US010496401B2

12 United States Patent

10) Patent No.: US 10,496,401 B2

Eberlein et al. 45) Date of Patent: Dec. 3, 2019

(54) MANAGING RENAME OF TABLES AND 2005/0055357 Al1* 3/2005 Campbell ... GO6F 8/61

TABLE FIELDS 2008/0098037 Al*  4/2008 Neil .oocovennn..... GOG6F 17/30297

2008/0195868 Al* 82008 Asokan .............. GOG6F 21/64

71) Applicant: SAP SE, Walldorf (DE 713/176

(71) Applican » Walldort (DE) 2013/0085991 Al* 4/2013 Welden ............ GO6F 17/30297

. : oy 707/634

(72)  Inventors: Peter Eberlein, Malsch (DE); Volker 2014/0019423 Al* 1/2014 Liensberger ...... GO6F 17/30309
Driesen, Heidelberg (DE)

707/690

| 2014/0095472 Al*  4/2014 Lee .ovcovenn...... GOG6F 17/30463

(73) Assignee: SAP SE, Walldort (DE) 707/714

2018/0081922 Al* 3/2018 Brown ... GOGF 17/30477

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

OTHER PUBLICATIONS
U.S.C. 134(b) by 213 days.

Linux man page for mv command, https://linux.die.net/man/1/mv,

(21) Appl. No.: 15/346,253 2011. (Year: 2011).*

(22) Filed: Nov. 8, 2016

* cited by examiner

(65) Prior Publication Data Primary Examiner — Jay A Morrison

US 2018/0129676 Al May 10, 2018 (74) Attorney, Agent, or Firm — Buckley, Mascholl &
Talwalkar LLC
(51) Imnt. CL
GO6l 8/71 (2018.01) (57) ABSTRACT
GOOF 16/21 (2019.01) According to some embodiments, a system and method are
(52) US. Cl. provided to automatically rename database objects. The
CPC ............. Go6rl’ 8/71 (2013.01); GO6F 16/213

system receives a rename file comprising (1) a plurality of
database object names representing a plurality of database
objects associated with an application and (11) an identity
assignment associated with one or more of the plurality of
database objects. One or more of the plurality of database
objects are automatically renamed based on (1) a currently
installed version of the application, (1) a version of the
application associated with the rename file and (111) the
identity assignment associated with the one or more of the
plurality of database objects.

(2019.01)

(58) Field of Classification Search
CPC ..o, GO6F 17/30123; GO6F 8/71; GO6F
17/30091; GO6F 17/30339; GO6F 16/213
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2001/0044795 Al* 11/2001 Cohen ............... GOO6F 17/30699
2003/0037034 Al* 2/2003 Daniels ................ G06Q 10/087 20 Claims, 9 Drawing Sheets
100 110

Receiving A Rename File Comprising (1) A Plurality Of Database Object
Names Representing A Plurality Of Database Objects Associated With
An Application And (ii) An Identity Assignment Associated With One Or

More Of The Plurality Of Database Objects

120

Automatically Renaming One Or More Of The Plurality Of Database
Objects Based On (i) A Currently Installed Version Of The Application, (ii)
A Version Of The Application Associated With The Rename File And (i)

The Identity Assignment Associated With The One Or More Of The

Plurality Ot Database Objects




U.S. Patent Dec. 3, 2019 Sheet 1 of 9 US 10,496,401 B2

100 110

Receiving A Rename File Comprising (i) A Plurality Of Database Object

Names Representing A Plurality Of Database Objects Associated With

An Application And (ii) An Identity Assignment Associated With One Or
More Of The Plurality Of Database Objects

120

Automatically Renaming One Or More Of The Plurality Of Database
Objects Based On (i) A Currently Installed Version Of The Application, (ii)
A Version Of The Application Associated With The Rename File And (iii)

The ldentity Assignment Associated With The One Or More Of The

Plurality Of Database Objects

FIG. 1



U.S. Patent

Dec. 3, 2019

200

220

Obiects

Sheet 2 of 9

230

identity

ﬁasgigﬂ meni

(7]

D {GUID,,

(1]

-

5> GUID,

B {3UID

A (GUIDz)

;

(1)

A GUD,

B GGy
= GUlD-

B {(GUI D)
A (GUIDz)
D (GUIDg)
C {GUID !

A2 GUIDg

B = GUiDg

£ -> GUID-

B U D}
C{GUID

D {GUIDc:

s - ¥

A > GUID,

i

B2 GUDs
o = GUID

FIG. 2A

US 10,496,401 B2



U.S. Patent Dec. 3, 2019 Sheet 3 of 9 US 10,496,401 B2
200
. 210 r 220 e 230 ~ 240 r 200 r 260 r 270 - 260 - 290
V | Objects ldentity From VO | From V1 | From V2 | From V3 | From V4 | Dictionary |
Asgignment | | |
O 1& !
1 1A Create A A
B Create B | | B
| C Creale O 1 _ C “
2 | D(GUID.) | A GUID, | Create B | A D B
| B Create C C i
C Create D | L) = GUID,
3 BGUID. | A= GUID, | Create A A <> B | B—2>A A = GUIDg
A (GUIDs) | B GUIDg | CreateB |C>D |D->B B = GUID,
D (GUID:) | C 2 GUID: | Create D C—=>D D = GUIDe
4 1 B{GUID, |A=> GUIDLA | Create A |ASC2B | B2 A Create C A= GUIDg
A{GUIDg) |B- GUID; |CreateB |C->D |D-B B = GUID,
D (GUIDg) | C 2> GUID. | CreateC | Create C | C =2 D C =
| C (GUIDe) Create D Create C GUBe
| D =GUIDc
5 | B(GUIDA) A2 GUID, [ Create A | A€2>B | B2 A D=>C 102D | A=0GUIDg
| A{GUIDg) | B-=GUIDg | Create B | Create D | D= B Create D B = GUID,
| C(GUID) | C =2 GUIDe | Create C Create D C =GUIDC
D (GUIDc2) Create D % B =
GUiDes

FIG. 2B



S. Patent

300

it e g,

stk

o

2u
:
-

.
P

HE- [

s

iz

'
B

: L
oo

o

L R

[

ey

-

MR R SR F LA LLE M
- £y

’ "

FR T

. & .

- oL

. o P

: P .
T .

M L.

- R .

- WA= . .

- é-:' .

" . " . .

T, n

2

L

g

Pnd 0 0 0
- .

W L .

" - Ml L

. % T

% .

. - -0 "o

.'_l
rE

"
a

SETE
:

v ¥ .
- H as -
L ke i
. ©

o oty

0
Lho

PEARY I
M

0 . 4
- - . -
: 2%, . 5
" o oo
S + =
- ¢
- R
bl P
v PN
e
b #np
R LS
" . $
- PR
= b
o <
.
-

T

P

! .
X :
- .
. I's
i a4
! 4
K :
.
.
b

-

]

e tam e e

LA TR P

e

- -
A P T

-,
N
1
-
.

Dec. 3, 2019 Sheet 4 of 9

. . . . . . . . .- . .
=3 . . . - . . . .. .
= . P . . . - . . - . . A
. .. . . - . . - . . ) . . .
I NN R

T

e 2]

.

" . . . - . .'_ . . . . . - . . . . .
. . .
L S e S e T SR Code R LU

W

b

f
%
L

L

L
~t

FEELFE T

y

PELRE

2 .__:; -

T

L=

Jj"-\_-‘ --l-- HY1]

A

-
e

e

na s
L B

P

e A

.

S
b

-.-
L
B

{.

%

Lt
Gl

bt

i
L

-
o

A2

e
-h.'\.

&

K,

5
ek

e

]

i
'-.'\-"-_'b.-"\-":-'-E';.":" . -d-'\-‘f‘-'-:&"-_'-:":' ..:-\-"_-:::'5_.-__,.::_'_:,_1'.

i

o o NI ST T e .
oE . . : . i .
Sty .o - . P . . . i .
RO - fani ) " to " . Lot -
Rttt 4 . . .o s .
R Lo oL ' o T ER
.. EEY - e e - . . . . . . .

e

e entan

LFICIEY .
LA .

o

- . .
- -

e

e
]

G

TS IR et Lwdne TR H

T e
W : 2

AT
b ."_\,,-'uﬂ:'.':\-?-_':}\-«._
S R e e e e e s e L e

el

e e A e A L

330

325

320

315

1

S 10,496,401 B2

FIG. 3



US 10,496,401 B2

Sheet 5 of 9

Dec. 3, 2019

U.S. Patent

e
= e e

R

y Ol

GOV

...“...”. b ...".W... -
- 8 i W AT T e s
. i 3
. e -
b3 :
i

ey
."éfu.

[T

=

e St

e

L T AL I S PR

LTI

e
£y

-

RRE IR =,

B fe e . .
A A ST T L iy O PR T R Sl
) . . . L. . . . . 1 Fa . . . & B P | i .

A

7

W

&

e

r
L

: B aaEAS
i S M

b

a

o
_
=

il

e
i
s

Ak

L
Lk
ey

[ T . : )
. . ) ) P L. s T P . . e B - - . . i A . .. LR L e A ....,w......”.. s .w_ ) P
- - Lo . . . ) Lo : . . o n_“.@.,.._e.,.f;.x..w.,...ﬁ>....,,r..v,{.ﬁ;.+..f._,..4u,.~.n.“.¥wﬁ.?uf.n. Le e UL .f,“..,w._...........ﬁx...<.....,..?- oH .3.?«?4?_”..“. ETrrE - L . . .

........n...“. et :J_..... R .,,. o “..__w...........“........,....”_....... e e ...n.. et .m.
. L = o

RS
=
' 1N
'

w e e e e
1 ...r”.-_.r.r A4 by

LS

u:,u__,,ww.pmﬁ i At

il Nl el )

e A

Tt . - ..-.L.u.- .""..“.... ..rL. .....n..-_l...T...
Pt R e

...u.u.... [l N

Y
S

i

. .- M g . .... 1 : : : - : :
R e L R L A

S
P
Iy
Vi
-
-
B
-‘.'-
==
w
=

R .rr..r-“l.-....-

DR

&

PR S RN B

]
et
~

AT LT et B T LA R A R A e R g % !

s

AR

-

§ g

IR RS

Ty

L

e T et s e et e anT e e al FR T T L



US 10,496,401 B2

Sheet 6 of 9

Dec. 3, 2019

U.S. Patent

G 9Old
ommJ SmJ
v306 SHIAAYO
a3vs MOO1S
VIXE WIHILYIN
slgel AiN9 (M) ®|qe | eWweN

juswiubissy Ajuspl QiNe — aiqed :aigel 21ad

00§ |\\;




US 10,496,401 B2

Sheet 7 of 9

Dec. 3, 2019

U.S. Patent

9 9Id

0¢9
N

09
N

310}S MOY

wmmmmoﬂ

210}s UWn|o)

xookmw

2J0)S ULN|0N

VIXE

IAILOWOLNY TVIHILYW |

Buiuonied

seinqlNY

odA |

olqeL diND

WECEIETEY

OOTTETUIOJUT S[EL -99ET DIad |

009 \\;



US 10,496,401 B2

Sheet 8 of 9

Dec. 3, 2019

U.S. Patent

0¢.
J o_:\./.
g2l | H{VHO V236 ddA LN VIXE | TVIH3LYIA
X JLIE | AQ7% (1 VIXE | TVIH3LVIA
(}) uwnjo?d | (M) s1qel
Aoy | yibue adhk] [ uwnjon ping sWeN | 3|ael ains sWweN

UOIJELLIOJU] UWiNjo 3jge ] DIAg

004 l\




U.S. Patent Dec. 3, 2019 Sheet 9 of 9 US 10,496,401 B2

COMMUNICATION OUTPUT

DEVICE

DEVICE

20

PROCESSOR
810

PROGRAM 812

PROCESSING LOGIC

350

814

DATA Y .

0

FIG. 8



US 10,496,401 B2

1

MANAGING RENAME OF TABLES AND
TABLE FIELDS

BACKGROUND

Databases may comprise objects such as tables and views.
Each of these objects may comprise a plurality of fields. A
soltware developer that created an object and later noticed a
typo 1n a name associated with the object (e.g., a table name
or field name), may desire to correct the typo without
impacting a soitware product associated with the database.
While the software developer may expect that object names
may be altered after initial creation of a database, once a
database 1s 1n use, such as supporting a soitware product,
changing an object name or field name may be problematic.
Instead of being able to rename an object such as a table,
conventional names changes often require dropping an old
table and then creating a new table. Furthermore, during a
re-design of a database, database objects may be moved
between diflerent packages and a new software package may
use a different namespace. In this situation, a new table may
have to be created and the data from the old table may have
to be copied to the new table. Moving data 1s typically costly
in that it uses a lot of processor time and 1t can be very time
consuming when moving large amounts of data.

Some database frameworks expect field names to com-
prise a speciiic name (e.g. client, aging, language, UserlD,
etc.). IT an existing table 1s plugged into such a framework,
the existing table may need to have its fields renamed or free
a field name for a new field which 1s required by the
framework database.

Furthermore, legacy systems may use tables and fields
with abbreviated names to match old limitations in name
length. For a database developer that 1s designing views and
database procedures, more descriptive names may be
desired. Thus, for legacy systems, there 1s a need to rename
the objects 1n the database to be more descriptive. It would
therefore be desirable to provide a system and method to
rename database objects without the problems described

above (e.g., having to create a new table and copy data to the
table).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a method 1n accordance with some embodi-
ments.

FI1G. 2A illustrates a portion of a rename file according to
some embodiments.

FIG. 2B illustrates a rename file and renaming logic
according to some embodiments.

FIG. 3 1llustrates a table control editor 1n accordance with
some embodiments.

FIG. 4 1illustrates a table for storing and delivering table
declarations 1n accordance with some embodiments.

FIG. 5 illustrates table mmformation according to some
embodiments.

FIG. 6 1llustrates 1dentity assignments 1n accordance with
some embodiments.

FIG. 7 1llustrates column information in accordance with
some embodiments.

FIG. 8 illustrates a system according to some embodi-
ments.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth 1n order to provide a thorough under-

10

15

20

25

30

35

40

45

50

55

60

65

2

standing of embodiments. However it will be understood by
those of ordinary skill 1n the art that the embodiments may
be practiced without these specific details. In other
instances, well-known methods, procedures, components
and circuits have not been described in detail so as not to
obscure the embodiments.

One or more specific embodiments of the present mven-
tion will be described below. In an eflort to provide a concise
description of these embodiments, all features of an actual
implementation may not be described in the specification. It
should be appreciated that 1n the development of any such
actual 1mplementation, as 1n any engineering or design
project, numerous implementation-specific decisions must
be made to achieve the developers’ specific goals, such as
compliance with system-related and business-related con-
straints, which may vary from one implementation to
another. Moreover, 1t should be appreciated that such a
development effort might be complex and time consuming,
but would nevertheless be a routine undertaking of design,
fabrication, and manufacture for those of ordinary skill
having the benefit of this disclosure.

In particular, the present embodiments described herein
relate to automatically renaming database objects. For
example, when an application 1s updated with a new version
(e.g., a software update), database objects associated with
the new version may need to be renamed. Furthermore, the
present embodiments relate to assigning a globally unique
identifier (“GUID”) to each database object to support
rename management by uniquely identifying objects inde-
pendent of their current name (e.g., table names and field
names). A GUID may comprise a number having a least 122
random bits such that a duplicate GUID may never occur. In
some embodiments, associating an object with a GUID does
not occur at a time when a new object 1s mitially created and
this may reduce overhead associated with objects that have
never been altered throughout their lifecycle. Associating an
object with a GUID may be introduced into database sys-
tems that were not set up with GUID assignments from the
start, thus easing the transition into this new handling
mechanism.

The present embodiments may further relate to a system
where, when a rename 1s performed for a first time, actions
that are required to be executed are automatically deter-
mined based on comparing a current object vs. a target
object name for a given GUID. In this manner, no interme-
diate information may be required and updates associated
with upgrading from previous names to current names may
be performed without performing intermediary renames
(e.g., Tor example if a table 1s named T1 and later T2 and
then renamed to T4). For example, a single software release
update may comprise a compilation of updates and
assembled 1nto a single software release package over a long
time period (e.g., changes 3 months). In some embodiments,
the assembled changes may contain several changes includ-
ing several database object renames. In this example a
customers may upgrade from release n, support package x to
a release m and a support package vy, 1f m>n and the release
date of v 1s newer than X. Thus, the present embodiments
relate to a method and system to rename database objects
that may be simply dependent on the currently deployed
release and a target release.

Now referring to FIG. 1, a method 100 1s 1llustrated. The
method 100 may be performed by some or all of the
clements of a database system such as the database system
described with respect to FIG. 8. The flow chart described
herein does not imply a fixed order to the steps, and
embodiments of the present mvention may be practiced 1n




US 10,496,401 B2

3

any order that 1s practicable. Note that any of the methods
described herein may be performed by hardware, software,
or any combination of these approaches. For example, a
non-transitory computer-readable storage medium may store
thereon instructions that, when executed by a machine,
result 1n performance according to any of the embodiments
described herein.

While a rename can be simply annotated as “rename from
a to b”, 1n a case of multiple renames, sequencing and
ordering problems may occur. Also, when updating software
to a revision that 1s several revisions ahead (e.g., a jump
upgrade) multiple re-names may need to be performed as a
sequence of changes. This sequence may contain several
rename actions. The embodiments described herein may
facilitate an update to a database that i1s independent of
intermediary states by updating database objects 1n, 1deally,
one step or in a minimal set of steps and by not following
cach intermediate step.

At 110, a rename file 1s received. The rename file may
comprise (1) a plurality of database object names represent-
ing a plurality of database objects associated with an appli-
cation and (11) an identity assignment associated with one or
more of the plurality of database objects. In some embodi-
ments, the rename file may comprise two individual files, an
object definition file and an assignment file. In this embodi-
ment having two 1ndividual files, the object definition file
may comprise a plurality of database object names and the
assignment file may comprise the 1dentity assignment asso-
ciated with the one or more of the plurality of database
objects.

When a new soltware update 1s released, the software
update may include a rename file that comprises a plurality
ol database object names and, for each of the plurality of
database object names, an identity assignment. Each identity
assignment may indicate a GUID assignment for one or
more objects of the plurality of database objects that require
a GUID. Once an i1dentity assignment associated with a
GUID 1s made, 1s may never be changed. All identily
assignments may be included in each new version of the
rename file. For example, when a next software update 1s
released, the next software update may comprise a rename
file that includes all previous 1dentity assignments.

Now referring to FIG. 2A, an embodiment of a rename file
200 15 1llustrated. Rename file 200 may represent a rename
file associated with a fifth version of a software application.
As 1llustrated 1n FIG. 2A, objects 220 and their associated
identity assignment 230 may be changed with each version
of the software application. The object column 220 may
comprise object definitions as shipped 1n each respective
version of the software application. Object definitions may,
or may not mclude a GUID since a GUID may only be
needed 1t (A) the object has been renamed since 1t was
created or (B) 11 a new object 1s to be introduced with a name
that has been previously used for another object. The 1den-
tity assignment column 230 may indicate assignments of
GUIDs to object names. The identity assignment column
230 may only contain assignments for objects that require a
GUID. Once an assignment of a GUID to an object 1s made,
the assignment 1s never changed thereafter. All cumulated
assignments may be mcluded in each new version of the
rename {ile.

Referring back to FIG. 1, at 120, one or more of the
plurality of database objects may be automatically renamed
based on (1) a current version of the application, (11) a version
of the rename file and (111) the 1dentity assignment associated
with the one or more of the plurality of database objects. The

10

15

20

25

30

35

40

45

50

55

60

65

4

renaming may be performed by a processor, such as the
processor described with respect to FIG. 8.

In some embodiments, 1f renames are “stacked”, renam-
ing may need to be performed 1n a sequence instead of a
single step. For example, the following renames a—c, ¢—d,
b—c may result in a—d and b—=c. In a second example, the
tollowing renames b—c, c—=d, a—c¢ may result in b—d and
a—c. In a third example, the following renames a—b, b—a
may result 1n a name change (e.g., a and b change names).
However, this name change may not be able to be performed
in a single step and a rename such as b—x, a—b, x—=a may
be used where x 1s a dummy rename.

For illustrative purposes, and to aid in understanding
features of the specification, some examples will now be
introduced. These examples are not intended to limit the
scope of the claims.

Referring back to FIG. 2A, when upgrading from version
1 to version 2, only one object will be renamed (A—D).
Since D will be renamed, D 1s delivered with a reference to

a GUID (1n this case GUID ,), and the GUID {for the original
version of the object 1s declared as (A—GUID ,). Object A
may now be renamed as object D with no impact to the
software application because the object has now been rei-
erenced using GUID ,.

Referring now to FI1G. 2B, 1n some embodiments, FI1G. 2B
may represent an embodiment of a rename file 200 that
illustrates the logic that will be automatically performed
depending on the upgrade performed. The logic that is
automatically performed may be diflerent for each update
and may be based on which of the five different versions of
the soltware 1s currently being used and a version of the
soltware that 1s associated with the update. For example,
FIG. 2B illustrates logic 240 for upgrading from version 0
(V,), logic 250 for upgrading from version 1 (V,), logic 260
for upgrading from version 2 (V,), logic 270 for upgrading
from version 3 (V;), logic 280 for upgrading from version
4 (V,). The logic may define calculated actions that may be
automatically performed by a system during an upgrade
(e.g., from the version of the column to the version of the
row). The logic may be automatically performed 1n response
to receiving a rename file and the logic may be determined
based on the rename file and a current state (e.g., version) of
the database of a software application. Furthermore, FIG. 2B
may also 1llustrate entries 1n a data dictionary 290. The data
dictionary 290 may be stored in a database such as the
database described with respect to FIG. 8 or, in some
embodiments, the data dictionary 290 may be included as
part of the rename file.

In some embodiments, a swap symbol (<= —) may be
implemented by a renaming a {irst object to a temporary
name (e.g., its GUID), then renaming the second object to
the name of the first object and then renaming the object
with the temporary name to the name of the second object.
The actions may be calculated by comparing the target
version of the software application with the source version
in the data dictionary 290 after the data dictionary 290 has
been updated as described below.

The mapping of current names to GUIDs (if there have
been GUIDs assigned to those objects) may be performed
alter an upgrade has been completed (e.g. the database has
reached a target state). The data dictionary 290 may be
updated with new assignments delivered with the current
version for objects that did not have an assignment before.
Also, new entries 1n the data dictionary 290 may be created
without assignment when a new object includes a GUID
its 1nitial definition (e.g. object D 1n version 5 1s assigned

GUID,.,).



US 10,496,401 B2

S

Continuing with the above-examples, and referring again
to FIG. 2B, version 1 of the software application may
comprise three database objects: A, B and C. When the
soltware application as updated to version 2, version 2 will
use object D, B and C with D being assigned to GUID , as
illustrated 1 the objects column 220. Thus, the identity
assignment column 230 indicates that A will be assigned
GUID , (a umque 1dentifier) and, as such, object A will be
renamed to object D. For example, the system may then
rename table A using an alter table command. To keep track
of the object changes, the data dictionary 290 may now store
object B, object C and object D which has been assigned
GUID ,. Now that D has been assigned GUID ,, no matter
what D 1s renamed to, 1t will always be assigned GUID ,.

In a next example, 1t will be assumed that a user 1s
installing version 5 of the software as an upgrade from
version 2 of the software. Therefore, this example may
illustrate a jump upgrade from version 2 to version 3. In
other words, version 3 and version 4 of the software were not
installed. Since version 2 will now jump to version 5, the
objects 1n version 5, as indicated 1n the object column 220
indicate object B 1s assigned to GUID ,, object A 1s assigned
to GUID, object D 1s assigned to GUID . and object C 1s
assigned to GUID .. The i1dentity assignment column 230
indicates that object A will be assigned to GUID ~,, object B
will be assigned to GUID, and object C will be assigned to
GUID,.

To accomplish the upgrade from version 2 to version 5,
the database system may first rename object B to object A.
Note that the GUID of object B (GUID ,) will not change
alter being renamed but that GUID , will be reassigned to
object A. Similarly, the database system may rename object
D to object B. Note that the GUID of object D (GUID.,)
will not change after being renamed but that GUID ., will
now be reassigned to object B. Finally, object D will be
created.

A third example will now be imtroduced. In the third
example, 1t will be assumed that the soitware application 1s
being upgraded from version 3 to version 4. In version 4, a
new object named C may be created (e.g., as illustrated in
FIG. 2B, a different object that was originally named C had
been renamed 1n an earlier release to D). IT a new object 1s
to be created, which had been previously deleted or
renamed, the new object must be accompanied by a GUID
from the beginning (e.g., 1 this example, the new object
named C 1s assigned GUID .,), and the GUID may be added
to the objects column 220. In the 1dentity assignment column
230, there 1s an assignment of the original C to a GUID (e.g.,
the first C which had been created in the system with the
GUID ), but no assignment to the new C because, for this
object, a GUID 1s provided 1n the object column 220 from
the start, so no subsequent assignment may be required.

As 1illustrated 1n FIG. 2B, and referring to the data
associated with version 1, all objects are new and thus no
rename 1s needed and there 1s no need for assigning GUIDs
to objects. However, when referring to version 4, an object
has been re-created with a different semantic where the
carlier object was renamed. Thus, the new the object may be
delivered with a new GUID (e.g., C 1s assigned GUID ).
For updating the data dictionary, in version 1 there are no
data dictionary updates. In version 2, the GUID , 1s first
assigned to A 1n the data dictionary. Then, the target may be
evaluated, D 1s assigned to GUID ,, a rename 1s executed
(A—D) and the data dictionary 1s updated with D now being
assigned to GUID ,. A 1s no longer in the data dictionary.

Multiple renames of objects may lead to sequence and
ordering problems. An example associated with handling

10

15

20

25

30

35

40

45

50

55

60

65

6

multiple re-names will now be illustrated. For example, an
initial shipment comprises object T1. While developing a
new version, object T1 1s renamed to T2 and 1s assigned
GUID 3X2Y. However, during development object T2 1s
renamed to T4 and 1s assigned GUID 3X2Y. Anew object T1
1s created and assigned GUID B2WS. The name change to
12 was made during an 1nternal development process as an

intermediary step and changed to T4 before delivery. The
delivery thus contains only T4 (GUID 3X2Y) and T1 (GUID

B2WS). The information, that T1 had been renamed to T2 1n
a development step may not be shipped. The target infor-
mation about the object definition may be shipped with no
intermediary information. In a runtime system, T1 may be
created and, for a rename, a GUID may be assigned and
stored as an attribute of a table (e.g. 1n a data dictionary). For
an update, the new definition may be used and T4 may be
assigned to GUID 3X2Y and a new object 1s created as T1
which 1s assigned GUID B2WS.

The deployment sequence may be thus: (1) determine the
GUIDs of the target objects associated with the delivery
package (e.g., T1 (GUID B2WS), T4 (GUID 3X2Y)), (11)
read the active objects from the database and determine their
GUIDs (e.g., T1 (GUID 3X2Y)), (111) determine if objects
have been renamed, (1v) determine existing objects for all
GUIDs 1n the target list, (v) 1dentify, 11 an object 1s already
availlable and if 1t 1s available, determine, if the name has
changed, and (v1) rename objects (e.g., GUID: 3X2Y having
been renamed from T1 to T4).

The logic associated with object deletions 1s discussed
below. When an object 1s deleted, deletions may be associ-
ated with a deletion list. The deletion list may be delivered
together with the rename file or may be delivered previously
i the object had been renamed in the past. In some embodi-
ments, the deletion list may be appended to the rename file.
The deletion list may comprise the GUID associated with
the object (e.g., and optionally the object name). An assign-
ment of the object name to the GUID may need to already
exist 1n the assignment file. The object to be deleted may
then be removed from the database and/or data dictionary
during deployment. This approach may allow for computing
a drop/create for objects, which had once been delivered,
then deleted and later been re-created with a diflerent
context (and thus GUID). Depending on an upgrade jumping
over versions, a drop old, create new may be created for an
upgrade 11 the drop had been 1n an intermediary version, or
a create may be created if an upgrade starts from a version
when the object had been dropped.

In some embodiments, GUIDs may be introduced 1n a late
release. For example, releases 1 and 2 may have been
shipped without using GUIDs for objects and without a need
for deleting or renaming objects. However, 1n release 3, a
GUID and rename for some objects may be shipped and
again 1n release 4. Delivery of release 4 may need to bring
the mitial GUID mapping of release 3 1n addition. Since the
rename file, including the identity assignment section, may
always be shipped and 1s only appended to for each software
upgrade, existing entries must not be modified or deleted and
the existing entries may remain 1n the file. This may allow
for upgrade paths jumping over releases with intermediary
renames without having to follow each intermediary change.

To execute deployment of a new release, the new version
may be deployed by first deploying a rename file (e.g., a file
comprising the identity assignment). The objects in the data
dictionary may be read and for each object which does not
have a GUID, the entry in the assignment file may be
searched and a respective GUID may be entered 1n the data
dictionary (e.g. version 2: A=GUID ,).




US 10,496,401 B2

7

Next, actions such as renaming and adding tables may be
computed. After renaming and adding tables, objects may be
dropped based on the drop list. Drop statements may be
written to a work list that will be executed. Next, a com-
parison of the data dictionary of a source version 1s made 53
with object definitions associated with the target version.
Object definitions 1n the rename file may be read, including
the GUID 11 specified (e.g. version 2: D (GUID ,)). Next, the
data dictionary information may be read and the GUID read
from the target may be searched against the data dictionary. 10
In a case that the GUID 1s not found 1n data dictionary, a new
object may be created. In a case that the GUID 1s found but
the name 1n data dictionary 1s different than the name in the
target file, a rename may be performed (e.g., version 2: A
(GUID ,), matches D (GUID ,), thus rename A to D). 15

Next, write actions may be indicated on the work list to
be executed. For example, 11 a create has been found, an
entry 1 the work list may be created with the create
statement (e.g. version 4: “create table C”). If a rename has
been found, an entry 1n the work list may be created with the 20
rename statement (e.g. version 2: “rename table A to D).
Next, actions may be executed along with conflict detection.

In some embodiments, successtully executed actions may be
removed from the work list. The drop statements may be
executed and then removed from the work list. 25

For the rename statements, a loop may start starts where
a rename statement 1s first read from the work list. Next a
check 1s performed to determine 11 the target object name 1s
already used. If the target object name 1s already used, the
rename statement 1s skipped (e.g., this logic mmplicitly 30
moves the statement with a used target behind a statement,
which renames or drops an object). If the target object name
has not been used, the rename statement will be executed
(e.g., an atomic operation).

Next, the data dictionary may be updated with a new 35
GUID. In some embodiments, the data dictionary may be
either updated or a new entry may be created. Finally, a
commit command (or a roll-back command) may be
executed. This may be done for objects renamed to a
temporary name as described herein. 40

A next statement on the work list 1s analyzed and 1f, (1) 1n
one iteration of the loop, nothing 1s executed and (11) the
remaining operations are cyclic, the loop may be broken. IT
the look 1s broken, a rename statement which had been
blocked (say, A 4 B, B already exists) may be read. The 45
statement for the first rename statement found may be
altered (e.g., the target of the rename to the object’s GUID
may be altered (say A—=GUID ,)). Next, a rename statement
may be added to the end of the work list (e.g., a rename from
GUID , to the target name. (GUID ,—B)). A statement with 50
a former source (e.g., A) as a target, which had blocked
execution, may be determined and this statement may be
executed (e.g., 1ts respective target 1s free now, say C—A).
This cycle may continue with a next former source (e.g., C,
say B—C). A next statement in this cycle may comprise a 55
rename from the GUID to the first blocked name that had
been added earlier (GUID ,—B) If cycle 1s done, a next
object may be used and the process may be repeated. In
some embodiments, other algorithms may be possible such
as, but not limited to, a “brute force” rename of all objects 60
to their GUID and then a rename of all objects to their
targets.

FIG. 3 and FIG. 4 may relate to variants of editors
associated with renames. A database object, such as a table,
may be defined via a statement, such as, but not limited to 65
a DSL statement or a Data Definition Language (“DDL”)
statement. For a table control based editor, the table name

8

may be specified 1n a respective field of a user interface.
Each column of the table may be specified, with name, type,
length 1n an entry in the table control based editor. Addi-
tional attributes may be specified (e.g., partitioning, column
or row store . . . ) in their own fields on the user interface.

The mformation may be shipped as content in tables (e.g.
one table for the database table attributes and one for the

fields).

An example of using a text based Editor 1s illustrated
below. For the text based editor, the following text may be
used specified to declare tables.

table MATERIAL {
key: ID int;
MTYPE char 128;

1

This text may be stored in a file that can be named as
desired and has, 1n this case, no impact on the table name.
In some embodiments, a file can also contain several table
definitions. A texted based rename maybe declared as fol-
lows:

table MATERIAL_AUTOMOTIVE (GUID 3X1A){
key: ID Int;

MTYPE char 128;

HEADER char 256;

3
identity assignment {
MATERIAL : 3X1A;

1

I1 the mitial delivery does not contain a GUID, the GUID
of the imitially delivered table may be defined in an assign-
ment file. The file declaring the table (and in this case a
rename of a table) may reference the GUID of the mnitial
table declared in the assignment file. A later second rename
may retference the same GUID.

table MAT_AUTO_MASTER (GUID 3X1A)
key: ID int;

MTYPE char 128;

HEADER char 256;

3

table MAT _AUTO_DETAIL {
key: ID int;

key: POS 1int;

MTYPE char 128;
POSITION char 256;

3
identity assignment {
MATERIAL : 3X1A;

I

Retferring now to FIG. 3, an example of a table control
editor 300 1s illustrated. As 1illustrated, the table control
editor 300 may define fields such as, but not limited to, field
name 310, key 315, data type 320, length 325 and short
description 330. The field name 310 may define a name or
title of a field. The key 315 field may indicate 11 a field wall
be a primary key for the table. The data type 320 field may
associate a data type (e.g., text, char, varchar, etc.) with the
field name 310. The length 325 may define a length of the
field 1 bytes. The short description 330 may provide a
description associated with the field name. The table control
editor 300 may be extended easily to manage table and field
names via GUIDs. The table control editor 300 may be
extended by adding an additional GUID column (not shown




US 10,496,401 B2

9

in FIG. 3). I a developer changes a column defimition, the
existing definition in the table control editor 300 may be
altered by a developer. This may be distinguished from
creating a new column and dropping an old column, which
would be create a new column via the control and delete an
existing column. The data specified 1n the table control may
be shipped as content in metadata tables for use with a data
dictionary. The metadata may comprise both a header table
for the mformation regarding the table and an item table for
the information regarding the columns.

Now referring to FIG. 4 an embodiment of a table 400 for
storing and delivering table declarations 1s 1llustrated. The
table 400 may define fields such as, but not limited to, field
name 410, key 415, data type 420, length 425 and short
description 430. The field name 410 may define a name or
title of a field. The key 415 may indicate 11 a field will be a
primary key for the table. The data type 420 may associate
a data type (e.g., text, char, varchar, etc.) with the field name.
The length 425 may define a length of the field 1n bytes.

As discussed above, a GUID may be added for tables such
as the tables illustrated 1n GUID identity assignment table
500 which are illustrated 1n FIG. 5. The tables 1n the GUID
identity assignment table 300 may be renamed (e.g. 1n a later
release) and there 1s no prerequisite for all tables to be
assigned a GUID. FIG. 5 further 1llustrates a table name 510
and a GUID 3520 associated with each particular table name
510. If a table 1s to be renamed, 1ts GUID may be indicated
in an 1dentity assignment file (e.g., the rename file) and then
updated with a target definition. Similarly, the approach may
be used to rename individual fields. For example, a GUID
may be added to a definition of a table as well as its
individual fields. As illustrated in FIG. 6, table information
600 may define a new table name 610 and a type 620 of the
table. Furthermore, as illustrated in FIG. 7, column infor-
mation 700 may be provided where each table may comprise
columns 710 that are assigned to individual GUIDS 720.
The GUID for the table may be kept as a reference to the
table. The solution described above may provide a technical
advantage 1n that it solves a problem of renaming for
situations such as cyclic renames, jump upgrades, deletes as
well as re-creates.

Note the embodiments described herein may be imple-
mented using any number of different hardware configura-
tions. For example, FIG. 8 illustrates a database platform
800 that may be, for example, associated with the method
100 of FIG. 1. The database platform 800 may comprise a
processor 810 (“processor’”), such as one or more commer-
cially available Central Processing Units (CPUs) 1n the form
ol one-chip microprocessors, coupled to a communication
device 820 configured to communicate via a communication
network (not shown 1n FIG. 8). The communication device
820 may be used to communicate, for example, with one or
more users. The database platform 800 further includes an
input device 840 (e.g., a mouse and/or keyboard to enter
information about the measurements and/or assets) and an
output device 850 (e.g., to output and display the data and/or
recommendations).

The processor 810 also communicates with a memory/
storage device 830 that stores data 818. The storage device
830 may comprise any appropriate information storage
device, including combinations of magnetic storage devices
(e.g., a hard disk drnive), optical storage devices, mobile
telephones, and/or semiconductor memory devices. The
storage device 830 may store a program 812 and/or pro-
cessing logic 814 for controlling the processor 810. The
processor 810 performs instructions of the programs 812,
814, and thereby operates 1 accordance with any of the

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiments described herein. For example, the processor
810 may rename database objects via the instructions of the
programs 812 and processing logic 814.

The programs 812, 814 may be stored 1n a compressed,
uncompiled and/or encrypted format. The programs 812,
814 may furthermore include other program elements, such
as an operating system, a database management system,
and/or device drivers used by the processor 810 to interface
with peripheral devices.

As used herein, mformation may be “received” by or
“transmitted” to, for example: (1) the platform 800 from
another device; or (11) a software application or module
within the platform 800 from another soitware application,
module, or any other source.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an enftirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combimng software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for 1mplementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted 1n the block may occur
out of the order noted 1n the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks 1n the block diagrams and/or flowchart illustration,
can be mmplemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

It should be noted that any of the methods described
herein can mclude an additional step of providing a system
comprising distinct software modules embodied on a com-
puter readable storage medium; the modules can include, for
example, any or all of the elements depicted in the block
diagrams and/or described herein; by way of example and
not limitation, a database object renaming module. The
method steps can then be carried out using the distinct
solftware modules and/or sub-modules of the system, as
described above, executing on one or more hardware pro-
cessors 810 (FIG. 8). Further, a computer program product
can 1clude a computer-readable storage medium with code
adapted to be implemented to carry out one or more method
steps described herein, including the provision of the system
with the distinct software modules.

This written description uses examples to disclose the
invention, including the preferred embodiments, and also to
enable any person skilled in the art to practice the invention,
including making and using any devices or systems and
performing any incorporated methods. The patentable scope



US 10,496,401 B2

11

of the invention 1s defined by the claims, and may include
other examples that occur to those skilled in the art. Such
other examples are mtended to be within the scope of the
claims 1f they have structural elements that do not difler
from the literal language of the claims, or if they include
equivalent structural elements with insubstantial differences
from the literal languages of the claims. Aspects from the
various embodiments described, as well as other known
equivalents for each such aspects, can be mixed and matched
by one of ordinary skill in the art to construct additional
embodiments and techniques 1n accordance with principles
of this application.
Those 1n the art will appreciate that various adaptations
and modifications of the above-described embodiments can
be configured without departing from the scope and spirit of
the claims. Therefore, it 1s to be understood that the claims
may be practiced other than as specifically described herein.
The invention claimed 1s:
1. A method of automatically renaming database objects,
the method comprising:
receiving a rename lile comprising (1) a plurality of
database object names representing a plurality of data-
base objects associated with an application and (11) a
respective first identity assignment associated with
cach respective one of the plurality of database objects,
ecach respective first identity assignment present 1n a
currently 1nstalled version of the application;
the rename file including a respective second identity
assignment associated with each respective one of the
plurality of database objects, each respective second
identity assignment present 1n a subsequent version of
the application associated with the rename file;

assigning each respective first identity assignment and
cach respective second 1dentity assignment to a respec-
tive same globally unique 1dentifier for each respective
one of the plurality of database objects;

automatically renaming, via a processor, one or more of

the plurality of database objects based on (1) the cur-
rently installed version of the application, and (1) the
subsequent version of the application, there being one
or more Interim versions between the currently
installed version and the subsequent version, the one or
more interim versions each including respective 1den-
tity assignments for each respective one of the plurality
of database objects, the interim version respective
identity assignments being different than the respective
first 1dentity assignment and the second 1dentity assign-
ment,

the automatic renaming occurring with the one or more

interim versions not being installed; and

for each of the plurality of database objects being

renamed, changing within the subsequent version of the
application each respective second 1dentity assignment
to the respective first 1dentity assignment assigned to
the same globally unique 1dentifier.

2. The method of claim 1, wherein 1n case that the version
of the application associated with the rename file 1s a first
version and the currently installed version of the application
1s a first version, the plurality of database object names will
be saved as the plurality of database objects 1n a database
and the plurality of database object names will be saved 1n
a database object dictionary.

3. The method of claim 1, wherein 1n case that the version
of the application associated with the rename file 1s a second
version and the currently installed version of the application
1s a first version, automatically determine actions to rename
the one or more of the plurality of database objects.

10

15

20

25

30

35

40

45

50

55

60

65

12

4. The method of claim 1, wherein the 1dentity assignment
assigns a global unique 1dentifier (GUID) to one or more of
the plurality of database objects.
5. The method of claim 1, wherein each database object
1s a database table.
6. The method of claim 1, wherein each database object
1s a database column.
7. The method of claim 1, wherein automatically renam-
ing comprises reading a rename statement from a work list
and determining 1f a target object name 1s already used,
wherein 1n a case that the target object name 1s already used,
skipping the rename statement and wherein 1n a case that the
target object name has not been used, executing the rename
statement.
8. A non-transitory computer-readable medium compris-
ing instructions that when executed by a processor cause the
processor to perform a method of automatically renaming
database tables, the method comprising:
recerving (1) a first file comprising a plurality of database
table names representing a plurality of database tables
associated with an application and (11) a second file
comprising a respective first identity assignment asso-
ciated with each respective one of the plurality of
database tables, each respective first identity assign-
ment present 1n a currently installed version of the
application;
the second file including a respective second identity
assignment associated with each respective one of the
plurality of database tables, each respective second
identity assignment present 1n a subsequent version of
the application associated with the second file;

assigning cach respective first identity assignment and
cach respective second identity assignment to a respec-
tive same globally unique 1dentifier for each respective
one of the plurality of database tables;

automatically renaming, via a processor, one or more of

the plurality of database tables based on (1) the cur-
rently installed version of the application, and (1) the
subsequent version of the application, there being one
or more interim versions between the currently
installed version and the subsequent version, the one or
more interim versions each including respective 1den-
tity assignments for each respective one of the plurality
of database tables, the interim version respective 1den-
tity assignments being different than the respective first
identity assignment and the second identity assign-
ment,

the automatic renaming occurring with the one or more

interim versions not being installed; and

for each of the plurality of database tables being renamed,

changing within the subsequent version of the applica-
tion each respective second 1dentity assignment to the
respective first identity assignment assigned to the
same globally unique identifier.

9. The medium of claim 8, wherein 1n case that the version
of the application associated with the first file and the second
file 1s a first version and the currently 1nstalled version of the
application 1s a first version, the plurality of database tables
names will be saved as the plurality of database tables 1n a
database and the plurality of database table names will be
saved 1n a database data dictionary.

10. The medium of claim 8, wherein 1n case that the
version ol the application associated with first file and the
second 1s a second version and the currently installed
version of the application 1s a first version, automatically
determine actions to rename the one or more of the plurality
ol database tables.




US 10,496,401 B2

13

11. The medium of claim 8, wherein the 1dentity assign-
ment assigns a global unique identifier (GUID) to one or
more of the plurality of database tables.

12. The medium of claim 8, wherein the rename file
comprises a first file comprising the plurality of database
table names and a second file comprising the identity
assignment associated with the one or more of the plurality
ol database tables.

13. The medium of claim 8, wherein automatically renam-
ing comprises reading a rename statement from a work list
and determining 1f a target object name 1s already used,
wherein 1n a case that the target object name 1s already used,
skipping the rename statement and wherein 1n a case that the
target object name has not been used, executing the rename
statement.

14. A system for renaming database objects, the system
comprising;

a processor; and

a non-transitory computer-readable medium comprising

instructions that when executed by a processor perform
a method to automatically rename database objects, the
method comprising:
receiving a rename file comprising (1) a plurality of
database object names representing a plurality of data-
base objects associated with an application and (11) a
respective first identity assignment associated with
cach respective one of the plurality of database objects,
cach respective first identity assignment present 1n a
currently installed version of the application;
the rename file including a respective second identity
assignment associated with each respective one of the
plurality of database objects, each respective second
identity assignment present 1n a subsequent version of
the application associated with the rename file;

assigning each respective first identity assignment and
cach respective second 1dentity assignment to a respec-
tive same globally unique 1dentifier for each respective
one of the plurality of database objects;

automatically renaming, via a processor, one or more of

the plurality of database objects based on (1) the cur-
rently installed version of the application, and (11) the
subsequent version of the application, there being one
or more interim versions between the currently

10

15

20

25

30

35

40

14

installed version and the subsequent version, the one or
more interim versions each including respective iden-
tity assignments for each respective one of the plurality
of database objects, the interim version respective
identity assignments being diflerent than the respective
first identity assignment and the second 1dentity assign-
ment,

the automatic renaming occurring with the one or more

interim versions not being installed; and

for each of the plurality of database objects being

renamed, changing within the subsequent version of the
application each respective second 1dentity assignment
to the respective first identity assignment assigned to
the same globally unique 1dentifier.

15. The system of claim 14, wherein in case that the
version of the application associated with the rename file 1s
a first version and the currently installed version of the
application is a first version, the plurality of database object
names will be saved as the plurality of database objects 1n-a

database and the plurality of database object names will be
saved 1n a database object dictionary.

16. The system of claim 14, wherein the 1dentity assign-
ment assigns a global unique identifier (GUID) to one or
more of the plurality of database objects.

17. The system of claim 14, wherein each database object
1s a database table.

18. The system of claim 14, wherein each database object
1s a database view.

19. The system of claim 14, wherein automatically renam-
ing comprises reading a rename statement from a work list
and determining 1f a target object name 1s already used,
wherein 1n a case that the target object name 1s already used,
skipping the rename statement and wherein 1n a case that the
target object name has not been used, executing the rename
statement.

20. The system of claim 14, wherein 1n case that the
version of the application associated with the rename file 1s
a second version and the currently installed version of the
application 1s a first version, automatically determine actions
to rename the one or more of the plurality of database
objects.




	Front Page
	Drawings
	Specification
	Claims

