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SYSTEM AND METHOD FOR LOSSY IMAGE
AND VIDEO COMPRESSION UTILIZING A
METANETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

Application
Ser. No. Date Filed  Title
Current Herewith A SYSTEM AND METHOD FOR LOSSY
application IMAGE AND VIDEO COMPRESSION
UTILIZING A METANETWORK
Is a continuation-in-part of
16/397,725  Apr. 29, 2019 A SYSTEM AND METHOD FOR LOSSY

IMAGE AND VIDEO COMPRESSION AND
TRANSMISSION UTILIZING NEURAL
NETWORKS

the entire specification of each of which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Art

The disclosure relates to the field of data compression,

more specifically to the field of lossy 1mage compression
utilizing non-generic neural networks.

Discussion of the State of the Art

Since the start of widespread use of the internet a bit more
than two decades ago, there has been an exponential growth
in the amount of data being transmitted worldwide. In the
past decade, even as the amount of data transmitted contin-
ues to grow exponentially, video content has accounted for
an ever-increasing portion of those data. According to at
least one study, video content accounted for 64% of the
world’s internet traflic in 2014, and 1s on track to account for
up to 85% of the world’s internet trailic in 2019.

(Given that the amount of data being transmitted continues
to grow exponentially, and that most of the world’s internet
traflic 1s now video content, video compression technology
has become critically important. However, existing video
compression technology has not kept pace with the change.
The current leading video compression technologies, High
Eficiency Video Coding (HVEC, also known as H.265) and
its open-source competitor, AVI are incremental 1mprove-
ments of video compression technologies developed 1n the
carly part of this century (1.e., H264/MPEG-4 AVC and
Google’s open-source VP coding format). Although the
newer video compression standards have improved through-
put at the same level of quality versus their older counter-
parts, that method of video compression may already have
hit a point of diminishing returns, and 1s unlikely to yield
significant further improvements.

A method for utilizing a non-generic neural network
provides for a significantly reduced amount of data to be
transierred for 1mage compression or video frame compres-
s10n, however such a method, described herein, takes a large
amount of time to optimize for finding an optimal network
configuration to compress a single image. Therefore, a
meta-network which 1s capable of operating and training on
a large data-set, possibly on a powertul platform such as
connected computational devices 1n a datacenter to further
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2

improve efliciency, may be able to be trained to quickly find
the structure of a neural network which may re-construct an
approximation ol an image, thereby allowing many corpo-
rations or agencies that require the transier of large amounts
of video or 1images over a network to accomplish this while
utilizing a fraction of the bandwidth currently required even
with current compression methods.

What 1s needed 1s a system and method for image and
video compression whose performance dramatically
exceeds the performance of current state of the art image and
video compression, without taking a large amount of time to
compress the 1mage or video.

SUMMARY OF THE

INVENTION

Accordingly, the inventor has conceived and reduced to
practice, a system and methods for lossy 1image and video
compression that utilizes a metanetwork to generate a set of
hyperparameters necessary for an image encoding network
to reconstruct the desired 1image from a given noise 1mage.

According to a preferred embodiment, a system for lossy
image and video compression utilizing a metanetwork,
comprising: a metanetwork engine comprising a processor,
a memory, and a first plurality of programming instructions
stored 1in the memory, wherein the first plurality of program-
ming instructions, when operating on the processor, cause
the processor to: receive a desired 1mage; receive a noise
image; receirve a set of training images; using the set of
training images, tramn a plurality of neural networks to
reconstruct each of the set of training 1mages by mapping the
noise 1mage to each of the set of training images; store the
parameters for each of the plurality of neural networks as a
set ol metanetwork hyperparameters; use the set ol meta-
network hyperparameters as operating parameters for each
of the plurality of neural networks; use the plurality of neural
networks to map the noise image to the desired image,
producing a second set of hyperparameters corresponding to
the specific filters produced from the operation of each of the
plurality of neural networks, such that the second set of
hyperparameters, when applied to the noise 1mage using the
neural network, produce an approximation of the desired
image within an error that i1s less than a pre-determined
threshold; and store the second set of hyperparameters for
use 1n future 1mage mapping operations.

According to another preferred embodiment, a method for
lossy 1image compression utilizing a metanetwork, compris-
ing the steps of: recerving a desired 1mage; receiving a noise
image; recerving a set of training images; using the set of
training 1mages to train a plurality of neural networks to
reconstruct each of the set of traiming 1mages by mapping the
noise 1mage to each of the set of training 1images; storing the
parameters for each of the plurality of neural networks as a
set of metanetwork hyperparameters; using the set of meta-
network hyperparameters as operating parameters for each
of the plurality of neural networks; using the plurality of
neural networks to map the noise 1mage to the desired
image, producing a second set ol hyperparameters corre-
sponding to the specific filters produced from the operation
of each of the plurality of neural networks, such that the
second set of hyperparameters, when applied to the noise
image using the neural network, produce an approximation
of the desired 1mage within an error that 1s less than a
pre-determined threshold; and storing the second set of
hyperparameters for use 1n future 1mage mapping opera-
tions.
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BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The accompanying drawings illustrate several aspects
and, together with the description, serve to explain the 5
principles of the invention according to the aspects. It will
be appreciated by one skilled 1n the art that the particular
arrangements 1llustrated in the drawings are merely exem-
plary, and are not to be considered as limiting of the scope
of the mvention or the claims herein 1n any way. 10

FIG. 1 (PRIOR ART) 1s a method diagram 1llustrating the
HVEC wvideo compression and the similar BPG image
compression methodology.

FIG. 2 1s a diagram illustrating a flow of objects from
compression to decompression stages, 1llustrating the func- 15
tion used for the disclosed invention, according to an
embodiment.

FIG. 3 15 a system diagram of high-level components used
in the operation of a system for lossy 1image compression
utilizing non-generic neural networks, according to a pre- 20
terred embodiment.

FIG. 4 1s a system diagram of an image compression
engine, according to an aspect.

FIG. 5 1s a system diagram of an image compression
engine as 1t 1s utilized for image compression, utilizing a 2D 25
convolution Application Specific Integrated Circuit
(“ASIC), according to a preferred aspect.

FIG. 6 1s a flowchart illustrating the processing and
compression ol data through the system, according to an
aspect. 30

FIG. 7 1s a flowchart illustrating the processing and
decompression of data through the system, according to an
aspect.

FIG. 8 1s a method diagram of high-level components
used 1n the operation of a system for lossy image compres- 35
sion utilizing non-generic neural networks, according to a
preferred embodiment.

FIG. 9 15 a state diagram of two users, one encoding and
one decoding an image, using the disclosed compression
system, according to a preferred aspect. 40

FIG. 10 1s a method diagram 1llustrating training a neural
network with a single 1mage, as opposed to a plurality of
images to learn from, resulting 1n a non-general approach to
image compression, according to a preferred embodiment.

FIG. 11 1s a diagram 1illustrating a line-drawn 1mage, and 45
a static 1mage, going 1nto an 1mage compression engine,
parameters being 1dentified which allow for a static 1mage to
be approximately translated to an initial non-static 1mage,
and relayed to a second system over a network to re-generate
an approximation of the original 1mage from a static image. 50

FIG. 12 1s a system diagram of an image compression
engine used for decompressing an image, according to a
preferred aspect.

FIG. 13 1s a system diagram of an image compression
engine utilizing a specialized 2D convolution Application 55
Specific Integrated Circuit (“ASIC™).

FIG. 14 1s a system diagram of high-level components
used in the operation of a system using a metanetwork to
achieve 1mage or video compression, and decompression,
according to a preferred embodiment. 60

FIG. 15 1s a system diagram of a metanetwork engine,
used to train a metanetwork with a set of training 1images,
and used to compress and find filters that may be used to
transform a noise 1image nto an approximation of an input
image, according to a preferred embodiment. 65

FIG. 16 1s a datatlow diagram of a system for lossy
compression utilizing a metanetwork to train, compress, and
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send data for decompression to a system utilizing a specific
neural network configuration, according to an embodiment.

FIG. 17 1s a system diagram of multiple individual
networks communicating with each other within a metanet-
work, to produce a sequence of convolutional filters to be
applied to a noise 1mage, to progressively transform the
image 1nto an approximation of an input image, according to
an embodiment.

FIG. 18 1s a method diagram illustrating steps required for
lossy compression of 1mages and video using a metanet-
work.

FIG. 19 1s a flowchart of the steps taken for a single
network within a metanetwork to train on a set of images and
produce a network operating as a portion of function g, for
neural network hyperparameter prediction of an image
encoding network 1, according to an embodiment.

FIG. 20 1s a flowchart of the process of multiple networks
communicating within a metanetwork for the purposes of
cross-training and developing progressive filters to trans-
form a static 1mage with, to help alleviate the vanishing
gradient problem, according to an embodiment.

FIG. 21 1s a block diagram 1illustrating an exemplary
hardware architecture of a computing device.

FIG. 22 1s a block diagram illustrating an exemplary
logical architecture for a client device.

FIG. 23 1s a block diagram showing an exemplary archi-
tectural arrangement of clients, servers, and external ser-
VICES.

FIG. 24 1s another block diagram illustrating an exem-
plary hardware architecture of a computing device.

DETAILED DESCRIPTION

The mventor has conceived, and reduced to practice, a
system and methods for lossy 1image and video compression
that utilizes a metanetwork.

One or more different aspects may be described in the
present application. Further, for one or more of the aspects
described herein, numerous alternative arrangements may be
described; 1t should be appreciated that these are presented
for illustrative purposes only and are not limiting of the
aspects contained herein or the claims presented herein 1n
any way. One or more of the arrangements may be widely
applicable to numerous aspects, as may be readily apparent
from the disclosure. In general, arrangements are described
in suflicient detail to enable those skilled mm the art to
practice one or more ol the aspects, and 1t should be
appreciated that other arrangements may be utilized and that
structural, logical, software, electrical and other changes
may be made without departing from the scope of the
particular aspects. Particular features of one or more of the
aspects described herein may be described with reference to
one or more particular aspects or figures that form a part of
the present disclosure, and 1 which are shown, by way of
illustration, specific arrangements ol one or more of the
aspects. It should be appreciated, however, that such features
are not limited to usage 1n the one or more particular aspects
or figures with reference to which they are described. The
present disclosure 1s neirther a literal description of all
arrangements of one or more of the aspects nor a listing of
features of one or more of the aspects that must be present
in all arrangements.

Headings of sections provided in this patent application
and the title of this patent application are for convenience
only, and are not to be taken as limiting the disclosure 1n any
way.
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Devices that are 1n communication with each other need
not be 1n continuous communication with each other, unless

expressly specified otherwise. In addition, devices that are 1n
communication with each other may commumnicate directly
or indirectly through one or more communication means or
intermediaries, logical or physical.

A description of an aspect with several components 1n
communication with each other does not imply that all such
components are required. To the contrary, a variety of
optional components may be described to illustrate a wide
variety ol possible aspects and in order to more fully
illustrate one or more aspects. Similarly, although process
steps, method steps, algorithms or the like may be described
in a sequential order, such processes, methods and algo-
rithms may generally be configured to work in alternate
orders, unless specifically stated to the contrary. In other
words, any sequence or order of steps that may be described
in this patent application does not, 1n and of itself, indicate
a requirement that the steps be performed 1n that order. The
steps of described processes may be performed 1n any order
practical. Further, some steps may be performed simultane-
ously despite being described or implied as occurring non-
simultaneously (e.g., because one step 1s described after the
other step). Moreover, the illustration of a process by its
depiction 1 a drawing does not imply that the illustrated
process 1s exclusive of other variations and modifications
thereto, does not imply that the illustrated process or any of
its steps are necessary to one or more ol the aspects, and
does not imply that the illustrated process 1s preferred. Also,
steps are generally described once per aspect, but this does
not mean they must occur once, or that they may only occur
once each time a process, method, or algorithm 1s carried out
or executed. Some steps may be omitted 1n some aspects or
some occurrences, or some steps may be executed more than
once 1n a given aspect or occurrence.

When a single device or article 1s described herein, 1t will
be readily apparent that more than one device or article may
be used 1n place of a single device or article. Similarly,
where more than one device or article 1s described herein, 1t
will be readily apparent that a single device or article may
be used 1n place of the more than one device or article.

The functionality or the features of a device may be
alternatively embodied by one or more other devices that are
not explicitly described as having such functionality or
teatures. Thus, other aspects need not include the device
itsellf.

Techniques and mechanisms described or referenced
herein will sometimes be described 1n singular form for
clarity. However, 1t should be appreciated that particular
aspects may include multiple iterations of a technique or
multiple instantiations of a mechanism unless noted other-
wise. Process descriptions or blocks in figures should be
understood as representing modules, segments, or portions
ol code which include one or more executable 1nstructions
for implementing specific logical functions or steps in the
process. Alternate implementations are included within the
scope of various aspects in which, for example, functions
may be executed out of order from that shown or discussed,
including substantially concurrently or in reverse order,
depending on the functionality mnvolved, as would be under-
stood by those having ordinary skill in the art.

Definitions

“Artificial intelligence” or “Al” as used herein means a
computer system or component that has been programmed
in such a way that 1t mimics some aspect or aspects of
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cognitive Tunctions that humans associate with human intel-
ligence, such as learning, problem solving, and decision-
making. Examples of current Al technologies include under-
standing human speech, competing successtully 1n strategic
games such as chess and Go, autonomous operation of
vehicles, complex simulations, and interpretation of com-
plex data such as 1mages and video.

“Function,” “image transformation function,” “image
transformation network,” and “1mage transformation neural
network™ as used herein mean the use of a neural network as
a function to transform an 1image or to re-create an approxi-
mation of an image. The transformation i1s based on mapping
ol a noise 1image to a target 1image, and adjustment of the
weights of differing variables within the function, which
may also be referred to as hyperparameters. Hyperparam-
cters may also be used an inputs to the function, along with
the noise 1mage, to re-create an approximation of the image.

“Hyperparameter” as used herein means the parameters of
a Tunction that maps a noise 1mage to a target image within
a specified margin of error. When an image 1s input into the
function for mapping at a source location, hyperparameters
will be the output. The hyperparameters may then be trans-
ferred to a destination location, wherein the hyperparameters
will be the mput to the same (or similar) function with the
same noise 1image, and the output of the function will be an
approximation of the desired image at the destination loca-
tion.

“Goal 1mage”, also referred to interchangeably as a “tar-
get image” or “desired 1image” as used herein means a digital
representation of an 1mage. This digital representation may
be 1 any image {ile format, of which there already exist a
great number. Image files are commonly classified as either
raster-based formats (i.e., formats in which the content of
pixels or areas of the image are specified) or vector-based
(1.e., formats 1n which shapes and their relationships are
specified without regard to specific pixels, areas, or image
s1zes). For exemplary purposes, a non-exhaustive and non-
limiting list of raster-based formats includes Microsoit Win-
dows bitmap (bmp), CompuServe Graphics Interchange
Format (gif), Joint Photographic Experts Group JFIF format
(1pg or jpeg), Portable Graphics Network (png), and Tagged
Image File Format (tif or tifl). For exemplary purposes, a
non-exhaustive and non-limiting list of vector-based formats
includes Adobe Illustrator File (a1), Corel DRAW Image File
(cdr), Scalable Vector Graphics File (svg), and Microsoit
Visio Drawing File (vsd).

“Image transformation” as used herein means the act of
transforming any image, or even a blank or “empty” image
file, into any other image. This may be done with numerous
different techniques, in any combination, including specific
pixel alterations, the use of vector graphics based on math-
ematical equations (for example, graphing curves with equa-
tions which yield perfect resolution no matter the zoom on
the 1mage 1tsell, since it 1s specified with an equation rather
than represented by specific pixels at a given resolution), or
examining and altering groups of pixels such as for border
detection and alteration. Altering the positions of pixels of
data 1n an 1mage, but keeping the data otherwise unchanged,
for example rotating an 1mage, 1s another example of an
image transformation.

“Machine learning” as used herein 1s an aspect of artificial
intelligence 1n which the computer system or component can
modily its behavior or understanding without being explic-
itly programmed to do so. Machine learning algorithms
develop models of behavior or understanding based on
information fed to them as training sets, and can moditly
those models based on new incoming information. An
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example of a machine learning algorithm 1s AlphaGo, the
first computer program to defeat a human world champion
in the game of Go. AlphaGo was not explicitly programmed
to play Go. It was fed millions of games of Go, and
developed 1ts own model of the game and strategies of play.

“Neural network™ as used herein means a computational
model, architecture, or system made up of a number of
simple, highly interconnected processing elements which
process 1nformation by theiwr dynamic state response to
external 1mputs, and 1s thus able to “learn” information by
recognizing patterns or trends. Neural networks, also some-
times known as “artificial neural networks™ are based on our
understanding of the structure and functions of biological
neural networks, such as the brains of mammals. A neural
network 1s a framework for application of machine learning
algorithms.

“Static noise 1mage”, also referred to as a “static 1mage”™
or “noise 1mage” as used herein means an i1mage with
random or pseudo-random content. In some embodiments,
the random or pseudo-random content will be at the pixel
level, or be at the level of groups, areas, or regions of pixels.
In some embodiments, the random or pseudo-random con-
tent may comprise a single bit per pixel, representing either
black or white for that pixel. In some embodiments, the
randomness property of the image may be the 2D maximum
information entropy, or Shannon Entropy, as part of its
properties. Shannon Entropy refers to the amount of ran-
domness or possible information a given statistical model
can have, expressed in bits. For example, a coin flip has an
information entropy or Shannon Entropy of 1, while m coin
tflips have an entropy value of m, because a single coin flip
has a value or O (tails) or 1 (heads), represented by 1 bit. The
higher the entropy value for a given object, the more
possible states it may be i, which makes 1t harder to predict
the state of, but more malleable for transforming into many
possible states and acquire an estimation of another state, for
example, transforming into an approximation ol another
image. In some embodiments, the random or pseudo-random
content may further comprise grayscale or color informa-
tion. In some embodiments, the random or pseudo-random
content may comprise vector graphics or other forms of
image representation instead of bitmaps or pixels.

“Video” as used herein means a digital representation of
a sequence of 1mages representing movement. This digital
representation may be in any video file format, of which
there already exist a great number. Video files typically
contain coded video (visual) data and audio (audible) data 1n
a “container.” This application 1s primarily concerned with
the video data portion of a video file. For exemplary
purposes, a non-exhaustive and non-limiting list of video
formats includes Audio Video Interleave (avi), Motion Pic-
tures Expert Group (mpg, mpeg, mp2, mp4, etc.), Apple
video format (m4v), and Windows Media Video (wmv).
Conceptual Architecture

FIG. 1 (PRIOR ART) 1s a method diagram 1illustrating the
HEVC wvideo compression and the similar BPG 1mage
compression methodology. First, an 1image or video file 1s
input into a compression codec or compression engine 110,
betore data files are encoded with intra-frame chunks 120
which remain unchanging through frames of a video in the
case of HEVC video file compression, meaning that between
frames of a video where a grouping of pixels do not change
or change very little, that grouping 1s not re-encoded 1n
multiple frames of the video 130, thereby reducing the size
of the video with only a minor loss of movement 1n frames.
In the case of BPG formatting for still images rather than
video for HEVC video formatting, clusters of similar data
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including color depth are maintained for groups of pixels 1n
a st1ll image 130, representing a decrease 1n the data required
for equivalently sized images, resulting 1n a compressed
format using similar techniques for both video and still
images 140.

FIG. 2 1s a diagram 1llustrating an exemplary algorithm
for implementation of an aspect of a preferred embodiment.
In this algorithm, a desired image 201 and a noise image 203
are mput mto a function 1 202. Function 1 202 1s a neural
network configured to map noise image 203 to a desired
image 201. The output of function 1 202 1s a set of hyper-
parameters P 204, or “weights™ of function 1 202, that map
the noise 1image 202 to the desired or target image 201 within
a specified margin of error. The mathematical formula for
this algorithm 1s:

Given: I, N, find 0, such that:

FRIVNENTCN S RININYIN  where AOIN):=I" and h(I’ D)=

The algorithm may be generally described as follows.
Given a color image I (which corresponds to target or
desired image 201), with width W, height H, and depth C,,
there 1s an algorithm 220 which may find a mapping between
a given max-entropy image N of size W, xH,xC,; and I, by
fine-tuming the hyperparameters 0 of a known function f
202. However, such an algorithm 1s only capable of recon-
structing an approximation of the original image, allowing
an error up to a defined threshold. The algorithm 220
measures the error between two 1mages through a function
h which may be one of several possible 1mage comparison
functions, such as a pixel-wise mean-square-error function.
If for all images I there exists an t 202 with 6 ,such that the
above statement holds true, then 1t 1s possible to approxi-
mately represent all images via a triplet of {f, 6, N}. If
function 1 202 1s fixed, and its mput N, the only thing
missing to create I' 1s 0. If the file size of 0 1s smaller than
the file size of I, the algorithm has successiully lossy-
compressed I, because one only need send 0 with a bitstream
of size filesize(0) to create I' from the triplet {f, 6, N} at a
destination device, by mputting noise image 206 and param-
cters O 204 nto 1 205 on the destination/receiving side to
obtain approximated target image I' 207.

However, 1t 1s not immediately obvious how to choose a
function 1 that will efliciently find 0. The solution 1s to use
a neural network with 1ts typical structure of convolu-
tion—bias—non-linearity—repeat as function 1. By using a
neural network as function 1, the solution to finding its
hyperparameters 0 given 1 becomes a machine learming
training problem that can be solved using, for example,
stochastic gradient descent (SGD). In short, SGD 1s used to
learn the hyperparameters (aka weights) which mimimize the
error function h, thus obtaining 0 for I.

After hyperparameters 0 204 are output from a neural
network 202, they may be input into a separate instance of
the same or a similar neural network 205, along with a
separate mnstance ol an identical noise image 206, to produce
an approximation of a desired image 1 207. In this way, the
system operates as compressor and decompressor, by gen-
erating one of two objects depending on what 1s received as
input, either hyperparameters 0 204 or an approximation of
an 1mage I 207. The instances of these objects, such as the
decompression neural network 205 and associated data, may
be operating on different computers, for example a first
network endpoint possessing a desired 1image 1 201, function
f 202, and noise image 203, may operate on one computer
such as a smartphone, laptop, or other computing device,
while another function 1 205, noise 1mage 206, may exist on
another computing device, possibly but not necessarily over
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a network. It 1s possible, for instance, for files to be
transierred via a portable memory device, rather than over a
network between two computers. It 1s important to note that
the different instances of the neural network at either end of
a transmission need not be identical. Neural networks that
function similarly will produce an acceptable solution, even

if their architecture, programming, or other characteristics
are different.

FIG. 3 1s an exemplary overall system diagram, according,
to a preferred embodiment. A network endpoint 301, which
may be a laptop or desktop computer, a mobile phone, a
workstation, or some other manner of network-enabled
computing device, may be connected over a network 306
such as the Internet, and possess a desired image I 304 and
noise 1mage N 305. On a network endpoint 301, both images
may be used as inputs for an image compression engine 303,
which 1s directly accessible by a network endpoint 301. A

desired 1mage 1 304 may be in one of many image formats,
including .JPG/.JPEG, .PNG, BMP, or other formats, the
specific format of it being a non-crucial element to the
instant imvention, as new formats may be identified and
accounted for in the future as applicable. A static noise
image N 305 may similarly be in one of many formats, and
may be a singular, unchanging image, which 1s used 1n all
implementations of the system, or i1t may be one of several
possible 1mages, and sent to the system as mput from
another source, whether a network endpoint 307 or some
other source containing the image. In some embodiments,
the static noise 1image N 305 represents an image that has the
highest 2D Shannon Entropy, which may be used for trans-
formation into other images as needed. An 1mage compres-
sion engine 303 1s an engine present on a network endpoint
301, which may take, as mput, a desired image 1 304 and
static noise 1mage N 305, and execute an image transior-
mation function 202 to generate hyperparameters for the
tfunction 202 which, when applied to the noise image N 350,
allow the recreation of a close approximation I' (read as
“I-prime” and denoting an approximation of I) 310 of a
desired 1image I 304. Specifically, a destination endpoint 307
may receive hyperparameters 308 for mput into another
instance of an 1mage decompression engine 309, also using
a static noise 1image 311 as input, allowing it to produce an
approximation 310, I', of a desired image I 304.

FIG. 4 1s an exemplary system diagram of an image
compression engine 303, according to a preferred embodi-
ment. As shown 1 FIG. 3, a noise image N 303, and goal
image 1 304, which respectively represent a maximum
entropy noise 1image and the initial image to be compressed,
are mput 1into a processor 430. A processor 430 1s a common
computing device used to process arithmetic and logical
operations, and 1s commonly known 1n the art. A processor
430 has two-way communication with at least a single bit of
volatile memory 440, commonly known as Random Access
Memory (“RAM”), for short-term storage of data to be
accessed by a processor 430, the processor altering data 1n
the RAM and using data in the RAM to alter its own
processes. This 1s commonly understood as one of the key
interactions 1 modern computing. A processor 430 also
communicates with a neural network 410, which operates as
a Tunction 1 1n an algorithm 220, operating as a framework
for machine learning algorithms 420 to process mmcoming
data from a noise 1image 305 and goal image 304. After an
input 1mage 304 1s re-created approximately, using the
algorithm 220 1n FIG. 2, the hyperparameters 302 of a neural
network 410 are output to the network endpoint 301 for
turther use, including transmitting to a destination endpoint,
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saving on a hard-drive or external memory device, or other
common uses for compressed 1mages.

FIG. 5 15 a system diagram of another exemplary embodi-
ment of an 1mage compression engine 500, utilizing a 2D
convolution Application Specific Integrated Circuit
(“ASIC”) 560, according to an embodiment. In this embodi-
ment, a 2D convolution ASIC 560 1s utilized to reduce the
amount ol processing time required for the system to fully
compress an 1image. As shown 1 FIG. 3, a noise image N
305, and goal image 1 304, which respectively represent a
maximum entropy noise image and the imitial image to be
compressed, are input into a processor 530. A processor 530
1s a common computing device used to process arithmetic
and logical operations, and 1s commonly known 1n the art. A
processor 530 has two-way communication with at least a
single bit of volatile memory 540, commonly known as
Random Access Memory (“RAM™), for short-term storage
of data to be accessed by a processor 530, the processor
altering data in the RAM and using data in the RAM to alter
its own processes. This 1s commonly understood as one of
the key interactions 1n modern computing. A 2D convolution
ASIC 511 also communicates bi-directionally with both the
system processor 5330 and memory 3540, 1n order to handle
specialized processing of convolutional neural network 510
data much faster than a general central processing unit might
otherwise achieve. A processor 330 also communicates with
a neural network 510, which operates as a function 1 1n an
algorithm 220, operating as a framework for machine learn-
ing algorithms 520 to process incoming data from a noise
image 305 and goal image 304. After an mput image 304 1s
re-created approximately, using the algorithm 220 1n FIG. 2,
the hyperparameters 302 of a neural network 510 are output
to the network endpoint 301 for further use, including
transmitting to a destination endpoint, saving on a hard-
drive or external memory device, or other common uses for
compressed 1mages.

FIG. 6 1s a flowchart illustrating the processing and
compression ol data through the system, according to an
aspect. A desired image I may be mput into the system 601,
this being the image that the system will attempt to trans-
form a noise 1mage into with specific hyperparameters. A
check for a noise 1image 1s performed 602, which may yield
either positive or negative results, regarding whether the
system already possesses a static noise image 305. It there
1s no static noise 1mage currently present in the system, a
noise 1mage may be mput into the system 603, through a
network endpoint 307 which may possess a static noise
image, or 1t may be generated automatically, or come from
some other source. IT a static noise 1mage 1s already present,
or after 1t 1s recerved or input 1nto the system 603, the system
1s at a state of both the static noise image N 305 and desired
image 1 304 being present in the system. It 1s at this point
that an 1mage transformation function f may be utilized or
executed 604 to apply to a static noise 1mage N 303, the
result of the transformation being checked for closeness to
a desired image 1 605. the closeness being defined by an
error value, the hyperparameters of the neural network are
output 607, and the system ends execution, ready to receive
a new mput 1image and begin execution again 601. If the
image transiormation function I 410 operating on a noise
image N 305 does not yield a sufliciently close result to
desired 1image I 304, then a neural network 410 may alter the
alterable hyperparameters 0 302 of a transformation neural
network 1410, 606 to attempt to produce ever-closer results,
until the output 1s sufliciently close to an 1image 1 304, 605.

FIG. 7 1s a flowchart illustrating the processing and
de-compression of data through the system, according to an
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aspect. First, hyperparameters are received and mput into an
image compression engine 701, which apply to the neural
network 410 to determine the image transformation and
convolution of a noise 1mage mto a desired image. The
system 1s checked to ensure that a static noise 1image N 1s
present 702, and 11 no noise 1mage 1s present, such an 1image
1s iput mto the system 703, which may be sent from the
same source as the alterable hyperparameters 0, or may be
inserted by a separate system, or manually input by a user on
the system itself. After a noise 1mage N 1s inserted into the
system 703, or if the noise 1mage 1s already present, for
example 1f the noise 1mage remains static and identical
across all implementations of the disclosed imvention, then
an 1mage transformation function f may be executed 704,
however instead of having no mput hyperparameters as in
FIG. 6, the hyperparameters are already input into the
system 701, and the static noise 1image 305 1s transformed
704 into an 1image I', which 1s an approximation of a desired
image 1 304, before being output 705. In this way, image
compression 1s performed by specitying how to re-create an
image rather than altering the image data 1itself, allowing the
specifications for re-creating the image to be transmitted
rather than the 1image 1tself, ensuring excellent compression
of data.

FIG. 8 1s a method diagram of high-level components
used 1n the operation of a system for lossy 1mage compres-
sion utilizing neural networks, according to a preferred
embodiment. First, a desired 1image must either be present,
or input 801, this image being the 1mage that will be
attempted to be re-created with an 1mage transformation
network 410, before a static noise image N 303 1s accessed
802. This noise image will be utilized by an image trans-
formation function 410 to attempt to translate 1t, using
alterable hyperparameters, into an approximation of an mnput
desired 1mage 1 304. After a noise 1mage i1s received or
accessed 1f 1t 1s static and unchanging 304, the image
transformation function I 410 1s executed 803, utilizing
alterable hyperparameters 0 302 and feeding into a set of
machine learning algorithms 250 operating on a neural
network 260, resulting i alterable hyperparameters 0 for
image transformation function 1 being altered 804, 805 1n an
attempt to translate a closer approximation to input image I
304. When an 1mage 1s produced from a transformation of a
noise image N 305, the alterable hyperparameters 0 302 are
output 806, such that a user with the image transformation
function 410, noise 1mage 305, and hyperparameters 302,
may re-create a close approximation of the original desired
image 304. In this way, the image may be heavily com-
pressed, and potentially encrypted from users without access
to the 1mage transformation function itself. Alterable hyper-
parameters 0 302 may then be sent to another network
endpomnt 307, 807, such as another laptop, desktop, or
workstation device, or other device capable of runming a 2D
convolution ASIC as specified 1n FIG. 5. A destination
network endpoint 307 may then, using alterable hyperpa-
rameters 0 302, execute an 1image transformation function 1
808, inputting alterable hyperparameters 0 809 as the param-
eters 1 which a neural network 410 transforms a noise
image 303 to an approximate of a desired image 1 304, 810.

FIG. 9 15 a state diagram of two users, one encoding and
one decoding an image, using the disclosed compression
system. In a first state 910, a user A has a desired 1mage I
304, while a user B wants to recerve an image I 304 and does
not yet possess 1t. This 1s analogous to a user possessing an
image to compress and send to another user, perhaps a
triend, work colleague, or third-party service which requires
for one of many possible reasons that the file be compressed
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first. In a second state 920, which necessarily follows from
the first, training 1s undergone with a neural network 410
which allows for the hyperparameters 0 302 to be tuned to
allow for an 1mage transformation function to transform a
static noise 1mage N 3035 into an approximation of a desired
image I 304. A third state 930, proceeding from the second,
allows for user A to acquire the parameters 0 302 as
mentioned previously, from the training, before proceeding
to a fourth state 940, 1n which hyperparameters 0 302 are
sent from user A to user B, which allows for a fifth state to
be reached 950, whereby user B, now possessing the hyper-
parameters 0 302, may acquire I 304 by utilizing an 1image
transformation function 1 410 to transform a noise 1mage N
305 mto an approximation of a desired image 1 304.

FIG. 10 1s a method diagram 1llustrating training a neural
network with a single 1mage, as opposed to a plurality of
images to learn from, resulting 1n a non-general approach to
image compression. A desired image 1s input into the system
1010, as has been elaborated on previously in the disclosed
system, such an 1mage comprising any two-dimensional
graphical file of one of the numerous viable formats includ-
ing .BMP, .PNG, or others. A neural network 410 is trained
1020 using on a static noise image N 305, without changing
or swapping out the image 303, resulting 1n a network
trained on a single datapoint rather than a large dataset,
unlike generalized neural networks. Rather than feeding a
large dataset to a network, edge weights of a network are
adjusted based on how close a given output of a network’s
image transformation has come to a desired 1mage I 304,
1030. In this way, training 1s continued on a network 410 on
a single noise 1mage 305, using adjusted weights and param-
eters 1040. A table 1050 1illustrates the difterences, and
relationship, between a traditional neural network which
reaches generalized solutions to problems, and the proposed
neural network 410, which utilizes a specialized method of
training and does not learn general image transiformation
techniques, by training on a single noise 1image iteratively,
altering the weights and parameters of the network as it
generates new transformed 1mages until a close approxima-
tion to the desired image 1s generated.

FIG. 11 1s a diagram 1llustrating an actual image, and a
noise 1mage, going 1nto an 1mage compression engine,
parameters being identified which allow for a noise 1image to
be approximately translated to an initial non-noise 1mage,
and relayed to a second system over a network to re-generate
an approximation of the original 1mage from a noise 1mage.
A sample image 1101, and a static noise image 1102, are
input mnto an 1mage compression engine 303. Hyperparam-
cters 303 for re-creating image 1101 are devised through
training a neural network to transform a noise 1mage 1102
into a close approximation of a desired image 1101, the
transformation being possible due to the noise 1image 1102
being a maximally entropic 1mage capable of being trans-
formed into any number of 1mages with the correct trans-
formation steps. Hyperparameters 302 for re-creating an
image 1101 are sent over a network 306, where they are fed
into an 1mage decompression engine 309, along with a copy
1103 of the static noise image 1102, which outputs a close
approximation 1104 of the desired image 1101. Note that
this 1s not an identical copy, but a close approximation,
therefore illustrating a lossy compression method, and cre-
ating a separate 1image file 1104, not identical to the original
image 1101.

FIG. 12 15 a system diagram of an image decompression
engine 1200 used for decompressing an 1mage, according to
an embodiment. It should be noted that the image decom-
pression engine 1200 uses the same components as the
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image compression engine 303, but 1s configured to receive
a noise 1mage 305 and hyperparameters 302, and to output
an approximated image I' 310. As shown in the right-hand
portion of FIG. 12, a noise image N 305, and alterable
hyperparameters 302 of a neural network 1210, are input
into a processor 1230. A processor 1230 1s a common
computing device used to process arithmetic and logical
operations, and 1s commonly known 1n the art. A processor
1230 has two-way communication with at least a single bit
of volatile memory 1240, commonly known as Random
Access Memory (“RAM”), for short-term storage of data to
be accessed by a processor 1230, the processor altering data
in the RAM and using data in the RAM to alter its own
processes. This 1s commonly understood as one of the key
interactions 1 modern computing. A processor 1230 also
communicates with a neural network 1210, which operates
as a function 1 1n an algorithm 220, operating as a framework
for machine learning algorithms 1220 to process mcoming
data from a noise i1mage 305 and, for the purposes of
de-compression, the hyperparameters 0 302 of a previous
neural network’s compression of a goal image 304. After
hyperparameters 0 302 are input nto a processor 1230, the
processor directs the neural network 1210 to incorporate and
use these hyperparameters, directing the operation of the
network as 1t transforms a noise 1mage 305 1nto an approxi-
mation 310 of an input 1image 304, using the algorithm 220
in FIG. 2, the approximation image I' 310 being output to the
network endpoint 307 for turther use, including transmitting
to a destination endpoint, saving on a hard-drive or external
memory device, or other common uses for now uncom-
pressed 1mages.

FI1G. 13 1s a system diagram of an alternative embodiment
of an 1mage decompression engine 1310 arrangement being
used for decompression while utilizing a specialized 2D
convolution Application Specific Integrated Circuit
(“ASIC”) 1311, according to an embodiment. It should be
noted that the image decompression engine 1300 uses the
same components as the image compression engine 309, but
1s configured to receive a noise 1image 305 and hyperparam-
cters 302, and to output an approximated image I' 310. As
shown 1n the right-hand portion of FIG. 3, a noise image N
305, and alterable hyperparameters 302 of a neural network
1310, are mnput into a processor 1330. A processor 1330 1s
a common computing device used to process arithmetic and
logical operations, and 1s commonly known in the art. A
processor 1330 has two-way communication with at least a
single bit of volatile memory 1340, commonly known as
Random Access Memory (“RAM™), for short-term storage
of data to be accessed by a processor 1330, the processor
altering data in the RAM and using data in the RAM to alter
it’s own processes. This 1s commonly understood as one of
the key interactions 1n modern computing. A 2D convolution
ASIC 1311 also communicates bi-directionally with both the
system processor 1330 and memory 1340, in order to handle
specialized processing of convolutional neural network
1310 data much faster than a general central processing unit
might otherwise achieve. A processor 1330 also communi-
cates with a neural network 1310, which operates as a
function 1 1n an algorithm 220, operating as a framework for
machine learning algorithms 1320 to process incoming data
from a noise 1mage 305 and, for the purposes of de-
compression, the hyperparameters 0 302 of a previous
neural network’s compression of a goal image 304. After
hyperparameters 0 302 are input 1nto a processor 1330, the
processor directs the neural network 1310 to incorporate and
use these hyperparameters, directing the operation of the
network as 1t transforms a noise 1mage 305 1nto an approxi-
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mation 310 of an input image 304, using the algorithm 220
in FIG. 2, the approximation image I' 310 being output to the
network endpoint 307 for further use, including transmaitting
to a destination endpoint, saving on a hard-drive or external
memory device, or other common uses for now uncom-
pressed 1mages.

Because training of a single neural network to effectively
map a known noise 1image to a desired 1image typically takes
a highly-optimized graphical processing unit (GPU)-based
machine many hours to accomplish for each desired image
to be compressed, using normal traimng methods based on
(for example) steepest gradient descent), it 1s crucial to find
a different way to efliciently determine the weights of 1 for
a given desired 1mage. According to an aspect, the inventors
have determined that it 1s possible to generate weights for 1,
to arbitrary accuracy (in the sense of how closely an output
image obtained by applying N to { matches the mput image
used to generate the respective weights of 1), 1n a single pass
through a metanetwork described below. Specifically, by
passing the desired image I and the known noise image N as
inputs to a function g using a metanetwork, the weights for
fare obtained in a single pass, as described below with
reference to FIGS. 14-17. More precisely, the inventors have
shown that a metanetwork arranged as shown in FIG. 17
demonstrated a massively increased encoding efliciency
with regards to runtime compression of 1mages. Specifically,
training via SGD on high-end GPU’s took more than 6
hours. In contrast to that, the runtime of g 1s less than a
second on similar hardware, and can be less than 100
milliseconds if specialized hardware (such as hardware-
based optimized convolution stages).

FIG. 14 1s a system diagram of high-level components
used 1n the operation of a system using a metanetwork to
achieve 1mage or video compression, and decompression,
according to a preferred embodiment. As shown on the left
of FIG. 14, a given goal image 1 304 1s provided to a
metanetwork engine 1410, alongside a static (that 1s, known
and unchanging) noise 1image N 3035. Metanetwork engine
1410 comprises a “network of neural networks™, including
multiple single neural networks that each perform process-
ing on a portion of the goal image I 304, such as specific
features or color spectra (for example, 1n a three-network
metanetwork, each network may focus on one of each of the
red, blue, and green color bands within the 1mage). Meta-
network engine 1410 uses convolutional training between
the single networks within 1t to arrive at the set of hyper-
parameters 302 that are approprniate for any given image
decompression engine 309 to reconstruct the goal image 304
(or an arbitrarily-similar recreation thereof) from the noise
image 305. This set of hyperparameters 302 may then be
stored for repeated future use, for example to enable many
clients to reconstruct the goal image 304 from a single set of
calculated hyperparameters (for example, as may be useful
for a photo or video streaming service, wherein the same
content 1s sent repeatedly to a large number of destinations),
and may be sent via a network 306 from one endpoint 301
to another 307. At the network destination, the received set
of hyperparameters 308 are then provided to an i1mage
decompression engine 309 as mput along with the noise
image I 311, so that the image decompression engine 309
may produce a reasonably-close recreation of the goal
image, the recreated image being denoted as I' 310.

FIG. 15 15 a system overview diagram ol a metanetwork
engine 1410, used to train a metanetwork with a set of
training 1mages, and used to compress and find filters that
may be used to transform a noise 1mage mnto an approxima-
tion of an input 1image, according to a preferred embodiment.
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According to the embodiment, a given goal image 1 304 1s
provided to a metanetwork engine 1410, alongside a static
noise 1mage N 305 as inputs. Metanetwork engine 1410
comprises a processor 1540 and memory 1559 for perform-
ing the machine learning tasks associated with the training
and transformation processes. A neural network 1510 trains
on a set of training 1mages 1530 using machine learning
algorithms 1520 to arrive at an appropriate set ol hyperpa-
rameters for operation, the hyperparameters comprising the
set of hyperparameters necessary for the metanetwork
engine 1410 to create a set of alterable hyperparameters 302
to store and transmit to target image encoding networks,
given the mputs of N 305 and I 304. In other words, the set
of hyperparameters determined through training is the set
used for operation of the metanetwork, and said operation
(when given the correct, trained set of hyperparameters) then
produces the desired set of hyperparameters 302 from the
noise 305 and target 304 1images.

FIG. 16 1s a dataflow diagram of a system 1610 for lossy
compression utilizing a metanetwork 1602 to train, com-
press, and send data for decompression to a system utilizing,
a specific neural network configuration 1640, according to
an embodiment. According to the embodiment, metanet-
work 1602 instantiates a function g, wherein g, when given
a known noise 1mage 1603 and an original image 1601 as
inputs, determines a specific set of hyperparameters 1604 for
the given original image 1 1601 and noise image N 1603 as
inputs. The hyperparameters 1604 have the property that,
when 1nserted (for example, at a destination device) as
welghts into a neural network to define a specific instance of
a decompression function I 1640, which can be used to map
the same known/static noise 1image 1630 (here, “the same”
means noise 1mage 1630 1s the same 1mage as noise 1image
1603 used as mput to gin metanetwork 1602 to produce
hyperparameters 1604. According to a preferred aspect,
hyperparameters 1604 may be transmitted to a destination
image encoding network 1640, which comprises a function
f such that (produces a facsimile of the original image I,
dubbed I' 1650, given the noise image N 1630 and hyper-
parameters 1604 as inputs. Stated mathematically, this
operation takes the form of the set of functions 1620:

Given: {11, ..., IK}, N, ¢, f
Find: g
So that for j={1, . . ., K}: g (Ij, N):=0"]

t(g(I3, N)IN):=I4

h(I', Iy)=e<=h{1{g(l}, N)IN), Ij)=¢

FIG. 17 1s a system diagram of multiple individual neural
networks 1710a communicating with each other within a
metanetwork 1710 to produce a plurality of sets of filter
weights 1721, 1723, 1725, which may be inserted into neural
networks 1722, 1724, and 1726, which collectively embody
a specific mstance of function 1 that may be used to map
noise image 1701 to image 1730, which 1s close—to within
an arbitrary error limit—to 1dentical to input image 1711. As
shown, a metanetwork 1710 1s a network of neural networks,
comprising a plurality of individual networks that each
perform independent machine learning tasks focused on a
portion of an original image 1711. As shown, one arrange-
ment uses three individual networks (and the inventor has
determined through practice that this configuration provides
excellent performance for the relative amount of resources
utilized, reducing an 1image compression task from hours to
milliseconds), however alternate metanetwork arrangements
are possible according to the embodiment such as using only
two 1ndividual networks, or using four or more individual
networks.
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When an original image 1711 1s provided as an input to an
individual network 1710a (while only this specific indi-
vidual network 1s highlighted within the figure, this was
done for the sake of clarity and 1t should be appreciated that
the discussion of operation of 1710a applies to any and all
individual networks present in the metanetwork 1710), a
sequence of convolutional filters 1714a-rn are applied,
wherein the output of each filter may be provided as an input
to the next, to enable machine learning. Each individual
network’s convolutional outputs may also be provided as
inputs to the next sequential filter in another individual
network’s processing 1712a-n, 1713a-n, so that the net-
works eflectively learn from each other’s processing and
collectively “zero 1™ on 1deal solutions. After this convo-
lutional processing, a number of non-convolutional final
filters 1715a-n, 1716a-r, 1717a-» may be applied to each
individual network’s output (and in this case, only that
network’s output), using the static noise 1image 1701 as an
added mput.

This produces a set of filters 1721, 1723, 1725 that are
based on the combined development of the convolutional,
collective processing of the original image, as well as the
network-specific processing based on the noise 1mage, such
that each filter 1s different (being based on only a single
network’s processing, and therefore varying from one
another due to variances in the networks and their respective
outputs and learning processes), but the combination of
filters, when applied in sequence at a target image encoding
network 1720, reconstructs successively more-accurate rep-
resentations 1722, 1724, 1726 belfore arriving at a final,
arbitrarily-similar reconstruction 1730 of the original image
1711.

It will be seen, in FIG. 17, that data 1s passed between
layers within a given convolutional neural network (e.g.,
1712a-n), as 1s conventional. But additionally, inter-meta-
network connections are made, according to an aspect,
linking outputs of one neural network (one horizontal row)
of a metanetwork (for example, 1712a-r) to the input of a
next stage of a different neural network (a different hori-
zontal row, such as 1713a-r), as shown 1n FIG. 17. During
some 1nitial tests of multiple metanetworks without these
inter-metanetwork connections, training and quality chal-
lenges were encountered. The training challenge was the
vanishing gradient problem. This occurs when the updates
the learning algorithm wants to make to the weights become
extremely small (in the order of 107°) due to continuous
multiplications by small values. These small updates result
in a network which becomes “stale” and stops learning; 1n
other words, the function stops improving. As done 1n
intra-metanetwork connections, this problem may be fixed
by adding skip connections in between the layers within a
metanetwork to shorten the route an update has to take to get
to 1ts parameter, lowering the order by which the update
diminishes. This technique was fully utilized 1n an exem-
plary aspect, with substantial improvements noted.

To further improve the flow of information, nter-meta-
network pathways are added. These act as information-
injections between the metanetworks. Their main role 1s to
update the current metanetwork on the state of the previous
ones. This further helped the flow of gradient information
during training, leading to a traiming process that 1s more
stable while requiring less time.

Another reason for adding inter-metanetwork pathways 1s
so the current metanetwork may be aware of the filter (and
therefore transformation) the previous network produced,
and 1t may produce 1t’s filter 1n a way that will complement
the transformation of the previous filter rather than cancel 1t
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out. This ability to know the state of the previous metanet-
work 1s important since 1in 1image encoding networks accord-
ing to aspects of the invention, the transformations to the
input (noise) are typically applied in order. Therefore, 1f a
metanetwork 1s tasked with predicting a transformation at a
particular stage, 1t should know the previous transformations
that have already been applied, 1n other words, the state of
the previous metanetwork rows.

Each metanetwork 1s tasked with predicting the filter
which will most adequately transform an 1mage-encoding,
network mput to a step closer to a desired 1image. The input
to the metanetwork 1s just the desired image (the known
noise 1image 1s mjected late 1n the first row at layers 1715a-n,
as shown in FIG. 17), so the metanetwork 1s seeing an
incomplete picture. It does not see the “from™ 1image but just
the “to” 1image. Hence, a late fusion of the IEN input (noise)
1s provided to the metanetwork. This increases the informa-
tion the metanetwork can use to make 1ts prediction, and
gives a boost 1n 1mage quality. Furthermore, this fusion of
information 1s done 1n an “or” manner, so the metanetwork
can choose 1f it requires 1t or not.

To summarize, a method according to an aspect, such as
that shown 1n FIG. 17, may be viewed as an ensemble of
metanetworks, since the method uses a collection or group
of metanetworks. One might argue that 1t’s the same net-
work; however, this 1s false since all individual metanet-
works are independent from one another with regards to
their trainable parameters, inputs and outputs. It 1s not even
necessary to train them together, but 1t 1s convenient.

Metanetwork 1710 must be trained before it can carry out
its function of determining the weights 1722, 1723, 1725
required for function 1 to map noise image N 1701 to target
image 1730. Accordingly, FIG. 18 1s a method diagram
illustrating steps required for training metanetwork 1710 for
use 1n lossy compression of images and video using a
metanetwork. In an 1mitial step 1810, a set of training 1mages
1 are provided to a metanetwork as mputs. These are used to
train the metanetwork based on the 1mages 1 and a given
noise 1mage N 1820. This training, as described above in
FIG. 15, arrives at a set of filters needed to apply to the noise
image N to arrive at a reconstruction of a given original
image I 1830. In more detail, this reconstruction process
involves a number of individual networks within the meta-
network, each of which generates a subset of hyperparam-
eters 1840, and each of which subset 1s different from the
others and focused on a specific portion or attribute of the
input 1image 1 1850. Fach subsequent individual network
takes, as mnput, the states of all previous networks 1860 so
that their collective machine learning is used as a convolu-
tional neural network built out of smaller, more specialized
convolutional neural networks (each being focused on a
specific attribute of the image, while the overall metanet-
work being focused on the whole by using each specific
network as a convolutional filter within its own processing).
To reconstruct the target image, static image N 1s passed
through the successive filters developed by the networks
1870, producing a close approximation image I' 1880. When
the approximation image 1s determined to be acceptable, that
set of hyperparameters 1s stored and training 1s considered
complete; the hyperparameters may then be sent 1890 to any
arbitrary number of destination image encoding networks,
cach of which may then use the hyperparameters and noise
image N to rapidly produce the reconstructed image I'.

FIG. 19 1s a flowchart of the steps taken for a single
network within a metanetwork to train on a set of images and
produce a network operating as a portion of function g, for
neural network hyperparameter prediction of an i1mage
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encoding network 1, according to an embodiment. In an
initial step 1901, a set of traiming 1mages ] 1s input to the
metanetwork. At each mdividual network within the meta-
network, a check 1s performed 1902 to determine 1f a noise
image 1s present. If no noise image 1s present, one 1s
provided 1903, and then (or 11 the noise 1mage was already
present) the metanetwork executes the image transformation
function g on each of the training images 1, 1904. After
performing the transformation, the result 1s checked to
determine whether the output image 1s acceptably close to a
desired 1mage 1 1905, and 1 not then each individual
network within the metanetwork alters 1ts parameters
slightly 1906 and repeats the function g, to iterate closer to
the desired output result. When the recreated image I' 1s
acceptably close to the original I, the set of hyperparameters
1s stored as the acceptable set of hyperparameters needed for
an acceptable image transformation 1907.

FIG. 20 1s a flowchart of the process of multiple networks
communicating within a metanetwork for the purposes of
cross-training and developing progressive filters to trans-
form a static image with, to help alleviate the vanishing
gradient problem, according to an embodiment. In an 1nitial
step 2010, a convolutional processing layer 1 1s executed
across all single networks within a metanetwork. Then 2020,
a check 1s performed to determine 11 additional layers exist,
waiting to be performed. I so, then each individual network
sends, as output, the results of 1ts respective processing layer
1 to be used as an mput for all next networks’ next convo-
lutional layer, 1+1 2040. Then, 1 increments 2050 and
operation continues 2010. When no more layers exist, con-
volutional processing concludes and each individual net-
work then produces 1ts respective filter 2030, thereby pro-
ducing the complete set of filters needed to recreate a target
image from a noise image.

Hardware Architecture

Generally, the techniques disclosed herein may be imple-
mented on hardware or a combination of software and
hardware. For example, they may be implemented 1n an
operating system kernel, in a separate user process, 1n a
library package bound into network applications, on a spe-
cially constructed machine, on an application-specific inte-
grated circuit (“ASIC”), or on a network interface card.

Software/hardware hybrid implementations of at least
some of the aspects disclosed herein may be implemented on
a programmable network-resident machine (which should
be understood to mnclude intermittently connected network-
aware machines) selectively activated or reconfigured by a
computer program stored in memory. Such network devices
may have multiple network interfaces that may be config-
ured or designed to utilize different types of network com-
munication protocols. A general architecture for some of
these machines may be described herein in order to illustrate
one or more exemplary means by which a given unit of
functionality may be implemented. According to specific
aspects, at least some of the features or functionalities of the
various aspects disclosed herein may be implemented on one
or more general-purpose computers associated with one or
more networks, such as for example an end-user computer
system, a client computer, a network server or other server
system, a mobile computing device (e.g., tablet computing
device, mobile phone, smartphone, laptop, or other appro-
priate computing device), a consumer electronic device, a
music player, or any other suitable electronic device, router,
switch, or other suitable device, or any combination thereof.
In at least some aspects, at least some of the features or
functionalities of the various aspects disclosed herein may
be mmplemented in one or more virtualized computing
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environments (e.g., network computing clouds, virtual
machines hosted on one or more physical computing
machines, or other appropriate virtual environments).

Referring now to FIG. 21, there 1s shown a block diagram
depicting an exemplary computing device 10 suitable for
implementing at least a portion of the features or function-
alities disclosed herein. Computing device 10 may be, for
example, any one of the computing machines listed in the
previous paragraph, or indeed any other electronic device
capable of executing software- or hardware-based instruc-
tions according to one or more programs stored 1n memory.
Computing device 10 may be configured to communicate
with a plurality of other computing devices, such as clients
Or servers, over communications networks such as a wide
area network a metropolitan area network, a local area
network, a wireless network, the Internet, or any other
network, using known protocols for such communication,
whether wireless or wired.

In one embodiment, computing device 10 includes one or
more central processing units (CPU) 12, one or more inter-
taces 15, and one or more busses 14 (such as a peripheral
component mterconnect (PCI) bus). When acting under the
control of appropriate software or firmware, CPU 12 may be
responsible for implementing specific functions associated
with the functions of a specifically configured computing,
device or machine. For example, 1n at least one embodiment,
a computing device 10 may be configured or designed to
function as a server system utilizing CPU 12, local memory
11 and/or remote memory 16, and mterface(s) 15. In at least
one embodiment, CPU 12 may be caused to perform one or
more of the different types of functions and/or operations
under the control of software modules or components, which
for example, may include an operating system and any
appropriate applications software, drivers, and the like.

CPU 12 may include one or more processors 13 such as,
for example, a processor ifrom one of the Intel, ARM,
Qualcomm, and AMD families of microprocessors. In some
embodiments, processors 13 may include specially designed
hardware such as application-specific integrated circuits
(ASICs), celectrically erasable programmable read-only
memories (EEPROMSs), field-programmable gate arrays
(FPGAs), and so forth, for controlling operations of com-
puting device 10. In a specific embodiment, a local memory
11 (such as non-volatile random-access memory (RAM)
and/or read-only memory (ROM), including for example
one or more levels of cached memory) may also form part
of CPU 12. However, there are many different ways 1n which
memory may be coupled to system 10. Memory 11 may be
used for a variety of purposes such as, for example, caching,
and/or storing data, programming instructions, and the like.
It should be turther appreciated that CPU 12 may be one of
a variety of system-on-a-chip (SOC) type hardware that may

include additional hardware such as memory or graphics
processing chips, such as a QUALCOMM SNAP-

DRAGON™ or SAMSUNG EXYNOS™ (CPU as are
becoming increasingly common 1n the art, such as for use in
mobile devices or integrated devices.

As used herein, the term “processor” 1s not limited merely
to those integrated circuits referred to 1 the art as a
processor, a mobile processor, or a microprocessor, but
broadly refers to a microcontroller, a microcomputer, a
programmable logic controller, an application-specific inte-
grated circuit, and any other programmable circuit.

In one embodiment, interfaces 15 are provided as network
interface cards (NICs). Generally, NICs control the sending
and receiving of data packets over a computer network;
other types of interfaces 15 may for example support other
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peripherals used with computing device 10. Among the
interfaces that may be provided are Ethernet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces,
token ring interfaces, graphics interfaces, and the like. In
addition, various types of interfaces may be provided such
as, for example, universal serial bus (USB), Serial, Ethernet,
FIREWIRE™, THUNDERBOLT™, PCI, parallel, radio
frequency (RF), BLUETOOTH™, near-ficld communica-
tions (e.g., using near-field magnetics), 802.11 (WikF1), frame
relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Eth-
ernet interfaces, Serial ATA (SATA) or external SATA
(ESATA) interfaces, high-definition multimedia interface
(HDMI), digital visual mtertace (DVI), analog or digital
audio interfaces, asynchronous transfer mode (ATM) inter-
faces, high-speed serial interface (HSSI) interfaces, Point of
Sale (POS) mtertaces, fiber data distributed interfaces (FD-
DIs), and the like. Generally, such interfaces 15 may include
physical ports appropriate for communication with appro-
priate media. In some cases, they may also include an
independent processor (such as a dedicated audio or video
processor, as 1s common 1n the art for ligh-fidelity A/V
hardware interfaces) and, 1in some instances, volatile and/or
non-volatile memory (e.g., RAM).

Although the system shown in FIG. 21 illustrates one
specific architecture for a computing device 10 for imple-
menting one or more of the inventions described herein, 1t 1s
by no means the only device architecture on which at least
a portion of the features and techniques described herein
may be implemented. For example, architectures having one
or any number of processors 13 may be used, and such
processors 13 may be present 1n a single device or distrib-
uted among any number of devices. In one embodiment, a
single processor 13 handles communications as well as
routing computations, while 1n other embodiments a sepa-
rate dedicated commumnications processor may be provided.
In various embodiments, diflerent types of features or func-
tionalities may be implemented 1n a system according to the
invention that includes a client device (such as a tablet
device or smartphone running client soitware) and server
systems (such as a server system described 1in more detail
below).

Regardless of network device configuration, the system of
the present mnvention may employ one or more memories or
memory modules (such as, for example, remote memory
block 16 and local memory 11) configured to store data,
program instructions for the general-purpose network opera-
tions, or other information relating to the functionality of the
embodiments described herein (or any combinations of the
above). Program instructions may control execution of or
comprise an operating system and/or one or more applica-
tions, for example. Memory 16 or memories 11, 16 may also
be configured to store data structures, configuration data,
encryption data, historical system operations information, or
any other specific or generic non-program information
described herein.

Because such information and program instructions may
be employed to implement one or more systems or methods
described herein, at least some network device embodiments
may include nontransitory machine-readable storage media,
which, for example, may be configured or designed to store
program 1nstructions, state information, and the like for
performing various operations described herein. Examples
of such nontransitory machine-readable storage media
include, but are not limited to, magnetic media such as hard
disks, tloppy disks, and magnetic tape; optical media such as
CD-ROM disks; magneto-optical media such as optical
disks, and hardware devices that are specially configured to
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store and perform program instructions, such as read-only
memory devices (ROM), flash memory (as 1s common 1n
mobile devices and integrated systems), solid state drives
(SSD) and “hybrid SSD” storage drives that may combine
physical components of solid state and hard disk drives 1n a
single hardware device (as are becoming increasingly com-
mon in the art with regard to personal computers), memristor
memory, random access memory (RAM), and the like. It
should be appreciated that such storage means may be
integral and non-removable (such as RAM hardware mod-
ules that may be soldered onto a motherboard or otherwise
integrated into an electronic device), or they may be remov-
able such as swappable flash memory modules (such as
“thumb drives” or other removable media designed for
rapidly exchanging physical storage devices), “hot-swap-
pable” hard disk drives or solid state drives, removable
optical storage discs, or other such removable media, and
that such integral and removable storage media may be
utilized interchangeably. Examples of program instructions
include both object code, such as may be produced by a
compiler, machine code, such as may be produced by an
assembler or a linker, byte code, such as may be generated
by for example a JAVA™ compiler and may be executed
using a Java virtual machine or equivalent, or files contain-
ing higher level code that may be executed by the computer
using an interpreter (for example, scripts written 1n Python,
Perl, Ruby, Groovy, or any other scripting language).

In some embodiments, systems according to the present
invention may be implemented on a standalone computing
system. Referring now to FIG. 22, there 1s shown a block
diagram depicting a typical exemplary architecture of one or
more embodiments or components thereol on a standalone
computing system. Computing device 20 includes proces-
sors 21 that may run software that carry out one or more
functions or applications of embodiments of the mnvention,
such as for example a client application 24. Processors 21
may carry out computing instructions under control of an
operating system 22 such as, for example, a version of
MICROSOFT WINDOWS™ operating system, APPLE
OSX™ or 10S™ operating systems, some variety of the
Linux operating system, ANDROID™ operating system, or
the like. In many cases, one or more shared services 23 may
be operable 1n system 20, and may be useful for providing
common services to client applications 24. Services 23 may
for example be WINDOWST™ gervices, user-space common
services 1 a Linux environment, or any other type of
common service architecture used with operating system 21.
Input devices 28 may be of any type suitable for receiving
user mput, icluding for example a keyboard, touchscreen,
microphone (for example, for voice mnput), mouse, touch-
pad, trackball, or any combination thereof. Output devices
27 may be of any type suitable for providing output to one
or more users, whether remote or local to system 20, and
may include for example one or more screens for visual
output, speakers, printers, or any combination thereof.
Memory 25 may be random-access memory having any
structure and architecture known in the art, for use by
processors 21, for example to run software. Storage devices
26 may be any magnetic, optical, mechanical, memristor, or
clectrical storage device for storage of data in digital form
(such as those described above, referring to FIG. 21).
Examples of storage devices 26 include flash memory,
magnetic hard drive, CD-ROM, and/or the like.

In some embodiments, systems of the present invention
may be implemented on a distributed computing network,
such as one having any number of clients and/or servers.
Referring now to FIG. 23, there 1s shown a block diagram
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depicting an exemplary architecture 30 for implementing at
least a portion of a system according to an embodiment of
the invention on a distributed computing network. Accord-
ing to the embodiment, any number of clients 33 may be
provided. Fach client 33 may run soitware for implementing
client-side portions of the present invention; clients may
comprise a system 20 such as that illustrated 1n FIG. 22. In
addition, any number of servers 32 may be provided for
handling requests received from one or more clients 33.
Clients 33 and servers 32 may communicate with one
another via one or more electronic networks 31, which may
be 1n various embodiments any of the Internet, a wide area
network, a mobile telephony network (such as CDMA or
GSM cellular networks), a wireless network (such as Wik,
WiIMAX, LTE, and so forth), or a local area network (or
indeed any network topology known 1n the art; the invention
does not prefer any one network topology over any other).
Networks 31 may be implemented using any known network
protocols, including for example wired and/or wireless pro-
tocols.

In addition, 1n some embodiments, servers 32 may call
external services 37 when needed to obtain additional infor-
mation, or to refer to additional data concerning a particular
call. Communications with external services 37 may take
place, for example, via one or more networks 31. In various
embodiments, external services 37 may comprise web-
enabled services or functionality related to or installed on
the hardware device 1tself. For example, 1n an embodiment
where client applications 24 are implemented on a smart-
phone or other electronic device, client applications 24 may
obtain information stored 1n a server system 32 in the cloud
or on an external service 37 deployed on one or more of a
particular enterprise’s or user’s premises.

In some embodiments of the invention, clients 33 or
servers 32 (or both) may make use of one or more special-
1zed services or appliances that may be deployed locally or
remotely across one or more networks 31. For example, one
or more databases 34 may be used or referred to by one or
more embodiments of the invention. It should be understood
by one having ordinary skill in the art that databases 34 may
be arranged 1in a wide variety of architectures and using a
wide variety of data access and manipulation means. For
example, 1n various embodiments one or more databases 34
may comprise a relational database system using a struc-
tured query language (SQL), while others may comprise an

alternative data storage technology such as those referred to
in the art as “NoSQL” (for example, HADOOP CASSAN-

DRA™ GOOGLE BIGTABLE™, and so forth). In some
embodiments, variant database architectures such as col-
umn-oriented databases, in-memory databases, clustered
databases, distributed databases, or even tlat file data reposi-
tortes may be used according to the invention. It will be
appreciated by one having ordinary skill in the art that any
combination of known or future database technologies may
be used as appropriate, unless a specific database technology
or a specific arrangement of components 1s specified for a
particular embodiment herein. Moreover, it should be appre-
ciated that the term “database™ as used herein may refer to
a physical database machine, a cluster of machines acting as
a single database system, or a logical database within an
overall database management system. Unless a specific
meaning 1s speciiied for a given use of the term “database”,
it should be construed to mean any of these senses of the
word, all of which are understood as a plain meaning of the
term “database” by those having ordinary skill 1n the art.
Similarly, most embodiments of the invention may make
use of one or more security systems 36 and configuration
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systems 335. Security and configuration management are
common 1nformation technology (IT) and web functions,
and some amount of each are generally associated with any
I'T or web systems. It should be understood by one having
ordinary skill 1in the art that any configuration or security
subsystems known 1n the art now or 1n the future may be
used 1 conjunction with embodiments of the invention
without limitation, unless a specific security 36 or configu-
ration system 35 or approach is specifically required by the
description of any specific embodiment.
FIG. 24 shows an exemplary overview of a computer
system 40 as may be used in any of the various locations
throughout the system. It 1s exemplary of any computer that
may execute code to process data. Various modifications and
changes may be made to computer system 40 without
departing from the broader scope of the system and method
disclosed herein. Central processor unit (CPU) 41 1s con-
nected to bus 42, to which bus 1s also connected memory 43,
nonvolatile memory 44, display 47, input/output (I/O) umt
48, and network interface card (NIC) 53. I/O umt 48 may,
typically, be connected to keyboard 49, pointing device 50,
hard disk 52, and real-time clock 51. NIC 53 connects to
network 354, which may be the Internet or a local network,
which local network may or may not have connections to the
Internet. Also shown as part of system 40 1s power supply
unit 45 connected, 1n this example, to a main alternating,
current (AC) supply 46. Not shown are batteries that could
be present, and many other devices and modifications that
are well known but are not applicable to the specific novel
functions of the current system and method disclosed herein.
It should be appreciated that some or all components 1llus-
trated may be combined, such as in various integrated
applications, for example Qualcomm or Samsung systems-
on-a-chip (SOC) devices, or whenever it may be appropriate
to combine multiple capabilities or functions into a single
hardware device (for instance, 1n mobile devices such as
smartphones, video game consoles, in-vehicle computer
systems such as navigation or multimedia systems 1n auto-
mobiles, or other integrated hardware devices).
In various embodiments, functionality for implementing,
systems or methods of the present mnvention may be distrib-
uted among any number of client and/or server components.
For example, various software modules may be imple-
mented for performing various functions in connection with
the present invention, and such modules may be variously
implemented to run on server and/or client components.
The skilled person will be aware of a range of possible
modifications of the various embodiments described above.
Accordingly, the present invention 1s defined by the claims
and their equivalents.
What 1s claimed 1s:
1. A system for lossy image and video compression
utilizing a metanetwork, comprising:
a metanetwork engine comprising a processor, a memory,
and a first plurality of programming instructions stored
in the memory, wherein the first plurality of program-
ming instructions, when operating on the processor,
cause the processor to:
receive a desired 1mage;
receive a noise 1mage;
receive a set of training 1images;
using the set of traimng images, tramn a plurality of
neural networks to reconstruct each of the set of
training 1mages by mapping the noise image to each
of the set of training 1mages;

store the parameters for each of the plurality of neural
networks as a set of metanetwork hyperparameters;
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use the set of metanetwork hyperparameters as oper-
ating parameters for each of the plurality of neural
networks:
use the plurality of neural networks to map the noise
image to the desired 1mage, producing a second set
of hyperparameters corresponding to the specific
filters produced from the operation of each of the
plurality of neural networks, such that the second set
of hyperparameters, when applied to the noise image
using the neural network, produce an approximation
of the desired image within an error that 1s less than
a pre-determined threshold; and
store the second set of hyperparameters for use 1n
future 1mage mapping operations.
2. The system of claim 1, wherein each of the plurality of
neural networks:
generates at least one convolutional filter, wherein the
noise 1mage may be filtered through all convolutional
filters 1n succession, mapping it to an approximation of
a desired 1mage; and
tacilitates communication between the plurality of neural
networks to alleviate the vamishing gradient problem.
3. The system of claim 2, wherein the plurality of neural
networks may be located on separate computing devices,
connected across a network.
4. The system of claim 1, wherein the noise 1mage 1s static
and unchanging.
5. A method for lossy image compression utilizing a
metanetwork, comprising the steps of:
receiving a desired 1mage;
receiving a noise 1mage;
recerving a set of training 1mages;
using the set of training images to train a plurality of
neural networks to reconstruct each of the set of
training 1mages by mapping the noise 1mage to each of
the set of tramning 1mages;
storing the parameters for each of the plurality of neural
networks as a set of metanetwork hyperparameters;
using the set of metanetwork hyperparameters as operat-
ing parameters for each of the plurality of neural
networks:
using the plurality of neural networks to map the noise
image to the desired image, producing a second set of
hyperparameters corresponding to the specific filters
produced from the operation of each of the plurality of
neural networks, such that the second set of hyperpa-
rameters, when applied to the noise 1mage using the
neural network, produce an approximation of the
desired 1image within an error that 1s less than a pre-
determined threshold; and
storing the second set of hyperparameters for use 1n future
image mapping operations.
6. The method of claim 5, further comprising the steps of:
Generating, at each of the plurality of neural networks, at
least one convolutional filter, wherein a noise 1mage
may be filtered through the convolutional filters 1n
succession, mapping it to an approximation of a desired
image, using a plurality of neural meta-networks; and
facilitating communication between the plurality of neu-
ral networks to alleviate the vanishing gradient prob-

lem.
7. The method of claim 6, wherein the plurality of neural
networks may be located on separate computing devices,
connected across a network.
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8. The method of claim 5, wherein the noise 1mage 1s
static and unchanging.
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