US010503483B2

a2y United States Patent (10) Patent No.: US 10,503,488 B2

Lettieri et al. 45) Date of Patent: Dec. 10, 2019

(54) UPDATING A PAYMENT PROCESSING (38) Field of Classification Search
SYSTEM TO CONFORM WITH A CPC GO6F 8/65; GO6F 16/23; G06(Q) 20/08;
STANDARD G06Q 20/10; GO7E 7/0873; HO4L 67/34
USPC 717/168-173; 705/17, 40, 53, 77, 79,
(71) Applicant: NCR Corporation, Duluth, GA (US) 705/910

See application file for complete search history.
(72) Inventors: Francesco Maria Lettieri, London

(GB); Mervin Amos, London (GB); (56) References Cited
Monish Meiappan, Croydon (GB) U.S. PATENT DOCUMENTS
(73) Assignee: NCR Corporation, Atlanta, GA (US) 8,683,455 B1* 3/2014 Tallam GOG6F 8/4435
717/106
(*) Notice: Subject to any disclaimer, the term of this 2005/0075977 Al* 4/2005 Carroll G06Q 20/102
patent 1s extended or adjusted under 35 705/40
U.S.C. 154(b) by 422 days. 2017/0004506 Al* 1/2017 Steinman G06Q 20/4014
2017/0221044 Al* 8/2017 Zhong G06Q 20/3278
| 2018/0174210 Al* 6/2018 Williams G06Q 30/04
(21) Appl. No.: 15/490,302 2018/0197171 Al* 7/2018 Steinman GO6Q 20/227
(22) Filed: Apr. 18, 2017 * cited by examiner
(65) Prior Publication Data Primary Examiner — Qing Chen

(74) Attorney, Agent, or Firm — Schwegman, Lundberg

US 2018/0300695 Al Oct. 13, 2018 & Woessner

(1) Int. CL. (57) ABSTRACT
GO6I 8/65 (2018.01) los of 1 method f dat
G060 20/10 (2012.01) Examp es ol a system and met 0d Tor up ating a payment
H processing system to conform with a standard are generally
GO6l 16/23 (2019.01) . . ;
H described. A method may include generating an update code
G060 20/08 (2012.01) . .
H configured to replace or be mserted into an executable code
HO4L 29/08 (2006.01) : :
COTF 708 20060 file. The method may include sending the update code to a
(01) payment processing system for implementation 1n the pay-
(52) US. CL ment processing system. The update code may include
CPC . GO6F 8/65 (2013.01); GO6F 16/23 validation code or mapping code. The payment processing

(2019.01); GO6Q 20/08 (2013.01); GO6Q system may include validation rules or mapping rules.
20010 (2013.01); GO7F 7/0873 (2013.01);

HO4L 67/34 (2013.01) 16 Claims, 9 Drawing Sheets
807 —
—
FINANCIAL MESSAGE p 80
TRANSACTION AMOUNT DATE TYPE
MESSAGE 1100 17-07-13 CSHW
/ﬂ\‘\
-
e~ e T 46—
VALIDATION MAPPING ""
IS AMOUNT ~
NUMERIC? NAME | VALUE | RULE
- - AMCUNT | 11.00 DVIDE BY 100
IS DATE FORMATTED R e
AS DD-MM-YY? ; DATE 17 APR 2013 FORMAT AS DD
S TYPEAA MMM YYYY
CHARACTERS STRING? | TYPE CASH L OOKUP THE TYPE
WITHDRAWAL
PAYMENT ACCEPTANCE

SYSTEM

U.S. Patent Dec. 10, 2019 Sheet 1 of 9 US 10,503,488 B2

102~ p 100

PAYMENT ACCEPTANCE SYSTEM
(E.G., CREDIT CARD COMPANY}

o6 PAYMENT PROCESSING UPDATE SYSTEM
06— |
UPDATE 2016 UPDATE2017 | | UPDATE 2018
108 — J/

+++++ 170
112

»| CODE GENERATION e

L HH

114 120
~

CUSTOMER A CUSTOMER B
116
UPDATE 2017 | (90 L
“CTIN] UPDATE 2017
* 18
CUSTOMIZATION

FiG. 1

U.S. Patent Dec. 10, 2019 Sheet 2 of 9 US 10,503,488 B2

200 g
202

DATABASE

++++++++++

206 . 204 IMTLP

CLASS GENERATION \ Q >

JSER INTERFACE L\ {3
O™
S
210 — 208

MPLEMENTATION

GENERATED CODE

212

PROCESSING SERVER

FIG. 2

wwwwwwwwwwwww

US 10,503,488 B2

SECOND
_FORMAT

OuT MESSAgg{- 316

|

_l'.'lﬂ'
A

ADD PROCESSING

FELDS }

U.S. Patent Dec. 10, 2019 Sheet 3 of 9
MAPPER MANAGER
- GENERATE 214
312 TRACE DATA
DARGE 37 [VALIDATION
FIRST 8 *
FORMAT || 7 I {“‘“‘“‘iﬂ
U IN | w NN | ¢ NINMESSAGE ? N
37{} e H MESSAGE ; MESSAG ” !f gﬁ ; : %
§ f i i
i
i
|

é

:
i
}
?
1 VA N \ [UPDATE N
o | rs f i ; E
CONNECTION VAV ;o | 1| FLIGHT TABLE
!
E

HANDLER /. / A ,
304 / o : foy i \
— H—‘ SO S — v ' S
/] INCOMING | | mé%mfw& 1:{:0% NCOMING
/| VALIDATION | | ' T NORMAL
; MWWLESL_J“_;E | MAPPING || MaPPING \PROCESSING
. & . 1% {3
NCOMING | 8 INCOMING | o)l g7 [0 HST
| PARSING | || VALIDATION |
| FAILLIST |} _FAILLIST | 308 INCOMING |
MAPPING |
302 CUSTOM 306 CUSTOM
VALIDATION MAPPING

ML

FIG. 3

U.S. Patent Dec. 10, 2019 Sheet 4 of 9 US 10,503,488 B2

--

iii

=FAULT MAPPING COLE GENERATED
%PQLEES Ug DEFENED o e
 MAPPINGS AND | CUSTOMER SHECIHC

--
ii

VALIDATIONS - USED | DEPAULT INTERPACES

FOR CUSTOMIZATIONS ?ﬁﬁgﬁ%ﬁg&es CUSTOMER
EXECLTESA?GST-- o IMPLEMENTATION OF

APP LOADS THE CUSTOMER | RULES VIA CODE
z | SPECIFIC CODE :

FIG. 4

U.S. Patent Dec. 10, 2019 Sheet 5 of 9 US 10,503,488 B2

p 00
502 ++++++
UPDATE SYSTEM
- 504
PROCESSOR v
A 506
MEMORY ¢
L N 510}
DAYMENT PROCESSING
SYSTEM
512
1 PROCESSOR l
o4~ CUSTOMIZATION
DATABASE
508 °
DAYMENT ACCEPTANCE
SYSTEM
516 4~
DATABASE

FIG. 5

U.S. Patent Dec. 10, 2019 Sheet 6 of 9 US 10,503,488 B2

- RECEIVE A STANDARD UPDATE |

s s o e cemmene. nnnnnen s el

+++

GENERATE AN UPDATE CODE CONHIGURED
TOREPLACE OR BE INSERTED INTO AN |
EXECUTABLE CODE FILE

006

otND THE UPDATE CODE TO A PAYMENT
PROCESSING SYSTEM FOR IMPLEMENTATION
IN THE PAYMENT PROCESSING SYSTEM

FiG. 6

U.S. Patent Dec. 10, 2019 Sheet 7 of 9 US 10,503,488 B2

p {00

702 o 108

o
+
-
+
L
-
] "
+ & + r + + k¥
* b+ K * = * 4+ + & L
++
a2 nowm =~ a o L] = H
- r F o= r LY
[
Ll

aa

712

MAINMEMORY | | le—=s] INPUT DEVICE

TNSTRUCTIONS || 714

| UINAVIGATION

+++

STATIC MEMORY == DEVICE

’
+
4
L
L
++++++++++++++++++++++++++++++++++++++ - P+ =+ h oA+ S+ A+ A F
: '
] ' 3
| ’
+
+*
: .
-+
+
+
4
-] - H

721 MASS STORAGE | 722

i W e MA C;N = L ‘
| READABLE l
| SENSORS) L e MEDILM .

INTERLINK

-
]
T

+ r
» .
-
* * .
*
- a .
]
- + .
+ r
=
-] .
A '+ . .
... - .
+ . i
L3 r
-
3 r .
-
" L]
*
- . -
-
+ -
+
- r -
-
-])] .
L]
. -
u

NETWORK | |]
INTERFACE DEVICE | SIGNAL
e GENERATION

DEVICE

796 e {28

- r s
+++++
d + +

QUTPUT

NETWORK CONTROLLER

8 Ol

JNHIGAS
JONVYLdI00V INTNAYY _

US 10,503,488 B2

TVMYHAHLIM |

¢ONIHLS SHIALOVHVHD
bV 3dAL S

CAA-WIN-UQ SY
(1LIVINSO 4 F1VU S

SORMANNN
INNOWY Sl
NOLLVT VA

T

3dAL FHLANYOOT HSVO

AAAA NI
0a SY IYWHO4

ST W W LN

Sheet 8 of 9

00} A9 JAING | 00 L1 | INNOWY ||

TIn: A E

ONIdAVIA
908 ‘/\

W_ MHSO el-L0-L} 0011) 2OVSSIN

IdAL 3Iva INNOWY NOLLOVSNYNL
ng — m I9VSSIN TIONYN A

Dec. 10, 2019

U.S. Patent

.
"

US 10,503,488 B2

Sheet 9 of 9

Dec. 10, 2019

U.S. Patent

6 Ol

CED

1 ai
(ToS) Jaon | - w%mwm_w
NOLLYHNOIANOD | GIIVHANTO
ALV IS L Paavasay EzMEB 1.
NOLLYY3NTO 3009 S
N 016

SNOUVZNOLSNO

3009
~— INIddVIA

g el g, e i, sl

- 4d00
- NOLLVAITWA

> NOLLYAIVA

01010101 0LOLOLOL
01010101 01010101

US 10,503,488 B2

1

UPDATING A PAYMENT PROCESSING
SYSTEM TO CONFORM WITH A
STANDARD

BACKGROUND

A payment processing system 1s used to accept payments
(e.g., from a consumer) and send the payments to a payment
acceptance system (e.g., credit card company) for further
processing. For example, the payment processing system
may include an electronic funds transfer (E'TF) system for
accepting payments at vendors, devices, websites, etc. Peri-
odically, payment acceptance systems will update configu-
ration of how payments are to be sent/recerved. An updated
configuration file may be sent from a payment processing
update system that coordinates between the payment pro-
cessing system and the payment acceptance system. One
1ssue with sending a configuration file to update the system
1s that 1t does not readily meet the requirements of sending
updates to a customer who already has an installed interface
or applied local mapping changes.

SUMMARY

In various embodiments, methods and systems for updat-
ing a payment system to conform with a standard are
presented.

According to an embodiment, a method may include
generating an update code including validation code or
mapping code to validate or map a financial transaction
message, the update code configured to replace an execut-
able code file. The method may include sending the update
code 1 a configuration code file to a payment processing
system for implementation in the payment processing sys-
tem. The payment processing system may include a database
with a validation rule or a mapping rule, the validation code
or the mapping code configured to be overridden by the
validation rule or the mapping rule, respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components 1n different
views. Like numerals having different letter suflixes may
represent different instances of similar components. The
drawings 1illustrate generally, by way of example, but not by
way ol limitation, various embodiments discussed in the
present document.

FIG. 1 illustrates generally a block diagram for updating
configuration files 1n accordance with some embodiments.

FI1G. 2 illustrates generally a diagram including an inter-
tace code generator for code tflow 1n accordance with some
embodiments.

FIG. 3 illustrates generally a transaction processing code
flow map 1n accordance with some embodiments.

FIG. 4 1llustrates generally a mapping rules hierarchy in
accordance with some embodiments.

FIG. § illustrates generally a payment processing update
system for updating a payment system to conform with a
standard 1n accordance with some embodiments.

FIG. 6 1llustrates generally a flowchart showing a tech-
nique for updating a payment system to conform with a
standard 1n accordance with some embodiments.

FI1G. 7 1llustrates generally an example of a block diagram
ol a machine upon which any one or more of the techniques
discussed herein may perform in accordance with some
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 illustrates generally a block diagram showing a
transaction flow in accordance with some embodiments.
FIG. 9 illustrates generally a block diagram showing

mapping and validation including a customer created con-
figuration and code 1n accordance with some embodiments.

DETAILED DESCRIPTION

The systems and methods described herein provide code
for updating a data structure of a parsed message within a
payment processing system. The code 1s sent to a payment
processing system for communicating with a payment
acceptance service (e.g., a credit card company) using
updated message configuration settings (e.g., with updated
data parameters or an updated data structure). The code 1s
sent to the payment processing system rather than sending
an updated configuration file itself such that customized
mapping configured at the payment processing system may
be retained while updating the message configuration set-
tings (e.g., the customizations are not overwritten).

Systems and methods described herein may include
updating a configuration data structure to confirm with a
standard (e.g., a standard supplied by a payment acceptance
system, such as a credit card company). In an example,
information related to an interface defimition, mapping rules,
or validation rules may be used to generate update code
which may be loaded during processing. The update code
may be used to update the payment processing system. The
update code may be delivered to a customer (e.g., a payment
processing system), tracked in version control customized,
or extended. The update code may be integrated with an
existing way of customizing the processing (e.g., to prevent
overwriting customizations at the payment processing sys-
tem created by the customer). The systems and methods
described herein may deliver standard product code with
minimal 1impact to existing user configuration, allow a user
of the payment processing system to override mapping rules,
reduce complexity of updates (e.g., mimnimize SQL update
complexities), or the like. In an example, the systems and
methods described herein may deliver code without config-
ured mapping rules (e.g., if the code 1s too complex to
integrate or to update existing rules).

The systems and methods described herein may use a
configuration to generate code from the configuration. The
code may then be transported to a payment processing
system (e.g., by a payment processing update system) rather
than sending the configuration itself. Using a configuration
to generate code allows for give greater customization and
control. For example, the code may include a standard that,
for example, sophisticated customers, may amend, change,
or add on to with greater flexibility than 11 only a configu-
ration 1tself was sent.

For example, a payment processing system may commu-
nicate with a payment acceptance system (e.g., a credit card
company), then twice a vear, the credit card company may
change requirements for charging communications (e.g.,
processing a payment). A payment processing update system
may send a configuration file to the payment processing
system with these changes, but the configuration file may be
cumbersome to send, receive, or customize. Instead, the
payment processing update system may send an update code
that, when executed, compiles to, amend, change, or over-
write the message configuration settings rather than sending
the configuration file 1tself.

The systems and methods described herein allow unso-
phisticated customers or customers not wishing to customize
a payment processing system code files to retain the benefit

US 10,503,488 B2

3

ol preconfigured code to include updated message configu-
ration settings. For example, the customers not wishing to
customize the code may simply execute the updated code
and use the message configuration settings that results. This
simultaneously allows sophisticated customers that wish to
customize the message configuration settings to modily the
code. Either way, the code may be sent out to all customers
without the need to check which type of customer 1s receiv-
ing the configuration mformation. In an example, the code
may include a library such that customers may consult the
library to keep preexisting customizations without introduc-
ing errors 1into the message configuration settings. Changes
made by a customer only aflects the payment processing
system of that customer, and thus keeps other payment
processing systems from being burdened by changes to
message configuration settings that may have previously
been introduced. This process may also reduce the burden on
a payment processing update system 1n cases where speciiic
confliguration customizations were stored for particular cus-
tomers

FIG. 1 illustrates generally a block diagram 100 for
updating message configuration settings in accordance with
some embodiments. The block diagram 100 includes a
payment acceptance system 102 (e.g., a credit card company
or payment acceptance company). The payment acceptance
system 102 may send one or more updates (e.g., update 2016
106, update 2017 108, or update 2018 110). The updates may
be sent to a payment processing update system 104. The
payment processing update system 104 may receive the
updates and implement a code generation at block 112. The
code generation 112 may include a generating code for a
message configuration settings. The code may be sent to
customers, for example customer A 114 or customer B 120.
A recent update (e.g., update 2017 108) may be implemented
in the code. In an example, customer A 114 runs the update
2017 116 and a customization 118, while customer B 120
includes only the update 2017 122. The code sent by the
payment processing update system 104 may allow both
customers to update (e.g., to the update 2017 configuration)
and permit the customization 118 of customer A 114 to be
retained and not overwritten.

In an example, the generated code may be moved inter-
nally within the update system 104 (e.g., from one server to
another server), for example. This may allow for easier
replication or distribution to customers or for convenience of
using multiple versions. While the generated code may be
moved, a package exporter for a configuration file may not
be moved as easily, since the package exporter may be
database dependent. This limitation or server movement
when sending a configuration file itsellf may prevent access
to customers or cause increased computing costs (e.g., server
time, server load, processing power) at the payment pro-
cessing update system 104.

FIG. 2 illustrates generally a diagram 200 including an
interface code generator for code flow 1n accordance with
some embodiments. The diagram 200 includes a database
202 1n communication with a code generator 204. The
database 202 may include mapping rules, interfaces, or
messages. The code generator 204 may draw aspects saved
in the database 202 or receive information from a class
generation user interface 206. The class generation user
interface 206 may be used to receive a user selection, such
as an applicable standard update. The code generator 204
may generate code related to a message configuration set-
ting, such as based on the standard update or the information
from the database 202. The code generator 204 may send the
generated code to block 208. Block 208 may dynamically

10

15

20

25

30

35

40

45

50

55

60

65

4

load implementation code from block 210 to include custom
message configuration settings for a particular customer.
The implementation code may override the update code to
retain customer-specific customizations. The generated code
may then be executed, such as via a post mapping action on
a processing server 212.

FIG. 3 1llustrates generally a transaction processing code
flow map 300 1n accordance with some embodiments. The
arrows depicted with a solid line in FIG. 3 are normal
processing actions and the arrows depicted with a dotted line
are optional, additional custom processing. The transaction
processing code flow 300 illustrates generally timing for
adding a custom validation 302 and a custom mapping 306
to the process ol processing messages. For example, the
custom validation 302 is performed at the incoming valida-
tion list 304 process, for example after validation and before
mapping. The custom mapping 306 1s performed at the
incoming post mapping list 308, for example after mapping
and before adding processing fields. The transaction pro-
cessing code tlow 300 illustrates that a financial transaction
message may be recerved at arrow 310 1n a first format (e.g.,
from a payment acceptance system). The first format may
include a raw data format. The data in the first format may
be parsed 312 to create a message with the standard update
in a second format. After parsing 312, the file in the second
format may have custom validation 302 added, be mapped
314 and have custom mapping 306 added. The file may be
output at 316 1n the second format, by adding processing
fields, making use of a flight table (e.g., a transaction cache),
and processing the file for output.

The financial transaction message may include a back-
stream of raw data (e.g., from a credit card company), which
may be transiformed from the raw data to the second format
that 1s readable by an application of the transaction process-
ing code flow 300. The parsing 312 may include extracting
elements from the raw data, such as credit card number,
expiration date, name, etc. Then validation and mapping 314
may occur. In an example, mapping 314 includes taking the
raw external data format and turning 1t into a raw internal
form (e.g., a second format). The mapping 314 allows the
transaction processing code flow 300 to receive data from a
plurality of devices and still interpret the data. For example,
the raw data may come from an automated teller machine
(ATM), a seli-service terminal (SST), a point of sale (POS)
device, a credit card network, a credit card reader, etc. While
byte streams may vary, the content may be the same or very
similar. By parsing and validating, the transaction process-
ing code flow 300 may be used with any of those sources.

FIG. 4 1llustrates generally a mapping rules hierarchy 400
in accordance with some embodiments. The code hierarchy
400 includes a mapper manager 402, a default mapping code
404, and customer specific code 406. The mapper manager
402 applies mappings and validations received, for example,
via a user interface that may be used for customizations. The
mapper manager 402 may execute a post-mapping action.
The default mapping code 404 may be generated with
default interfaces, mapping, or validation rules. The default
mapping code 404 may load customer specific code. The
customer specific code 406 may include a customer 1mple-
mentation of rules via code.

The code hierarchy 400 provides the ability of a payment
processing update system to meet a standard while allowing
customization or allowing a customer to overwrite the
customization. During an update, the code hierarchy 400
provides for an update code to be sent that includes new
customizations (e.g., directed to a standard update), and
customers may integrate the update code without impacting

US 10,503,488 B2

S

the changes the customer has already made (e.g., at customer
specific code 406). The customer may keep preferences,
while allowing the update code to change the underlying
standards. The code hierarchy 400 provides a way for
customers to keep preferences while continuing to accept
standards updates. The code hierarchy 400 allows a cus-
tomer to not need to redo preferences or customizations each
time the standard 1s updated, which may be required without
the code hierarchy 400 (e.g., if a configuration file 1tself was
sent to the customer rather than the update code).

The mapping rules configured 1n a database described in
the code hierarchy 400 at the mapper manager 402 may be
applied first. In a post-mapping action, the rules defined via
code may be applied for values which are still null (e.g.,
using the default mapping code 404). In an example, when
a value 1s already mapped for a particular message, the
mapping manager 402 may avoid applying an additional
mapping rule via code. In another example, a value may be
explicitly set to null, such as with a flag to prevent over-
writing. The final rules may be the customer specific code
406 rules.

FIG. § illustrates generally a system 500 for updating a
payment system to conform with a standard 1n accordance
with some embodiments. The system 500 includes an update
system 1ncluding at least one processor 304 and memory
506. The memory 506 may comprise instructions, which
when executed on the at least one processor, configure the at
least one processor to perform operations as detailed herein.
The update system 502 may be in communication with a
payment acceptance system 508 and a payment processing
system 510. The payment acceptance system 508 may
include a database 516, which may store a standard update
to be sent to the update system 502.

The payment processing system 510 may include a pro-
cessor 512 to execute code, for example update code sent
from the update system 502. The payment processing system
510 may include a customization database 514 to store
configuration customizations, for example, customizations
that are specific to the payment processing system 510 (e.g.,
not originated or applied via the update system 502 or the
payment acceptance system 308). The payment processing,
system 510 may communicate with the payment acceptance
system 508. For example the payment processing system
510 may send a financial transaction message to the payment
acceptance system 508 to process a transaction. The finan-
cial transaction message may be formatted according to code
run on the payment processing system 510 updated by the
update system 502.

In an example, the processor 304 may receive a standard
update, for example, from the payment acceptance system
508. The processor 504 may generate, using information
from the standard update, an update code. The update code
may be configured to be 1nsertable into an executable code
file (e.g., to be run on the payment processing system 510),
the update code replacing a previous version of a standard
corresponding to the standard update 1n the executable code
file. The processor 504 may send the update code mn a
configuration code file to the payment processing system
510 for implementation 1n the payment processing system
510, the payment processing system 510 may include the
executable code file.

In an example, the update code may include validation
code or mapping code, which may be used to validate or map
a financial transaction message (e.g., aiter parsing the mes-
sage). In an example, the customization database 514 may
include customized validation rules or mapping rules that
may override the validation code or mapping code (respec-

10

15

20

25

30

35

40

45

50

55

60

65

6

tively) of the update code. The validation code may, when
executed (e.g., by the payment processing system 310),
cause a system to determine whether a parsed message
includes valid field values. The mapping code may, when
executed (e.g., by the payment processing system 510),
cause a system to convert field values from a message (e.g.,
a parsed message), to mapped values.

The update code may be configured to run automatically
on the payment processing system The update code may be
changed at the payment processing system 510 to include
customizations prior to running on the payment processing
system 510. In an example, the processor 504 may receive
the standard update from the payment acceptance system,
508 and the update code may allow the payment processing
system. 510 to send a payment 1n an updated configuration
to the payment acceptance system, S08.

The system 500 may include a package structure to
organize code, for example including interface code, map-
ping code, message code, or validation code. For example,
a package structure may include classes organized as
detailed below. An interfaces folder may include a java
interface for each of the possible mappings defined 1n a
payment processing system or one java class implementing
all the interfaces. In an example, each interface may have
several default methods, such as one for each field defined
in the message. The customer may extend this class to
customize the behavior of the mapping. In an example, an
initialization code may be used to load mapping code. The
mapping code may be used to load the customer specific
code. The mapping folder may include a java class for each
target interface. In an example, the mapping code, imple-
menting the interfaces, may be put in the ‘mapping.impl’
folder. The messages folder may include a java class to
define a super interface for each of the possible messages
defined 1n the interface. In an example, a java class may be
used as accessor for the message specific fields. The vali-
dation folder may store the source interface, which may
include a folder containing the interfaces which may be
implemented to customize the validation. The validation
tolder may include a subfolder called ‘validator’ to provide
the code to load dynamically the customer implemented
code for validation. The code loaded dynamically may be
located under ‘validation.impl’.

Example code to implement the systems and methods
described herein 1s included below.

TABLE 1

The AuthenticToStandard70Abstractlmplementor implements mapping
interfaces for the source/target message pairs defined.

public abstract class
AuthenticToStandard 70 Abstractlmplementor implements
AuthorisationResponsell110ToAuthorisationResponse,
ReversalRequest14001401ToAuthorisationRequest,
AuthorisationRequest1 1001101 ToAuthorisationRequest {

public void initialize(Map<Object, Object> sharedMap,
AuthenticMessage src, Standard70Message dst) {

h

public String mapToMessageType(Map<Object, Object>
sharedMap, AuthenticToStandard70.Operation op,
Standard 70MessageFields mappingToField, AuthenticMessage
src, Standard70Message dst) throws MappingException {

switch(op.getSourceType()) {
case ReversalRequest14001401:

try {
return (String) Mapping.transform(“25”);

h

catch (Exception e) {
throw new MappingException(“An error occurred

US 10,503,488 B2

7
TABLE 1-continued

The AuthenticToStandard70 Abstractlmplementor implements mapping

interfaces for the source/target message pairs defined.

-9

mapping the field ““+mappingToField.extName+™" ., €);

h

case AuthorisationRequest11001101:

try 1
return (String) Mapping.transform(*0100”);
h

catch (Exception e) {
throw new MappingException(“An error occurred

- B

+mapping ToField.extName+’" ., e);

Rk

mapping the field

h

case AuthorisationResponsel110:

return null;
default:

return null;

TABLE 2

The AuthorisationResponsel110ToAuthorisationResponselnvoker
1s used when an Authorization Response 1110 1s
mapped to Authorization Response.

/*** This class can be invoked for mapping Authentic
AuthorisationResponsel110 to Standard70
AuthorisationResponse™/
public static class
AuthorisationResponsell10ToAuthorisationResponselnvoker
implements MapperInterface {
protected Operation op = new
Operation(AuthenticMessage.Message Type.AuthorisationResponse
1110,
Standard 70Message. Message Type. AuthorisationResponse);
protected
AuthorisationResponsell10ToAuthorisationResponse 1n;
Override
public void map(NormmalisedMapperMessage src,
NormalisedMapperMessage dst) throws MappingException {
AuthenticMessage srcMsg = new
AuthenticMessage(AuthenticMessage.Message Type.Authorisation
Responsell10, src);
Standard70Message dstMsg = new
Standard 70Message(Standard70Message.MessageType. Authorisation
Response, dst);
Map<Object, Object> sharedObject = new
HashMap<Object, Object>();
in.initialize(sharedObject, srcMsg, dstMsg);
if(dst.getObject(Diallndicator.extName)==null) {
dst.setObject(Diallndicator.extName, (Object)
in.mapToDialIndicator(sharedObject, op, Diallndicator,
srcMsg, dstMsg));

h

1f(dst.getObject(Terminalldentity.extName)==null)

{
dst.setObject(Terminalldentity.extName, (Object)
in.mapToTerminalldentity(sharedObject, op,
Terminalldentity, srcMsg, dstMsg));
h
if(dst.getObject(MessageNumber.extName)==null) {
dst.setObject(MessageNumber.extName, (Object)
in.mapToMessageNumber(sharedObject, op, MessageNumber,
srcMsg, dstMsg));
h
if(dst.getObject(Terminal Type.extName)==null) {
dst.setObject(Terminal Type.extName, (Object)

in.mapToTerminal Type(sharedObject, op, Terminal Type,
srcMsg, dstMsg));

h

if(dst.getObject(MessageType.extName)==null) {
dst.setObject(MessageType.extName, (Object)

in.mapToMessageType(sharedObject, op, MessageType,
srcMsg, dstMsg));

10

15

20

25

30

35

40

45

50

55

60

65

S
TABLE 2-continued

The AuthorisationResponsel110ToAuthorisationResponselnvoker
1s used when an Authorization Response 1110 is
mapped to Authorization Response.

h
if(dst.getObject(Body.extName)==null) {
dst.setObject(Body.extName, (Object)
in.map ToBody(sharedObject, op, Body, srcMsg, dstMsg));

h

TABLE 3

The Original Destination STAN returns a value of a field.

/=I==I‘-‘

* Returns the value of field with name *Original
Destination STAN’
* applicable for messages:
8 - AuthorisationRequest11001101
- GenericMessage
- AcquirerAdminAdvicel 6201621
- Reversal AdviceRequest14201421
- Reversal AdviceResponsel1430
- FinancialAdviceResponsel1230
- AdmuinistrationRequest1 6041605
- FormatErrorResponse9010
- AdministrationResponsel614
- PINChangeResponse9110
- ReconciliationAdviceRequest1 520
- ReconciliationAdviceResponsel 530
- Financial AdviceRequest12201221
- FinancialRequest12001201
- FinancialResponsel1210
- AdmnistrationAdviceRequest1 6241625
- AdministrationAdviceResponsel1 634
- AuthorisationResponsel110
- AuthorizationAdviceRequest11201121
- AuthorizationAdviceResponsel1130
- ReversalRequest14001401

% % K % H X O H HX X K H K K K X K K H K H FK K

- ReversalResponsel410
- ATMConfirmation1102
*/
@Override

public String getOriginalDestinationSTAN() {

return (String) src.get(““Original Destination
STAN);

)

TABLE 4

The AuthenticMessage.java class 1s used to access the fields.

* Class to access fields defined in Authentic message
AuthorisationRequest11001101
*f
public class AuthorisationRequest11001101 {
/$=I=
* Returns the value of field with name ‘Message
Type’
*
public Integer getMessageType() {
return (Integer) src.get(*“Message Type”);
h

/=I==I‘-‘

* Returns the value of field with name ‘Transaction
Code’
*
public Integer getTransactionCode() {
return (Integer) src.get(*“Iransaction Code”);
h

/=I==I=

* Returns the value of field with name ‘Transaction

Code Qualifier’
*
public String getTransactionCodeQualifier() {

US 10,503,488 B2

9
TABLE 4-continued

The AuthenticMessage.java class i1s used to access the fields.

return (String) src.get(*““I'ransaction Code
Qualifier”);

h

TABLE 5

The AuthorisationRequestValidator.java class 1s used to load the code to
perform the validation.

/=I==I=

* Interface to implement the validation of fields
defined 1n Standard-70 message AuthorisationRequest
*/
public class AuthorisationRequestvalidator {
private static AuthorisationRequest validator;
static {
try {

String basePackage =
“com.ncr.authentic.messaging.apacs30.standard70.validation
Ampl”;

ClassPathScanningCandidateComponentProvider
SCANNer = New
ClassPathScanningCandidateComponentProvider(false);

scanner.addIncludeFilter(new
AssignableTypeFilter(AuthorisationRequest.class));

set<BeanDefinition> candidates =
scanner.findCandidateComponents(basePackage);
if(candidates!=null && !candidates.isEmpty()) {
for(BeanDefinition b: candidates) {
validator = (AuthorisationRequest)
Class.forName(b.getBeanClassName()).newlnstance();

break;

h
h

h

catch (Throwable e) {
TraceLog.Error(AuthorisationRequest.class, e);

h
h

public static void validate(Standard 70Message src)
throws ValidationException {
LinkedList<ValidationException> exceptionList = new

LinkedList<ValidationException>();
Standard70Message.Standard 70MessageFields
fieldToValidate = null;

try {
fieldToValidate =

Standard 70Message.Standard70messageFields. DialIndicator;
validator.validateDiallndicator(src,

fieldToValidate,

src.authorisationRequest. getDialIndicator());

h

catch (ValidationException e) {

e.setFieldName(field ToValidate.extName);
e.setFieldValue(src.authorisationRequest,getDial Indicator

())s

e.setSrcmessageName(src.getstandard 70messageType().name(

));

e.setSrclnterfaceName(“Standard 707);
exceptionList.add(e);

h

FIG. 6 1llustrates generally a flowchart showing a tech-
nique 600 for updating a payment processing system to
conform with a standard in accordance with some embodi-
ments. The technique 600 may include an operation 602 to
receive (e.g., at an update system) a standard update, for
example, from a payment acceptance system.

The technique 600 includes an operation 604 to generate
an update code configured to replace or be inserted into an
executable code file. The update code may replace a previ-

ous version of a standard corresponding to the standard
update, for example, 1n the executable code file. In an

10

15

20

25

30

35

40

45

50

55

60

65

10

example, the update code may include a validation code, for
example to validate a financial transaction message. In an
example, the update code includes mapping code to convert
values 1n the financial transaction message to mapped val-
ues. The database may include a mapping rule, and the
mapping code may be configured to be overridden by the
mapping rule. The update code may be configured to parse
the financial transaction message before validation.

The technique 600 1ncludes an operation 606 to send the
update code to a payment processing system for implemen-
tation 1 the payment processing system. The payment
processing system may include the executable file. In an
example, the payment processing system includes a database
with a validation rule. The validation code of the update
code may be configured to be overridden by the validation
rule.

The update code may allow the payment processing
system to send a payment in an updated configuration to the
payment acceptance system. In an example, the update code
includes validation code, which when executed, causes the
payment processing system to determine whether a parsed
message (e.g., the standard update may be received in a
message and may be parsed) includes valid field values. The
update code may 1include mapping code, which when
executed, causes the payment processing system to convert
field values from a parsed message (e.g., as described above)
to mapped values.

The update code may be configured to run automatically
on the payment processing system. In another example, the
update code may be changed at the payment processing
system to include customizations prior to running on the
payment processing system. In an example, the update code
1s configured to, when executed, supplement a configuration
customization ol the payment processing system while
avoilding overwriting the configuration customization of the
payment processing system.

The payment processing system may include a database
with custom validation rules or custom mapping rules. The
update code may include validation code or mapping code.
The validation code or the mapping code may be configured
to be overridden by the custom validation rules or the
custom mapping rules, respectively.

FIG. 7 illustrates generally an example of a block diagram
of a machine 700 upon which any one or more of the
techniques discussed herein may perform 1n accordance with
some embodiments. In alternative embodiments, the
machine 700 may operate as a standalone device or may be
connected (e.g., networked) to other machines. In a net-
worked deployment, the machine 700 may operate 1n the
capacity of a server machine, a client machine, or both 1n
server-client network environments. In an example, the
machine 700 may act as a peer machine 1n peer-to-peer
(P2P) (or other distributed) network environment. The
machine 700 may be a personal computer (PC), a tablet PC,
a set-top box (STB), a personal digital assistant (PDA), a
mobile telephone, a web appliance, a network router, switch
or bridge, or any machine capable of executing instructions
(sequential or otherwise) that specily actions to be taken by
that machine. Further, while only a single machine 1s illus-
trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of 1nstructions to perform any one or
more of the methodologies discussed herein, such as cloud
computing, software as a service (SaaS), other computer
cluster configurations.

Examples, as described herein, may include, or may
operate on, logic or a number of components, modules, or

US 10,503,488 B2

11

mechanisms. Modules are tangible entities (e.g., hardware)
capable of performing specified operations when operating.
A module includes hardware. In an example, the hardware
may be specifically configured to carry out a specific opera-
tion (e.g., hardwired). In an example, the hardware may
include configurable execution units (e.g., transistors, cir-
cuits, etc.) and a computer readable medium containing
instructions, where the 1nstructions configure the execution
units to carry out a specific operation when 1n operation. The
configuring may occur under the direction of the executions
units or a loading mechanism. Accordingly, the execution
units are communicatively coupled to the computer readable
medium when the device 1s operating. In this example, the
execution units may be a member of more than one module.
For example, under operation, the execution units may be
configured by a first set of mstructions to implement a first
module at one point 1n time and reconfigured by a second set
of mnstructions to implement a second module.

Machine (e.g., computer system) 700 may include a
hardware processor 702 (e.g., a central processing unit
(CPU), a graphics processing unit (GPU), a hardware pro-
cessor core, or any combination thereol), a main memory
704 and a static memory 706, some or all of which may
communicate with each other via an interlink (e.g., bus) 708.
The machine 700 may further include a display unit 710, an
alphanumeric input device 712 (e.g., a keyboard), and a user
interface (UI) navigation device 714 (e.g., a mouse). In an
example, the display unit 710, alphanumeric mput device
712 and Ul navigation device 714 may be a touch screen
display. The machine 700 may additionally include a storage
device (e.g., drive unit) 716, a signal generation device 718
(e.g., a speaker), a network interface device 720, and one or
more sensors 721, such as a global positioming system (GPS)
sensor, compass, accelerometer, or other sensor. The
machine 700 may include an output controller 728, such as
a serial (e.g., umiversal serial bus (USB), parallel or other
wired or wireless (e.g., infrared (IR), near field communi-
cation (NFC), etc.) connection to communicate or control
one or more peripheral devices (e.g., a printer, card reader,
etc.).

The storage device 716 may include a machine readable
medium 722 that 1s non-transitory on which 1s stored one or
more sets of data structures or instructions 724 (e.g., soft-
ware) embodying or utilized by any one or more of the
techniques or functions described herein. The instructions
724 may also reside, completely or at least partially, within
the main memory 704, within static memory 706, or within
the hardware processor 702 during execution thereof by the
machine 700. In an example, one or any combination of the
hardware processor 702, the main memory 704, the static
memory 706, or the storage device 716 may constitute
machine readable media.

While the machine readable medium 722 1s illustrated as
a single medium, the term “machine readable medium™ may
include a single medium or multiple media (e.g., a central-
1zed or distributed database, and/or associated caches and
servers) configured to store the one or more 1nstructions 724.

The term “machine readable medium” may include any
medium that 1s capable of storing, encoding, or carrying
instructions for execution by the machine 700 and that cause
the machine 700 to perform any one or more of the tech-
niques of the present disclosure, or that i1s capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine readable
medium examples may include solid-state memories, and
optical and magnetic media. Specific examples of machine
readable media may include: non-volatile memory, such as

10

15

20

25

30

35

40

45

50

55

60

65

12

semiconductor memory devices (e.g., Electrically Program-
mable Read-Only Memory (EPROM), Electrically Erasable

Programmable Read-Only Memory (EEPROM)) and flash
memory devices; magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM

and DVD-ROM disks.

The instructions 724 may further be transmitted or
received over a communications network 726 using a trans-
mission medium via the network interface device 720 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer
protocol (HTTP), etc.). Example communication networks
may 1include a local area network (LAN), a wide area
network (WAN), a packet data network (e.g., the Internet),
mobile telephone networks (e.g., cellular networks). Plain
Old Telephone (POTS) networks, and wireless data net-
works (e.g., Institute of Electrical and Flectronics Engineers
(IEEE) 802.11 family of standards known as Wi-Fi®, IEEE
802.16 family of standards known as WiMax®), IEEE
802.15.4 family of standards, peer-to-peer (P2P) networks,
among others. In an example, the network interface device
720 may include one or more physical jacks (e.g., Ethernet,
coaxial, or phone jacks) or one or more antennas to connect
to the communications network 726. In an example, the
network interface device 720 may include a plurality of
antennas to wirelessly communicate using at least one of
single-input multiple-output (SIMO), multiple-input mul-
tiple-output (MIMO), or multiple-input single-output
(MISO) techniques. The term “transmission medium™ shall
be taken to 1include any intangible medium that 1s capable of
storing, encoding or carrying instructions for execution by
the machine 700, and includes digital or analog communi-
cations signals or other intangible medium to facilitate
communication of such software.

FIG. 8 1llustrates generally a block diagram 800 showing,
a transaction tlow in accordance with some embodiments.
The block diagram 800 includes a message block 802, a
validation block 804, and a mapping block 806. The mes-
sage block 802 may 1llustrate a financial transaction message
(e.g., received from a transaction device, such as a seli-
service terminal, an automated teller machine, etc.). The
message block 802 illustrates information received in the
financial transaction message, which may be 1n a raw format
or a format configured according to the transaction device
which has been parsed in the message block 802.

The validation block 804 illustrates validation rules or
validation code, which verifies the parsed information 1n the
message block 802. The validation block 804 may verily
field values, such as amount, date, type, etc. In an example,
the mapping block 806 may convert values in the parsed
fields mto mapped values, such as according to mapping
rules or using mapping code. In an example, validation rules
or mapping rules may be stored in a database 810. In another
example, validation code or mapping code may be run by a
payment processing system to perform validation or map-
ping. After validation or mapping 1s completed, an output
message may be sent to a payment acceptance system to
process the transaction. The output message may be output
according to a standard, which may be updated from update
code received from an update system by the payment
processing system.

For example, a customer at an ATM may perform a cash
withdrawal. A message 1s sent from the ATM to a payment
processing system, for example, in binary form. Using rules
in a configuration database, the payment processing system
parses the message 1nto its constituent fields (e.g., Amount,

US 10,503,488 B2

13

Date, Type, etc.). Using configuration information from the
database, the payment processing system may validate each
of the fields. Using mapping configuration information from
the database, the payment processing system may transform
the data from one format to another. In another example, the
payment processing system may use a received update code
to validate or map the parsed message. When the message 1s
to be sent to a payment acceptance system (e.g., a card
issuer) for authentication and authorization, the message
may be transformed to meet an external message format
(c.g., the external message format may be established
according to a standard update, for example from the pay-
ment acceptance system) using the mapping and formatting,
rules 1n the database configuration information or in the
update code.

FI1G. 9 illustrates generally a block diagram 900 showing,
mapping and validation including a customer created con-
figuration and code 1n accordance with some embodiments.
The block diagram 900 includes a parsing block 902 to parse
a message (e.g., a binary file received for a financial trans-
action). The block diagram 900 includes validation code
block 904 and a mapping code block 906, either of which
may be created by an update from an update system or by a
customer (e.g., at customization block 908). A code genera-
tion block 910 may generate code based on an updated code
received from an update system. The customizations gener-
ated at customization block 908 may be used to modily the
code generated at block 910 to generate customer code at
block 912. The generated code at block 912 may be used to
run the parsing, validation, or mapping. After parsing,
validation, and mapping, an output message may be sent to
a payment acceptance system 914 to process a transaction.

In an example, a customer may create validation or
mapping rules 1n a database. The customer-created rules and
may conflict with the generated code validation code or
mapping code. In an example, rules that the customer has
created may take precedence over the standard product
delivered code. The customer may replace the generated
code with a custom copy including the validation and
mapping code (e.g., through code inheritance). In an
example, customer changes may override the standard deliv-
ered code. Inheritance allows the customer the opportunity
to override the delivered code. When the customer chooses
to retamn the original product delivered code, then the

standard delivered code 1s be used; otherwise the customer’s
override code 1s be used.

Various Notes & Examples

Each of these non-limiting examples may stand on 1its
own, or may be combined 1n various permutations or com-
binations with one or more of the other examples.

Example 1 1s a method for updating a configuration data
structure to conform with a standard, the method compris-
ing: recerving a standard update; generating, using informa-
tion from the standard update, an update code, which 1s
configured to be insertable mto an executable code file, the
update code replacing a previous version ol a standard
corresponding to the standard update in the executable code
file; and sending the update code 1n a configuration code file
to a payment processing system for implementation 1n the
payment processing system, the payment processing system
including the executable code file.

In Example 2, the subject matter of Example 1 optionally
includes wherein the update code includes validation code,

10

15

20

25

30

35

40

45

50

55

60

65

14

which when executed, causes the payment processing sys-
tem to determine whether a parsed message includes valid
field values.

In Example 3, the subject matter of any one or more of
Examples 1-2 optionally include wherein the update code
includes mapping code, which when executed, causes the
payment processing system to convert field values from a
parsed message to mapped values.

In Example 4, the subject matter of any one or more of
Examples 1-3 optionally include wherein the update code 1s
configured to run automatically on the payment processing
system.

In Example 5, the subject matter of any one or more of
Examples 1-4 optionally include wherein the update code 1s
changed at the payment processing system to include cus-
tomizations prior to running on the payment processing
system.

In Example 6, the subject matter of any one or more of
Examples 1-5 optionally include wherein the update code 1s
configured to, when executed, supplement a configuration
customization ol the payment processing system while
avoilding overwriting the configuration customization of the
payment processing system.

In Example 7, the subject matter of any one or more of
Examples 1-6 optionally include wherein receiving the
standard update includes receiving the standard update from
a payment acceptance system and wherein the update code
allows the payment processing system to send a payment 1n
an updated configuration to the payment acceptance system.

In Example 8, the subject matter of any one or more of
Examples 1-7 optionally include wherein the payment pro-
cessing system includes a database with custom validation
rules and custom mapping rules, and wherein the update
code includes validation code and mapping code, wherein
the validation code and the mapping code are configured to
be overridden by the custom validation rules and the custom
mapping rules, respectively.

Example 9 1s a method comprising: generating an update
code including validation code to validate a financial trans-
action message, the update code configured to replace an
executable code file; and sending the update code 1n a
configuration code {file to a payment processing system for
implementation in the payment processing system, the pay-
ment processing system including a database with a valida-
tion rule, the validation code configured to be overridden by
the validation rule.

In Example 10, the subject matter of Example 9 optionally
includes wherein the update code 1includes mapping code to
convert values in the financial transaction message to
mapped values.

In Example 11, the subject matter of Example 10 option-
ally includes wherein the database includes a mapping rule,
and wherein the mapping code 1s configured to be overrid-
den by the mapping rule.

In Example 12, the subject matter of any one or more of
Examples 9-11 optionally include wherein the update code
1s configured to parse the financial transaction message
betore validation.

In Example 13, the subject matter of any one or more of
Examples 9-12 optionally include wherein the update code
allows the payment processing system to send a payment 1n
an updated configuration to a payment acceptance system.

Example 14 1s a payment processing update system for
updating a configuration data structure to conform with a
standard, the system comprising: at least one processor; a
storage device comprising instructions, which when
executed on the at least one processor, configure the at least

US 10,503,488 B2

15

one processor to: receive a standard update 1n a first format;
generate, using information from the standard update, an
update code, which 1s configured to be insertable into an
executable code file, the update code replacing a previous
version of a standard corresponding to the standard update
in the executable code file; and send the update code 1n a
configuration code file to a payment processing system for
implementation in the payment processing system, the pay-
ment processing system including the executable code file.

In Example 13, the subject matter of Example 14 option-
ally includes wherein the update code includes validation
code, which when executed, causes the payment processing
system to determine whether a parsed message includes
valid field values.

In Example 16, the subject matter of any one or more of
Examples 14-15 optionally include wherein the update code
includes mapping code, which when executed, causes the
payment processing system to convert field values from a
parsed message to mapped values.

In Example 17, the subject matter of any one or more of
Examples 14-16 optionally include wherein the update code
1s configured to run automatically on the payment process-
Ing system.

In Example 18, the subject matter of any one or more of
Examples 14-177 optionally include wherein the update code
1s changed at the payment processing system to include
customizations prior to running on the payment processing
system.

In Example 19, the subject matter of any one or more of
Examples 14-18 optionally include wherein to receive the
standard update, the processor 1s to receive the standard
update from a payment acceptance system and wherein the
update code allows the payment processing system to send
a payment 1 an updated configuration to the payment
acceptance system.

In Example 20, the subject matter of any one or more of
Examples 14-19 optionally include wherein the payment
processing system includes a database with custom valida-
tion rules and custom mapping rules, and wherein the update
code includes validation code and mapping code, wherein
the validation code and the mapping code are configured to
be overridden by the custom validation rules and the custom
mapping rules, respectively.

Method examples described herein may be machine or
computer-implemented at least 1n part. Some examples may
include a computer-readable medium or machine-readable
medium encoded with 1nstructions operable to configure an
clectronic device to perform methods as described in the
above examples. An implementation of such methods may
include code, such as microcode, assembly language code,
a higher-level language code, or the like. Such code may
include computer readable nstructions for performing vari-
ous methods. The code may form portions of computer
program products. Further, in an example, the code may be
tangibly stored on one or more volatile, non-transitory, or
non-volatile tangible computer-readable media, such as dur-
ing execution or at other times. Examples of these tangible
computer-readable media may include, but are not limited
to, hard disks, removable magnetic disks, removable optical
disks (e.g., compact disks and digital video disks), magnetic

cassettes, memory cards or sticks, random access memories
(RAMs), read only memories (ROMs), and the like.

What 1s claimed 1s:
1. A method for updating a configuration data structure to
conform with a standard, the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

16

receiving a standard update;

generating, using information from the standard update,
an update code, which 1s configured to be insertable
into an executable code file, wherein the update code
replaces a previous version of a standard corresponding
to the standard update 1n the executable code file; and

sending the update code 1n a configuration code file to a

payment processing system for implementation in the
payment processing system, wherein the payment pro-
cessing system 1ncludes the executable code file,
wherein the payment processing system includes a
database with custom validation rules and custom map-
ping rules, wherein the update code includes validation
code and mapping code, and wherein the validation
code and the mapping code are configured to be over-
ridden by the custom validation rules and the custom
mapping rules, respectively.

2. The method of claim 1, wherein the validation code,
which when executed, causes the payment processing sys-
tem to determine whether a parsed message includes valid
field values.

3. The method of claim 1, wherein the mapping code,
which when executed, causes the payment processing sys-
tem to convert field values from a parsed message to mapped
values.

4. The method of claim 1, wherein the update code 1s
configured to run automatically on the payment processing
system.

5. The method of claim 1, wherein the update code 1s
changed at the payment processing system to include cus-
tomizations prior to running on the payment processing
system.

6. The method of claim 1, wherein the update code 1s
configured to, when executed, supplement a configuration
customization ol the payment processing system while
avoilding overwriting the configuration customization of the
payment processing system.

7. The method of claim 1, wherein recerving the standard
update includes receiving the standard update from a pay-
ment acceptance system, and wherein the update code
allows the payment processing system to send a payment 1n
an updated configuration to the payment acceptance system.

8. A method comprising:

generating, using information from a standard update, an

update code including validation code to validate a
financial transaction message and mapping code to
convert values in the financial transaction message to
mapped values, wherein the update code 1s configured
to replace an executable code file; and

sending the update code 1n a configuration code file to a

payment processing system for implementation in the
payment processing system, wherein the payment pro-
cessing system includes the executable code file,
wherein the payment processing system includes a
database with a custom validation rule and a custom
mapping rule, wherein the validation code 1s configured
to be overridden by the custom validation rule, and
wherein the mapping code 1s configured to be overrid-
den by the custom mapping rule.

9. The method of claim 8, wherein the update code 1s
configured to parse the financial transaction message before
validation.

10. The method of claim 8, wherein the update code
allows the payment processing system to send a payment 1n
an updated configuration to a payment acceptance system.

11. A payment processing update system for updating a
configuration data structure to conform with a standard, the
payment processing update system comprising:

US 10,503,488 B2

17

at least one processor; and
a memory storing instructions, which when executed on
the at least one processor, configure the at least one

processor to:

receive a standard update;

generate, using iformation from the standard update,
an update code, which 1s configured to be 1nsertable
into an executable code file, wherein the update code

replaces a previous version of a standard correspond-
ing to the standard update 1n the executable code file;
and

send the update code 1n a configuration code file to a
payment processing system for implementation 1n
the payment processing system, wherein the pay-
ment processing system includes the executable code
file, wherein the payment processing system includes
a database with custom validation rules and custom
mapping rules, wherein the update code includes
validation code and mapping code, and wherein the
validation code and the mapping code are configured
to be overridden by the custom validation rules and
the custom mapping rules, respectively.

10

15

20

18

12. The payment processing update system of claim 11,
wherein the validation code, which when executed, causes
the payment processing system to determine whether a
parsed message includes valid field values.

13. The payment processing update system of claim 11,
wherein the mapping code, which when executed, causes the
payment processing system to convert field values from a
parsed message to mapped values.

14. The payment processing update system of claim 11,
wherein the update code 1s configured to run automatically
on the payment processing system.

15. The payment processing update system of claim 11,
wherein the update code 1s changed at the payment process-
ing system to include customizations prior to running on the
payment processing system.

16. The payment processing update system of claim 11,
wherein to receive the standard update, the at least one
processor 1s to recerve the standard update from a payment
acceptance system, and wherein the update code allows the
payment processing system to send a payment in an updated
configuration to the payment acceptance system.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

