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METHODS AND APPARATUS TO OPTIMIZL
DYNAMIC MEMORY ASSIGNMENTS IN

MULTI-TIERED MEMORY SYSTEMS

FIELD OF THE DISCLOSURE

This disclosure relates generally to memory allocations,
and, more particularly, to methods and apparatus to optimize
dynamic memory assignments in multi-tiered memory sys-
tems.

BACKGROUND

In recent years, software structures have changed, allow-
ing dynamic memory allocations during runtime execution
of an application or program. For example, instead of static
memory allocation (e.g., allocations 1n main memory that
persists for the lifetime of the program), dynamic-memory
allocation manages memory by allocating the memory from
a free store (e.g., an area of memory structured for such a
purpose). The library function “malloc” may be called to
allocate a block of memory from the free store. The malloc
function call (e.g., malloc call) allocates memory during
runtime and returns a pointer to the allocated memory. When
the memory 1s no longer needed, the pointer can be freed,
which deallocates the memory so that it can be used for other
pPUrposes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an illustration of various paths of functions that
may be executed in software during runtime prior to calling
a malloc function and corresponding temperatures of the
various paths.

FI1G. 2 1s a block diagram of an example dynamic memory
allocator to optimize dynamic memory assignments 1in
multi-tiered memory systems.

FIGS. 3-5 are flowcharts representative of machine read-
able instructions which may be executed to implement the
example dynamic memory allocator of FIG. 2.

FIG. 6 1s a block diagram of an example processing
platform structured to execute the instructions of FIGS. 3-5
to 1implement the dynamic memory allocator of FIG. 2.

The figures are not to scale. In general, the same reference
numbers will be used throughout the drawing(s) and accom-
panying written description to refer to the same or like parts.

DETAILED DESCRIPTION

Malloc 1s a function used in soitware engineering for
dynamically allocating memory (e.g., allocating memory at
run time). For example, when a malloc function 1s called at
runtime, the function allocates a block of memory and
returns a pointer corresponding to the allocated block of
memory. When the memory 1s no longer needed, the pointer
1s passed to free which deallocates the memory so that it can
be used for other purposes. The memory that 1s allocated
based on a call for a malloc (e.g., a malloc function call) may
be from a single tier of memory or from multiple tiers of
memory.

Multiple tiered memory systems include various types of
memory for use. For example, a three tiered system may
include a first tier (e.g., a performance tier) including high
bandwidth memory (HBM) for storing data with lower
latency and higher bandwidth, a second tier (e.g., an inter-
mediate tier) including double data rate (DDR) memory for
storing data with medium latency and medium bandwidth,
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and a third tier (e.g., a capacity tier) including lower main
memory for storing data with high latency and lower band-
width. Other memory may be structured 1n any number of
tiers based on the structure/components of the memory.

When multiple tiers of memory are available, 1t may be
desirable to place certain types of data (e.g., hot/popular
paths) in higher tiers (e.g., tiers corresponding to lower
latency and higher bandwidth) and other types of data (e.g.,
cold/unpopular paths) into lower tiers. For example, 1t 1s
desirable for malloc to return memory in a higher tier when
the memory that 1s being allocated (through malloc) 1s
accessed frequently (e.g., 1s used for hot data objects).
Additionally, it 1s desirable for malloc to return memory in
a lower tier when such memory 1s used for infrequently
accessed (e.g., cold data) objects. A function path preceding
a malloc function call may be indicative of the purpose for
the malloc function call. Additionally, 1t the path preceding
the malloc function call 1s indicative of how frequently the
allocated memory will be accessed 1n the program. Accord-
ingly, the path of functions preceding a malloc function call
may be associated with a temperature (e.g., a measure of the
frequency) that 1s indicative of the accesses likely to be
generated by the program to the memory that the program
allocated using a path.

Examples disclosed herein allocate memory butlers, when

a malloc 1s called, based on the temperature (e.g., hot, warm,
cold, etc.) of the function path preceding the malloc function
call. As used herein, a path 1s “hot” when memory allocated
by the function path preceding the malloc function call 1s
being used by the program with a high frequency, a path 1s
“cold” when memory allocated by the function path preced-
ing the malloc function call 1s being used by the program
with a low frequency, and a path 1s “warm” when memory
allocated by the function path preceding the malloc function
call 1s being used by the program with a medium frequency
(e.g., between the high frequency and the low frequency).
Accordingly, the temperature of the path preceding a malloc
corresponds to the number of bytes that are read and/or
written 1n the allocated memory (e.g., hotter paths corre-
spond to a high reference/byte ratios). Said another way, the
temperature corresponds to an indicator of the popularity of
buflers malloced by a path.
Most programs (e.g., soltware instructions, applications,
etc.) allocate memory through malloc or some variant of
malloc or a thin wrapper around malloc, and multiple
different subroutines paths lead to such malloc function
calls. In conventional systems, 1f software 1s implemented to
break down different data (e.g., metadata) types mnto tem-
perature information (e.g., different categories of “hotness,”
or frequency of use), encoding the temperature information
into program structure would be challenging because of
modularity and layering of responsibilities 1n software. It 1s
not uncommon that code paths by which hotter allocations
occur overlap to varying degrees those by which colder code
paths occur. Thus, 1t may be diflicult 1n such convention
systems to know, close to the invocation of a malloc function
call, what type of access density the allocation should
receive.

Examples disclosed herein establish path temperatures
(e.g., the set of code paths by which hot/warm/cold dynamic
buflers get allocated at malloc) oflline and allocate memory
based on the path temperatures and memory capacity during
runtime, thereby increasing the efliciency of a malloc func-
tion and the performance of software execution. Addition-
ally, examples disclosed herein monitor, during runtime,
path-bufller associations to be able to dynamically balance
memory based on runtime path-bufler associations.
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As used herein, a bufler temperature 1s the average
fraction of accesses recetved by a malloced buller relative to
the size of a malloced bufler (e.g., normalized to the total
numbers of accesses across all malloced builers).

As used herein, a path temperature 1s a real value over the
interval [0,1] that 1s proportional to a capacity-normalized
number of references to all buflers allocated via an allocated
path. The proportionality constant 1s chosen so that the sum
of the path temperatures 1s approximately 1.

When a path reaches malloc, a backtrace 1s performed
betore the call to malloc 1dentitying vertices (e.g., functions)
on path P. As used herein, for any given pair of vertices, vl
and v2, on path P, v2 1s the outer vertex if v2 1s closer to the
invocation of malloc than vl and vl 1s the inner vertex
relative to v2.

As used herein, a pathset of vertex u (e.g., Pathset(u)) 1s
the set S of paths such that u 1s a vertex on each path in S.

As used herein, markers correspond to a group of vertices
for a path P, 1f path P 1s the only path that can pass through
the vertices, and removal of one of the vertices from the
group means that 1t 1s not possible to determine whether path
P 1s the only path that passes through the reduced group.

As used herein, a marker codes path signature 1s any code
suitable for Bloom-Filters (e.g., murmurhash3)) signature
computed over the marker codes for the markers that col-
lectively 1dentity path P.

As used herein, an intersection set (e.g., I(P1,P2)) 1s all
vertices that both paths (e.g., P1 and P2) contain.

As used herein, RSP 1s a stack pointer and per-thread path
signature variable (e.g., V(RSP)) 1s a stackbase address that
1s reserved for holding the per-thread path signature. In some
example V(RSP) may be a reserved varnable that 1s 1n thread
local storage.

As used herein, a buller tag 1s a signature that 1s associated
with a malloced bufler to track the path by which the bufler
was allocated. In some examples disclosed herein, the bufler
tag 1s needed for offline path populanty estimation and
dynamic path population tracking (e.g., when enabled). The
bufler tags may be maintained by a side index/hash or by
using metadata capabilities 1n a memory allocator.

As used herein, path longevity 1s the average longevity of
a builer malloced by a path. The path longevity 1s table drive
or coded selections that map from a given path temperature
to an allocation tier. Tier selector function F2 takes into
account both the path temperature and the capacity vector
across tiers (e. 2., F2 performs a capacity informed tier
selection for a given level of populanity) and F3 considers,
in addition to capacity, the average lifetime of buf:ers
allocated by the path (e.g., timexspace product).

FIG. 1 1s an illustration of various paths of functions that
may be executed in software during runtime prior to calling
a malloc function and corresponding temperatures of the
various paths. FIG. 1 includes an example program/appli-
cation 100 includes example functions 102, example paths
104, 106, 108, 110 corresponding to different temperatures,
and example markers 112 used to distinguish the different
paths 104, 106, 108, 110.

The example program/application 100 of FIG. 1 repre-
sents soltware mnstructions including various functions 102
depicted as vertices. During run-time, the function will
execute according to one of the paths 104, 106, 108, 110
when a malloc function 1s called. The malloc function
allocates memory and returns a pointer corresponding to the
allocated memory. Based on offline profiling run(s), the first
example path 104 i1s identified as a hot path, the second
example path 106 1s identified as a hot path, the third

example path 108 1s identified as a warm path, and the fourth
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example path 110 1s 1dentified as a cold path. The tempera-
ture does not correspond to how 1frequently these paths
malloc; rather, the temperature corresponds to how 1re-
quently the byes that the paths malloc are touched (e.g., read
or written 1nto). How the temperatures are determined 1s
turther described below 1n conjunction with FIG. 2.

The example markers 112 of FIG. 1 correspond to code
locations (e.g., signatures) on the example paths 104, 106,
108, 110 that are suflicient for knowing the paths. In this
manner, during runtime, 1f a path passes through markers
and p on 1ts way to malloc, examples disclosed herein can
identify the path as path 110. Because during the offline
proflle runs, path 110 was identified as cold, examples
disclosed herein can also identify that the path correspond-
ing to markers m and p 1s a cold path. Accordingly, the
malloc can allocate low tier memory based on the identifi-
cation of the cold path. The automated code transformation
to generate path signatures that can be looked up to find
bufler allocation temperature at run time for memory tier
selection 1s further described below 1n conjunction with FIG.
2.

FIG. 2 1s a block diagram of an example dynamic memory
allocator 200 to optimize dynamic memory assignments in
multi-tiered memory systems. The example dynamic
memory allocator 200 includes an example offline tempera-
ture determiner 202 and an example runtime processor 204.
The example ofiline temperature determiner 202 includes an
example ofiline instructions processor 206, an example
malloc information processor 208, an example temperature
determiner 210, and an example path processor 212. The
example runtime processor 204 includes an example runtime
istruction processor 216, an example path determiner 218,
an example memory tier allocator 220, and an example
memory balancer 222. The example dynamic memory allo-
cator 200 further includes an example path/marker database
214 and an example runtime statistics database 224.

The example oflfline temperature determiner 202 of FIG.
2 determines how the markers 112 of FIG. 1 are made and
how oflline estimation of the popularity of buflers malloced
by different paths 1s performed (e.g., the path temperature
determination of mallocs). The example ofiline instructions
processor 206 executes ofiline profile runs of the application
(e.g., prior to runtime) so that the malloc nformation
processor 208 can identify all malloc function call paths
(e.g., all Tunction paths preceding a malloc function call).
The example malloc information processor 208 of FIG. 2
gathers information related to the paths preceding a malloc
function call and information corresponding to the offline
malloc function call. For example, the malloc information
processor 208 uses a backtrace function call at malloc to
identify all malloc function call paths that occur during the
set of offline pilot runs of an application. Additionally, the
example the malloc imnformation processor 208 collects the
s1zes of the bullers being allocated by each malloc function
call, to generate a collection of paths and a proportion of
capacity that each path allocates.

The example temperature determiner 210 of FIG. 2 deter-
mines the bufler temperatures and path temperatures. As
described above, the bufler temperature 1s the average
fraction of accesses received by a malloced bufler relative to
the size ol a malloced buller (e.g., normalized to total
number of accesses across all malloced buflers). In some
examples, the temperature determiner 210 can perform a
precise event-based sample at low latency (PEBS_LL) and
an all-stores linear addresses data collection using phasor
measure unit (PMU) for each bufler to identity the bufler
temperatures. The example temperature determiner 210 uses
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tagged bullers to compute the relative path temperatures for
cach of the identified malloced paths. As described above,

the path temperature 1s a real value (e.g., over interval [0,1]
that 1s proportional to a capacity-normalized number of
references to all buflers allocated via an allocation path). In
some examples, the proportionality constant 1s chosen so
that the sum of temperatures 1s almost equal to one.

The example path processor 212 of FIG. 2 processes paths
(e.g., the set of paths Q) identified by the malloc information
processor 208 to filter out the set of paths, Q. For example,
the path processor 212 may filter out all paths whose
temperatures are below some threshold (e.g., a buller tem-
perature threshold). Filtering out low temperature buflers
achieves a large scale data reduction (e.g., typically hot/
warm subsets are allocated from a relatively small number
of paths). Additionally the example path processor 212 may
filter out paths whose relative capacity allocation 1s above
some threshold (e.g., a capacity threshold). The remaining
set of paths (e.g., the set of paths P) are considerations for
upper tiers because they do not allocate too much capacity
(e.g., which may overwhelm lower latency/higher band-
width tiers) and which are reasonably popular when mal-
loced.

The example path processor 212 of FIG. 2 identifies a set
of markers from the filtered out set of paths, P. For example,
the path processor 212 may generate a marker set, M, based
on the characteristics of the filtered out set of paths. If a path
does not intersect any other path (e.g., a non-intersecting
path), the path processor 212 adds an outermost vertex (e.g.,
function) of the path to the marker set, M. If a path has at
least one vertex that does not correspond to any other path
in the set, P, the path processor 212 adds the outermost
vertex of the at least one vertex that does not correspond to
any other path to the marker set, M. It a path (P ,) traverses
through vertices that are all traversed by another path 1n the
set of paths, P, the path processor 212 generates a vertex set
based on the mnermost and outermost vertices of the path,
P ,. Additionally, the path processor 212 adds the outermost
intersection of the path (P ,) with a second path (P,) to the
vertex set 1 there 1s an intersection between P, and P5. After
adding vertexes to the vertex set, the path processor 212, for
cach pair of distinct vertices (X, y) in the vertex set such that
Pathset(x)==Pathset (y), removes the inner of the two ver-
tices (X, yv) from the vertex set. Once removed, the path

processor 212 adds the vertex set to the markers set to
finalize the set of markers, M.

Once the set of markers are finalized, the example path
processor 212 traces each path to determine which markers
belong to each path. In some examples, the path processor
212 lists all markers in ascending order of addresses and
assigns a marker code (e.g., 64-bit marker code) M(k) to a
marker of number k (e.g., a murmurhash3 for marker k). The
path processor 212 generates path signatures for the set of
paths, based on the marker code of the set of markers traced
to each path. For example, 11 path A has x markers (e.g., al,
a2, ...ax) traced to 1t, the path processor 212 generates the
path signature to be S =M(al)IM(a2)l . .. IM(ax). In some
examples, the path processor 212 performs an automated
source code transmission so that each marker m 1n source
code corresponds to an 1nline 1mstruction to emit “OR M(m),
V”’, where V 1s the per-thread path signature variable that 1s
maintamned 1 a thread-private variable, U. In some
examples, where source code 1s not available, the path
processor 212 may splice a few 1nstructions in to compute
path signatures on the way to malloc (e.g., through binary
editing).
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In some example, the path processor 212 of FIG. 2 may
transform malloc entry code to (A) recover a computer
signature (e.g., clear V), and (B) perform a tier selection and
bufler tagging. For tier selection, the example path processor
212 links functions F2 and F3, where F2 uses the path
temperatures and available capacities in each tier and F3
uses path temperatures, available capacities, and average
bufler longevities. The path processor 212 may determine
bufler longevities by adding a timestamp tag with each
malloced bufler at malloc time, using the tag to then
compute 1ts time alive at the time free gets called, and adding
the computed time alive to the total live time associated with
the path that 1s tagged. In some examples, the path processor
212 keeps a number of buflers freed with the path, so that the
average lifetime can be obtained.

The example path/marker database 214 of FIG. 2 stores
the path signatures generated by the example oflline tem-
perature determiner 202 1n association with the determined
temperatures. In this manner, during runtime, when a malloc
1s called, the runtime processor 204 can determine which
markers were traversed prior to the malloc function call and
identify a path temperature based on a path signature and
temperature corresponding to the traversed markers and
allocate memory accordingly.

The example runtime processor 204 of FIG. 2 executes
the application at runtime and, when a malloc 1s called,
determines the path preceding the malloc, compares the path
to a path signature stored in the path/marker database 214,
determines the corresponding path temperature, and allo-
cates memory based on the determined path temperature.
The example runtime processor 204 includes the example
runtime instruction processor 216 to execute the nstructions
ol an application/processor during runtime.

The example path determiner 218 of FIG. 2 finds a stack
backtrace when a malloc 1s called during runtime. A back-
trace function provides the markers that were traversed
preceding the malloc function call. For example, at each
marker site, the path determiner 218 may generate a Bloom
filter update 1into a signature (e.g., a 64-bit signature) that 1s
maintained on a per-thread basis. The variable that has the
signature can be kept at a location that 1s at the base of the
thread’s stack. Thus, the signature can be directly computed
from the stack pointer (RSP) memory, or may be maintained
by some other means, (e.g., a thread local storage variable).
In this manner, as software traverse through markers at
runtime, the preambles of the code locations Bitwise ORs in
Bloom hash function (mumurhash3) into a path signature,
and, by construction the bloom hash of the path 1s equal to
the intersection of the bloom hashes of the markers. The
example path determiner 218 may clear the path signature
variable at malloc points for future use.

The example memory tier allocator 220 of FIG. 2 selects
a tier of memory from which to allocate memory during a
malloc function call based on the path temperatures deter-
mined offline corresponding to the markers traversed prior to
the malloc function call. For example, when the malloc 1s
called, the memory tier allocator 220 matches the traversed
markers prior to the malloc function call (e.g., determined by
the path determiner 218) to a path signature stored in the
path/marker database 214. Because the stored path signa-
tures correspond to path temperatures, the memory tier
allocator 220 determines the temperature of the path corre-
sponding to the malloc function call based on the tempera-
ture of the stored path signature (e.g., hot to tier 1, warm to
tier 2, cold to tier 3, etc.). In some examples, the memory tier
allocator 220 attempts to select a tier or memory based on
the capacity of the tiers. For example, 11 a malloc function
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call corresponds to a warm path, the example memory tier
allocator 220 may select the first tier (e.g., the highest tier)
if the first tier has capacity to handle the allocation.

The example memory balancer 222 of FIG. 2 tracks
associations between bufler allocations and selected tiers.
For example, 11 bufler B 1s allocated from a particular tier
based on a particular path p, the example memory balancer
222 stores an association between bufler B and path p 1n the
example runtime statistics database 224. In this manner, the
memory balancer 22 can track the popularity of the buflers
allocated by path p. In some examples, the memory balancer
222 may determine that memory rebalancing needs to be
performed across tiers based on the runtime statistics of the
runtime statistics database 224. For example, 11 a malloc
should have been mapped to tier 1, but the capacity of tier
1 was insuilicient, the memory balancer 222 can use the
runtime statistics 1n the runtime statistics database 224 to
perform a memory balancing by possibly returning any
capacity 1t may be caching in tier 1. The memory balancer
222 may maintain a popularity indicator for each path, that
may be updated by PMU feedback (e.g., through PEBS
sampling of precise load and store events). The memory
balancer 222 samples to determine the linear addresses of
frequently referenced memory, maps the linear addresses
back to bufler address, and updates the touch-statistics for
paths 1n the runtime statistics database 224 by the associa-
tion. To keep mapping etliciently, the memory balancer 222
may employ various techniques (e.g., employ hidden
regions around memory, update a hash, employ different
arenas for different paths to maintain popularity on an arena
by arena basis, etc.).

While an example manner of implementing the dynamic
memory allocator 200 of FIG. 2 1s illustrated 1n FIG. 2, one
or more of the elements, processes and/or devices 1llustrated
in FIG. 2 may be combined, divided, re-arranged, omitted,
climinated and/or implemented 1n any other way. Further,
the example oflline mstructions processor 206, the example
malloc information processor 208, the example temperature
determiner 210, the example path processor 212, the
example runtime instruction processor 216, the example
path determiner 218, the example memory tier allocator 220,
the example memory balancer 222 and/or, more generally,
the example dynamic memory allocator 200, the example
offline temperature determiner 202, and/or the example
runtime processor 204 of FIG. 2 may be implemented by
hardware, software, firmware and/or any combination of
hardware, software and/or firmware. Thus, for example, any
of the example oflline instructions processor 206, the
example malloc information processor 208, the example
temperature determiner 210, the example path processor
212, the example runtime instruction processor 216, the
example path determiner 218, the example memory tier
allocator 220, the example memory balancer 222 and/or,
more generally, the example dynamic memory allocator 200,
the example ofiline temperature determiner 202, and/or the
example runtime processor 204 of FIG. 2 could be imple-
mented by one or more analog or digital circuit(s), logic
circuits, programmable processor(s), programmable control-
ler(s), graphics processing unit(s) (GPU(s)), digital signal
processor(s) (DSP(s)), application specific integrated cir-
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)). When
reading any of the apparatus or system claims of this patent
to cover a purely software and/or firmware implementation,
at least one of the example oflline instructions processor
206, the example malloc information processor 208, the
example temperature determiner 210, the example path

10

15

20

25

30

35

40

45

50

55

60

65

8

processor 212, the example runtime instruction processor
216, the example path determiner 218, the example memory
tier allocator 220, and/or the example memory balancer 222
1s/are hereby expressly defined to include a non-transitory
computer readable storage device or storage disk such as a
memory, a digital versatile disk (DVD), a compact disk
(CD), a Blu-ray disk, etc. including the software and/or
firmware. Further still, the dynamic memory allocator 200 of
FIG. 2 may include one or more elements, processes and/or
devices 1n addition to, or instead of, those illustrated in FIG.
2, and/or may include more than one of any or all of the
illustrated elements, processes and devices. As used herein,
the phrase “in communication,” imncluding variations thereof,
encompasses direct communication and/or indirect commus-
nication through one or more intermediary components, and
does not require direct physical (e.g., wired) communication
and/or constant communication, but rather additionally
includes selective communication at periodic intervals,
scheduled intervals, aperiodic intervals, and/or one-time
events.

A flowchart representative of example hardware logic,
machine readable 1nstructions, hardware implemented state
machines, and/or any combination thereof for implementing
the dynamic memory allocator 200 of FIG. 2 1s shown in
FIGS. 3-5. The machine readable instructions may be an
executable program or portion of an executable program for
execution by a computer processor such as the processor 612
shown 1n the example processor platform 600 discussed
below 1n connection with FIG. 6. The program may be
embodied 1n software stored on a non-transitory computer
readable storage medium such as a CD-ROM, a floppy disk,
a hard drive, a DVD, a Blu-ray disk, or a memory associated
with the processor 612, but the entire program and/or parts
thereol could alternatively be executed by a device other
than the processor 612 and/or embodied in firmware or
dedicated hardware. Further, although the example program
1s described with reference to the flowchart illustrated 1n
FIG. 3-5, many other methods of implementing the example
the dynamic memory allocator 200 of FIG. 2 may alterna-
tively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined. Additionally or
alternatively, any or all of the blocks may be implemented
by one or more hardware circuits (e.g., discrete and/or
integrated analog and/or digital circuitry, an FPGA, an
ASIC, a comparator, an operational-amplifier (op-amp), a
logic circuit, etc.) structured to perform the corresponding
operation without executing software or firmware.

As mentioned above, the example processes of FIGS. 3-5
may be implemented using executable instructions (e.g.,
computer and/or machine readable 1nstructions) stored on a
non-transitory computer and/or machine readable medium
such as a hard disk drive, a flash memory, a read-only
memory, a compact disk, a digital versatile disk, a cache, a
random-access memory and/or any other storage device or
storage disk 1n which information 1s stored for any duration
(e.g., Tor extended time periods, permanently, for brief
instances, for temporarily bullering, and/or for caching of
the information). As used herein, the term non-transitory
computer readable medium 1s expressly defined to include
any type ol computer readable storage device and/or storage
disk and to exclude propagating signals and to exclude
transmission media.

“Including” and “comprising” (and all forms and tenses
thereol) are used herein to be open ended terms. Thus,
whenever a claim employs any form of “include” or “com-
prise” (e.g., comprises, includes, comprising, including,
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having, etc.) as a preamble or within a claim recitation of
any kind, 1t 1s to be understood that additional elements,
terms, etc. may be present without falling outside the scope
of the corresponding claim or recitation. As used herein,
when the phrase “at least” 1s used as the transition term in,
for example, a preamble of a claim, 1t 1s open-ended 1n the
same manner as the term “comprising” and “including” are
open ended. The term “and/or” when used, for example, 1n
a form such as A, B, and/or C refers to any combination or

subset of A, B, C such as (1) A alone, (2) B alone, (3) C
alone, (4) A with B, (5) A with C, (6) B with C, and (7) A
with B and with C.

FIG. 3 illustrates an example flowchart 300 representative
of example machine readable instructions that may be
executed by the dynamic memory allocator 200 of FIG. 2
during one or more oflline profile run to determine path
signature and temperatures. At block 302, the example
oflline 1nstructions processor 206 executes an ofiline profil-
ing run of an application. At block 304, the example oflline
instruction processor 206 determines if a malloc was called
during the offline profiling run. If the example oflline
instructions processor 206 determines that a malloc has not
been called (block 304: NO), the process continues to block
310, as further described below.

If the example oflline instruction processor 206 deter-
mines that a malloc has been called (block 304: YES), the
example malloc information processor 208 uses a backtrace
call to identity malloc function call path (e.g., the functions
executed prior to the malloc function call) (block 306). At
block 308, the example malloc information processor 208
determines the memory bufler address and/or size allocated
for the malloc function call. At block 310, the example
oflline instructions processor 206 determines 1f the ofiline
profiling run 1s complete. If the oflline mstructions processor
206 determines that the oflline profiling run 1s not complete
(block 310: NO), the process returns to block 304 to
continue to execute the oflline profiling run.

If the oflline mnstructions processor 206 determines that
the oflline profiling run 1s complete (block 310: YES), the
malloc information processor 208 determines 11 all malloc
tfunction call paths have been 1dentified (block 312). In some
examples, the ofiline instructions processor 206 may per-
form only one ofiline profiling run, regardless of the number
of malloc path calls i1dentified. For example, a user or
manufacturer may determine that 1t 1s suthicient to identily a
subset of all malloc function calls during a single ofiline
profile run. Accordingly, the number of oflline runs/identi-
fied malloc paths may be based on user and/or manufacturer
preferences. If the example malloc information processor
208 determines that all malloc function call paths have not
been 1dentified (block 312: NO), the process returns to block
302 to rerun the oflline profiling run. If the example malloc
information processor 208 determines that all malloc func-
tion call paths have been identified (block 312: YES), the
example path processor 212 hashes each malloc function
call path (e.g., a 64-bit hash for each path) (block 314). At
block 316, the example path processor 212 assigns a bufler
tag with each allocated bufler using the hashed paths.

At block 318, the example temperature determiner 210
identifies the temperatures of the malloced bullers by per-
forming a PEB_LL function and a PMU data collection. The
bufler temperatures may be translated into path tempera-
tures, as further described below 1n conjunction with block
340. For example, an application’s behavior may slowly
veer away Irom that which the oflline determination cap-
tured. Accordingly, block 340, may be performed to recom-
pute path temperatures from a fresh capture of the bufler

10

15

20

25

30

35

40

45

50

55

60

65

10

temperatures. At block 320, the example temperature deter-
miner 210 determines the relative path temperatures (e.g.,
determining an indicator representative of temperature) for
cach malloc path using the tagged buflers (e.g., the higher
the aggregate temperature of the bufllers tagged by a given
malloc path, the higher the path’s temperature 1s compared
to the other paths). At block 322, the example path processor
212 determines if there are paths from the set of malloced
paths that correspond to temperatures below a bufler tem-
perature threshold. If the example path processor 212 deter-
mines that there are paths that do not correspond to tem-
peratures below a bufler threshold (block 322: NO), the
process continues to block 326. If the example path proces-
sor 212 determines that there are paths that correspond to
temperatures below a butler threshold (block 322: YES) the
path processor 212 filters out the low temperature paths
(e.g., the malloc paths below the buller temperature thresh-
old) (block 324).

At block 326, the example path processor 212 determines
if there are paths from the set of malloced paths that
correspond to high capacity allocations (e.g., above a capac-
ity allocation threshold). If the example path processor 212
determines that there are paths that do not correspond to high
capacity allocations (block 326: NO), the process continues
to block 330. If the example path processor 212 determines
that there are paths that correspond to high capacity alloca-
tions (block 322: YES) the path processor 212 filters out the
high capacity allocation paths (e.g., the malloc paths above
the capacity allocation threshold) (block 328).

At block 330, the example path processor 212 1dentifies
markers corresponding to (e.g., that uniquely identify) the
filtered paths (e.g., the example markers 112 of FIG. 1), as
turther described below 1n conjunction with FIG. 4. At block
332, the example path processor 212 ftraces the set of
markers that belong to each filtered path. At block 334, the
example path processor 212 numbers the markers and
assigns marker codes. For example, the path processor 212
may list all the markers 1n ascending order of address and
number them 1, 2, . . ., n. In this manner, the path processor
212 can assign to a maker whose number 1s k, a 64-bit
marker code M(k).

At block 336, the example path processor 212 assigns
path signatures based on the markers, as further described
above 1n conjunction with FIG. 2. At block 338, the example
path processor 212 performs automated source code trans-
formations so that for each marker m in the source code,
there 1s an 1nline instruction to emit “OR M(m), V”, where
V 1s the per-thread path signature variable that 1s maintained
in a thread-private variable. The makers, path signatures and
corresponding temperatures are stored in the example path/
marker database 214 for use during runtime, as further
described below 1n conjunction with the flowchart of FIG. 5.

At block 340, the example temperature determiner 210
computes the path temperatures of the filtered paths. Block
340 1s a refining of path temperatures based on realtime runs
performed by the example runtime processor 204 and/or
subsequent iterations of profiling runs and/or real time runs
(e.g., which may be performed ofiline or i1n realtime).
Accordingly, the example temperature determiner 210
achieves progressively better estimations of the path tem-
peratures by building upon past calibration and/or path
determination during previous oflline or realtime runs. In
this manner, path temperatures are retlective of the actual
(e.g., even 1f gradual) evolution 1n the memory behavior of
an application as the data it 1s presented with, or the mix of
computational work 1t 1s being asked to perform changes
over the course of time. For example, the example tempera-
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ture determiner 210 may determine path temperature at a
first time using a pattern of queries or operations that an
application (e.g., a health records manager) 1s asked to
perform. In such an example, at a second time after the first
time, the actual mix of quernies changes and the mix of
health-records being managed evolves because a company
has diversified into multiple geographies. Accordingly, the
example temperature determiner 210 may recompute the
memory behaviors (e.g., path temperatures) without repeat-
ing blocks 302-320.

FI1G. 4 1llustrates an example flowchart 330 representative
of example machine readable instructions that may be
executed by the dynamic memory allocator 200 of FIG. 2 to
identily marker sets that correspond to the filtered paths, as
turther described above in conjunction with block 330 of
FIG. 3. At block 402, the example path processor 212
iitializes an empty marker set, M. For each non-intersecting
path (e.g., each path that does not perform a same function
as any other path in the filtered set of paths) (blocks
404-410), the example path processor 212 selects the out-
ermost vertex on the path as a marker for the path (block
406) and adds the selected outermost vertex to the marker
set, M (block 408).

For each remaining path that 1s only path to go through
one or more vertices (e.g., a path P that 1s the only path to
g0 through at least vertex v) (block 412-420), the example
path processor 212 selects the outermost vertex of the one or
more vertices as a marker for the path (block 414), removes
the path from the total path set (block 416), and adds the
selected outermost vertex to the marker set, M (block 418).

For each path (P , 1n the set path S) whose vertices are all
included i1n at least one other path (block 422-430), the
example path processor 212 adds the mnermost and the
outermost vertices on path P , to a vertex set, V (block 424).
At block 426, the example path processor 212 determines 11
the intersection of path P , with other paths P, in the path set
S are nil (I(P ,, Pz)==nil). If the example path processor 212
determines that the intersection of the path P, with other
paths P, 1n the set S are nil (block 426: YES), the process
continues to block 430. If the example path processor 212
determines that the intersection of the path P, with other
paths P, 1n the set S are not nil (block 426: NO), the example
path processor 212 adds the outermost intersection with P
and P to the vertex set, V (block 428).

At block 432, the example path processor 212 removes
the inner vertices of the two vertices pairs (X, y) from V for
cach distinct vertices (X, y) in V where the pathsets are the
same from the vertex set (e.g., pathsets(x)==pathset(y)). At
block 434, the example path processor 212 adds the gener-
ated vertex set to the marker set, M, and the process
continues to block 332 of FIG. 3.

FI1G. 5 1llustrates an example flowchart 500 representative
of example machine readable instructions that may be
executed by the dynamic memory allocator 200 of FIG. 2
during runtime to allocate memory based on a malloc
function call. Although FIG. § 1s described 1in conjunction
with three tiers and three temperatures, FIG. 5 may be
implemented for any number of temperatures with any
number of tiers.

At block 502, the example runtime instruction processor
216 cxecutes structions of the application/program at
runtime. At block 504, the example runtime instruction
processor 216 determines 1f a malloc 1s called during run-
time. If the example runtime instruction processor 216
determines that a malloc has not been called during runtime
(block 504: NO), the process returns to block 302 to

continue to execute instructions until a malloc 1s called.
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If the example runtime instruction processor 216 deter-
mines that a malloc has been called during runtime (block
504: YES), the example path determiner 218 performs a
stack backtrace to i1dentily the path/makers traversed pre-
ceding the malloc function call (block 506). For example,
the path determiner 218 may perform a stack backtrace to
identify the markers that were traversed prior to the malloc
function call, as turther described above 1n conjunction with
FIG. 2. At block 508, the example memory tier allocator 220
access the path/marker database 214 to access a path sig-
nature from the example path/marker database 214 that
matches the markers 1dentified during the backtrace func-
tion. At block 510, the example memory tier allocator 220
determines the temperature of the selected path signature
from the path/marker database 214.

At block 512, the example memory tier allocator 220
determines 1 the determined path temperature 1s hot. If the
example memory tier allocator 220 determines that the
determined temperature i1s not hot (block 512: NO), the
process continues to block 516, as further described below.
If the example memory tier allocator 220 determines that the
determined temperature 1s hot (block 512: YES), the
example memory tier allocator 220 allocates tier 1 memory
(e.g., the highest memory corresponding to low latency and
high bandwidth) (block 3514). In some examples, 1f the tier
1 1s not available (e.g., not enough capacity), the example
memory tier allocate will allocate memory from the next
highest tier. In such examples, the memory balancer 22 may
trigger a memory balance to allocate more tier 1 memory, as
further described below 1n at block 536. At block 516, the
example memory tier allocator 220 determines 11 the deter-
mined path temperature 1s warm. I the example memory tier
allocator 220 determines that the determined path tempera-
ture 1s warm (block 316: YES), the example memory tier
allocator 220 determines 1f there 1s capacity 1 tier 1 (e.g.,
the highest tier) to handle the allocation of memory for the
malloc corresponding to the warm path (block 518).

If the example memory tier allocator 220 determines that
there 1s capacity in tier 1 (block 518: YES), the example
memory tier allocator 220 allocates tier 1 memory for the
malloc function call (block 520). If the example memory tier
allocator 220 determines that there 1s not capacity 1n tier 1
(block 518: NO), the example memory tier allocator 220
allocates tier 2 memory for the malloc function call (block
522). If tier 2 1s unavailable (e.g., does not have enough
capacity to allocate memory) tier 3 may be used. If the
example memory tier allocator 220 determines that the
determined path temperature 1s not warm (e.g., the path 1s
cold) (block 316: NO), the example memory tier allocator
220 determines 11 there 1s capacity in tier 2 (e.g., the medium
tier) to handle the allocation of memory for the malloc
corresponding to the cold path (block 524). If the example
memory tier allocator 220 determines that there 1s capacity
in tier 2 (block 524: YES), the example memory tier
allocator 220 allocates tier 2 memory for the malloc function
call (block 3526). If the example memory tier allocator 220
determines that there 1s not capacity 1n tier 2 (block 524:
NO), the example memory tier allocator 220 allocates tier 3
memory for the malloc function call (block 528).

At block 530, the example memory balancer 222 gener-
ates an association of the path with the bufler allocation. As
described above in conjunction with FIG. 2, the memory
balancer 222 generates the association as part of a long-term
teedback that may be used by to rebalance memory across
tiers. At block 532, the example memory balancer 222
updates the statistics 1n the example runtime statistics data-
base 224 based on the association. At block 524, the example
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memory balancer 222 determines if a balancing of memory
1s needed/desired. The memory balancer 222 may rebalance
memory when, for example, a hot path 1s not allocated to a
highest tier (e.g., tier 1) and/or a warm path 1s allocated to
a lower tier then expected (e.g., tier 3), because there 1s not
enough capacity in the corresponding tier. In some
examples, the memory balancer 22 may rebalance memory
when un unexpected number of path/bufler allocation asso-
ciations 1s generated. If the example memory balancer 222
determines that a rebalance of memory 1s not desired (block
534: NO), the process returns to block 502 to continue to
execute 1nstructions at runtime. If the example memory
balancer 222 determines that a rebalance of memory 1s
desired (block 534: YES), the memory balancer 222 rebal-
ances the memory across tiers based on the updated statistics
in the example runtime statistics database 224 (block 536).

FIG. 6 1s a block diagram of an example processor
platform 600 structured to execute the instructions of FIGS.
3-5 to implement the dynamic memory allocator 200 of FIG.
2. The processor platform 600 can be, for example, a server,
a personal computer, a workstation, a self-learning machine
(e.g., a neural network), a mobile device (e.g., a cell phone,
a smart phone, a tablet such as an 1Pad™), a personal digital
assistant (PDA), an Internet appliance, a DVD player, a CD
player, a digital video recorder, a Blu-ray player, a gaming,
console, a personal video recorder, a set top box, a headset
or other wearable device, or any other type of computing
device.

The processor platform 600 of the illustrated example
includes a processor 612. The processor 612 of the 1llus-
trated example 1s hardware. For example, the processor 612
can be implemented by one or more integrated circuits, logic
circuits, microprocessors, GPUs, DSPs, or controllers from
any desired family or manufacturer. The hardware processor
may be a semiconductor based (e.g., silicon based) device.
In this example, the processor implements the example
oflline 1nstructions processor 206, the example malloc 1nfor-
mation processor 208, the example temperature determiner
210, the example path processor 212, the example runtime
instruction processor 216, the example path determiner 218,
the example memory tier allocator 220, and/or the example
memory balancer 222 of FIG. 2.

The processor 612 of the illustrated example 1ncludes a
local memory 613 (e.g., a cache). The processor 612 of the
illustrated example 1s 1 communication with a main
memory including a volatile memory 614 and a non-volatile
memory 616 via a bus 618. The volatile memory 614 may
be implemented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS® Dynamic Random Access Memory
(RDRAM®) and/or any other type of random access
memory device. The non-volatile memory 616 may be
implemented by flash memory and/or any other desired type
of memory device. Access to the main memory 614, 616 1s
controlled by a memory controller. Any one of the example
volatile memory 614, the example non-volatile memory 616,
and/or the example local memory 613 may be used to
implement the example path/marker database 214, and/or
the example runtime statistics database 224.

The processor platform 600 of the 1llustrated example also
includes an interface circuit 620. The interface circuit 620
may be implemented by any type of interface standard, such
as an Fthernet interface, a umversal serial bus (USB), a
Bluetooth® interface, a near field communication (NFC)
interface, and/or a PCI express interface.

In the illustrated example, one or more mput devices 622
are connected to the interface circuit 620. The mput dev-
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ice(s) 622 permit(s) a user to enter data and/or commands
into the processor 612. The mput device(s) can be 1mple-
mented by, for example, an audio sensor, a microphone, a
camera (still or video), a keyboard, a button, a mouse, a
touchscreen, a track-pad, a trackball, 1sopoint and/or a voice
recognition system.

One or more output devices 624 are also connected to the
interface circuit 620 of the illustrated example. The output
devices 624 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display (LCD), a
cathode ray tube display (CRT), an in-place switching (IPS)
display, a touchscreen, etc.), a tactile output device, a printer
and/or speaker. The interface circuit 620 of the 1illustrated
example, thus, typically includes a graphics driver card, a
graphics driver chip and/or a graphics driver processor.

The iterface circuit 620 of the illustrated example also
includes a communication device such as a transmitter, a
receiver, a transceiver, a modem, a residential gateway, a
wireless access point, and/or a network interface to facilitate
exchange of data with external machines (e.g., computing
devices of any kind) via a network 626. The communication
can be via, for example, an Fthernet connection, a digital
subscriber line (DSL) connection, a telephone line connec-
tion, a coaxial cable system, a satellite system, a line-of-site
wireless system, a cellular telephone system, etc.

The processor platform 600 of the 1llustrated example also
includes one or more mass storage devices 628 for storing
soltware and/or data. Examples of such mass storage devices
628 include floppy disk drives, hard drive disks, compact
disk drives, Blu-ray disk drives, redundant array of inde-
pendent disks (RAID) systems, and digital versatile disk
(DVD) drives.

The machine executable instructions 632 of FIGS. 3-5
may be stored in the mass storage device 628, 1n the volatile
memory 614, in the non-volatile memory 616, and/or on a
removable non-transitory computer readable storage
medium such as a CD or DVD.

Example 1 includes a non-transitory computer readable
storage medium comprising executable computer program
instructions which, when executed, cause a machine to at
least during an oflline profiling run of a computer applica-
tion responsive to a first malloc function call, perform a first
backtrace to i1dentity a first path preceding the first malloc
function call and identify a size of a bufler in memory
allocated to the first path, and determine an indicator cor-
responding to a temperature of the bufler allocated to the
first path, and during runtime responsive to a second malloc
function call, perform a second backtrace to identily a
second path preceding the second malloc function call, and
responsive to the second path corresponding to the first path,
allocate memory from a tier of memory based on the
indicator.

Example 2 includes the computer readable storage
medium of example 1, wherein responsive to the indicator
corresponding to a first temperature, the tier of memory 1s a
first tier corresponding to at least one of a first latency and
a first bandwidth, and responsive to the indicator corre-
sponding to a second temperature lower than the first
temperature, the tier of memory 1s a second tier correspond-
ing to at least one of a second latency higher than the first
latency and a second bandwidth lower than the first band-
width.

Example 3 includes the computer readable storage
medium of example 2, wherein the instructions cause the
machine to, responsive to the indicator corresponding to the
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second temperature and the first tier has capacity to allocate
memory, allocate memory from the first tier of memory.
Example 4 includes the computer readable storage
medium of example 1, wherein the instructions cause the
machine to store a correspondence between the first path and
the temperature 1n a database during the ofiline profiling run,
and determine that the second path corresponds to the first
path by comparing the second path with the first path.
Example 5 includes the computer readable storage
medium of example 1, wherein the instructions cause the
machine to, during the offline profiling mode assign a bufler
tag to the bufler, compute a path temperature for the first
path relative to other paths corresponding to other malloc
tfunction calls determined during the ofiline profiling run
based on the buller tag, determine a set of markers corre-
sponding to the other paths, trace the set of markers to that
belong on the first path, assign a path signature to the first
path based on the traced set of markers, and store the path
signature with the path temperature in a database.
Example 6 includes the computer readable storage
medium of example 1, wherein the instructions cause the
machine to, during the offline profiling run, filter out at least
one of malloced paths that correspond to a low temperature

or malloced paths that correspond to high capacity alloca-
tions.

Example 7 includes the computer readable storage
medium of example 1, wherein the instructions cause the
machine to, responsive to the tier of memory being unavail-
able, rebalance the memory across tiers of the memory.

Example 8 includes the computer readable storage
medium of example 1, wherein the indicator corresponding
to the temperature corresponds to a frequency that the bufler
allocated to the first path will be accessed by the computer
application.

Example 9 includes an apparatus to perform dynamic
memory assignments in multi-tiered memory systems, the
apparatus comprising a malloc information processor to,
during an offline profiling run of a computer application,
perform a first backtrace responsive to a first malloc function
call to identity a first path preceding the first malloc function
call and 1identify a size of a buller in memory allocated to the
first path, a temperature determiner to determine an indicator
corresponding to a temperature of the bufler allocated to the
first path, a path determiner to, during runtime, perform a
second backtrace responsive to a second malloc function call
to 1dentily a second path preceding the second malloc
function call, and a memory tier allocator to, responsive to
the second path corresponding to the first path, allocate
memory from a tier of memory based on the indicator.

Example 10 includes the apparatus of example 9, wherein
responsive to the indicator corresponding to a first tempera-
ture, the tier of memory 1s a first tier corresponding to at least
one of a first latency and a first bandwidth, and responsive
to the indicator corresponding to a second temperature lower
than the first temperature, the tier of memory 1s a second tier
corresponding to at least one of a second latency higher than
the first latency and a second bandwidth lower than the first
bandwidth.

Example 11 includes the apparatus of example 10,
wherein the memory tier allocator 1s to, responsive to the
indicator corresponding to the second temperature and the
first tier has capacity to allocate memory, allocate memory
from the first tier of memory.

Example 12 includes the apparatus of example 9, further
including a database to store a correspondence between the
first path and the temperature during the oftline profiling run,
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the memory tier allocator to determine that the second path
corresponds to the first path by comparing the second path
with the first path.

Example 13 includes the apparatus of example 9, turther
including a path processor to, during the offline profiling
mode, assign a bufler tag to the bufler, the temperature
determiner to compute a path temperature for the first path
relative to other paths corresponding to other malloc func-
tion calls determined during the ofiline profiling run based
on the bufler tag, the path processor to determine a set of
markers corresponding to the other paths, trace the set of
markers to that belong on the first path, and assign a path
signature to the first path based on the traced set of markers,
and a database to store the path signature with the path
temperature.

Example 14 includes the apparatus of example 9, turther
including a path processor to, during the offline profiling
run, filter out at least one of malloced paths that correspond
to a low temperature or malloced paths that correspond to
high capacity allocations.

Example 15 includes the apparatus of example 9, further
including a memory balancer to, responsive to the tier of
memory being unavailable, rebalance the memory across
tiers of the memory.

Example 16 includes the apparatus of example 9, wherein
the indicator corresponding to the temperature corresponds
to a frequency that the builer allocated to the first path wall
be accessed by the computer application.

Example 17 includes a method to perform dynamic
memory assignments 1n multi-tiered memory systems, the
method comprising during an offline profiling run of a
computer application responsive to a first malloc call func-
tion, performing a first backtrace to i1dentify a first path
preceding the first malloc function call and 1dentily a size of
a buller 1in memory allocated to the first path, and determin-
ing an indicator corresponding to a temperature of the buller
allocated to the first path, and during runtime responsive to
a second malloc function call, performing a second back-
trace to 1dentily a second path preceding the second malloc
function call, and responsive to the second path correspond-
ing to the first path, allocating memory from a tier of
memory based on the indicator.

Example 18 includes the method of example 17, wherein
responsive to the imndicator corresponding to a first tempera-
ture, the tier of memory 1s a first tier corresponding to at least
one of a first latency and a first bandwidth, and responsive
to the indicator corresponding to a second temperature lower
than the first temperature, the tier of memory 1s a second tier
corresponding to at least one of a second latency higher than
the first latency and a second bandwidth lower than the first
bandwidth.

Example 19 includes the method of example 18, further
including, responsive to the indicator corresponding to the
second temperature and the first tier has capacity to allocate
memory, allocating memory from the first tier of memory.

Example 20 includes the method of example 17, turther
including storing a correspondence between the first path
and the temperature in a database during the ofiline profiling
run, and determining that the second path corresponds to the
first path by comparing the second path with the first path.

From the foregoing, 1t will be appreciated that example
methods, apparatus and articles of manufacture have been
disclosed that optimize dynamic memory assignments in
multi-tiered memory systems. Working with multitiered
memories and allocating memory for each tier may be a
complex undertaking since conventionally software was
developed with memory handling being transparent, and a
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lot of low-level optimization being focused in speciated
code (e.g., slab allocators). Even 1f some objects are hot,
they may be 11l suited to place 1n upper tiers 1 the upper tiers
are very capacity constrained. Examples disclosed herein
simplifies the process of multi-tiered memory optimization.
Examples disclosed herein chooses the optimal tier for
malloc, based on past behavior, thereby making the adoption
of large capacity and high bandwidth tiers easier and adap-
tive to dynamic conditions.

Although certain example methods, apparatus and articles
of manufacture have been disclosed herein, the scope of
coverage of this patent 1s not limited thereto. On the con-
trary, this patent covers all methods, apparatus and articles
of manufacture fairly falling within the scope of the claims
of this patent.

What 1s claimed 1s:

1. A non-transitory computer readable storage medium
comprising executable computer program instructions
which, when executed, cause a machine to at least:

during an oflline profiling run of a computer application:

responsive to a first malloc function call, perform a first
backtrace to identily a first path preceding the first
malloc function call and 1dentity a size of a buller 1n
memory allocated to the first path; and

determine an indicator corresponding to a temperature
of the bufler allocated to the first path; and

during runtime:

responsive to a second malloc function call, perform a
second backtrace to 1dentity a second path preceding
the second malloc function call; and

responsive to the second path corresponding to the first
path, allocate memory from a tier of memory based
on the indicator.

2. The computer readable storage medium of claim 1,
wherein:

responsive to the indicator corresponding to a first tem-

perature, the tier of memory 1s a first tier corresponding

to at least one of a first latency and a first bandwidth;
and

responsive to the indicator corresponding to a second

temperature lower than the first temperature, the tier of
memory 1s a second tier corresponding to at least one
of a second latency higher than the first latency and a
second bandwidth lower than the first bandwidth.

3. The computer readable storage medium of claim 2,
wherein the instructions cause the machine to, responsive to
the indicator corresponding to the second temperature and
the first tier has capacity to allocate memory, allocate
memory from the first tier of memory.

4. The computer readable storage medium of claim 1,
wherein the instructions cause the machine to:

store a correspondence between the first path and the

temperature in a database during the ofiline profiling
run; and

determine that the second path corresponds to the first

path by comparing the second path with the first path.

5. The computer readable storage medium of claim 1,
wherein the instructions cause the machine to, during the
oflline profiling mode:

assign a bufler tag to the bufler;

compute a path temperature for the first path relative to

other paths corresponding to other malloc function calls
determined during the offline profiling run based on the
bufler tag;
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determine a set of markers corresponding to the other
paths;

trace the set of markers to that belong on the first path;

assign a path signature to the first path based on the traced
set of markers; and

store the path signature with the path temperature 1n a
database.

6. The computer readable storage medium of claim 1,
wherein the instructions cause the machine to, during the
oflline profiling run, filter out at least one of malloced paths
that correspond to a low temperature or malloced paths that
correspond to high capacity allocations.

7. The computer readable storage medium of claim 1,
wherein the instructions cause the machine to, responsive to
the tier of memory being unavailable, rebalance the memory
across tiers of the memory.

8. The computer readable storage medium of claim 1,
wherein the indicator corresponding to the temperature
corresponds to a frequency that the bufler allocated to the
first path will be accessed by the computer application.

9. An apparatus to perform dynamic memory assignments
in multi-tiered memory systems, the apparatus comprising:

a malloc information processor to, during an oflline
profiling run of a computer application, perform a first
backtrace responsive to a first malloc function call to
identify a first path preceding the first malloc function
call and identify a size of a builer 1n memory allocated
to the first path;

a temperature determiner to determine an indicator cor-
responding to a temperature of the bufler allocated to
the first path;

a path determiner to, during runtime, perform a second
backtrace responsive to a second malloc function call to
identily a second path preceding the second malloc
function call; and

a memory tier allocator to, responsive to the second path
corresponding to the first path, allocate memory from a
tier of memory based on the indicator.

10. The apparatus of claim 9, wherein:

responsive to the indicator corresponding to a first tem-
perature, the tier of memory 1s a first tier corresponding
to at least one of a first latency and a first bandwidth;
and

responsive to the indicator corresponding to a second
temperature lower than the first temperature, the tier of
memory 1s a second tier corresponding to at least one
of a second latency higher than the first latency and a
second bandwidth lower than the first bandwidth.

11. The apparatus of claim 10, wherein the memory tier
allocator 1s to, responsive to the indicator corresponding to
the second temperature and the first tier has capacity to
allocate memory, allocate memory from the first tier of
memory.

12. The apparatus of claim 9, further including a database
to store a correspondence between the first path and the
temperature during the ofiline profiling run, the memory tier
allocator to determine that the second path corresponds to
the first path by comparing the second path with the first
path.

13. The apparatus of claim 9, further including:

a path processor to, during the oflline profiling mode,

assign a buller tag to the bufler;

the temperature determiner to compute a path temperature
for the first path relative to other paths corresponding to
other malloc function calls determined during the

!

offline profiling run based on the butler tag;
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the path processor to:
determine a set of markers corresponding to the other
paths;
trace the set of markers to that belong on the first path;
and
assign a path signature to the first path based on the
traced set of markers; and
a database to store the path signature with the path
temperature.
14. The apparatus of claim 9, further including a path

processor to, during the oftline profiling run, filter out at least
one of malloced paths that correspond to a low temperature
or malloced paths that correspond to high capacity alloca-

t10ns.

15. The apparatus of claim 9, further including a memory

balancer to, responsive to the tier of memory being unavail-
able, rebalance the memory across tiers of the memory.

16. The apparatus of claim 9, wherein the indicator

corresponding to the temperature corresponds to a frequency

t

e

nat the bufler allocated to the first path will be accessed by

t

ne computer application.
17. A method to perform dynamic memory assignments 1n

multi-tiered memory systems, the method comprising:

during an ofiline profiling run of a computer application:
responsive to a first malloc call function, performing a
first backtrace to identify a first path preceding the
first malloc function call and i1dentify a size of a
bufler 1n memory allocated to the first path; and
determining an indicator corresponding to a tempera-
ture of the bufler allocated to the first path; and
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during runtime:
responsive to a second malloc function call, performing
a second backtrace to identily a second path preced-
ing the second malloc function call; and
responsive to the second path corresponding to the first
path, allocating memory from a tier of memory
based on the indicator.
18. The method of claim 17, wherein:
responsive to the indicator corresponding to a first tem-
perature, the tier of memory 1s a first tier corresponding
to at least one of a first latency and a first bandwidth;
and
responsive to the indicator corresponding to a second
temperature lower than the first temperature, the tier of
memory 1s a second tier corresponding to at least one
of a second latency higher than the first latency and a
second bandwidth lower than the first bandwidth.
19. The method of claim 18, further including, responsive

0 to the mdicator corresponding to the second temperature and
the first tier has capacity to allocate memory, allocating
memory from the first tier of memory.

20. The method of claim 17, further including:

storing a correspondence between the first path and the
temperature 1 a database during the oflfline profiling
run; and

determiming that the second path corresponds to the first
path by comparing the second path with the first path.
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