US010491663B1

a2 United States Patent (10) Patent No.: US 10,491,663 B1

White et al. 45) Date of Patent: Nov. 26, 2019
(54) HETEROGENEOUS COMPUTATIONS ON 2008/0294996 Al* 11/2008 Hunt G06Q 30/02
HOMOGENEOUS INPUT DATA 715/739
2009/0006156 Al* 1/2009 Huntcco...... G06Q 30/02
S : 705/7.11
(71) Applicant: Amazon Technologies, Inc., Reno, NV 2009/0006309 A1* 1/2000 Hunt ..o GO6Q 30/02
(US) 2009/0158248 Al* 6/2009 Linderman ... GOGF 9/505
717/106
(72) Inventors: Taylor James White, Seattle, WA (US); 2010/0131444 Al* 5/2010 Gottlieb ...cooevv......... GO6N 5/04
Albert Cooper Johnson, Seattle, WA 706/46
(US) 2010/0223385 Al* 9/2010 Gulley GOGF 9/5027
709/226

(73) Assignee: Amazon Technologies, Inc., Reno, NV (Continued)

(US)

. _ L. , OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data

U.S.C. 154(b) by 641 days. Processing on Large Clusters,” OSDI *04, pp. 137-149, USENIX
Association, Nov. 2004. Source: https:/www.usenix.org/legacy/
(21) Appl. No.: 14/065,102 events/osdi104/tech/full _papers/dean/dean.pdf.

(22) Filed: Oct. 28, 2013 Primary Examiner — Kevin T Bates

(51) Int. CL Assistant Examiner — Mark A Scott
GO6F 15/16 (2006.01) (74) Attorney, Agent, or Firm — Robert C. Kowert;
GO6F 17/30 (2006.01) Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
GO6F 15/173 (2006.01)
HO4L 29/08 (2006.01) (57) ABSTRACT
(52) US. ClL Methods and systems for performing heterogeneous com-
CPC e, HO4L 67710 (2013.01) putations on homogeneous input data are disclosed. A plu-
(58) Field of Classification Search rality of computational specifications are distributed among
CPC . GO6F 9/50; GOOF 17/30563; GO6F 17/30545 a plurality of worker nodes. The computational specifica-
USPC e, 709/201 tions comprise definitions of a plurality of heterogeneous
See application file for complete search history. computations. The heterogeneous computations are per-
_ formed using the worker nodes. Individual ones of the
(56) References Cited heterogeneofs computations are performed based on the set
U S PATENT DOCUMENTS of mput data and corresponding ones of the computational
specifications, and individual ones of the heterogeneous
7,694,107 B2 4/2010 Lin et al. computations produce respective results. An aggregate result
g’?gg’ égg EZ . 8%82 ﬁ%ﬁﬁiﬁz “““““ GOGE 16/2453 1s generated based on the respective results of the hetero-
2008/0114725 Al* 52008 Indeck GOGF 16/22 ~ geneous computations.
2008/0263557 Al1* 10/2008 Spata GOO6F 9/4881
718/104 20 Claims, 8 Drawing Sheets

Heterogeneous Computation Systern 100

I |
[|
| |
I |
| |
| l
E Worker Nodes 120 i
I |
I |
! Worker Node Worker Node !
| 120A 120N |
I I
i Input Data Input Data i
! 130 130 !
| |
I |
l Computational Y Computational :
I Specification Specification :
i 140A 140N E
I |
1 1
! Specification Specification :
! Interpreter Interpretar !
I 150A 150N |
| l
| I
| g g_l :
| I
I — |
| E 3 :
: g 8 :
i Aggregator Node 170 i
i i
! Result ves Result |
i Results Analysis 1604 1004 i
l and Aggregation v v l
] 1 :
l 180 Aggregate Result .
| 190 I
| l
| I
| |
I |

US 10,491,663 B1

Page 2
(56) References Cited 2013/0332194 Al* 122013 D’Auria G16H 10/60
705/3
U.S. PATENT DOCUMENTS 2013/0346988 Al* 12/2013 Bruno GO6F 9/5066
718/102
2010/0281166 Al* 11/2010 Buyya GO6F 9/5072 2014/0074850 Al1* 3/2014 Noelccooeeon... GO6F 11/0709
709/226 707/741
2011/0154350 Al1* 6/2011 Doyle GO6F 9/5044 2014/0107828 Al* 4/2014 Zhu GOIR 31/2831
718/104 700/121
2011/0178719 A1* 7/2011 Rabmowitz C12Q 1/6883 2014/0115596 Al* 4/2014 Khan GO6F 9/5011
702/19 718/104
2011/0178949 Al* 7/2011 Apteoooeevvvinnne., G06Q 10/067 2014/0130056 Al1* 5/2014 Goodman GO6F 9/5044
705/348 718/104
2011/0228668 Al1* 9/2011 Pillat GO6F 11/2023 2014/0181831 Al* 6/2014 Le Scouarnec GO6F 9/5066
370/217 718/104
2011/0302226 A1* 12/2011 Abadi GO6F 17/30569 2014/0195558 Al* 7/2014 Murthy GO6F 17/30545
707/825 707/770
2011/0302583 Al1* 12/2011 Abadi GO6F 17/30545 2014/0201744 Al1* 7/2014 Chucevenenenl. GO6F 9/4843
718/102 718/100
2012/0110055 Al* 5/2012 Van Biljon G06QQ) 30/04 2014/0201753 Al* 7/2014 He ..cooovevvievnninni.l. GO6F 9/5066
709/201 718/104
2012/0110063 A1* 5/2012 Prasado..o.o... G06QQ 10/06 2014/0214383 Al* 7/2014 Haas GO6F 17/5009
709/203 703/6
2012/0124591 Al1* 5/2012 Cadambi GO6F 9/505 2014/0215003 Al1* 7/2014 Mizobuchi GO6F 15/17331
718/103 709/213
2012/0159506 Al1* 6/2012 Barham GO6F 9/5044 2014/0236872 Al1* &/2014 Keshava GO6F 19/00
718/104 706/12
2012/0198466 Al* 8/2012 Cherkasova GO6F 9/5066 2014/0236943 Al™* 82014 Li .cooovvvivinninnnn, GO6F 17/30699
718/104 707/736
2012/0278464 Al* 11/2012 Lehane HO4L. 12/1407 2014/0259156 Al* 9/2014 Beutel HO41. 63/1416
709/223 726/22
2012/0310916 Al1* 12/2012 Abadi GO6F 17/30445 2014/0310258 Al* 10/2014 Tianc......... GO6F 17/30445
707/713 707/718
2012/0317579 Al1* 12/2012 Liu ..o, GO6F 11/1438 2014/0310259 Al1* 10/2014 Tiancc....... GO6F 17/30545
718/104 707/718
2013/0073724 Al1* 3/2013 Parashar GO6F 9/5072 2014/0333638 Al* 11/2014 Kaminski GO6F 15/17
709/224 345/522
2013/0090006 Al1* 4/2013 AlShaikh GO6F 9/5072 2015/0007196 Al1* 1/2015 Tolloevivvinninnn.n, GO6F 9/5083
703/10 718/105
2013/0104140 A1* 4/2013 Mengooeee. GO6F 9/5066 2015/0012629 Al1* 1/2015 Vermaccovvvevenn. HO41. 67/10
718/104 709/223
2013/0116993 Al1* 5/2013 Maliassov GO1V 9/00 2015/0088807 Al* 3/2015 Toppmn GO6F 17/30563
703/2 707/602
2013/0205028 Al* 8/2013 Crockett GO6F 9/5027 2015/0120750 Al* 4/2015 Hefeeda GO6F 17/30961
709/226 707/741
2013/0275363 Al™* 1072013 Wu ..., GOOF 9/46 2015/0121371 Al* 4/2015 Gummaraju GOG6F 17/30194
707/602 718/1
2013/0311426 A1* 112013 Erdogan ... GO6F 17/30575 2015/0310087 Al* 10/2015 Tidwell GO6F 17/30569
707/610 713/189
2013/0311441 Al1* 11/2013 Erdogan GO6F 17/30578
707/713 * cited by examiner

U.S. Patent Nov. 26, 2019 Sheet 1 of 8 US 10,491,663 B1

Master Nodes 11

Master Node Master Node
110A 110N

Input Data
130

Computational
Specifications
140

Worker Nodes 120

Worker Node Worker Node
120A 120N

Input Data input Data
130 130

Computational Computational

Specification Specification
140A 140N

Speciﬁcation ' Spécification '
Interpreter Interpreter
150A 150N

U.S. Patent Nov. 26, 2019 Sheet 2 of 8 US 10,491,663 B1

Worker Nodes 12

Worker Node Worker Node
120A 120N
Input Computational Computational
Data Specification Specification
140A 140N

o0 Specification
Interpreter
150N

Specification
Interpreter
150A

Rsult
160A

Figure 2

U.S. Patent Nov. 26, 2019 Sheet 3 of 8 US 10,491,663 B1

Heterogeneous Computation System 100

Worker Nodes 12

Worker Node
120N

Input Data
130

Worker Node
120A

Input Data
130

Computational Computational
Specification Specification
140A 140N

Specification Specification
Interpreter Interpreter
150A 190N

Aggregator Node 170

Result
Results Analysis | 1894 160A

and Aggregation

180 Aggregate Result
190

r=—=—mmme/osmsmmmeeammmeamemmmmammammmmmmmmammmmmmmmmm__—__—_—_—_—_—_—_————_—_——_—_E——_——_—_EE_E—_—_EE—E—_—_E—_EP—EIm—EI—_I—_—_E—_—_E_—_—_E_—_EE__EeeE I LmEIm_Im e R ———
A A G MM A G G G A G A M M G M G G N M G MM A G G G A A G W G M A A G M M M W G A M A M M M M G MR M A MM M A A A A G G M A G A A A G e e e e e s s ol

Figure 3

U.S. Patent Nov. 26, 2019 Sheet 4 of 8 US 10,491,663 B1

Worker Node Worker Node
1208 1200
Input Virtual LISP
Data Machine Instructions

140C

130 Bytecode 140B

Virtual Machine Instance LISP Parser
1508 150C

Resuit ”
160B

Figure 4A Figure 4B
120D 120E
Input Binary Input
Data Program Code Data Web Request

130 140D 130 1408

Computing Instance with Web Service
Operating System 150D 150E

Result Result
160D 160E

Figure 4C Figure 4D

U.S. Patent Nov. 26, 2019 Sheet 5 of 8 US 10,491,663 B1

Master Node
1108

b o U © 2O
(% g*:!‘ © Eﬁ
mf::} papealilil w QC:’ ™
s & mq} w mﬂJ
= DT & = O
0. O . o
- -
- SR, — M O

Worker Node
1200

Worker Node
120F

Input
Data

_ MCPU
Binary Code
140F

Binary Code
140G

130

GPU(s)
150G

Result
160G

Figure 5

U.S. Patent Nov. 26, 2019 Sheet 6 of 8 US 10,491,663 B1

Master Node

110C

a5 e th: 2
IS & 3 &
£ 53 £8 53

LY, D <r
= g* > g
= G 2 3
o S o O

Worker Node Worker Node
120H 120]

Program Compiler Program Compiler

Code Flags Code Flags
130C 140H 130C 140l

Compiler Compiler
150H 150H

Binary Code Evaluator
155H

Binary Code Evaluator
155H

Result
160]

Result
160H

Figure 6

U.S. Patent

Nov. 26, 2019 Sheet 7 of 8

Provide heterogeneous computational
specifications (or links thereto) to worker
nodes
700

computational specifications at each
worker node by using an appropriate
interpreter to perform a computation
based on a set of input data
710

Provide the results of the heterogeneous

computations to an aggregator
720

Generate an aggregate result based on
the results of the heterogeneous
computations
730

End

Figure 7

US 10,491,663 B1

U.S. Patent Nov. 26, 2019 Sheet 8 of 8 US 10,491,663 B1

Computing Device
3000

Processor Frocessor

FProcessor

3010z 3010b 3010n

/0O Interface 3030
System Memory 3020 Network interface
Code Data _
3025 3020

Network(s)
3050

Other Device(s)
3060

Figure 8

US 10,491,663 Bl

1

HETEROGENEOUS COMPUTATIONS ON
HOMOGENEOUS INPUT DATA

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing,
systems being co-located (e.g., as part of a local network) or
instead located in multiple distinct geographical locations
(e.g., connected via one or more private or public interme-
diate networks). For example, data centers housing signifi-
cant numbers of interconnected computing systems have
become commonplace, such as private data centers that are
operated by and on behalf of a single organization and public
data centers that are operated by entities as businesses to
provide computing resources to customers. Some public
data center operators provide network access, power, and
secure installation facilities for hardware owned by various
customers, while other public data center operators provide
“full service” facilities that also include hardware resources
made available for use by their customers. As the scale and
scope ol typical data centers has increased, the tasks of
provisioning, administering, and managing the physical
computing resources have become increasingly compli-
cated.

Examples of such large-scale systems include online
merchants, internet service providers, online businesses
such as photo processing services, corporate networks, cloud
computing services, web-based hosting services, etc. These
entities may maintain computing resources in the form of
large numbers of computing devices (e.g., thousands of
hosts) which are hosted 1n geographically separate locations
and which are configured to process large quantities (e.g.,
millions) of transactions daily or even hourly. A conven-
tional approach for harnessing these resources 1s the MapRe-
duce model for distributed, parallel computing. In a MapRe-
duce system, a large data set may be broken into smaller
chunks, and the smaller chunks may be distributed to
multiple nodes 1n a cluster. Each node 1n the cluster may
implement the same algorithm for processing each respec-
tive chunk of the data set. In other words, a MapReduce
system may represent a solution for performing homoge-
neous computations on heterogeneous mput data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example system environment for
performing heterogeneous computations on homogeneous
input data, according to one embodiment.

FI1G. 2 illustrates aspects of worker nodes 1n an example
system environment for performing heterogeneous compu-
tations on homogeneous imput data, according to one
embodiment.

FIG. 3 illustrates further aspects of an example system
environment for performing heterogeneous computations on
homogeneous input data, according to one embodiment.

FIGS. 4A-4D 1illustrate example implementations of
worker nodes 1 a system for performing heterogeneous
computations on homogeneous mput data, according to one
embodiment.

FIG. 5 1llustrates an example implementation of a hetero-
geneous computation system for dividing a load between
different sets of binary code running on different types of
processors, according to one embodiment.

FI1G. 6 1llustrates an example implementation of a hetero-
geneous computation system for compiling the same set of

10

15

20

25

30

35

40

45

50

55

60

65

2

program code with different compiler flags and evaluating
the results, according to one embodiment.

FIG. 7 1s a flowchart 1llustrating a method for performing
heterogeneous computations on homogeneous input data,
according to one embodiment.

FIG. 8 illustrates an example of a computing device that
may be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning “having the potential t0”), rather than
the mandatory sense (1.e., meaning “must”). Similarly, the

words “include,” “including,” and “includes” mean ““includ-
ing, but not limited to.”

"y

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of methods and systems for per-
forming heterogeneous computations on homogeneous input
data are described. Using a heterogencous computation
system as described herein, different algorithms and/or
implementations of an algorithm may be used to process a
set of mput data. In one embodiment, the same set of 1nput
data may be used by multiple tasks on different worker
nodes. The multiple tasks may represent diflerent algorithms
or computing strategies for solving a problem or may
represent different implementations of the same algorithm.
The results of the different tasks may be aggregated to
produce an aggregate or final result. For example, the
aggregate result may represent a combination of the indi-
vidual results of the tasks or a selection of one of the
individual results. Accordingly, in contrast to a conventional
MapReduce system that processes many inputs 1n a single
way, the heterogeneous computation system may be used to
process the same set of inputs in different ways The hetero-
geneous computation system may ofler a generic and exten-
sible framework for quickly solving various types of prob-
lems.

In one embodiment, a heterogeneous computation system
may manage the allocation of network-accessible resources.
Networks set up by an entity such as a company or a public
sector organization to provide one or more services (such as
various types of cloud-based computing or storage) acces-
sible via the Internet and/or other networks to a distributed
set of clients may be termed provider networks. A provider
network may include numerous data centers hosting various
resource pools, such as collections of physical and/or vir-
tualized computer servers, storage devices, networking
equipment and the like, that are used to implement and
distribute the infrastructure and services offered by the
provider. The resources may, in some embodiments, be
offered to clients 1n units called “instances,” such as virtual
or physical compute instances or storage nstances. A virtual
compute instance may, for example, comprise one or more
servers with a specified computational capacity (which may
be specified by indicating the type and number of CPUs, the
main memory size, and so on) and a specified software stack

US 10,491,663 Bl

3

(e.g., a particular version of an operating system, which may
in turn run on top ol a hypervisor). A number of different
types of computing devices may be used singly or in
combination to implement the resources of the provider
network 1n different embodiments, including general pur-
pose or special purpose computer servers, storage devices,
network devices, and the like.

In one embodiment, operators of provider networks may
implement a tlexible set of resource reservation, control, and
access interfaces for their clients. For example, a provider
network may implement a programmatic resource reserva-
tion interface (e.g., via a web site or a set of web pages) that
allows clients to learn about, select, purchase access to,
and/or reserve resource 1instances. In one embodiment,
resources may be reserved on behall of clients using a
client-accessible service that implements a heterogeneous
computation system. According to one such embodiment, a
heterogeneous computation system in such an environment
may receive a specification of various tasks to be performed
for a client, along with a set of input data or an indication of
a source of mput data to be used by the various tasks. The
various tasks may represent different algorithms or comput-
ing strategies. In response, the heterogeneous computation
system may determine an execution plan for implementing
the various tasks using one or more resources of a selected
resource pool of the provider network. In one embodiment,
the resource pool may be automatically selected based on
the anticipated computational needs of the various tasks. In
one embodiment, the resource pool may be selected based
on a specilic resource request or reservation submitted by
the client. The heterogeneous computation system may
schedule an execution of the various tasks using the selected
resources.

In one embodiment, the client may use one or more
suitable interfaces (such as one or more web pages, an
application programming interface [API], or a command-
line interface [CLI]) to specily the various tasks to be

implemented, the mput data set, the computing resources to
be used, and/or a time at which the tasks should be initiated.
In one embodiment, the client may be able to view the
current execution status of the various tasks using the
interface(s). In one embodiment, additional information
about executed tasks may be available via the interface(s),
such as program output, error logs, exception logs, and so
on.

FIG. 1 illustrates an example system environment for
performing heterogeneous computations on homogeneous
input data, according to one embodiment. A heterogeneous
computation system 100 may include a set of master nodes
110 and a set of worker nodes 120. In general, the master
nodes 110 may distribute different tasks to the worker nodes
120, and the worker nodes 120 may implement the different
tasks. Although two master nodes 110A and 110N are shown
for purposes of example and 1llustration, 1t 1s contemplated
that different numbers and configurations of master nodes
may be used. In one embodiment, for example, only one
master node (e.g., master node 110A) may be used for
heterogeneous computations on a set of mput data. Simi-
larly, although two worker nodes 120A and 120N are shown
for purposes ol example and 1llustration, 1t 1s contemplated
that diflerent numbers and configurations of worker nodes
may be used. Additionally, 1t 1s contemplated that the
heterogeneous computation system 100 may include fewer
components than shown, additional components not shown,
or different combinations or quantities of the components
shown.

10

15

20

25

30

35

40

45

50

55

60

65

4

The heterogeneous computation system 100 may com-
prise one or more computing devices, any of which may be
implemented by the example computing device 3000 1llus-
trated in FIG. 8. In various embodiments, portions of the
functionality of the heterogeneous computation system 100,
the master nodes 110, or worker nodes 120 may be provided
by the same computing device or by any suitable number of
different computing devices. If any of the components of the
heterogeneous computation system 100 are implemented
using different computing devices, then the components and
their respective computing devices may be communicatively
coupled, e.g., via a network. Each of the 1llustrated compo-
nents may represent any combination of software and hard-
ware usable to perform their respective functions.

In some embodiments, the master nodes 110 and worker
nodes 120 may be implemented as virtual compute instances
or physical compute instances. The virtual compute
instances and/or physical compute mstances may be oflered
to clients, provisioned, and maintained by a provider net-
work that manages computational resources, memory
resources, storage resources, and network resources. A vir-
tual compute instance may comprise one or more Servers
with a specified computational capacity (which may be
specified by indicating the type and number of CPUs, the
main memory size, and so on) and a specified software stack
(e.g., a particular version of an operating system, which may
in turn run on top of a hypervisor). One or more virtual
compute instances may be implemented by the example
computing device 3000 illustrated 1n FIG. 8.

In one embodiment, a suitable component of the hetero-
geneous computation system 100, such as one or more of the
master nodes 110, may select and/or provision the worker
nodes 120 to be used for the heterogeneous computations.
For example, the worker nodes 120 may be provisioned
from a suitable pool of available worker nodes. In one
embodiment, the worker nodes 120 need not be similarly
configured, because they are not expected to perform the
same computation, 1n contrast to a conventional MapReduce
implementation. However, individual ones of the worker
nodes 120 may be selected based on their suitability for
performing particular tasks of the heterogeneous computa-
tions.

The master node(s) 110 may represent one or more
coordinator processes that coordinate the heterogeneous
computations. In one embodiment, the master node(s) 110
may provide the worker nodes 120 with a set of mput data
130 as well as a set of computational specifications 140. In
various embodiments, the master node(s) 110 may send the
input data 130 directly to the worker nodes 120 or otherwise
provide the worker nodes 120 with information indicative of
the input data 130, such as one or more links or references.
In another embodiment, however, the worker nodes 120 may
acquire the input data 130 independently of the master
node(s) 100. Similarly, the master node(s) 110 may send the
computational specifications 140 directly to the worker
nodes 120 or otherwise provide the worker nodes 120 with
information indicative of the computational specifications
140, such as one or more links or references. In one
embodiment, the computational specifications 140 may be
provided to the worker nodes 120 by storing the computa-
tional specifications 140 in storage locations that are acces-
sible to the worker nodes 120. Each of the computational
specifications 140 may specily an algorithm or computing
strategy for performing a particular task (potentially includ-
ing multiple sub-tasks or operations). In general, the com-
putational specifications 140 may define arbitrary computa-
tions. For example, the computational specifications 140

US 10,491,663 Bl

S

may include sets of binary program code to be executed, sets
of high-level program code to be compiled and executed,
sets of mstructions to be iterpreted, descriptions of requests
to be sent to services, requests to invoke functions or
services, other suitable types of information defining tasks
or operations to be performed, or combinations thereof. In
general, each of the computational specifications 140 may
define a computation, algorithm, or computing strategy for
acting upon all or part of the mput data 130. In one
embodiment, each of the computational specifications 140
may also indicate the computational requirements to carry
out the task(s), such as an indication of the type of program
code, bytecode, efc., to be executed or interpreted to 1mple-
ment a particular task.

The different tasks represented by the different computa-
tional specifications 140 may be implemented by the worker
nodes 120. Each task may be implemented using a particular
computation, and the computations may difler for each of
the worker nodes 120. Each of the worker nodes 120, such
as worker nodes 120A-120N, may store a local copy of all
or part of the input data 130 for carrying out the various
tasks. Each worker node may include a specification inter-
preter that 1s capable of acting upon a computational speci-
fication to perform the specified task. For example, 1f the
computational specification represents binary code or byte-
code, then the corresponding specification interpreter may
include a suitable execution environment for the code.
Examples of types of specification interpreters are further
discussed with reference to FIGS. 4A-4D. As shown 1n the
example of FIG. 1, the worker node 120A may include a
specification interpreter 150A that 1s configured to imple-
ment the computational specification 140A, and the worker
node 120N may include a specification interpreter 150N that
1s configured to implement the computational spemﬁca‘[lon
140N. The specification interpreter 150A may differ from
the specification interpreter 150N due to the nature of the
corresponding computational specifications 140A and 140N.
However, the specification interpreters 150A and 150N may
also be different instances of the same interpreter. In one
embodiment, the different tasks represented by the different
computational specifications 140 may be performed 1n par-
allel (at least in part) due to the lack of dependencies
between the tasks. However, the different tasks may also be
performed 1n series (at least 1n part).

FIG. 2 illustrates aspects of worker nodes 1n an example
system environment for performing heterogeneous compu-
tations on homogencous imput data, according to one
embodiment. As discussed above, the worker node 120A
may 1nclude a specification interpreter 150A that 1s config-
ured to implement the computational specification 140A,
and the worker node 120N may include a specification
interpreter 150N that 1s configured to implement the com-
putational specification 140N. Along with the computational
specification 140A, all or part of the input data 130 may be
loaded 1nto or otherwise provided to the specification inter-
preter 150A to implement the corresponding task (poten-
tially including sub-tasks or multiple operations). Similarly,
along with the computational specification 140N, all or part
of the input data 130 may be loaded into or otherwise
provided to the specification interpreter 150N to implement
the corresponding task (potentially including sub-tasks or
multiple operations). In one embodiment, both tasks corre-
sponding to the computational specifications 140A and
140N may use substantially all of the mput data 130.
However, 1t 1s contemplated that either of the computational
specifications 140A or 140N may use only part of the input

data 130.

10

15

20

25

30

35

40

45

50

55

60

65

6

In performing the task specified by the computational
specification 140A, the specification iterpreter 150A may
produce a result 160A. Likewise, in performing the task
specified by the computational specification 140N, the
specification interpreter 150N may produce a result 160N.
The results 160A and 160N may include output values of the
corresponding tasks. However, it 1s contemplated that any of
the tasks may transform an underlying state of a system
(e.g., a state of the worker nodes 120A or 120N) instead of
or 1n addition to producing output values.

FIG. 3 illustrates further aspects of an example system
environment for performing heterogeneous computations on
homogeneous mput data, according to one embodiment. As
discussed above, 1n one embodiment, each of the worker
nodes may produce a result of 1ts local computation. As
shown 1n FIG. 3, the worker node 120A may produce a result
160A, and the worker node 120N may produce a result
160N. In one embodiment, the results 160A-160N may be
provided to an aggregator node 170. The results 160A-160N
may be generated and provided to the aggregator node 170
at different times, e.g., based on the underlying computa-
tions at the different worker nodes. The results 160A-160N
may be provided to the aggregator node 170 using any
suitable technique, such as by storing the results 160A-160N
in storage locations that are accessible to the aggregator
node 170 or by sending the results 160A-160N directly to
the aggregator node 170. In general, the aggregator node 170
may be responsible for analyzing the various individual
results of the various different computations and generating
one or more results based on the mdividual results. Accord-
ingly, the aggregator node 170 may implement a module or
process for results analysis and aggregation 180. The results
analysis and aggregation module 180 may generate an
aggregate result 190 of the various different computations
based on the individual results 160A-160N. In one embodi-
ment, the results analysis and aggregation module 180 may
assign scores to the imdividual results 160A-160N or other-
wise analyze the individual results as part of generating the
aggregate result 190.

In various embodiments, the aggregate result 190 may
represent a combination of the individual results (e.g., a new
value based on some combination of the individual results)
or a selection of one or more of the individual results. For
example, the aggregate result 190 may be a maximum value
or highest scored value, a mimmmum value or lowest scored
value, a mean value, a median value, an earliest result, a
majority result, a concatenation of individual results, or a
combination thereol. The aggregate result 190 may include
one or more values. In general, any suitable criteria may be
used to select or generate the aggregate result 190 from the
individual results 160A-160N. For example, a constraint-
solving technique or other heuristic may be used to generate
the aggregate result 190. In one embodiment, the aggregator
node 170 may determine the aggregate result 190 based on
information received from one of the master nodes 110, such
as an 1nstruction to select the maximum value, minimum
value, mean value, median value, earliest result, majority
result, efc.

Although one aggregator node 170 1s for purposes of
example and illustration, it 1s contemplated that different
numbers and configurations of aggregator nodes may be
used. In one embodiment, the aggregator node 170 may be
implemented by the example computing device 3000 1llus-
trated 1n FIG. 8. In various embodiments, portions of the
functionality of the aggregator node 170 may be provided by
the same computing device or by any suitable number of
different computing devices. In various embodiments, por-

US 10,491,663 Bl

7

tions of the functionality of the aggregator node 170 may be
provided by the same computing device(s) or diflerent
computing device(s) as those used to provide the function-
ality of the master nodes 110 and/or worker nodes 120. For
example, the aggregator node 170 may be implemented
using one or more ol the master nodes 110. If any of the
components of the heterogeneous computation system 100
are implemented using different computing devices, then the
components and their respective computing devices may be
communicatively coupled, e.g., via a network. Each of the
illustrated components 1n FIG. 3 may represent any combi-
nation of software and hardware usable to perform their
respective functions. In some embodiments, the aggregator
node 170 may be implemented as one or more virtual
compute instances and/or as one or more physical compute
instances.

An example implementation of the heterogeneous com-
putation system 100 may be directed to natural language
processing. A set of mput data representing a set of natural
language expressions may have many potential meanings or
linguistic features. Using the heterogeneous computation
system 100, the same set of natural language expressions
may be provided to multiple detectors, where each detector
1s configured to detect one or more of the potential meanings
or linguistic features. For example, a first detector may be
configured to detect sarcasm, a second detector may be
configured to detect a reference to an earlier expression, a
third detector may be configured to detect a question, eftc.
Each of the detectors may be a computational specification
(e.g., specilying instructions, program code, etc.) that may
be executed or interpreted on a worker node to examine the
natural language mnput for a particular meaning or linguistic
feature. Working in parallel, each of the detectors may
analyze the natural language mmput and generate an indi-
vidual result. The individual result may indicate the presence
or absence of the particular meaning or feature that the
particular detector 1s configured to find. An aggregate result
may indicate which, 11 any, of the meanings or features are
present 1n the natural language nput.

FIGS. 4A-4D 1illustrate example implementations of
worker nodes 1n a system for performing heterogeneous
computations on homogeneous mput data, according to one
embodiment. As shown in FIG. 4A, a worker node 120B
may be provided with virtual machine bytecode 140B as a
computational specification. The worker node 120B may
include a compatible virtual machine instance 150B as a
specification interpreter. By loading the virtual machine
bytecode 140B and the mput data 130 (e.g., as one or more
arguments) 1nto the virtual machine instance 150B and
executing the bytecode 140B to process the mput data 130,
the worker node 120B may produce a result 160B.

As shown in FIG. 4B, a worker node 120C may be
provided with LISP instructions 140C as a computational
specification. The worker node 120C may include a com-
patible LISP parser 150C as a specification interpreter. By
loading the LISP instructions 140C and the input data 130
(e.g., as one or more arguments) into the LISP interpreter
150C and interpreting the instructions 140C to process the

input data 130, the worker node 120C may produce a result
160C.

As shown i FIG. 4C, a worker node 120D may be
provided with binary program code 140D as a computational
specification. The worker node 120D may include a com-
puting instance with an operating system 150D as a speci-
fication interpreter. By loading the binary program code
140D and the input data 130 (e.g., as mnput to stdin) into the

10

15

20

25

30

35

40

45

50

55

60

65

8

computing instance 150D and executing the code 140D to
process the input data 130, the worker node 120D may
produce a result 160D.

As shown in FIG. 4D, a worker node 120E may be
provided with a web request (e.g., HI'TP-based request)
140E as a computational specification. The worker node
120E may include a web service 150E as a specification
interpreter. By loading the web request 140E and the 1mnput
data 130 1nto the web service 150E and executing the service
140E to process the mput data 130, the worker node 120E
may produce a result 160F.

In various embodiments, the heterogeneous computation
system 100 may employ different numbers and combina-
tions of the example worker nodes shown 1n FIGS. 4A-4D.
For example, the heterogencous computation system 100
may comprise multiple worker nodes 120B including
respective virtual machine mstances 1508, multiple worker
nodes 120C including respective LISP parsers 150C, mul-
tiple worker nodes 120D including respective computing
instances 150D, or multiple worker nodes 120E including
respective web services 150E. In another implementation,
the heterogeneous computation system 100 may comprise
different combinations of the worker nodes 120B, 120C,
120D, and/or 120E, as well as other types of worker nodes,
¢.g., worker nodes directed to interpreting or executing
instructions in various different languages. In general, the
heterogencous computation system 100 may comprise
worker nodes configured to implement any suitable com-
puting strategies to approach the same problem using dii-
ferent potential solutions. In some embodiments, an 1ndi-
vidual worker node may implement a conventional
MapReduce solution to address one particular approach of
multiple approaches to a problem.

FIG. 5 illustrates an example implementation of a hetero-
geneous computation system for dividing a load between
different sets of binary code running on different types of
processors, according to one embodiment. The heteroge-
neous computation system 100 may be used to divide a load
between two different computing platforms or processor
types by providing different executable binary code for each
platiorm or processor. Alternatively, the same imput may be
processed by different code on different platforms or pro-
cessors, and the different results may be evaluated. As shown
in the example of FIG. 5, a master node 110B may distribute
two different computational specifications to two worker

nodes 120F and 120G. The computational specifications
may take the form of CPU bmary code 140F and GPU

binary code 140G. The two sets of code 140F and 140G may
be configured to execute on diflerent underlying processors.
The CPU binary code 140F may be executed on one or more
central processing units (CPUs) 150F to process all or part
of the mput data 130 and generate a result 160F. Similarly,
the GPU binary code 140G may be executed on one or more
graphics processing units (GPUs) 150G to process all or part
of the input data 130 and generate a result 160G. In various
embodiments, the CPU code 140F and the GPU code 140G
may be programmed to perform similar tasks or different
tasks using the mput data 130.

FIG. 6 illustrates an example implementation of a hetero-
geneous computation system for compiling the same set of
program code with diflerent compiler tlags and evaluating
the results, according to one embodiment. The heteroge-
neous computation system 100 may be used for compiler
flag optimization. By compiling the same program code with
different compiler flags and then evaluating the resulting sets
of binary code, an optimal set of compiler flags may be
determined. As shown 1n the example of FIG. 6, a master

US 10,491,663 Bl

9

node 110C may distribute the same set of high-level pro-
gram code 130C with two different computational specifi-
cations to two worker nodes 120H and 120I. The computa-
tional specifications may take the form of a first set of
compiler flags 140H and a second set of compiler flags 1401.
Each of the worker nodes 120H and 1201 may include
instances of a compiler 150H and a binary code evaluator
155H. Using 1ts local instance of the compiler 150H, the
worker node 120H may compile the program code 130C
with the compiler flags 140H; the worker node 120H may
evaluate the resulting binary code with 1ts local instance of
the binary code evaluator 155H to generate a result 160H.
Using its local instance of the compiler 150H, the worker
node 1201 may compile the program code 130C with the
compiler flags 1401; the worker node 1201 may evaluate the
resulting binary code with its local instance of the binary
code evaluator 155H to generate a result 1601. In one
embodiment, the results 160H and 1601 may include metrics
related to the performance of the sets of binary program code
or other aspects of the binary program code, such as the size
of the code. The aggregator node 170 may analyze the
results 160H and 1601 to identily the best set of binary code
(based on any suitable criteria) and thus the best set of
compiler flags.

It 1s contemplated that the heterogeneous computation
system 100 may be used for any suitable heterogeneous
computations on substantially homogeneous inputs. For
example, the heterogeneous computation system 100 may be
used to simultaneously build different models describing
different groups of customers of a merchant; the model that
best solves the problem may then be selected. As another
example, to implement a search engine using the heteroge-
neous computation system 100, different collections of web
pages or other documents may be imdexed using diflerent
techniques running concurrently. As yet another example, an
input may be scored using diflerent concurrent computations
performed by diflerent worker nodes 1n the heterogeneous
computation system 100, and the individual scores may be
combined to give an aggregate score. To implement a
support vector machine using the heterogeneous computa-
tion system 100, each worker node may be responsible for
computing the dot product of an input and a different set of
vectors; the results may be summed together by the aggre-
gator node 170. As another example, multiple heuristics may
be performed in parallel as part of a constraint-solving
solution. For bioinformatics problems, molecules may be
simulated 1n various different ways using different worker
nodes, and the results may be evaluated by the aggregator
node 170. As another example, the heterogeneous compu-
tation system 100 may be used to implement machine
learning techniques.

In one embodiment, the heterogeneous computation sys-
tem 100 may be used to implement a heterogeneous com-
putation marketplace that 1s accessible to users, e.g., over
one or more networks. The heterogeneous computation
marketplace may permit users to select individual compu-
tational specifications to define a set of computations to be
executed to solve a problem. In one embodiment, the
heterogeneous computation marketplace use any approprate
interface(s) to present a plurality of computing strategies,
algorithms, or implementations of algorithms to users. A
user may select a set of the presented strategies, algorithms,
or implementations and cause the corresponding heteroge-
neous computations to be performed using the heteroge-
neous computation system 100. In one embodiment, the user
may also provide one or more computational specifications
to be used along with the selected specifications. In one

5

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiment, the user may supply the set of input data to be
used by the heterogeneous computations. An aggregate
result of the heterogeneous computations may be provided
to the user. The user may also select and/or provide the one
or more criteria for generating the aggregate result of the
heterogeneous computations. A fee for use of the heteroge-
neous computation marketplace may be generated using any
suitable basis. For example, the user may be charged based
on the number of computational specifications selected, the
amount of time used, the amount of computing resources
used, or any combination thereof.

FIG. 7 1s a flowchart 1llustrating a method for performing,
heterogeneous computations on homogeneous input data,
according to one embodiment. As shown i 700, heteroge-
neous computational specifications (or links thereto) may be
provided to a set of worker nodes. The computational
specifications (or links thereto) may be sent to the worker
nodes by one or more master nodes or coordinator
process(es). In various embodiments, the heterogeneous
computational specifications may specily diflerent compu-
tations for solving the same problem or otherwise acting on
the same mput data. The heterogeneous computational
specifications may represent different approaches, algo-
rithms, techniques, or strategies or may represent diflerent
implementations of the same or similar approaches, algo-
rithms, techniques, or strategies. For example, the compu-
tational specifications 140 may include sets of binary pro-
gram code to be executed, sets of high-level program code
to be compiled and executed, sets of instructions to be
interpreted, descriptions of requests to be sent to services,
requests to imnvoke functions or services, other suitable types
of information specilying tasks or operations to be per-
formed, or combinations thereof. In one embodiment, all or
part of the mput data for the heterogeneous computations
may be provided to the worker nodes, e.g., by the one or
more master nodes or coordinator process(es).

As shown 1 710, at least one of the heterogeneous
computational specifications may be implemented at each
worker node. To implement one of the heterogeneous com-
putational specifications, a worker node may use an appro-
priate interpreter to perform a computation based on the
input data. Each computation may represent one or more
tasks. Each interpreter may include any suitable components
for acting upon a computational specification to perform the
specified task(s) (potentially including sub-tasks or multiple
operations). For example, if the computational specification
represents binary code or bytecode, then the corresponding
interpreter may include a suitable execution environment for
the code. The interpreters at each worker node may differ or
may be instances of the same interpreter based on the nature
of the computational specifications. In one embodiment, the
implementation of the heterogeneous computational speci-
fications may produce results at any of the worker nodes.
The computations may be performed concurrently, at least 1n
part.

As shown 1n 720, the results of the heterogeneous com-
putations may be provided to an aggregator. As shown in
730, the aggregator may generate an aggregate result based
on the individual results of the heterogeneous computations.
In various embodiments, the aggregate result 190 may
represent a combination of the individual results or a selec-
tion of one of the individual results. For example, the
aggregate result may be a maximum value or highest scored
value, a minimum value or lowest scored value, a mean
value, a median value, an earliest result, a majority result, a
concatenation of individual results, or a combination
thereof.

US 10,491,663 Bl

11

[llustrative Computer System

In at least some embodiments, a computer system that
implements a portion or all of one or more of the technolo-
gies described herein may include a general-purpose com-
puter system that includes or 1s configured to access one or
more computer-readable media. FIG. 8 illustrates such a
general-purpose computing device 3000. In the 1llustrated
embodiment, computing device 3000 includes one or more
processors 3010a-3010% coupled to a system memory 3020
via an 1mput/output (I/0) mterface 3030. Computing device
3000 further includes a network interface 3040 coupled to

I/O intertace 3030.

In various embodiments, computing device 3000 may be
a uniprocessor system including one processor or a multi-

processor system including several processors 3010a and
30105 through 3010n (e.g., two, four, eight, or another
suitable number), referred to collectively as processors
3010. Processors 3010 may include any suitable processors
capable of executing instructions. For example, in various
embodiments, processors 3010 may be general-purpose or
embedded processors implementing any of a variety of
instruction set architectures (ISAs), such as the x86, Pow-
erPC, SPARC, or MIPS ISAs, or any other suitable ISA. In
multiprocessor systems, each of processors 3010 may com-
monly, but not necessarily, implement the same ISA.

System memory 3020 may be configured to store program
instructions and data accessible by processor(s) 3010. In
various embodiments, system memory 3020 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram 1nstructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within system
memory 3020 as code (1.e., program 1instructions) 3025 and
data 3026.

In one embodiment, I/O mnterface 3030 may be configured
to coordinate I/O traflic between processor 3010, system
memory 3020, and any peripheral devices in the device,
including network interface 3040 or other peripheral inter-
faces. In some embodiments, I/O interface 3030 may per-
form any necessary protocol, timing or other data transior-
mations to convert data signals from one component (e.g.,
system memory 3020) into a format suitable for use by
another component (e.g., processor 3010). In some embodi-
ments, I/O mterface 3030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O 1nter-
tace 3030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of I/O interface 3030, such as an interface to system memory
3020, may be incorporated directly into processor 3010.

Network intertace 3040 may be configured to allow data
to be exchanged between computing device 3000 and other
devices 3060 attached to a network or networks 3050, such
as other computer systems or devices, for example. In
various embodiments, network interface 3040 may support
communication via any suitable wired or wireless general
data networks, such as types of Ethernet network, for
example. Additionally, network interface 3040 may support
communication via telecommunications/telephony networks
such as analog voice networks or digital fiber communica-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions networks, via storage area networks such as Fibre
Channel SANs, or via any other suitable type of network
and/or protocol.

In some embodiments, system memory 3020 may be one
embodiment of a computer-readable (1.e., computer-acces-
sible) medium configured to store program instructions and
data as described above for implementing embodiments of
the corresponding methods and apparatus. However, 1n other
embodiments, program 1nstructions and/or data may be
received, sent or stored upon different types of computer-
readable media. Generally speaking, a computer-readable
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 3000 via 1/0
interface 3030. A non-transitory computer-readable storage
medium may also include any volatile or non-volatile media

such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc, that may be included 1n some
embodiments of computing device 3000 as system memory
3020 or another type of memory. Further, a computer-
readable medium may include transmission media or signals
such as electrical, electromagnetic, or digital signals, con-
veyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 3040. Portions or all of multiple comput-
ing devices such as that illustrated in FIG. 8 may be used to
implement the described functionality 1n various embodi-
ments; for example, software components running on a
variety of different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
age devices, network devices, or special-purpose computer
systems, 1n addition to or instead of being implemented
using general-purpose computer systems. The term “com-
puting device,” as used herein, refers to at least all these
types of devices, and 1s not limited to these types of devices.

Various embodiments may further include receiving,
sending, or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
readable medium. Generally speaking, a computer-readable
medium may include storage media or memory media such
as magnetic or optical media, e.g., disk or DVD/CD-ROM,
volatile or non-volatile media such as RAM (e.g. SDRAM,
DDR, RDRAM, SRAM, etc.), ROM, etc. In some embodi-
ments, a computer-readable medium may also include trans-
mission media or signals such as electrical, electromagnetic,
or digital signals, conveyed via a communication medium
such as network and/or a wireless link.

The various methods as illustrated 1n the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. In various of the methods,
the order of the steps may be changed, and various elements
may be added, reordered, combined, omitted, modified, etc.
Various of the steps may be performed automatically (e.g.,
without being directly prompted by user input) and/or pro-
grammatically (e.g., according to program instructions).

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion 1s to be regarded 1n an illustrative rather than a restric-
tive sense.

What 1s claimed 1s:

1. A system, comprising;

a plurality of computing devices configured to implement

a heterogeneous computation system comprising one or

US 10,491,663 Bl

13

more master nodes, a plurality of worker nodes, and

one or more aggregator nodes, wherein the one or more

master nodes are configured to:

send 1information indicative of a plurality of computa-
tional specifications to the plurality of worker nodes,
wherein the plurality of computational specifications
comprise definitions of a plurality of heterogeneous
computations;

wherein, for a set of mput data, each worker node of the

plurality of worker nodes 1s configured to:
load the set of input data; and
perform one or more of the plurality of heterogeneous
computations based on the plurality of computa-
tional specifications and the set of input data,
wherein different ones of the worker nodes perform
different respective computational specifications to
solve a same problem using the same set of input
data to produce respective results, and wherein the
respective computational specifications to solve the
same problem comprise:
same respective algorithms configured to be concur-
rently implemented using the same set of input
data by different types of computing platiforms or
different types of processors of the diflerent ones
of the worker nodes; and

wherein the one or more aggregator nodes are configured

to:

generate an aggregate result based at least on the
respective results produced using the same set of
input data.

2. The system as recited 1n claim 1, wherein the plurality
of computational specifications comprise one or more sets of
executable instructions, one or more sets ol interpretable
istructions, or one or more service requests.

3. The system as recited 1n claim 1, wherein the plurality
of worker nodes comprise a plurality of specification inter-
preters, wherein the specification iterpreters are configured
to interpret or execute the computational specifications to
produce the respective results based on the set of input data.

4. A computer-implemented method, comprising:

distributing a plurality of computational specifications

among a plurality of worker nodes, wherein the plu-
rality of computational specifications comprise descrip-
tions of a plurality of heterogeneous computations;
performing the plurality of heterogeneous computations
using the plurality of worker nodes, wherein individual
ones of the plurality of heterogeneous computations are
performed based on a set of 1nput data and correspond-
ing ones of the plurality of computational specifica-
tions, and wherein different ones of the worker nodes
perform different respective computational specifica-
tions to solve a same problem using the same set of
input data to produce respective results, and wherein
the respective computational specifications to solve the
same problem comprise:
same respective algorithms configured to be concur-
rently implemented using the same set of input data
by different types of computing platforms or ditfer-
ent types of processors of the different ones of the
worker nodes; and
generating an aggregate result based at least on the
respective results produced using the same set of input
data.

5. The method as recited 1n claim 4, wherein the plurality
of computational specifications comprise one or more sets of
executable instructions, one or more sets ol interpretable
istructions, or one or more service requests.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The method as recited 1n claim 4, wherein performing
the plurality of heterogeneous computations using the plu-
rality of worker nodes comprises using a plurality of speci-
fication interpreters to interpret or execute the computational
specifications to produce the respective results based on the
set of mput data.

7. The method as recited 1n claim 4, wherein each of at
least two of the respective results 1s produced by a corre-
sponding worker node of the plurality of worker nodes and
1s different than each other result of the respective results.

8. The method as recited 1n claim 4, wherein the plurality
of heterogeneous computations produce the respective
results at a plurality of different times.

9. The method as recited 1n claim 4, wherein generating,
the aggregate result comprises selecting a maximum result
of the respective results, selecting a minimum result of the
respective results, generating a mean value or a median
value based on the respective results, selecting an earliest
result of the respective results, selecting a majority result of
the respective results, or generating a concatenation of the
respective results.

10. A system, comprising:

a plurality of computing devices comprising a plurality of
processors and a plurality of memories, wherein the
memories stores program instructions, and wherein the
program 1instructions are executable by the processors
to:
concurrently perform a plurality of heterogeneous com-

putations based on a same set of mput data for
individual ones of the plurality of computing
devices, wheremn different ones of the computing
devices perform different respective computational
specifications to solve a same problem using the
same set of mput data to produce respective results,
and wherein the respective computational specifica-
tions to solve the same problem comprise:
same respective algorithms configured to be concur-
rently implemented using the same set of input
data by different types of computing platforms or
processors of the different ones of the worker
nodes; and
generate an aggregate result based at least on the
respective results produced using the same set of
input data.

11. The system as recited mm claam 10, wherein the
plurality of computing devices implement a master node and
a plurality of worker nodes, wherein the program 1nstruc-
tions are executable by the processors to:

distribute a plurality of computational specifications from
the master node to the plurality of worker nodes,
wherein the plurality of computational specifications
define the plurality of heterogeneous computations, and
wherein, 1 concurrently performing the plurality of
heterogeneous computations based on the set of input
data, the program instructions are executable by the
processors to mterpret or execute the plurality of com-
putational specifications.

12. The system as recited in claim 11, wherein the
plurality of computational specifications comprise one or
more sets of executable instructions, one or more sets of
interpretable instructions, or one or more service requests.

13. The system as recited 1n claim 11, wherein, 1n con-
currently performing the plurality of heterogeneous compu-
tations based on the set of mput data, the program instruc-
tions are executable by the processors to load the
computational specifications and the set of input data into a
plurality of specification interpreters.

US 10,491,663 Bl

15

14. The system as recited mn claim 10, wherein the
program 1nstructions are executable by the processors to:

cause a plurality of computational specifications to be
presented to a user 1n an interface for a heterogeneous
computation marketplace; and

receive a selection of individual ones of the computational
specifications from the user;

wherein the plurality of heterogenecous computations are

concurrently performed based on the selection of indi-
vidual ones of the computational specifications.

15. The system as recited mn claim 10, wherein the
aggregate result comprises a maximum result of the respec-
tive results, a mmmimum result of the respective results, a
mean value or a median value based on the respective
results, an earliest result of the respective results, a majority
result of the respective results, or a concatenation of two or
more of the respective results.

16. A non-transitory computer-readable storage medium
storing program 1nstructions computer-executable to per-
form:

executing a plurality of concurrent computations, wherein

individual ones of the plurality of concurrent compu-
tations are based on a set of mput data and on a
corresponding computational specification, and
wherein different ones of the computational specifica-
tions are used to solve a same problem to produce
respective results using the same set of mput data, and
wherein at least one of the concurrent computations 1s
executed using diflerent instructions than other ones of
the concurrent computations, and wherein the diflerent
ones of the computational specifications to solve the
same problem comprise:

5

10

15

20

25

30

16

same respective algorithms configured to be concur-

rently implemented using the same set of input data

by different types of computing platforms or proces-

sors of the different ones of the worker nodes; and

generating an aggregate result based at least on the

respective results produced using the same set of input
data.

17. The non-transitory computer-readable storage
medium as recited 1in claim 16, wherein each of the corre-
sponding computational specifications comprise one or
more sets of executable instructions, one or more sets of
interpretable instructions, or one or more service requests.

18. The non-transitory computer-readable storage
medium as recited in claim 16, wherein implementing the
plurality of concurrent computations comprises using a
plurality of specification interpreters to interpret or execute
the computational specifications to produce the respective
results based on the set of input data.

19. The non-transitory computer-readable storage
medium as recited 1n claim 16, wherein individual ones of
the plurality of concurrent computations process all of the
set of mput data to produce the respective results.

20. The non-transitory computer-readable storage
medium as recited 1n claim 16, wherein generating the
aggregate result comprises selecting a maximum result of
the respective results, selecting a minimum result of the
respective results, generating a mean value or a median
value based on the respective results, selecting an earliest
result of the respective results, selecting a majority result of
the respective results, or generating a concatenation of the
respective results.

	Front Page
	Drawings
	Specification
	Claims

