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(57) ABSTRACT

A quantum mechanical arithmetic operation method for
machine vision, based on orbital qubit 1s performed by a
quantum processing processor. The quantum mechanical
arithmetic operation method comprises, obtaining a {first
labeled graph connecting between feature points of the first
image and a second labeled graph connecting feature points
of the second 1mage, generating a point-to-point combina-
tion by matching the feature points of the first image with the
feature points the second 1mage, generating a contlict graph
by adding the largest point-to-point combination by com-
paring the point-to-point combinations with the threshold,
generating non-constrained binary optimization equation for
finding a maximum independent set of contlict graphs,
converting the non-constrained binary optimization equation
into Ising model of the quantum system, and calculating the
Hamiltonian of Ising model based on an orbital qubit to
obtain solution of the non-constrained binary optimization
equation.
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QUANTUM MECHANICAL MACHINE
VISION SYSTEM AND ARITHMETIC

OPERATION METHOD BASED ON ORBITAL
QUBIT

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority from and the benefit of
Korean Patent Applications No. 10-2016-0168243, filed on
Dec. 12, 2016, which 1s hereby incorporated by reference for
all purposes as if fully set forth herein.

BACKGROUND OF THE INVENTION

Field of the Invention

The present mvention relates to a quantum mechanical
machine vision system and an arithmetic operation method,
more specifically to a quantum mechanical machine vision
system and an arithmetic operation method based on orbital
qubit.

Discussion of the Background

Human beings now have better analytical capabilities than
machine analysis 1n many areas such as object recognition,
knowledge representation, reasoning, learning and natural
language processing. Accordingly, in order to imitate or
surpass the human way of thinking mechanically, a compli-
cated arithmetic operation method must be used.

An accurate solution to the problem of optimization of
machine vision system 1s required to imitate or surpass
human visual recognition ability as an example.

In order to solve the complex computation method of
artificial view, there 1s a method of performing quantum
mechanical calculation using quantum computing.

A quantum computer 1s a physical system that uses one or
more quantum eflects to perform calculations. A quantum
computer capable of efliciently simulating other quantum
computers 1s called a universal quantum computer (UQC).

1. Approach to Quantum Computation

There are several general approaches to the design and
operation ol quantum computers.

One approach corresponds to a ‘circuit model” of quantum
computation. In this approach, qubits operate 1n the order of
a logical gate, which 1s a representation of a compiled
algorithm. Circuit model quantum computers have some
serious barriers 1n their actual implementation. In a circuit
model, qubits are required to be coherent for a longer period
of time than a single-gate time. This demand arises because
circuit model quantum computers require operations, called
quantum error correction, to operate. Quantum error correc-
tion cannot be performed without the qubit of a circuit model
quantum computer that can maintain quantum coherence for
a time interval of about 1000 times one gate time. There
have been a number of studies focused on developing qubits
with suflicient coherence to form basic information units of
quantum computers. This 1s described 1n, for example,
“Introduction to Quantum Algorithms™, by Shor, P. W.
arX1v. org: quantph/0005003 (2001), pp. 1-27. This techni-
cal field 1s still stagnant due to the lack of the ability to
enhance the coherence of the qubit to a level suitable for
designing and operating real circuit model quantum com-
puters.
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2. Computational Complexity Theory

In computer science, computational complexity theory 1s
a kind of computational theory required to solve a given
computational problem and the theory of computation to
study resources or costs. Costs are generally measured by
abstract parameters called computational resources, such as
time and space. The time means the number of steps
necessary to solve the problem, and the space means the
required amount of information storage or the amount of
memory required.

Optimization problems correspond to problems where
one or more objective functions are minimized and maxi-

mized under a set of constraints, sometimes with respect to
a set of variables.

Simulation problems typically deal with the simulation of
one system by another system during a typical time interval.
For example, computer simulations consist of business
processes, ecological habitats, protein folding, molecular
ground states, and quantum systems. These problems often
involve numerous diverse entities that are different from
complex inter-relationships and behavioral rules. Feynman
suggests that a quantum system can be used to simulate
several physical systems more efliciently than UTM.

Many optimization and simulation problems cannot be
solved using UTM. Because of these limitations, computa-
tional elements are needed that can solve computational
problems beyond the scope of the UTM. Other digital
computer based systems and methods for solving optimiza-
tion problems can be found.

An example of a technique for solving this optimization
problem 1s described in Korean Patent No. 10-1309677
entitled ‘Method for Calculating Adoptive Quantum’.

The prior art discloses a quantum computing method
using a quantum system that includes a plurality of qubits.
In the prior art, quantum annealing 1s possible to obtain a
desired minimum energy (or cost), which concurrently
tracks a configuration of a superposition state, and espe-
cially, Adiabatic Quantum Computation (AQC) technique 1s
used to perform quantum annealing. In addition, AQC uses
a technique 1n which an adiabatic change of Hamiltonian
from the initial state to the target state i1s obtained and a
solution of the desired target state 1s finally obtained.

The above prior art describes the general operation of a
quantum computing system to solve a complex problem, and
in spite of the existence of this prior art, the selection of an
optimized quantum system remains a very important prob-
lem to solve the complicated matter.

SUMMARY OF THE INVENTION

Accordingly, 1t 1s an object of the present invention to
provide a quantum mechanical machine vision system and
an arithmetic operation method based on orbital qubat,
which can facilitate calculation of complexity caused by an
increase in the number of feature points for 1image 1dentifi-
cation.

A quantum mechanical arnthmetic operation method
based on orbital qubit according to an exemplary embodi-
ment of the present invention 1s performed by a quantum
processing processor. The quantum mechanical arithmetic
operation method comprises, obtaining a first labeled graph
connecting between feature points of the first 1mage and a
second labeled graph connecting feature points of the second
image, generating a point-to-point combination by matching
the feature points of the first image with the feature points
the second 1image, generating a contlict graph by adding the
largest point-to-point combination by comparing the point-
to-point combinations with the threshold, generating non-
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constrained binary optimization equation for finding a maxi-
mum 1independent set of conflict graphs, converting the

non-constrained binary optimization equation into Ising
model of the quantum system, and calculating the Hamul-
tonian of Ising model based on an orbital qubit to obtain 3
solution of the non-constrained binary optimization equa-
tion.

For example, calculating the Hamiltonian of Ising model
based on orbital qubit to obtain solution of the non-con-
strained binary optimization equation may be performed by 10
two eigenstate 1n si1x eigenstates 1n the minimum conduction
band of silicon (S1) crystal, the two e1genstate being opposite
to each other.

In this case, the two eigenstate may be along a [001]
direction of silicon crystal. 15
For example, the Hamiltonian of the Ising model may be

calculated through adiabatic evolve, 1n calculating the Ham-
iltonian of Ising model based on an orbital qubit to obtain
solution of the non-constrained binary optimization equa-
tion. 20

On the other hand, the quantum mechanical arithmetic
operation method may further comprise repeatedly learning
the non-constrained binary optimization equation through
machine learning.

A quantum mechanical machine vision system according 25
to an exemplary embodiment of the present invention com-
prises an 1mage acquisition module, a quantum processing
processor and a memory umt. The image acquisition module
acquires an 1mage. The quantum processing processor pro-
cesses the image obtained from the 1mage acquisition mod- 30
ule. The memory unit stores data necessary for computation
of the quantum processing processor. The quantum process-
ing processor obtains a first labeled graph connecting
between feature points of the first image and a second
labeled graph connecting feature points of the second 1image, 35
generates a point-to-point combination by matching the
feature points of the first image with the feature points the
second 1mage, generates a contlict graph by adding the
largest point-to-point combination by comparing the point-
to-point combinations with the threshold, generates non- 40
constrained binary optimization equation for finding a maxi-
mum independent set of contlict graphs, converts the non-
constrained binary optimization equation 1nto Ising model of
the quantum system, and calculates the Hamiltonian of Ising
model based on an orbital qubit to obtain solution of the 45
non-constrained binary optimization equation.

For example, the quantum processing processor may use
two eigenstate 1n six eigenstates 1 the minimum conduction
band of silicon (S1) crystal, the two e1genstate being opposite
to each other. 50

For example, the two eigenstate may be along a [001]
direction of silicon crystal.

For example, the quantum processing processor may
calculate the Hamiltonian of the Ising model through adia-
batic evolve. 55

As described above, according to the orbital qubit-based
quantum mechanical machine vision system and an arith-
metic operation method of the present immvention, the NP
problem generated as the number of feature points increases
1s replaced by Hamiltonian using Ising model, so that 1t can 60
be easily calculated using orbital qubits arranged in a matrix
shape.

BRIEF DESCRIPTION OF THE DRAWINGS

63
The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are 1ncor-

4

porated 1n and constitute a part of this specification, 1llustrate
embodiments of the invention, and together with the

description serve to explain the principles of the invention.

FIG. 1 1s a diagram showing a modeling of interrelation-
ships of feature vectors between interest points according to
an embodiment of the present invention.

FIG. 2 shows the lowest conduction band of an 1deal
s1licon (S1) crystal with six equivalent minima of ellipsoidal
shape along [100] direction.

FIG. 3 1s a schematic diagram of silicon quantum dot
orbital single qubit system.

FIG. 4 1s a schematic structure of the silicon quantum dot
orbital single qubit system shown i FIG. 3.

FIG. 5 1s a schematic diagram of silicon quantum dot
orbital two qubits system.

FIG. 6 1s a schematic structure of the silicon quantum dot
orbital two qubits system shown 1n FIG. 5.

FIG. 7 1s a block diagram showing an orbital qubit based
quantum mechanical machine vision system in accordance
with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
ILLUSTRATED EMBODIMENTS

(1]

The present invention 1s described more fully hereinatfter
with reference to the accompanying drawings, in which
example embodiments of the present invention are shown.
The present invention may, however, be embodied in many
different forms and should not be construed as limited to the
example embodiments set forth herein. Rather, these
example embodiments are provided so that this disclosure
will be thorough and complete, and will fully convey the
scope of the present invention to those skilled in the art. In
the drawings, the sizes and relative sizes of layers and
regions may be exaggerated for clarity.

Heremaiter, exemplary embodiments of the present
invention will be described in detail with reference to the
accompanying drawings.

FIG. 1 1s a diagram showing a modeling of interrelation-
ships of feature vectors between interest points according to
an embodiment of the present invention.

In the machine vision system, the computer or the robot
compares the previously captured reference pattern with the
photographed 1mage to recognize the image, and this pro-
cess 1s advanced through a training process. In general, an
algorithm called a heuristic algorithm 1s applied to a par-
ticular type of image, and a heuristic algorithm can be
applied 1n various ways depending on the image.

Generally, a brain recognizing human visual and visual
information extracts feature points that can adequately
describe a pattern represented by each image for pattern
matching between different images, and the distance and
direction between the feature points are synthetically rec-
ognized, so that the distance and direction are recognized as
a pattern. The human brain then compares the pattern
information extracted from the image to determine whether
the two 1mages match. This process 1s diflicult by searching
only by movement between a point and a point, but easy by
obtaining patterns including surrounding points.

However, in machine vision with limited intelligence 1n
general, 1t 1s extremely diflicult to fully simulate the behav-
ior ol human brain or the interpretation of human sensory
data. It 1s known as the NP-Hard Problem to simulate the
behavior of the human brain.

In FIG. 1, a process of recognizing a pattern between
different images 1s modeled, and the process 1s described as
a general NP-Hard problem. The images of image A and
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image B are different images but may be different versions
of 1mages having the same physical structure.

In order to perform pattern recognition operations related
to machine vision, a combination of feature vectors repre-
senting relative position information between respective
points of interest (feature points) in each image 1s used, and
a combination of these feature vectors 1s used as a reference
for recognizing each image.

The process of extracting a reference pattern for each
image can be performed by a process of extracting feature
points and a process of determining relative position infor-
mation between the feature points as a feature vector. This
process 1s not a deterministic problem, but a non-determin-
1stic problem 1n which 1t 1s necessary to find an optimized
value by comparing the results.

Assuming that a reference pattern made up of a set of
feature vectors between interest points (feature points) 1, 1, k
in the image A 1 FIG. 1 1s X, and a reference pattern made
up of a set of feature vectors between interest points (feature
points) a, 3, v in the image B 1n FIG. 1 1s Y, it 1s diflicult to
calculate the reference pattern X of image A and the refer-
ence pattern Y of image B 1n FIG. 1.

In order to describe the mapping between the image A and
the image B i FIG. 1, a reference pattern X which best
describes 1mage A and a reference pattern Y which best
describes 1mage B must be obtained, and how the reference
pattern X 1s displaced to the reference pattern Y must be
derived through calculation. That 1s, searching for a rela-
tionship describing the mapping between the image A and
the image B 1n FIG. 1 can be regarded as searching for the
most optimized combination of the reference pattern X and
the reference pattern Y. In the present invention, this process
1s set as one objective function, and 1t 1s considered as an
optimization problem in which the objective function is
mimmized. The optimization problem at this time 1s known
as NP-hard problem as mentioned above.

In the present invention, this optimization problem 1s
solved by using quantum computing, and an arrow repre-
senting a connection between respective points of interest
(feature points) 1s modeled as a dipole 1 an 1mage. In this
case, the arrow indicates the direction and length between
the respective points of interest (feature points), and may be
represented by a vector.

To this end, (1) a term indicating a mismatch between a
feature point of the image A and a corresponding position of
the feature point of the image B, and (1) a term indicating
spatial consistency between neighboring points can be
defined by measuring divergence of matches of the neigh-
boring points.

By utilizing the physical model of quantum computing,
the most optimized pattern X 1n 1mage A and the most
optimized pattern Y 1image B can be found at the same time.
By modeling together with a combination of feature vectors
between interest points (feature points) 1, 1, k in the 1mage A
and a combination of feature vectors between interest points
(feature points) a, 3, v 1n the image B as a physical model
for quantum computing, and by observing the physical
model, optimized reference patterns X and Y can be
obtained. The optimized state can be obtained by taking the
state of the physical model when the energy of the physical
model 1s 1n the ground state. For example, when a physical
model 1s implemented 1n a black box capable of quantum
computing and physical properties of a physical model 1n a
black box are observed when the target state (ground state)
1s obtained through an adiabatic evolution process using a
physical model, the optimized reference patterns X and Y
can be obtained.
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At this time, the physical model including the dipole
physical characteristics such that the combination of vectors
between interest points (feature points) of each 1mage 1s
described by the dipole model can be selected as the physical
model 1n the black box.

In the image A i FIG. 1, a feature vector having the
starting point of interest (feature point) 1 and the ending

—
point of j can be expressed as g, ;. In this case, the relation-

ship between the points of interest (feature points) 1 to j
includes not only the translation between the feature points
but also the difference of the local scale and the orientation.

—
Feature vectors g; ; can be normalized for global translation,

rotation, and scaling.

When the graph of the feature points 1, j, k in 1mage A of
FIG. 11s defined as G , and the graph of the points of interest
(feature points) o, 3, v 1 mmage B 1s defined as Gy,
following Equation 1 defines the distance between feature
points (1EG ,, a&G,) derived from each image. It the
number ol feature points in mmage A 1s M, the G, 1s
expressed as a labeled graph having M nodes. I the number
of feature points in 1mage B 1s N, the G, 15 represented by

a labeled graph having N nodes. Where TI. 1s the normalized

feature vector for the i” vertex of the G, and ?a 1s the
normalized feature vector for the a” vertex of G,. The
normalized feature vector may also be referred to as a local
descriptor depending on the document. For example, the
normalized feature vector may be a vector based on Gabor
wavelets of varying scale and orientation with varying
magnitude and direction around the point of interest. The
edges of the graphs G, and G, represent the geometric

relationships between the {eature vectors. Similarity
between the 1mage A and the image B in FIG. 1 can be
confirmed by finding the similarity between the two labeled
graphs G, and Gy.

(i, 0= e 5 [ )

where d (1, &) 1s a scalar product between feature vectors

[Equation 1]

T:. and ?a, and d (1, &) can be interpreted as a measure of
the similarity of the correlated feature vectors and 1s a
normalized value.

At this time, the combination between the point 1 obtained
in 1mage A and the point o obtained 1n 1mage B can be
defined as (1, o). It we detine T, . as a point-wise
threshold that indicates whether the combination (1, @) 1s a
potential match suitable for describing the pattern, the
combination (1, a) satistying d (1, a)>1,,,,. can be inter-
preted as a potential match suitable for describing the image
pattern.

The contlict graph G, can be generated from the graphs
G, and G as a measure for measuring the similarity of the
graphical representations of image A and image B 1n FIG. 1.
The conflict graph G, can be generated by sequentially
adding possible point-to-point combinations suitable for
describing the image pattern, starting from the combination
(1, ) having the largest d (1, o) value as the vertex V,_ of
the conflict graph G. The process of generating a contlict
graph G, can be repeated until all suitable point-to-point
combinations are included.

Edges (1,0.;1,3) 1n the contlict graph G, encode geometric
consistency between Afz and T} in the labelled graph G

corresponding to image A i FIG. 1, and ?a and ?B in the
labelled graph G, corresponding to 1mage B 1n FIG. 1.
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For all vertex pairs (V,,V ) 1n G where 12 and o= we
calculate the geometric consistency of the two pairs of

— >

interest points d(1,0,),5)=d, o merricl & 15 € op) Which 1s nor-
malized.

The geometric consistency measures the geometric com-
patibility of the match pairs (1,a) and (3,p) as the residual
differences 1n local displacement, scale and rotation assign-
ment of the associated interest points after the changes due
to global translation, rotation and scaling have been normal-
1zed. A pair (1,a) and (3,3) are not allowed to match 11 they
are 1 geometric conflict, 1.e., the residual effects are two
large.

I d(1,04,1,p)<1 ;o pmesrics the pair (1,a) and (3,3) are consid-
ered in geometric contlict for a threshold T,,,,,,0.- We draw
an edge 1 G, between vertex pairs (V,,,V ) 11 1#) and o3
and they 1n geometric contlict. By this prescription, we draw
the conflict graph with at most L vertices. The maximum
independent set of the conflict graph 1s equivalent to the
maximum common subgraph of unlabeled graphs G, and
G.

Finding the maximum independent set for the contlicting,
graph G~ can be translated as a quadratic unconstrained

binary optimization problem defined by following Equation
2.

(N

Z Qiar,jﬁxfaxjﬁ}a Xio €10, 1},

a3

|Equation 2]
Xopr = Argmin

where Q, ,,~—1 for all vertices and Q,, ,=I when there
1s an edge between the pair (1,a) and (3,[3).

The minimum energy configuration entorces x. =1 1t and
only 1f V., belongs to the maximum independent set and
X..,—0 otherwise. Equation 2 1s a well know NP-hard prob-
lem which requires tremendous amount of computation time
as L grows.

In the following, Equation 2 i1s modified to apply to

adiabatic quantum computation for a quantum Ising Model.
Let X

where X =

be a column vector of N Boolean variables and Q 1s a NxN
matrix such that, then Equation 2 can be rewritten as the
tollowing Equation 3.

X, ~argmin XTQX where x,£(0,1}.

[Equation 3]

On the other hand, quantum mechanical Ising problem 1s
formulated as the following Equation 4 by applying the
relation of S=2X=1 to the Equation 3.

S, ~aremin{STJS+#'S} where S,&{-1,1}.

op it

[Equation 4]

The S variables are called quantum-mechanical spin. This
quantum Ising model can be solved by one particular model
of quantum computation called adiabatic quantum compu-
tation (AQC).

In quantum mechanics, the spin states S=x1 are repre-
sented by orthogonal vectors in Hilbert space denoted as
qubits. The two state of qubits are described by vectors as
the following Equation 3.
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|Equation 5]

(L)

The qubits can be extended to a vector by a linear
combination called superposition, and this process 1is
expressed as Equation 6.

Iq)>=£1|0>+[3|1> with lal“+Ipl*=1. [Equation 6]

Larger quantum systems are constructed through tensor
product of the individual qubit vector spaces, for example,
as the following Equation 7.

ain
1
) |
oy

|Equation 7]

01) =10)®|1) =

Superpositions of N qubit states are also possible with the
associated amplitudes representing the probability of
observing the respective N spin state.

We also define single qubit operators can be defined as the
following Equation 8.

|Equation 8]

If the operator of Equation (8) i1s applied to the qubait
vector of Equation (5), the following Equation (9) can be
obtained.

o°10) =10} ,o7I1) =—11).

[Equation 9]

On 2-qubit state, an operator oI extracts the classical
spin of the first qubit, I®o” extracts the classical spin of the
second qubit and o°®@0” extracts the product of the two
classical spins.

The quantum-mechanical Ising model on N spins 1s
represented as 2°Vx2" Hamiltonian represented as the fol-
lowing Equation 10.

H; = Z Jijg-fg-i. + Z hio?, |Equation 10]
i j j

where 0/ is an operator o” acting on i”” qubit.
To 1mitialize the quantum system, another kind of spin
operator o* can be defined as shown 1n Equation 11.

(1 o)

The spin operator of Equation 11 can flip the state of the
qubit.

At this time, the ground state Hamiltonian can be
expressed by following Equation 12 using a spin operator
acting on the i” qubit.

|Equation 11]

|Equation 12]

Hy=A) of.
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The eigenstate of the ground state Hamiltonian of Equa-
tion 12 can be expressed as following Equation 13.

|Equation 13]

|0); = 1), ]

D) = ®5( =

The time dependency of the quantum state of Equation 13

can be expressed by the Schrodinger equation of Equation
14.

fﬁ%l‘l’(m _ HOY (). Equation 14

To solve the quantum mechanical eigen modeling adia-
batically, the convex form of the adiabatic Hamiltonian 1s

obtained by wusing the 1mtial condition given by
W(0)>=|D>0 at t=0.

[ [ uation 15
H(n = (1 - ?)Hﬂ + = H, = |

At t=0, the quantum system has the lowest energy state.
At this time, the lowest energy state can give equal prob-
ability for all classical configurations. On the other hand, at
t=T, 1t 1s designed to cope with the quantum mechanical
Ising model problem to solve the artificial visual problem.

In this way, the NP-hard problem, which is difhicult to
classically handle, can be solved through quantum mechani-
cal adiabatic evolution of a given quantum system.

The globally lowest classical configuration obtained by
adiabatic quantum mechanics (AQC) can be a solution to the
second-order, non-definite binary optimization problem,
which 1s a complex computational problem related to arti-
ficial view. It has been mathematically proved that quantum
computing can provide exponential speed-up in solving
NP-hard problems compared to classical methods.

The process of training the adiabatic quantum computing,
system to solve the secondary unrestricted binary optimiza-
tion problem defined by Equation 2 begins with hardware
training using a classification algorithm. The classification
algornithm 1s expressed by the following equation 16.

|Equation 16]

N \
y = sl Zfﬂfhi(x) :
i=1 J

where xER™ are input patters to be classified, y={-1,1}
is the output of the classifier, h;: R*F> {-1,1} are feature
detectors, and ®,&{0,1} is the weights to be optimized
during training.

The training 1s achieved by solving the discrete optimi-
zation problem expressed as the following Equation 17.

|Equation 17]
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>\ h(x)
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Here, the above Equation 17 1s described for S-number of
training samples {(x_.y)Is=1,2, ..., S}

Heremaiter, a hardware implementation for solving the
machine vision problem and a mathematical expression for
describing the hardware will be described. In this example,
such hardware 1s implemented using an orbital qubit of a
silicon (S1) quantum dot.

FIG. 2 shows the lowest conduction band of an 1deal
s1licon (S1) crystal with six equivalent mimima of ellipsoidal
shape along [100] direction.

Referring to FIG. 2, at the minimum conduction band of
the silicon crystal along the [001] direction, there are six
cigenvalues expressed as ellipsoids, referred to as “valleys’.
Thus, the entire wave function can be represented by a linear
combination of these six eigenstates. When the structure 1s
formed with a specific quantum dot structure, the transla-
tional symmetry breaks and each valley state 1s combined to
cach other.

If the direction of the electric field due to the upper gate
and the [001] direction of the silicon crystal are set to be the
7. axis, the fifth valley parallel to the Z axis of FIG. 2 and the
sixth valley are combined, 1t 1s expressed as

1
—(|Fs > £|F¢ >).

V2

¥ =

F. and F, represent the orbital functions of the 57 and 6™

valleys, respectively. These orbitals satisty the Hamiltonian
as shown 1n Equation 18 below.

1 [E{](F) A(F) J |Equation 18]

A(F) & (F)

where €, and €, are the energy levels of symmetric and
anti-symmetric states, respectively, A 1s the intervalley split-
ting, and F 1s an external electric field along the z-direction.
To denive the effective Hamiltonian of Equation 18, we used
the multi-valley effective mass Hamiltonian to calculate the
intervalley polarized electron state. The wave function 1is
written as the following Equation 19.

[Equation 19]
Y a4 =

1 1
ﬁ( ol ]Sﬂ’s,a(?‘) = Xs.a¥s.4(F),

where @ ,(7) are the orbital wave functions and s , are
the pseudo-spins for the symmetric and anti-symmetric
state, respectively.

The valley splitting may be expressed as following Equa-
tion 20.

A(F) = |Equation 20]

0.414 aV(?-)]

2| f d?exp(—ZiKﬂzjl‘Pg(F)lz(l.0451’(?)+ 3

where K,=0.85x2m/a, a 1s the silicon lattice constant, W,

1s the ground state of a single valley, and V(?):VC(?)HSFZ
with V . the QD confinement potential and F the applied
clectric field. We note that
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O Vel(r)
dz

=AEc0(z—z;(x, ¥))

where AE - 1s the conduction band discontinuity and z, 1s the
QD mterface. The detection of orbital qubit state would be
simpler than that of the spin qubit and would require the
charge detector.

Hereinafter, a structure for detecting an orbital qubit waill
be described.

FIG. 3 1s a schematic diagram of silicon quantum dot
orbital single qubit system, and FIG. 4 1s a schematic
structure of the silicon quantum dot orbital single qubit
system shown 1n FIG. 3.

Referring to FIG. 3 and FIG. 4, 1t 1s assumed that there 1s
one electron 1n the first quantum dot 2 and no electrons 1n the
second quantum dot 3. After a while, the electron 1n the first
quantum dot 2 becomes zero state (for example, a spin-up
state) or a one state (for example, a spin-down state).
Assuming that a magnetic field 1s applied to the entire device
in the [001] direction and an electric field 1s applied to the
clectrons of the first quantum dot 2 through a first electrode
4, the two quantum states are superposed on each other
according to the application time of the electric field. A
negative voltage 1s applied to the second electrode 6 to
prevent the electrons of the first quantum dot 2 from
tunneling to the second quantum dot 3. The voltage of the
third electrode 5 and the fourth electrode 7 may be adjusted
for electrons to tunnel to the second quantum dot 3. There-
tore, the tunneling of electron in the first quantum dot 2 and
the second quantum dot 3 1s controlled by the second
electrode 6, the third electrode 5 and the fourth electrode 7.

The electrons tunneled to the second quantum dot 3 can
be measured by a detector 8 to confirm its state.

FIG. 5 1s a schematic diagram of silicon quantum dot
orbital two qubits system, and FIG. 6 1s a schematic structure

of the silicon quantum dot orbital two qubits system shown
in FIG. 5.

Referring to FIG. 5 and FIG. 6, as described above
regarding to the single qubit system, one electron 1s mserted
into each of the first quantum dot 10 and the second quantum
dot 11 and an appropriate voltage 1s applied to the first
clectrode 14 and the second electrode 135 to form a two
qubits system.

Unlike the single qubit system, electron-electron interac-
tion exists between the first quantum dot 10 and the second
quantum dot 11. The electron-electron interaction 1s highly
interactive when the two electrons are in a bonding state
rather than 1n an anti-bonding state.

The two qubits system 1s implemented by controlling the
voltage magnitude and the application time to be applied to
the first electrode 14 and the second electrode 15. The two
qubits system makes electron in the first quantum dot 10
tunnel to the third quantum dot 9 by using the third electrode
13 and detects 1t through the first detector 17, and makes
clectron 1n the second quantum dot 11 tunnel to the fourth
quantum dot 12 by using the fourth electrode 16 and detects
it through the second detector 18.

Hamailtonian describing the electrons trapped in the first
quantum dot 10 and the second quantum dot 11 1s repre-

sented by Equation (21) below.

FATEY 0 0
0 Eo E. 0O
0 E. Ey O

00 0 Ey

|Equation 21]
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where the coupling energy E_ arises from the inter-dot
Coulomb interaction and 1s given by ':C—< 011V, J110) . If we
assume that the Coulomb interaction 1s negligible and con-
trol energies by the bias voltage such that E,
E,,=J,,, then the Hamiltonian can be put into the following
Ising form as Equation 22.

_"I

—Loo _El 0O

H=J5(1)0 205" +h 0 +h,05° [Equation 22]

In this equation, J,,(t) 1s controlled by an external bias.
On the other hand, Hamiltonian regarding to N orbital
qubits can be described by the following equation 23.

H,; = Z Joiod + Z hios [Equation 23]

1< f

In Equation 23, J,; and h, are variables having a positive
value, and are changed as the external power source 1is
applied. The bias voltage applied to the gate can be appro-
priately adjusted to calculate the Hamiltonian of the quan-
tum processing processor.

Hamiltonian at the initial (t=0) 1s J,=0 for all 1 and j. In
Equation 15, the T value 1s defined as T—h/AE and AE is the

interval between the mnitial ground state and the global
minimum energy.

FIG. 7 1s a block diagram showing an orbital qubit based
quantum mechanical machine vision system i1n accordance
with an exemplary embodiment of the present invention.

Referring to FIG. 7, an orbital qubit based quantum
mechanical machine vision system 100 according to an
exemplary embodiment of the present invention may include
an 1mage acquisition module 110, a quantum processing
processor 120 and a memory unit 130.

The image acquisition module 110 acquires an 1image. The
image acquisition module 110 may include, for example, a
CCD camera.

The quantum processing processor 120 processes the
image obtained from the image acquisition module 110.

The memory umit 130 stores data necessary for the
computation of the quantum processing processor 120.

The quantum processing processor 120 obtains a first
labeled graph connecting between feature points of the first
image and a second labeled graph connecting feature points
of the second 1mage, generates a point-to-point combination
by matching the feature points of the first image with the
feature points the second 1image, generates a conflict graph
by adding the largest point-to-point combination by com-
paring the point-to-point combinations with the threshold,
generates non-constrained binary optimization equation for
finding a maximum independent set of conflict graphs,
converts the non-constrained binary optimization equation
into Ising model of the quantum system, and calculates the
Hamiltonian of Ising model based on an orbital qubit to
obtain solution of the non-constrained binary optimization
equation. The quantum processing processor 120 may learn
repeatedly the non-constrained binary optimization equation
through machine learning.

For example, as described above referring to FIG. 2
through FIG. 6, quantum processing processor 120 may use
two e1genstate 1n six eigenstates 1 the minimum conduction
band of silicon (S1) crystal, the two eigenstate being opposite
to each other, in calculating the Hamiltonian of Ising model
based on orbital qubit to obtain solution of the non-con-
strained binary optimization equation. In this case, the two
eigenstate may be along a direction of silicon crystal.
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Meanwhile, in calculating the Hamiltonian of Ising model
based on the orbital qubits 121 to obtain solution of the
non-constrained binary optimization equation, the Hamailto-
nian of Ising model can be calculated through adiabatic
evolve. This process has been described 1n detail above, so
redundant description 1s omitted.

As described above, according to the orbital qubit-based
quantum mechanical machine vision system and an arith-
metic operation method of the present immvention, the NP
problem generated as the number of feature points increases
1s replaced by Hamiltonian using Ising model, so that 1t can
be easily calculated using orbital qubits arranged in a matrix
shape.

It will be apparent to those skilled in the art that various
modifications and variation may be made in the present
invention without departing from the spirit or scope of the
invention. Thus, 1t 1s intended that the present immvention
cover the modifications and varnations of this invention
provided they come within the scope of the appended claims
and their equivalents.

What 1s claimed 1s:

1. A quantum mechanical arithmetic operation method
based on orbital qubits, the quantum mechanical arithmetic
operation method being performed by a quantum processing
processor 1 a quantum system, the quantum mechanical
arithmetic operation method comprising: obtaining a first
labeled graph connecting between feature points of a first
image and a second labeled graph connecting feature points
ol a second 1mage; generating a point-to-point combination
by matching the feature points of the first image with the
feature points of the second image; generating a contlict
graph by adding the largest point-to-point combination by
comparing the point-to-point combinations with a threshold;
generating a non-constrained binary optimization equation
for finding a maximum independent set of contlict graphs;
converting the non-constrained binary optimization equation
for finding a maximum 1ndependent set of contlict graphs
into an Ising model of the quantum system; and calculating
a Hamiltonian of the Ising model based on an orbital qubait
to obtain a solution of the non-constrained binary optimi-
zation equation.

2. The quantum mechanical arithmetic operation method
of claim 1, wherein calculating the Hamiltonian of the Ising
model based on the orbital qubit to obtain the solution of the
non-constrained binary optimization equation 1s performed
by two eigenstates 1n s1xX eigenstates 1 a minimum conduc-
tion band of silicon (S1) crystal, the two eigenstates being
opposite to each other.
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3. The quantum mechanical arithmetic operation method
of claim 2, wherein the two eigenstate are along a [001]
direction of silicon crystal.

4. The quantum mechanical arithmetic operation method
of claim 1, wherein the Hamiltonian of the Ising model 1s
calculated through adiabatic evolve, 1n calculating the Ham-
iltonian of the Ising model based on the orbital qubit to
obtain the solution of the non-constrained binary optimiza-
tion equation.

5. The quantum mechanical arithmetic operation method
of claim 1, further comprising;

repeatedly learning the non-constrained binary optimiza-

tion equation through machine learning.

6. A quantum mechanical machine vision system com-
prising: an image acquisition module to acquire an 1mage; a
quantum processing processor to process the image obtained
from the image acquisition module; and a memory unit to
store data necessary for computation of the quantum pro-
cessing processor; wherein the quantum processing proces-
sor, obtains a first labeled graph connecting between feature
points of a first image and a second labeled graph connecting
feature points of a second 1mage, generates a point-to-point
combination by matching the feature points of the first
image with the feature points the second 1mage, generates a
coniflict graph by adding the largest point-to-point combi-
nation by comparing the point-to-point combinations with a
threshold, generates a non-constrained binary optimization
equation for finding a maximum independent set of conflict
graphs, converts the non-constrained binary optimization
equation for finding a maximum independent set of conflict
graphs 1nto an Ising model of the quantum mechanical
machine vision system, and calculates a Hamiltonian of the
Ising model based on an orbital qubit to obtain a solution of
the non-constrained binary optimization equation.

7. The quantum mechanical machine vision system of
claim 6, wherein the quantum processing processor uses two
cigenstate 1 six eigenstates 1 the minimum conduction
band of silicon (S1) crystal, the two eigenstate being opposite
to each other.

8. The quantum mechanical machine vision system of
claam 7, wherein the two eigenstate are along a [001]
direction of silicon crystal.

9. The quantum mechanical machine vision system of
claim 6, wherein the quantum processing processor calcu-
lates the Hamiltonian of the Ising model through adiabatic
evolve.



	Front Page
	Drawings
	Specification
	Claims

