level cache
hit counter. For example, as discussed herein, a value of a

US 10,503,656 B2

31

binary lower level cache hit counter may indicate a number
of hits of the cache line in the higher level cache memory,
and an increased value of the binary lower level cache hit
counter may indicate a greater number of hits of the cache
line 1n the higher level cache memory. The processing
device may use any algorithms and/or operations to update
the lower level cache hit counter of the cache line 1n the
lower level cache memory.

In response to determining the higher level cache hit
counter for the victim cache line candidate does not exceed
the update threshold (i.e., determination block 1002=*No""),
the processing device may maintain the lower level cache hit
counter of the victim cache line candidate in lower level
cache memory 1n block 1006. In various aspects, the pro-
cessing device may make no changes to the lower level
cache hit counter of the victim cache line candidate 1n lower
level cache memory. In various aspects, the processing
device may access the victim cache line candidate in the
lower level cache memory and write a value to the lower
level cache hit counter field of the victim cache line candi-
date to that 1s the same as a current value of the lower level
cache hit counter.

FIG. 11 illustrates a method 1100 for updating a higher
level cache memory for retaining high locality data in the
higher level cache memory according to an aspect. The
method 1100 may be implemented 1n a computing device in
soltware executing 1 a processor (e.g., processor 14 1n
FIGS. 1 and 2), 1n general purpose hardware, in dedicated
hardware (e.g., cache memory manager 2350 1n FIG. 2), or in
a combination of a software-configured processor and dedi-
cated hardware (e.g., processor 14 1n FIGS. 1 and 2 and
cache memory manager 250 1n FIG. 2), such as a processor
executing soltware within a cache memory hierarchy man-
agement system (e.g., cache memory hierarchy system 1n
FIGS. 8A-8K) that includes other individual components
(e.g., memory 16, 24 in FIG. 1, higher level cache memory
800, lower level cache memory 820 1n FIGS. 8A-8K), and
vartous memory/cache controllers. In order to encompass
the alternative configurations enabled in various aspects, the
hardware implementing the method 1100 1s referred to
herein as a “processing device.” The method 1100 includes
operations that may be involved in inserting the retrieved
cache line 1nto the higher level cache memory 1n block 314
of the method 300 described with reference to FIG. 3.

In determination block 1102, the processing device may
determine whether the lower level cache (LLC) hit counter
(e.g., lower level cache hit counter 810 1n FIGS. 8A-8K) of
the cache line exceeds a lower level cache locality threshold.
In various aspects, the lower level cache locality threshold
may be a value representing a number of times a cache line
in the higher level cache memory may be accessed to prompt
promoting the cache line to a high locality cache line by
setting a high locality indicator (e.g., high locality indicator
808 1n FIGS. 8A-8K) for the cache line. The processing
device may compare the lower level cache hit counter of the
cache line and the lower level cache locality threshold to
determine a relationship between the lower level cache hit
counter and the lower level cache locality threshold, such as
whether the lower level cache hit counter exceeds or does
not equal or exceed the lower level cache locality threshold.

In response to determining that the lower level cache hit
counter exceeds the lower level cache locality threshold (1.e.,
determination block 1102=*Yes”), the processing device
may determine whether promoting the cache line to having
high locality exceeds a cache set promote threshold. The
processing device may limit a number of high locality cache
lines 1n a cache set of the higher level cache memory. The

10

15

20

25

30

35

40

45

50

55

60

65

32

cache lines of a cache set may be promoted to high locality
cache lines, and the processing device may track the number
of high locality cache lines in the cache set and determine
whether promoting a cache line to high locality 1n the cache
set may exceed a cache set promote threshold. The cache set
promote threshold may be configured as a limit of the
number of high locality cache lines in the cache set. The
cache set promote threshold may be configured as a predes-
tinated value and/or a calculated value, such as a percentage
of a number of cache lines 1n the cache set 1n the higher level
cache memory. For example, the cache set promote thresh-
old may be 25% of the cache lines in the cache set. A
comparison of a number of cache lines including the high
locality cache lines 1n the cache set plus an additional high
locality cache line to the cache set promote threshold
resulting 1n the number of high locality cache lines exceed-
ing the cache set promote threshold may prompt the pro-
cessing device to determine to not promote the cache line 1n
the higher level cache memory. A comparison of the number
of cache lines 1including the high locality cache lines 1n the
cache set plus an additional the high locality cache line to the
cache set promote threshold resulting 1n the number of the
high locality cache lines not exceeding the cache set pro-
mote threshold may prompt the processing device to deter-
mine to promote the cache line 1 the higher level cache
memory.

In response to determining that promoting the cache line
to having high locality does not exceed the cache set
promote threshold (i.e., determination block 1104="No""),
the processing device may set the cache line high locality
indicator 1n block 1106. The processing device may access
the cache line 1n the higher level cache memory and write a
designated value to the high locality indicator field of the
cache line to set the high locality indicator. For example, as
discussed herein, a value of the binary format high locality
indicator="1"" may indicate that the high locality indicator 1s
set.

In block optional 1108, the processing device may send a
set cache line high locality indicator signal to the lower level
cache memory. The set cache line high locality indicator
signal may be configured to indicate to the processing device
that the locality indicator for the cache line 1s set. The set
cache line high locality indicator signal may prompt the
processing device to reset the lower level cache hit counter.
Examples of operations that may be mvolved 1n reset the
lower level cache hit counter are described with reference to
the method 1300 illustrated 1n FIG. 13.

In response to determiming that the lower level cache hit
counter does not exceed the lower level cache locality
threshold (1.e., determination block 1102=*No”) or in
response to determiming that promoting the cache line to
having high locality exceeds the cache set promote threshold
(1.e., determination block 1104=*Yes™), the processing
device may execute the cache access request for the cache
line in the higher level cache memory 1n block 316 of the
method 300 as described with reference to FIG. 3.

Additionally, 1n response to determining that promoting
the cache line to having high locality exceeds the cache set
promote threshold (i.e., determination block 1104=*Yes™),
the processing device may optionally determine whether the
lower level hit counter of the cache line exceeds a promote
replace threshold 1 determination block 1202 of the method
1200 described with reference to FIG. 12.

FIG. 12 1illustrates a method 1200 for updating a higher
level cache memory for retaining high locality data in the
higher level cache memory according to an aspect. The
method 1200 may be implemented 1n a computing device in

US 10,503,656 B2

33

soltware executing 1 a processor (e.g., processor 14 1n
FIGS. 1 and 2), 1n general purpose hardware, in dedicated
hardware (e.g., cache memory manager 250 1n FIG. 2), or in
a combination of a software-configured processor and dedi-
cated hardware (e.g., processor 14 1n FIGS. 1 and 2 and
cache memory manager 250 1n FIG. 2), such as a processor
executing soltware within a cache memory hierarchy man-
agement system (e.g., cache memory hierarchy system 1n
FIGS. 8A-8K) that includes other individual components
(e.g., memory 16, 24 in FIG. 1, higher level cache memory
800, lower level cache memory 820 1n FIGS. 8A-8K), and
vartous memory/cache controllers. In order to encompass
the alternative configurations enabled 1n various aspects, the
hardware implementing the method 1200 1s referred to
herein as a “processing device.”

In determination block 1202 the processing device may
determine whether the lower level cache (LLC) hit counter
(e.g., lower level cache hit counter 810 1n FIGS. 8A-8K) of
the cache line exceeds a promote replace threshold. The
cache set promote threshold may be configured as a limit of
the number of high locality cache lines 1n the cache set. The
promote replace threshold may be a value of cache accesses
in the higher level cache memory across any number of
tracking periods that may be used to determine whether to
replace a high locality cache line in the cache set with the
cache line being promoted to high locality. The processing
device may compare the lower level cache hit counter of the
cache line and the promote replace threshold to determine a
relationship between the lower level cache hit counter and
the promote replace threshold, such as whether the lower
level cache hit counter exceeds or does not equal or exceed
the promote replace threshold.

In response to determining that the lower level cache hit
counter of the cache line exceeds the promote replace
threshold (1.e., determination block 1204="*Yes”), the pro-
cessing device may reset a high locality indicator (e.g., high
locality indicator 808 1n FIGS. 8A-8K) of a high locality
cache line in the cache set. The processing device may
access the high locality cache line 1n the higher level cache
memory and write a designated value to the high locality
indicator field of the high locality cache line to reset the high
locality indicator. For example, as discussed herein, a value
of the binary format high locality mdicator="0" may indi-
cate that the high locality indicator 1s not set, or reset. The
processing device may select the high locality cache line of
the cache set using any criteria, such as the demote threshold
as described in determination block 602 of the method 600
described with reference to FIG. 6.

In block 1206, the processing device may set the high
locality indicator for the cache line being promoted to high
locality. The processing device may access the cache line
being promoted 1n the higher level cache memory and write
a designated value to the high locality indicator field of the
cache line being promoted to set the high locality indicator.
For example, as discussed herein, a value of the binary
format high locality indicator="1" may indicate that the high
locality indicator 1s set.

In response to determining that the lower level cache hit
counter of the cache line does not exceed the promote
replace threshold (1.e., determination block 1204=*No""), the
processing device may maintain the cache line high locality
indicator 1 block 1208. Maintaining the cache line high
locality indicator may result 1n not promoting the cache line
to high locality by maintaining the current value of that
cache line high locality indicator and not setting the cache
line high locality indicator. In various aspects, the process-
ing device may make no changes to the cache line high

10

15

20

25

30

35

40

45

50

55

60

65

34

locality 1ndicator. In various aspects, the processing device
may access the cache line in the higher level cache memory
and write a value to the high locality indicator field of the
cache line so that 1s the same as a current value of the high
locality indicator.

FIG. 13 illustrates a method 1300 for updating a lower
level cache memory for retaining high locality data 1n a
higher level cache memory according to an aspect. The
method 1300 may be implemented 1n a computing device in
soltware executing 1 a processor (e.g., processor 14 1n
FIGS. 1 and 2), in general purpose hardware, in dedicated
hardware (e.g., cache memory manager 250 1n FIG. 2), or in
a combination of a software-configured processor and dedi-
cated hardware (e.g., processor 14 in FIGS. 1 and 2 and
cache memory manager 250 1n FIG. 2), such as a processor
executing software within a cache memory hierarchy man-
agement system (e.g., cache memory hierarchy system 1n
FIGS. 8A-8K) that includes other individual components
(e.g., memory 16, 24 in FIG. 1, higher level cache memory
800, lower level cache memory 820 in FIGS. 8A-8K), and
vartous memory/cache controllers. In order to encompass
the alternative configurations enabled in various aspects, the
hardware implementing the method 1300 1s referred to
herein as a “processing device.”

In block 1302, the processing device may receive a set
cache line high locality indicator signal. The set cache line
high locality indicator signal may be configured to indicate
to the processing device that the locality indicator for the
cache line 1s set 1n the higher level cache memory. The set
cache line high locality indicator signal may prompt the
processing device to reset the lower level cache hit counter
(e.g., lower level cache hit counter 810 1n FIGS. 8A-8K) for
the cache line.

In block 1304, the processing device may reset the lower
level cache hit counter for the cache line. The processing
device may access the cache line 1n the lower level cache
memory and write s designated value to the lower level
cache hit counter field of the cache line to reset the lower
level cache hit counter. For example, as discussed herein, a
value of the binary format lower level cache hit coun-
ter="00" may indicate that the lower level cache hit counter
1S not set, or reset.

FIG. 14 1llustrates a method 1400 for determining locality
of a cache line 1n a higher level cache memory for retaining
high locality data in the higher level cache memory accord-
ing to an aspect. The method 1400 may be implemented 1n
a computing device in software executing i1n a processor
(e.g., processor 14 1 FIGS. 1 and 2), in general purpose
hardware, 1n dedicated hardware (e.g., cache memory man-
ager 250 1n FIG. 2), or 1n a combination of a software-
configured processor and dedicated hardware (e.g., proces-
sor 14 1n FIGS. 1 and 2 and cache memory manager 250 1n
FIG. 2), such as a processor executing soitware within a
cache memory hierarchy management system (e.g., cache
memory hierarchy system in FIGS. 8A-8K) that includes
other individual components (e.g., memory 16, 24 in FIG. 1,
higher level cache memory 800, lower level cache memory
820 in FIGS. 8A-8K), and various memory/cache control-
lers. In order to encompass the alternative configurations
enabled 1n various aspects, the hardware implementing the
method 1400 1s referred to herein as a “processing device.”
The method 1400 includes operations that may be mvolved
in determining a locality of the cache line 1n the higher level
cache memory 1n block 308 of the method 300 described
with reference to FIG. 3.

In determination block 1402, the processing device may
determine whether the high locality indicator (e.g., high

US 10,503,656 B2

35

locality indicator 808 in FIGS. 8 A-8K) of the cache line 1s
set. The processing device may access the cache line 1n the
higher level cache memory and check a high locality 1ndi-
cator field of the cache line for the high locality indicator.
The processing device may determine from the high locality
indicator whether the high locality indicator is set or not set,
or reset. For example, as discussed herein, a value of a
binary format high locality indicator="1" may indicate that
the high locality indicator 1s set indicating that the cache line
has high locality, and a value of the binary format high
locality indicator="0" may indicate that the accessed indi-
cator 1s not set, or reset, indicating that the cache line does
not have high locality.

In response to determining that the high locality indicator
of the cache line 1s not set (i1.e., determination block
1402="No"), the processing device determine whether a
higher level cache (HLC) hit counter (e.g., higher level
cache hit counter 806 in FIGS. 8A-8K) of the cache line
exceeds a higher level cache locality threshold 1n determi-
nation block 1404. In various aspects, the higher level cache
locality threshold may be a value representing a limit of a
number of hits of the cache line in the higher level cache
memory that may be indicated by the higher level cache
memory hit counter. The processing device may compare the
higher level cache hit counter of the cache line and the
higher level cache locality threshold to determine a relation-
ship between the higher level cache hit counter and the
higher level cache locality threshold, such as whether the
higher level cache hit counter exceeds or does not equal or
exceed the higher level cache locality threshold.

In response to determining that the higher level cache hit
counter does not exceed the higher level cache locality
threshold (1.e., determination block 1404="No""), the pro-
cessing device may update the higher level cache hit counter
in block 1406. In various aspects, the higher level cache hit
counter may be configured to indicate a number and/or a
representation ol a number of hits of the cache line 1n the
higher level cache memory. A representation of a number
may include a representation of a range of numbers. In
various aspects, indicating a hit of the cache line may
include changing a value of the higher level cache hit
counter in a manner that indicates at least one more hit of the
cache line 1n the higher level cache memory. The processing
device may access the cache line 1n the higher level cache
memory and write a value to the higher level cache hit
counter field of the cache line to update the higher level
cache hit counter. For example, as discussed herein, a value
of a bmary higher level cache hit counter may indicate a
number of hits of the cache line in the higher level cache
memory, and an increased value of the binary higher level
cache hit counter may indicate a greater number of hits of
the cache line i the higher level cache memory. The
processing device may use any algorithms and/or operations
to update the higher level cache hit counter of the cache line
in the higher level cache memory.

After updating the higher level cache hit counter; in
response to determining that the high locality indicator of
the cache line 1s set (1.e., determination block 1402="Yes”);
or 1n response to determining that the higher level cache hit
counter exceeds the higher level cache locality threshold
(1.e., determination block 1404=*Yes”), the processing
device may execute the cache access request for the cache
line in the higher level cache memory 1 block 316 of the
method 300 as described with reference to FIG. 3.

The various aspects (including, but not limited to, aspects
described above with reference to FIGS. 1-14) may be
implemented in a wide variety of computing systems includ-

10

15

20

25

30

35

40

45

50

55

60

65

36

ing mobile computing devices, an example of which suitable
for use with the various aspects is illustrated 1n FIG. 15. The
mobile computing device 1500 may include a processor
1502 coupled to a touchscreen controller 1504 and an
internal memory 1506. The processor 1502 may be one or
more multicore integrated circuits designated for general or
specific processing tasks. The internal memory 1506 may be
volatile or non-volatile memory, and may also be secure
and/or encrypted memory, or unsecure and/or unencrypted
memory, or any combination thereol. Examples of memory

types that can be leveraged include but are not limited to
DDR, LPDDR, GDDR, WIDEIO, RAM, SRAM, DRAM,

P-RAM, R-RAM, M-RAM, STIT-RAM, and embedded
DRAM. The touchscreen controller 1504 and the processor
1502 may also be coupled to a touchscreen panel 1512, such
as a resistive-sensing touchscreen, capacitive-sensing touch-
screen, mnirared sensing touchscreen, etc. Additionally, the
display of the computing device 1500 need not have touch
screen capability.

The mobile computing device 1500 may have one or more
radio signal transceivers 1508 (e.g., Peanut, Bluetooth,
ZigBee, Wi-F1, RF radio) and antennae 1510, for sending
and recerving communications, coupled to each other and/or
to the processor 1502. The transceivers 1508 and antennae
1510 may be used with the above-mentioned circuitry to
implement the various wireless transmission protocol stacks
and 1interfaces. The mobile computing device 1500 may
include a cellular network wireless modem chip 1516 that
enables communication via a cellular network and 1s
coupled to the processor.

The mobile computing device 1500 may include a periph-
eral device connection interface 1518 coupled to the pro-
cessor 1502. The peripheral device connection interface
1518 may be singularly configured to accept one type of
connection, or may be configured to accept various types of
physical and communication connections, common or pro-
prictary, such as Universal Serial Bus (USB), FireWire,
Thunderbolt, or PCle. The peripheral device connection
interface 1518 may also be coupled to a similarly configured
peripheral device connection port (not shown).

The mobile computing device 1500 may also include
speakers 1514 for providing audio outputs. The mobile
computing device 1500 may also include a housing 1520,
constructed of a plastic, metal, or a combination of materi-
als, for containing all or some of the components described
herein. The mobile computing device 1500 may include a
power source 1522 coupled to the processor 1502, such as
a disposable or rechargeable battery. The rechargeable bat-
tery may also be coupled to the peripheral device connection
port to recerve a charging current from a source external to
the mobile computing device 1500. The mobile computing
device 1500 may also include a physical button 1524 for
receiving user mputs. The mobile computing device 1500
may also include a power button 1526 for turning the mobile
computing device 1500 on and off.

The various aspects (including, but not limited to, aspects
described above with reference to FIGS. 1-14) may be
implemented in a wide variety of computing systems include
a laptop computer 1600 an example of which 1s 1llustrated 1n
FIG. 16. Many laptop computers include a touchpad touch
surface 1617 that serves as the computer’s pointing device,
and thus may receive drag, scroll, and flick gestures similar
to those implemented on computing devices equipped with
a touch screen display and described above. A laptop com-
puter 1600 will typically include a processor 1611 coupled
to volatile memory 1612 and a large capacity nonvolatile
memory, such as a disk drnive 1613 of Flash memory.

US 10,503,656 B2

37

Additionally, the computer 1600 may have one or more
antenna 1608 for sending and receiving electromagnetic
radiation that may be connected to a wireless data link
and/or cellular telephone transceiver 1616 coupled to the
processor 1611. The computer 1600 may also include a
floppy disc drive 1614 and a compact disc (CD) drive 16135
coupled to the processor 1611. In a notebook configuration,
the computer housing includes the touchpad 1617, the
keyboard 1618, and the display 1619 all coupled to the
processor 1611. Other configurations of the computing
device may include a computer mouse or trackball coupled
to the processor (e.g., via a USB 1nput) as are well known,
which may also be used 1n conjunction with the various
aspects.

The various aspects (including, but not limited to, aspects
described above with reference to FIGS. 1-14) may also be
implemented 1n fixed computing systems, such as any of a
variety of commercially available servers. An example
server 1700 1s illustrated i FIG. 17. Such a server 1700
typically imncludes one or more multicore processor assem-
blies 1701 coupled to volatile memory 1702 and a large
capacity nonvolatile memory, such as a disk drive 1704. As
illustrated 1n FIG. 17, multicore processor assemblies 1701
may be added to the server 1700 by inserting them 1into the
racks of the assembly. The server 1700 may also include a
floppy disc drive, compact disc (CD) or digital versatile disc
(DVD) disc drive 1706 coupled to the processor 1701. The
server 1700 may also include network access ports 1703
coupled to the multicore processor assemblies 1701 for
establishing network interface connections with a network
1705, such as a local area network coupled to other broad-
cast system computers and servers, the Internet, the public
switched telephone network, and/or a cellular data network
(e.g., CDMA, TDMA, GSM, PCS, 3G, 4G, LTE, or any
other type of cellular data network).

Computer program code or “program code” for execution
on a programmable processor for carrying out operations of
the various aspects may be written 1n a high level program-
ming language such as C, C++, C#, Smalltalk, Java,
JavaScript, Visual Basic, a Structured Query Language (e.g.,
Transact-SQL), Perl, or 1n various other programming lan-
guages. Program code or programs stored on a computer
readable storage medium as used in this application may
refer to machine language code (such as object code) whose
format 1s understandable by a processor.

The foregoing method descriptions and the process flow
diagrams are provided merely as illustrative examples and
are not intended to require or imply that the operations of the
various aspects must be performed in the order presented. As
will be appreciated by one of skill in the art the order of
operations 1n the foregoing aspects may be performed in any
order. Words such as “thereatfter,” “then,” “next,” etc. are not
intended to limait the order of the operations; these words are
simply used to guide the reader through the description of
the methods. Further, any reference to claim elements in the
singular, for example, using the articles “a,” “an” or “the” 1s
not to be construed as limiting the element to the singular.

The various 1llustrative logical blocks, modules, circuits,
and algorithm operations described 1n connection with the
various aspects may be implemented as electronic hardware,
computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software,
various 1illustrative components, blocks, modules, circuits,
and operations have been described above generally 1n terms
of their functionality. Whether such functionality 1s imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall

10

15

20

25

30

35

40

45

50

55

60

65

38

system. Skilled artisans may implement the described func-
tionality 1n varying ways for each particular application, but
such 1implementation decisions should not be interpreted as
causing a departure from the scope of the claims.

The hardware used to implement the various illustrative
logics, logical blocks, modules, and circuits described 1n
connection with the aspects disclosed herein may be imple-
mented or performed with a general purpose processor, a
digital signal processor (DSP), an application-specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any com-
bination thereof designed to perform the functions described
herein. A general-purpose processor may be a microproces-
sor, but, in the alternative, the processor may be any con-
ventional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a com-
bination of computing devices, e.g., a combination of a DSP
and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or
any other such configuration. Alternatively, some operations
or methods may be performed by circuitry that 1s specific to
a given function.

In one or more aspects, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereoi. If implemented 1n software, the functions
may be stored as one or more instructions or code on a
non-transitory computer-readable medium or a non-transi-
tory processor-readable medium. The operations of a
method or algorithm disclosed herein may be embodied 1n a
processor-executable software module that may reside on a
non-transitory computer-readable or processor-readable
storage medium. Non-transitory computer-readable or pro-
cessor-readable storage media may be any storage media
that may be accessed by a computer or a processor. By way
of example but not limitation, such non-transitory computer-
readable or processor-readable media may include RAM,
ROM, EEPROM, FLASH memory, CD-ROM or other opti-
cal disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to
store desired program code 1n the form of instructions or
data structures and that may be accessed by a computer. Disk
and disc, as used herein, includes compact disc (CD), laser
disc, optical disc, digital versatile disc (DVD), tloppy disk,
and Blu-ray disc where disks usually reproduce data mag-
netically, while discs reproduce data optically with lasers.
Combinations of the above are also included within the
scope ol non-transitory computer-readable and processor-
readable media. Additionally, the operations of a method or
algorithm may reside as one or any combination or set of
codes and/or 1nstructions on a non-transitory processor-
readable medium and/or computer-readable medium, which
may be incorporated into a computer program product.

The preceding description of the disclosed aspects 1s
provided to enable any person skilled in the art to make or
use the claims. Various modifications to these aspects will be
readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other aspects and
implementations without departing from the scope of the
claims. Thus, the present disclosure 1s not intended to be
limited to the aspects and implementations described herein,
but 1s to be accorded the widest scope consistent with the
following claims and the principles and novel features
disclosed herein.

What 1s claimed 1s:

1. A method of retaining high locality data 1n a higher
level cache memory on a computing device, comprising;:

US 10,503,656 B2

39

receiving a cache access request for a first cache line,
wherein the first cache line 1s located 1n the higher level
cache memory and wherein the cache access request
indicates a locality of the first cache line;

determining whether the cache access request indicating
the locality of the first cache line indicates that the first
cache line has high locality; and

setting a high locality indicator of the first cache line 1n

the higher level cache memory 1n response to deter-
mining that the cache access request indicates that the
first cache line has high locality.

2. The method of claim 1, further comprising;:

selecting the first cache line as a victim cache line

candidate;

determining whether the high locality indicator of the first

cache line 1s set;

evicting the first cache line 1n response to determining that

the high locality indicator of the first cache line 1s not
set; and

selecting a second cache line as the victim cache line

candidate 1n response to determining that the high
locality indicator of the first cache line 1s set.

3. The method of claim 1, further comprising;:

determining whether to promote the first cache line to

having high locality 1in response to determining that the
cache access request indicates that the first cache line
has high locality, wherein setting a high locality indi-
cator of the first cache line 1n the higher level cache
memory comprises setting the high locality indicator of
the first cache line 1n the higher level cache memory in
response to determining to promote the first cache line
to having high locality; and

resetting the high locality indicator of the first cache line

in the higher level cache memory in response to deter-
mining to not promote the first cache line to having
high locality.

4. The method of claim 1, further comprising determining,
whether promoting the first cache line to having high
locality exceeds a cache set promote threshold in response to
determining that the cache access request idicates that the
first cache line has high locality,

wherein setting a high locality indicator of the first cache

line 1n the higher level cache memory comprises setting
the high locality indicator of the first cache line 1n the
higher level cache memory 1n response to determinming,
that promoting the first cache line to having high
locality does not exceed the cache set promote thresh-
old.

5. The method of claim 4, further comprising resetting a
high locality indicator of a second cache line 1n the higher
level cache memory in response to determining that pro-
moting the first cache line to having high locality exceeds
the cache set promote threshold.

6. The method of claim 5, further comprising determining
whether a high locality counter for the higher level cache
memory exceeds a demote threshold,

wherein resetting a high locality indicator of a second

cache line 1n the higher level cache memory comprises
resetting the high locality indicator of the second cache
line 1n the higher level cache memory in response to
determining that the high locality counter for the higher
level cache memory exceeds the demote threshold.

7. The method of claim 1, turther comprising;:

determining whether a cache line high locality counter

exceeds a cache line demote threshold; and

resetting the high locality indicator of the first cache line

in the higher level cache memory in response to deter-

5

10

15

20

25

30

35

40

45

50

55

60

65

40

mining that the cache line high locality counter exceeds
the cache line demote threshold.

8. The method of claim 1, further comprising resetting the
high locality indicator of the first cache line in the higher
level cache memory 1n response to determining that the
cache access request does not indicate the first cache line has

high locality.

9. A computing device, comprising:

a Processor;

a higher level cache memory;

a lower level cache memory; and

a cache memory manager communicatively connected to

the processor, the higher level cache memory, and the

lower level cache memory, and configured to perform

operations comprising:

receiving a cache access request for a first cache line,
wherein the first cache line i1s located in the higher
level cache memory and wherein the cache access
request indicates a locality of the first cache line;

determining whether the cache access request indicat-
ing the locality of the first cache line indicates that
the first cache line has high locality; and

setting a high locality indicator of the first cache line 1n
the higher level cache memory 1n response to deter-
mining that the cache access request indicates that
the first cache line has high locality.

10. The computing device of claam 9, wherein the cache
memory manager 1s configured to perform operations further
comprising;

selecting the first cache line as a victim cache line

candidate;

determining whether the high locality indicator of the first

cache line 1s set;

evicting the first cache line 1n response to determining that

the high locality indicator of the first cache line 1s not
set; and

selecting a second cache line as the victim cache line

candidate 1n response to determining that the high
locality indicator of the first cache line 1s set.

11. The computing device of claim 9, wherein the cache
memory manager 1s configured to perform operations further
comprising:

determiming whether to promote the first cache line to

having high locality 1in response to determining that the
cache access request indicates that the first cache line
has high locality, wherein setting a high locality indi-
cator of the first cache line 1n the higher level cache
memory comprises setting the high locality indicator of
the first cache line 1n the higher level cache memory 1n
response to determining to promote the first cache line
to having high locality; and

resetting the high locality indicator of the first cache line

in the higher level cache memory in response to deter-
mining to not promote the first cache line to having
high locality.

12. The computing device of claim 9, wherein the cache
memory manager 1s configured to perform operations further
comprising determining whether promoting the first cache
line to having high locality exceeds a cache set promote
threshold 1n response to determining that the cache access
request 1ndicates that the first cache line has high locality,

wherein the cache memory manager 1s configured to

perform operations such that setting a high locality
indicator of the first cache line 1n the higher level cache
memory comprises setting the high locality indicator of
the first cache line 1n the higher level cache memory 1n

response to determining that promoting the first cache
line to having high locality does not exceed the cache

US 10,503,656 B2

41

set promote threshold.
13. The computing device of claim 12, wherein the cache

memory manager 1s

configured to perform operations further

comprising resetting a high locality indicator of a second
cache line in the higher level cache memory 1n response to
determining that promoting the first cache line to having
high locality exceeds the cache set promote threshold.

14. The computing device of claim 13, wherein the cache

memory manager 1s

configured to perform operations further

comprising determining whether a high locality counter for

the higher level cac

ne memory exceeds a demote threshold,

wherein the cac]

e memory manager 1s configured to

perform operations such that resetting a high locality

indicator of a

second cache line 1n the higher level

cache memory comprises resetting the high locality
indicator of the second cache line 1n the higher level

42

cache memory 1n response to determining that the high
locality counter for the higher level cache memory
exceeds the demote threshold.

15. The computing device of claim 9, wherein the cache

> memory manager is configured to perform operations further

10

15

comprising;
determining whether a cache line ligh locality counter
exceeds a cache line demote threshold:;
resetting the high locality indicator of the first cache line
in the higher level cache memory in response to deter-

mining that the cache line high locality counter exceeds
the cache line demote threshold; and

resetting the high locality indicator of the first cache line
in the higher level cache memory in response to deter-

mining that the cache access request does not indicate
the first cache line has high locality.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

