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METHOD AND APPARATUS FOR
EFFICIENT DATA DECODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 15/823,469, filed on Nov. 27, 2017.

BACKGROUND

Field of Use

The present invention relates to the field of digital com-
munications and more specifically to a digital data decoder
for ethiciently decoding a data stream using a low-density
parity check (LDPC) matrix.

Description of the Related Art

Low-density parity-check (LDPC) codes are one example
ol error control code that 1s often used to transmit informa-
tion over potentially noisy channels. For example, the
WiIMAX and LTE standards utilize LDPC codes for data
channels, and RAID storage systems may utilize LDPC
coding to provide data recovery 1n the event of a loss of data.

LDPC coding utilizes a generator matric referred to as a
“G matrix” to encode data and a parity-check matrnix referred
to as an “H matrix” to decode the received, encoded data.
“Low density” means that the number of “1” elements
included 1 an H matrix 1s considerably smaller than the
number of “0” elements. The H matrix comprises a number
of circulants, where each circulant may comprise a sub-
matrix for use i decoding a particular block of encoded
data.

In some prior art decoders, the received data may be
decoded 1n parallel using two decoding logic units. In this
type of decoder, the incoming data stream 1s apportioned
into discrete blocks and stored 1n an alternating fashion nto
two buflers. FIG. 1 illustrates this concept, where each block
C, comprises six code symbols, and a corresponding H

matrix comprises six columns. Blocks C0, C2 and C4 are
stored 1n a Buffer A, while blocks C1, C3 and CS5 are stored

in Bufler B. The blocks in Bufler A are decoded by a first
decoding logic unit using circulants 1n even columns of the
H matrix, blocks in Bufler B are decoded by a second
decoding logic unit using circulants 1n the odd columns of
the H matrix. The results of these operations are later
combined to re-produce the original message.

One problem with this technique 1s that mismatches may
occur, 1.e., when one decoder 1s assigned a non-zero circu-
lant while the other decoder 1s assigned a zero circulant.
Since zero circulants are not processed, a delay occurs as the
decoder that was assigned the zero circulant must wait for
the other decoder to complete processing before both decod-
ers can process the next pair of circulants. This causes
unwanted delays in decoding the blocks.

Thus, 1t would be desirable to minimize or eliminate the
delays caused by the uneven distribution of zero and non-
zero circulants 1 parallel decoding schemes.

SUMMARY

The embodiments herein describe methods and apparatus
for eflicient, parallel LDPC decoding. In one embodiment, a
method 1s described for efliciently decoding an encoded
datastream using a modified LDPC H matrix, the modified
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2

LDPC H matrix derived from an original LDPC H matrix
normally used to decode the encoded datastream, the

method comprising storing the modified LDPC H matrix in
a memory, the modified LDPC H matrix comprising the
original LDPC H matrix with circulants 1in a first column of
the original LDPC H matrix swapped with circulants 1n a
second column of the original LDPC H matrix, assigning,
circulants 1n each column of the modified LDPC H matrix to
one of a plurality of decoding logics for processing 1in
accordance with a predetermined assignment scheme,
wherein the predetermined assignment scheme 1s modified
based on any column of circulants that was swapped with
another column of circulants, receiving the encoded
datastream by input data transfer logic, generating encoded
blocks from the encoded datastream by the input data
transier logic determining, by the mput data transier logic,
one of a plurality of buflers 1n which to store each block,
storing, by the mput data transfer logic, the blocks into the
plurality of buflers 1n accordance with a determination for
cach block, and decoding the blocks stored in the plurality
of bullers by the plurality of decoding logics, one block from
cach of the plurality of builers at a time.

In another embodiment, a digital data decoder for efli-
ciently decoding an encoded data stream 1s described, com-
prising input data transfer logic for recerving the encoded
datastream from a source, for generating encoded blocks
from the encoded datastream and for storing each of the
generated blocks mto one of a plurality of buflers, the
plurality of buflers for storing the blocks, a memory for
storing a modified LDPC H matrix, the modified LDPC H
matrix comprising an original LDPC H matrix, comprising
a plurality circulants stored in a plurality of rows and
columns, with circulants 1n a first column swapped with
circulants 1n a second column, and a plurality of decoding
logics for decoding blocks stored in the plurality of buflers
in parallel sing the circulants stored in the memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, advantages, and objects of the present
invention will become more apparent from the detailed
description as set forth below, when taken in conjunction
with the drawings in which like referenced characters 1den-
tify correspondingly throughout, and wherein:

FIG. 1 illustrates a prior art decoder using an H matrix to
decode 1ncoming data blocks;

FIG. 2 shows an 1llustrative communication or data stor-
age system that utilizes error-correcting low-density parity
check (LDPC) codes for achieving reliable communication
or storage 1n accordance with some embodiments;

FIG. 3 shows an illustrative example of the properties of
an encoded data block as shown 1n FIG. 2 1n accordance with
some embodiments;

FIG. 4 shows an 1illustrative example of quasi-cyclic
parity check matrix in accordance with some embodiments;

FIG. 5 shows graphical illustration of a parity check
matrix and an iterative message passing algorithm corre-
sponding to the parity check matrix in accordance with some
embodiments:

FIG. 6 shows a graphical illustration of a quasi-cyclic
parity check matrix 1n a mother matrix representation and a
bi-partite graph 1llustrating the use of parallel processing in
layered LDPC decoding, 1n accordance with some embodi-
ments;

FIG. 7 illustrates one embodiment of a functional block
diagram of a digital data decoder 700 1n accordance with the
inventive principles discussed herein;
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FIG. 8 1s a flow diagram 1illustrating one embodiment of
a method performed by the digital data decoder as shown 1n

FIG. 7 to efliciently decode an encoded datastream:;

FIGS. 9a and 96 are flow diagrams illustrating one
embodiment of a method performed by the digital data
decoder as shown 1n FIG. 7 to efliciently assign columns 1n
an LDPC H matrix to a plurality of decoding logics; and

FIG. 10 1s a table 1llustrating the results of the method as
shown 1n FIG. 9 as applied to several H matrices comprising
a varying number of rows.

DETAILED DESCRIPTION

Methods and apparatus are provided for enhancing the
performance of low-density parity check (LDPC) decoders.
In applications or devices where information may be altered
by 1nterference signals or other phenomena, error-correction
codes, such as LDPC codes, may provide a measured way to
protect information against such interference. As used
herein. “information” and “data” refer to any unit or aggre-
gate of energy or signals that contain some meaning or
uselulness, and “plurality” means two or more. Encoding
may generally refer to the process of generating data in a
manner that facilitates subsequent detection and/or correc-
tion of errors 1n the data, while decoding may generally refer
to the counterpart process of detecting and/or correcting the
errors. The elements of a coding system that perform encod-
ing and decoding are likewise referred to as encoders and
decoders, respectively.

FIG. 2 shows an 1llustrative communication or data stor-
age system 200 that utilizes error-correcting low-density
parity check (LDPC) codes for achieving reliable commu-
nication or storage in accordance with some embodiments.
The user information 202 1s encoded via LDPC encoder 204.
LDPC encoder generally adds a number of parity symbols to
cach of the messages using a Generator matrix G or simply,
a “G” matnx, resulting 1n codewords of n symbols, where
cach codeword may comprise a number of “blocks”, where
the length of each block equals the circulant size, where each
symbol may be binary, ternary, quaternary, or any other
suitable type of data. However, for simplicity, embodiments
ol the present invention will be described 1n terms of binary
bits. The result of encoding user information 202 is block
206, also denoted as ¢. Block 206 may be of a predetermined
length, which may be referred to as n, where n>k. The G
matrix comprises a number of columns equal to the number
of bits, n, 1n each codeword, and a number of rows equal to
a number of parity check equations needed to decode each
codeword.

In one implementation, block 206 1s passed to a modulator
208. Modulator 208 prepares block 206 for transmission on
channel 210. Modulator 208 may use phase-shift keying,
frequency-shiit keying, quadrature amplitude modulation, or
any suitable modulation technique to modulate block 206
into one or more information-carrying signals. Channel 210
may represent media through which the information-carry-
ing signals travel. For example, channel 210 may represent
a wired or wireless medium 1n a communication system, or
an electrical (e.g., RAM, ROM), magnetic (e.g., a hard disk),
or optical (e.g., CD, DVD or holographic) storage medium
in which the information-carrying signals may be stored.

Due to interference signals and other types of noise and
phenomena, channel 210 may corrupt the waveform trans-
mitted by modulator 208. Thus, the waveform received by
demodulator 212, received wavelform 211, may be different
from the originally transmitted signal wavetorm. Received
wavelorm 211 may be demodulated with demodulator 212.
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Demodulator 212 may demodulate received waveform 211
with filters, multiplication by periodic functions, or any
suitable demodulation technique corresponding to the type
of modulation used 1n modulator 208. The result of demodu-
lation 1s received vector 214, which may contain errors due
to channel corruption.

Received vector 214 may then be processed by iterative
decoder 216. Iterative decoder 216 may be used to correct or
detect errors 1n received vector 214. Iterative decoder 216
may include an LDPC decoder 217 and, in some embodi-
ments, a channel detector 215. Iterative decoder 216 may
use an 1iterative message passing algorithm to correct or
detect errors in received vector 214 in order to output
decoded information 218. Formally, an LDPC matrix H of a
linear code C is a generator matrix of the dual code, C. This
means that a codeword ¢ 1s 1 C 11 and only 1f the matrix-
vector product Hc'T=0 (some authors would write this 1n an
equivalent form, cHT=0).

FIG. 3 shows an 1illustrative example of the properties of
block 206 of FIG. 2 1n accordance with some embodiments.
The LDPC codes defined by LDPC encoder 104 and itera-
tive decoder 216 of FIG. 2 are conventionally represented by
mathematical vector models. In particular, an LDPC code
may be described by 1ts parity check matrix H. Equation 210
illustrates parity check matrix 212. Parity check matrix 212

may be of size [rxn], corresponding to blocks of length n and
syndromes of length r. Blocks may be, for example, n-length
block 206 or n-length received vector 214 of FIG. 2.
Syndrome length r may satisiy the inequality rzn-k and
where Kk 1s the length of the information being encoded (e.g.,
length of user imformation 202 of FIG. 2). When parity
check matrix 212 1s multiplied by block 214, the result 1s
zero-vector 216, which 1s a vector of size [rx1] where all
clements equal zero. Parity check matrix 212 has a maxi-
mum column weight (cw) and a maximum row weight (rw),
cach defined to be the maximum of the set of the number of
nonzero entries 1n each column and each row, respectively,
of parity check matrix 212. Parity check matrix 212 1s not
unmique, and may be chosen, for example, to be computa-
tionally convenient and/or to decrease the number of errors
generated by iterative decoder 216. As discussed 1n relation
to FIG. 2, block 214 may be decoded 1n iterative decoder
216 to produce decoded information 218 of FIG. 2. In the
embodiments discussed below, parity check matrix 212 1s
not used to decode block 206. Rather, a modified parity
check matrix i1s used, the modified parity check matrix
comprising a re-arranged version of parity check matrix 212,
with at least the circulants 1n two columns of parity check
matrix 212 swapped with each other.

FIG. 4 shows an illustrative example ol quasi-cyclic
parity check matrix 410 1n accordance with some embodi-
ments. In hardware implementations of LDPC codes, 1t may
be desirable for storage and processing to have quasi-cyclic
code representations. A quasi-cyclic code representation 1s
defined by the characteristic that the parity check matrix for
that particular code 1s quasi-cyclic. A quasi-cyclic parity
check matrix 1s made up of circular submatrices known as
circulants. Circulant 440 1s one such matrix. Circulant 440
1s a square matrix—i.e., circulant 440 has the same number
of rows as columns. This number 1s commonly referred to as
the circulant size S_. In addition, circulants have the property
that for any given positive iteger M<S , the rows or
columns of the circulant matrix may be cyclically shifted by
M positions to obtain another circulant. Circulant 440 may
be one of many circulants of the same size that comprise the
quasi-cyclic parity check matrix 410. For brevity, the term
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“non-zero circulant” 1s used herein to refer any circulant
matrix that i1s not the all-zero matrix.

If a quasi-cyclic representation of a parity check matrix 1s
used, then the implementation of LDPC encoder 204 of FIG.
2 and of 1iterative decoder 216 of FIG. 2, may be significantly
simplified. One reason for this 1s that parity check matrix
310 may be stored efliciently and compactly, since only the
first row or column of each circulant matrix needs to be
stored 1n order to generate the entire circulant. Furthermore,
parallelization in the encoder and decoder may be achiev-
able with simple shifting operations, since adjacent rows (or
adjacent columns) corresponding to the same circulant are
cyclic shifts of each other.

FIG. 5 shows graphical illustration 500 of a parity check
matrix and an iterative message passing algorithm corre-
sponding to the parity check matrix in accordance with some
embodiments. An LDPC code may be graphically repre-
sented by a Tanner graph, a bipartite graph showing the
relationship between an LDPC code’s block bits and parity
check constraints. The advantages of using a Tanner graph
of an LDPC code may include access to etlicient graph-
based message passing algorithms for decoding. There are
two types of nodes shown 1n Tanner graphs 503 and 504.
Variable nodes 501 represent each position 1n block 206 of
FIG. 2 and are denoted by circles. Thus, there may be n
variable nodes. Variable nodes may also be referred to as
symbol or bit nodes. Check nodes 305 represent each
syndrome (parity check equation) that must satisiy the parity
check constraints of the LDPC code. For example, there may
be n-k check nodes. Check nodes are denoted by squares.

Tanner graphs 503 and 504 correspond to parity check
matrix 502. The check nodes and variable nodes of Tanner
graphs 503 and 504 respectively correspond to the rows and
columns of parity check matrix 502. The undirected edges
connecting check nodes with variable nodes correspond to
the non-zero entries of parity check matrix 502. In other
words, parity check matrix 502 may be the adjacency matrix
of Tanner graphs 603 and 504. For example, the 2 at the (1,1)
location and the O at the (1,2) location of parity check matrix
502 indicate that there 1s an edge between check node S, and
variable node V,, and that there 1s no edge between check
node St and variable node V., respectively. Theretfore, 1t
there are d, “1”’s 1 a given column of parity check matrix
502, then there are d, edges emanating from the variable
node corresponding to that column. Equivalently, the vari-
able node corresponding to that column may have a degree
of d,. Similarly, 1f there are d_ “1””s 1n some given row of
parity check matrix 502, then there may be d . edges ema-
nating from the check node corresponding to that row.
Equivalently, the check node corresponding to that row may
have a degree of d_.

The check nodes (e.g., check nodes 505) of a Tanner
graph may either be satisfied or unsatisfied, where a satisfied
node has a syndrome value of 0 and an unsatisfied node has
a syndrome value of 2. A check node 1s satisfied (1.e., equal
to 0), if the values of the varniable nodes connected to the
check node sum to an even number. In other words, the value
of each check node may be equal to the sum modulo two of
the value of the variable nodes to which 1t 1s connected. For
example, check node S, of Tanner graphs 503 and 504 may
be satisfied if the values of variable nodes V,, V., and V|
SUM to an even number. The parity check constraints of
LDPC codes are chosen such that an unsatisfied check node
indicates that at least one of the variable nodes connected to
it may be 1n error.

An 1terative two-step decoding algorithm known as a
message passing algorithm 506 may be employed by, for
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example, LDPC decoder 217 of FIG. 2 to decode a received
block. In the first step of message passing algorithm 3506, all
or some of check nodes 505 may update based on messages
received from all or some of variable nodes 501. In the
second step of message passing algorithm 506, all or some
of variable nodes 501 may update based on messages
received from all or some of check nodes 5035. The process
may be repeated until either the block has been decoded or
until a threshold number of iterations or sub-iterations has
been reached.

The messages used in message passing algorithm 506
may be log-likelihood-ratio (LLR) messages, also known as
soit information. Iterative decoder 216 may calculate the
LLR messages for use in iterative message-passing algo-
rithm 506 to correct or detect errors 1n a received block (1.e.,
received vector 214). Prior to the first iteration of message
passing algorithm 506, for example, each of the variable
nodes 501 may receive an LLR message based on informa-
tion from received vector 214 of FIG. 2. These LLR mes-
sages may be computed using the equation

Pry; | b; = 0)]

LLR(y;) = 10@( L

for each i, where b, may represent the i’ bit in received
vector 214.

An LDPC decoder may perform the update steps of
message passing algorithm 506 1n accordance with a serial
(layered) or flooding decoding schedule. In the flooding
technique, all check nodes must be updated before a variable
node may be updated and all variable nodes must be updated
before a check node may be updated. In layered decoding,
only those check nodes necessary for updating a particular
variable node may be updated, and only those variable nodes
necessary for updating a particular check node may be
updated. An LDPC decoder that uses a layered update
schedule for message passing algorithm 306 1s herein
referred to as a “layered LDPC decoder.”

Tanner graphs 503 and 504 may be used to illustrate
message passing algorithm 506 as employed by a layered
LDPC decoder (e.g., LDPC decoder 217 of FIG. 2). The
message passing algorithm may perform several rounds
(1terations or sub-iterations) of message updates 1n accor-
dance with the structure of the Tanner graph associated with
the parity check matrix (e.g., parity check matrix 502) of the
LDPC code to be decoded. In layered LDPC decoding, each
sub-iteration 312 of message passing algorithm 3506 may
include processing several check nodes. These check nodes
may be grouped into layers, which may represent physical
locations 1n memory, such that each sub-iteration 512 may
process a group of check nodes belonging to the same layer.

For example, 1n a first sub-iteration, some of the check
nodes 505 (for example, check nodes S, and S, ) may receive
messages from some of the variable nodes 501 to which they
are connected. Check nodes S, and S, may then perform
update 508 by carrying out computations based on the
messages that they receive and a set of update rules. Then,
check nodes S, and S, may send messages to the variable
nodes to which they are connected. The variable nodes
connected to check nodes S, and S, (i.e. variable nodes V,,
V., V, and variable nodes V,, V. and V) may then perform
update 510 by carrying out computations based on the
messages that they receive and a set of update rules.

In the next sub-iteration, some of the other check nodes
505 (for example, check nodes S; and S,) may request that
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the variable nodes connected to these check nodes send their
current messages to these check nodes. Check nodes S, and
S, may then perform update 508 by carrying out computa-
tions based on the messages that they receive and a set of
update rules. Then, check nodes S; and S, may send their

current messages to the varniable nodes to which they are
connected. Variable nodes connected to check nodes S, and
S, (1.e.nodes V,, V., Vo, and nodes V, V. and V) may then
perform update 510 by carrying out computations based on
the messages that they receive and a set of update rules. The
same process may be repeated for check nodes S. and S..

Sub-iteration 512 may be repeated until either the block
has been decoded or until a threshold number of sub-
iterations has been reached. As discussed above, the mes-
sages may correspond to LLR values. The messages that are
sent during each step of each iteration or sub-iteration of
message passing algorithm 506 may depend on the update
rules and the scheduling of the update steps, which will be
discussed further below.

FIG. 6 shows graphical illustration 600 of a quasi-cyclic
parity check matrix 601 in a mother matrix representation
and a bi-partite graph illustrating the use of parallel pro-
cessing 1n layered LDPC decoding, 1n accordance with some
embodiments. Each entry of parity check matrix 601 corre-
sponds to a circulant shifted by the amount shown, wherein
the value -1 represents an all-zero circulant. Graph 600
includes grouped check nodes 621, 622, and 623 and
grouped variable nodes 611, 612, 613, 614, 615, and 616.
The edges between the grouped check nodes and the
grouped variable nodes may represent possible permuta-
tions, m,, of a plurality of edges generated based on a
non-zero circulant 1 parity check matrix 601. In other
words, the non-zero circulant may be the adjacency matrix
of the sub-graph of connections between each group of
check nodes and each group of variable nodes. In layered
LDPC decoding, particular layers or groups of check nodes
may update in parallel. To accomplish this, check nodes
associated with a particular row in parity check matrix 601
may be grouped together. This process may result in grouped
check nodes 621, 622, and 623. For example, check nodes
associated with the first four rows of the parity check matrix,
labeled 0, 2, 2, and 3, may be combined 1nto grouped check
nodes 621 and may be updated at substantially the same time
(1.e. processed 1n parallel, for example, 1n the first layer of
decoding). Similarly, variable nodes associated with a par-
ticular column 1n parity check matrix 601 may be grouped
together. This process may result 1n grouped variable nodes
611, 612, 613, 614, 615, and 616.

Processing for and updating of all check nodes 1n grouped
check nodes 621, 622, or 623 may be done in parallel.
Similarly, processing for and updating of all variable nodes
in grouped variable nodes 611, 612, 613, 614, 615, and 616
may also be done 1n parallel. The processing of neighboring,
grouped check nodes and grouped variable nodes 1n this way
may allow for reduced-complexity circular shifter design. To
decode an LDPC code using layered decoding, the funda-
mental principles of message passing algorithm 506 of FIG.
5 may be used.

FI1G. 7 1llustrates one embodiment of a functional block
diagram of a digital data decoder 700 1n accordance with the
inventive principles discussed herein. Decoder 700 com-
prises an LDPC decoder 1in this embodiment, for decoding,
parity-encoded data streams receirved by mput data transier
logic 702. Input transfer logic 202 comprises circuitry for
receiving encoded data streams from one or more sources,
such as cellular telephones, tablet computers (and computers
in general), RAID storage devices, satellites, etc. The
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encoded data streams may be transmitted over noisy medi-
ums, such as ambient air in wireless systems or fiber optic
or copper cables, 1 the case of wired networks. In other
cases, the data streams may originate from one or more
redundant arrays of independent disks (RAID). RAID sys-
tems are used to distribute stored data over a number of
independent drives, often using techniques such as striping
and erasure coding. One of such coding techniques 1s LDPC
coding when distributing the data to a number of storage
mediums. The encoded data 1s decoded by applying an H
matrix to the encoded data to retrieve the original data. IT
some portions of the data are not recerved properly, 1.¢., due
to an erasure, the original data can still be reconstructed
depending on the amount of data loss and the ratio between
the number of parity bits per data block vs. the amount of
data 1n each block.

The data streams, 1n one embodiment, comprise a series
of “master” blocks, each master block comprising B blocks
of data, each block comprising b bits of data. In one
embodiment, B equals 128 and b equals 128. Of course, 1n
other embodiment, each master block may comprise more
than, or less than, 128 bits. In still other embodiments, the
concept of master blocks 1s not used, for example where
cach block comprises a datagram in accordance with a
transport protocol. As the data stream 1s received, mput data
transter logic 702 stores each block 1n one of a plurality of
input buflers, in this embodiment 1n either mput buller
memory 704 or mput builer memory 706 using a techmque
that improves the performance of decoder 700 over prior art
decoders by eliminating delays caused by “imbalances”, 1.e.,
mismatches 1n processing delays among the decoding logics,
in this example, decoding logic 708 and decoding logic 710.
This technique 1s described 1n greater detail, later herein. It
should be understood that in other embodiments, more than
two 1mput bullers and more than two decoding logics may be
used to efliciently decode the blocks. However, the remain-
ing discussion herein with respect to FIG. 7 will discuss
digital data decoder 700 as comprising two mnput buflers and
two decoding logics, simplicity.

Input builers 704 and 706 are both arranged as matrices,
cach having a number of columns equal to the length of each
block, and a plurality of rows for storing a desired number
of blocks, often numbering into the hundreds or thousands.
Bufler storage 1s a well-known technique for temporary
storage of data until 1t can be used by a processing device.

Decoding logic 708 and decoding logic 710 comprise
circuitry to decode blocks stored in mput buflers 704 and
706, respectively. Decoding logics 708 and 710 typlcally
each retrieve blocks simultaneously from the builers, such
that blocks are processed simultaneously or near-simultane-
ously by each of the decoding logics. Importantly, 1mbal-
ances are minimized or avoided by re-arranging the circu-
lants 1n the H matrix such that each decoding logic uses the
same circulant value, 1.e., both decoding logics processing a
non-zero circulant or both decoding logics processing a zero
circulant. This avoids imbalances that occur in prior-art
decoders when one decoding logic operates on a block with
a non-zero circulant while the other decoding logic operates
on another block with a zero circulant.

Merge logic 712 performs computations of the minimum
and the 2”¢ minimum of the LLRs of the variable nodes
connected to that check node. Since the variable nodes
connected to the check node were divided into two bullers
A and B, to get the global minimum and the global 2"¢
minimum of the LLRs of all the v-nodes connected to that
check node. Merge logic 712 computes the global minimum
by comparing the two minimums—one computed from the
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LLRs of variable nodes imn Bufler A, and the other computed
from the LLRs of variable nodes in Buller B. Computation
of the 2”7 minimum in a similar way, computing the global
274 minimum by comparing the two 2"¢ minimums—one
obtained from Bufler A and the other obtained from Bufler
B.

To reconstruct the original datastream from the decoded
blocks, output data transier logic 720 retrieves the decoded
blocks from the buflers in an order 1n which the blocks were
saved to the mput bullers. Typically, this 1s performed using
multiplexer 718, which retrieves the decoded blocks from
cach of the output buflers, and provides the decoded blocks,
one block at a time, to output data transfer logic 720 1n the
order prescribed by output data transier logic 720. However,
in other embodiments, multiplexer 718 1s not used, and the
decoded blocks are retrieved from the buillers directly by
output data transfer logic 720 in the order that the blocks
were stored 1n the mput butlers.

Each of the functional components shown in FIG. 7 may
be integrated into a custom integrated circuit, known as an
Application Specific Integrated Circuit or ASIC. ASICs are
generally customized for a particular use, rather than
intended for general-purpose use. In other embodiments, one
or more of the components shown in FIG. 7 may be
integrated into one or more ASICs, while other functional
components may comprise integrated circuits, discreet com-
ponents, or a combination thereol. In the case of a single
ASIC, one or more processors may perform the functions
necessary for decoding, each of the processors executing
processor-executable instructions stored in one or more
memories that comprise the ASIC. Each of the functional
blocks shown 1n FIG. 7 may utilize either separate or shared
processing and memory resources, shown as processing
circuitry 722 and memory 724. Memory 724 comprises one
or more information storage devices, such RAM, ROM,
Flash, and/or virtually any other type of electronic memory
device. Typically, the memory 724 comprises more than one
type of memory. For example, a ROM may be used to store
static processor-executable instructions, while a RAM
memory or flash memory may be used to store variable data,
such as encoded blocks and decoded blocks. Memory 724
may also be used to store an H matrix specially defined for
decoding the encoded blocks and/or a modified H matrix,
defined from the H matrix to more evenly distribute non-
zero circulants for processing between decoding logic 708
and decoding logic 710, and/or a lookup table used to
determine 1 which of the input buflers to store encoded
blocks, and 1n which of the two output buflers 714 and 716
to retrieve decoded blocks.

FIG. 8 15 a flow diagram illustrating one embodiment of
a method performed by digital data decoder 700 to efthi-
ciently decode an encoded datastream. The method 1s imple-
mented by one or more processors, executing processor-
executable instructions stored in one or more memories of
digital data decoder 700. It should be understood that in
some embodiments, not all of the steps shown 1n FIG. 8 are
performed and that the order in which the steps are carried
out may be different in other embodiments. It should be
turther understood that some minor method steps have been
omitted for purposes of clarty.

At block 800, data 1s encoded in accordance with a
particular digital encoding scheme, such as using low-
density parity check (LDPC) coding via a Generator matrix
G. Such encoding minimizes errors that may occur aiter the
encoded data 1s transmitted to a receiver over a noisy
channel or medium, such as air or wires. The G matrix
comprises a number of columns equal to the number of bits
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in each block of data, and a number of rows equal to a
number of parity check equations needed to decode each
block. In one embodiment, each entry in the H matrix
denotes a sub-matrix, where the entries are either a -1
(corresponding to an all-zero sub-matrix), 0 (corresponding
to an 1dentity matrix), or an integer (corresponding to,
generally, a cyclically shifted identity matrix, the shait
amount equaling the integer value 1n the H matrix. Each
submatrix operates on a different block, and each sub-matrix
1s mndependent of the other sub-matrices 1n the H matrix.
Each sub-matrix 1s used to decode one block of data.

At block 802, an original H matrix may be stored within
memory 724 that 1s normally used to decode the encoded
data stream. However, in parallel-decoding arrangements,
such as the arrangement as shown in FIG. 7, processing
imbalances may occur when one decoder decodes a first
block using a non-zero sub-matrix. Thus, 1t 1s desirable to
re-arrange the circulants (1.e., sub-matrices) in the original H
matrix to form a modified H matrix, with a goal of distrib-
uting the non-zero circulants as evenly as possible for use by
decoding logic 708 and 710, as discussed below. It should be
understood that the modified H matrix may be calculated by
a device other than digital data decoder 700, where only the
modified H matrix 1s stored in memory 724 and an indication
of which columns were swapped.

In one embodiment, the decoding logics are configured by
processor 722 to use circulants 1n particular columns of the
modified H matrix, in one embodiment, determined by the
number of decoding logics utilized. For example, if four
decoding logics are used, each of four columns of the
modified H matrix may be assigned to the four decoding
logics respectively 1n a repeating fashion, 1.e., a first decod-
ing logic 1s assigned the first, fifth, minth, etc. columns, a
second decoding logic 1s assigned the second, sixth, tenth,
etc. columns, a third decoding logic 1s assigned the third,
seventh, eleventh, etc. columns and a fourth decoding logic
1s assigned the fourth, eighth, twelve, etc. columns. In one
embodiment, decoding logic 708 1s configured to use even
columns of the modified H matrix, while decoding logic 710
1s configured to use circulants 1n the odd columns. In other
embodiments, each decoding logic could be configured to
use circulants 1n a different manner. For example, 1n another
embodiment, decoding logic 708 could be configured to
decode circulants 1n the first four columns 1n a modified H
matrix having eight columns, while decoding logic 710
could be configured to decode circulants 1n a last four
columns of the modified H matrix.

In one embodiment, the modified H matrix 1s created by
exchanging or “swapping” the circulants 1n at least one
column of the original H matrix with circulants in another
column of the original H matrix, 1in order to best distribute
non-zero circulants 1n each row. In order to determine which
columns to swap, a “brute force” approach may be used,
where each row 1s evaluated to determine 11 an equal number
of non-zero circulants are processed by each of decoding
logic 708 and decoding logic 710, and swapping some of the
circulants 1 a row to achieve as even distribution as
possible. If a swap results 1n a better distribution of circu-
lants 1n a particular row, all of the circulants 1n the columns
containing the swapped circulants are also swapped. This
process proceeds row-by-row, with a re-evaluation of the
rows performed when any column of circulants are swapped
with another column. The column arrangement that results
in the fewest number of 1mbalances between decoding logic
708 and decoding logic 710 i1s selected as the modified H
matrix. It should be understood that in some cases, only two
columns of circulants are swapped with each other while 1n
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other embodiments, more than two columns of circulants are
swapped with each other. Swapped columns may be adja-
cent to one another in the modified H matrix, or not. It
should be further understood that modification of the origi-
nal H matrix may be not be performed by digital data
decoder 700 but, rather, by another computing device. In this
case, the modified H matrix 1s merely stored in memory 724.

At block 804, mput data transfer logic 702 receives the
encoded datastream, using techniques well-known 1n the art.
In one embodiment, input data transfer logic 702 converts
the datastream into a series of b-bit blocks of data, where b
1s an integer, for example, 128. Once each b-bit block 1is
aligned ready, input data transfer logic 702 determines
which of mput bufler 704 and 1nput builer 706 each block
should be stored, 1n an embodiment where two decoding
logics are used. In general, when digital data decoder 700
comprises d decoding logics, d input builers are used to store
the blocks, and lookup table 126 1s configured to assign the
circulants in each column of the modified H matrix to one of
the d input buflers, 1n accordance with any column swapping
that may have occurred.

In one embodiment, a lookup table 726 1s stored in
memory 124 for use by input data transfer logic 702 to
determine which mput butler to store the blocks. The lookup
table 1s configured as an mx1 array, where m 1s equal to the
number of columns 1n the modified H matrix. For example,
1t the number of columns 1n the modified H matrix 1s ¢, then
m=c. Each of the elements of the lookup table are populated
with “values”™, 1.e., digital “1”’s and “0”’s 1n the case of two
decoding logics and, 1n general, integers from 1-d, where d
denotes the number of decoding logics. Each value is
indicative of a particular bufler in which to store a block and
the values are assigned to the elements 1n accordance with
cach of the columns of the modified H matrix, respectively.
For an example, to populate lookup table 726 in the case of
two decoding logics, the lookup table i1s populated with
alternating digital values, such as “1”’s and “0”’s, where “1”
indicates that a block should be stored 1in mput butter 104
while a “0” mdicates that a block should be stored 1n input
builer 106. However, because the original H array has been
modified by swapping circulants 1n one column with circu-
lants 1n another column, the lookup table 1s modified to
address this change. Thus, 1n the example of a modified H
matrix comprising eight columns (1.e., columns 1-8), if
columns two and three are swapped from the original H
matrix and, normally, decoding logic 708 uses circulants in
even columns while decoding logic 710 uses circulants 1n
odd columns, the second and third elements in the lookup
table are modified to reflect the change. In other words, the

lookup table may first be filled with 1’s and O’s:

10101010

However, due to columns two and three being swapped,
the lookup table 1s modified as follows:

11001010

As one can see, decoding logic 708 will use circulants 1n
the first, second, fifth and seventh columns in each row,
while decoding logic 710 will use circulants 1n the third,
fourth, sixth and eight rows.

At block 806, input data transfer logic 702 determines an
address 1n one of the builers that the b-bit block of encoded
data will be stored. In one embodiment, input data transfer
logic 702 utilizes one pointer corresponding to each 1nput
bufler, for example, one corresponding to mput bufler 704
and one corresponding to mput bufler 706, each pointer
initially pointing to a first address 1n each of the respective
input bullers. When a block 1s ready to be stored, input data
transier logic 702 first determines which input butler to store
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the block, as described above, and then uses the address
indicated by the pointer corresponding to the builer where
the block will be stored. After storing the block 1n the proper
input bufler, input data transfer logic 702 increments the
pointer by one, now pointing to a next sequential address in
that bufler. Of course, 1n another embodiment, when a block
1s ready to be stored, one of the pointers can be incremented
first, and then the block stored at that address. Thus, each
pointer tracks entries mto each input butler, respectively, and
stores blocks 1n addresses of each buller sequentially.

At block 808, mput data transfer logic 702 stores the
block 1n one of the plurality of input buflers, as determined
at block 804, 1n a memory location 1n one of the plurality of
input buflers, in accordance with a pointer associated with
the input builler where the block 1s stored. Typically, a
demultiplexer 703 1s used to perform this function, as is
well-known 1n the art.

At block 810, when at least one block has been stored 1n
cach of the input buflers, a decoding logic corresponding to
cach input builer begin to decode the blocks 1n parallel.
When the columns of the modified H matrix are arranged 1n
an optimal ordering, each of the plurality of decoding logics
operate on a respective block using a non-zero circulant,
and, thus, the processing time to decode each of the blocks
are approximately the same, thus avoiding stalls or imbal-
ances among the decoding logics. Thus, the efliciency of
digital data decoder 700 1s maximized because, generally,
one decoding logic cannot begin to process a next block
when another decoding logic is still processing a current
block. Thus, re-arranging the original H matrix by swapping
columns results 1n all of the decoding logics using non-zero
circulants to decode a set of blocks 1n parallel.

In an embodiment where decoding logic 708 processes
blocks from input bufler 704 using circulants 1 even-
numbered columns of the modified H matrix, decoding logic
708 begins decoding a block 1n mput buller 704 using the
first circulant (i.e., sub-matrix) 1n the first row in the
modified matrix H, while decoding logic 710 begins decod-
ing the block 1n mput butler 706, using the second circulant
in the first row. This process 1s repeated until all of the
circulants in the first row of the modified H matrix have been
utilized. Processing then continues using circulants in the
second row of the modified H matrix and so on, until all of
the circulants in the modified H matrix have been utilized by
the decoding logics.

An iterative two-step decoding algorithm known as a
message passing algorithm may be employed by each of the
decoding logics, as described above in accordance with FIG.
5. In such an iterative decoding process, all or some of check
nodes 505 may first update based on messages received from
all or some of variable nodes 501. In a second step, all or
some of variable nodes 501 may update based on messages
received from all or some of check nodes 5035. The process
may be repeated until either the block has been decoded or
until a threshold number of iterations or sub-iterations has
been reached.

The messages used 1n message passing algorithm 506
may be log-likelihood-ratio (LLR) messages, also known as
soit information. Iterative decoder 216 may calculate the
LLR messages for use in iterative message-passing algo-
rithm 506 to correct or detect errors 1n a received block.
Prior to the first iteration of message passing algorithm 506,
for example, each of the variable nodes 301 may receive an
LLR message based on information from received vector
214 of FIG. 2.

At block 812, merge logic 712 computes the global
minimum by comparing a LLR minimum for each of the
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plurality of mput buflers, each computed from the LLRs of
variable nodes in each buffer. Computation of the 27¢
minimum in a similar way, computing the global 2" mini-
mum by comparing the the 2”¢ LLR minimums for each of
the plurality of 1mput buflers.

At block 814, the decoded blocks from the plurality of
decoding logics are stored sequentially into a plurality of
respective output bullers. In the case of two decoding logics,
decoded blocks are stored 1n output buflers 714 and 716.

At block 816, output data transier logic 720 retrieves the
decoded blocks from the output buflers 1n an order that the
encoded blocks corresponding to the decoded blocks were
stored 1nto the plurality of mput butlers.

In one embodiment, lookup table 726 1s used by output
data transfer logic 720 in order to determine the order in
which decoded blocks should be retrieved from the output
buflers. As described earlier, lookup table 726 comprises a
plurality of elements, each element storing a value where
cach value determines 1n which input bufler to store each
block. Output data transier logic 720 retrieves blocks from
cach of the output buflers 1n accordance with lookup table
726.

For example, when using two decoding logics, 11 a block
1s stored 1n mput bufler 704 when an element 1n lookup table
126 comprise a “1”, and a block 1s stored 1n mnput butler 706
when an element 1n lookup table 726 comprises a “0”, and
lookup table 126 comprises eight elements, as follows:

10001011

Then output data transfer logic 720 retrieves decoded
blocks from output bufler 712 when pointing to a “1” in
lookup table 726, and retrieves decoded blocks from output
butler 714 when pointing to a “0” in lookup table 726. Thus,
a first eight blocks from the output buflers are retrieved as
follows:

1. Output bu

2. Output bu
. Output bu
. Output bu
. Output bu
. Output bu
. Output buftler 712

. Output bufler 712

Output data transier logic 720 arranges the blocks 1n the
order that they are retrieved from the output buiflers to
re-construct the original data stream, using techniques well-
known 1n the art. This concept can be extended to retrieve
blocks from multiple output buflers when multiple decoding,
logics are used.

FI1G. 9 15 a flow diagram illustrating one embodiment of
a method performed by digital data decoder 700 to efthi-
ciently assign columns 1n an LDPC H matrix to a plurality
of decoding logics. The method 1s implemented by one or
more processors executing processor-executable instruc-
tions stored 1n one or more memories of digital data decoder
700. It should be understood that 1n some embodiments, not
all of the steps shown 1n FIG. 9 are performed and that the
order in which the steps are carried out may be different 1n
other embodiments. It should be further understood that
some minor method steps have been omitted for purposes of
clanty.

The method utilizes a greedy optimization algorithm
executed by processor 722 to determine an optimal assign-
ment of the columns of the LDPC H matrix to a plurality of
decoding logics that will result 1n the fewest number of
mismatches, imbalances or “stalls” between or among the
plurality of decoding logics. The algorithm generally causes
processor 722 to examine each row of the LDPC H matrix

Ter 712
ter 714
ter 714
ter 714
Ter 712
Ter 714
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sequentially, and assign columns containing non-zero Circu-
lants evenly between or among a plurality of temporary
storage bins in memory 724 after previous column assign-
ments (from previous row evaluations) have been accounted
for. Each of the plurality of temporary storage bins 1is
associated with a particular decoding logic. After the col-
umns containing non-zero circulants have been assigned to
the storage bins, a mismatch between or among the storage
bins 1s calculated by determining the difference in the
number of columns assigned to each of the storage bins. A
total number of such column assignment mismatches 1s
determined by adding each of the mismatches calculated for
cach row. The LDPC H matrix 1s then re-evaluated, analyz-
ing the rows as before, but using a diflerent row ordering
sequence to determine a second total number of column
assignment mismatches. The re-evaluation and subsequent
re-ordering of the rows may be performed a large number of
times, such as 100,000 times, each time calculating a dif-
ferent total column assignment mismatch. After the LDPC H
matrix has been re-evaluated numerous times, the evaluation
resulting 1 the fewest number of column assignment mis-
matches 1s selected, and the columns in the storage bins
relating to that particular row ordering sequence are
assigned to the plurality of decoding logics, each storage bin
associated with a particular decoding logic. Then, blocks
from codewords are stored 1n a plurality of input builers, as
described above, 1n accordance with the column assign-
ments determined by the algorithm. A detailed description of
the algorithm 1s provided, 1n an example where the LDPC H
matrix comprises m rows by n columns and digital data
decoder 700 comprises two decoding logics A and B. It
should be understood that the phrase “assign columns”
means to assign the circulants 1 a particular column of the
LDPC H matrix to a temporary storage bin and, ultimately,
to a decoding logic. Such columns are generally referenced
using a column number, 1.¢., columns numbered from left to

right from 1 to b or from O to b-1, where b 1s the number
of bits 1n a block of codeword C.

At block 900, processor 722 receives the LDPC H matrix
from an input port, such as an ethernet port, a USB port, or
other circuitry well-known 1n the art for receiving digital
data. The LDPC H matrix comprises a number (mxn) zero
and non-zero circulants arranged 1n m rows and n columns.
Processor 722 stores the LDPC H matrix, or a representation
defining the locations of all of the non-zero circulants, 1n
memory 724.

At block 902, a vaniable 1s mitialized with a predeter-
mined number representing a number of times that the
LDPC H matrix will be evaluated, each time using a
different row ordering sequence. In one embodiment, this
variable 1s referred to as “Maxcount”. Additionally, a tem-
porary storage “bin” or memory location “A” and a tempo-
rary storage bin “B” 1s mitialed and stored in memory 724
for each evaluation of the LDPC H matrix. Each of bins A
and B 1s associated with a particular decoding logic. The row
ordering sequences refer to a number of different arrange-
ments of the rows of the LDPC H matnix for sequential
evaluation by processor 722. In one embodiment, the row
ordering sequences are randomly generated, although in
other embodiments, the row ordering sequences may be
generated using a non-random generation scheme. In one
embodiment, the row ordering sequences may be denoted as
Rj=(i,, i,, . . . , 1), where R defines a j”” random ordering
of the rows of the mxn LDPC H matrix for a particular
ordering.

At block 904, processor 722 begins evaluating each of the
rows as indicated by a first row ordering sequence deter-
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mined 1n block 902. As such, processor 722 evaluates a row
from the LDPC H matrix indicated by the i’ entry in R to
determine a number of non-zero circulants 1n the row, and
determines a set C, 1dentifying column numbers in the row
containing non-zero circulants.

At block 906, processor 722 determines a first subset C,
as the intersection of C with bin A. This may be expressed
as C,=(CMA). This identifies columns that have previously
been assigned to bin A 1n a previous row evaluation. In the
first row evaluation, C,=C, as no columns have been
assigned yet to bin A.

At block 908, processor 722 uses the intersection found 1n
the previous step (CMA) to determine a number of inter-
secting members between C and set A, referred to 1n this
example as m,. In the first row evaluation, m,=0.

At block 910, processor 722 determines a second subset
C, as the mtersection of C with bin B. This may be expressed
as C,=(CMB). This i1dentifies columns that have previously
been assigned to bin B 1n a previous row evaluation. In the
first row evaluation, C,=C, as no columns have been
assigned yet to bin B.

At block 912, processor 722 uses the intersection of
(CMB) to determine a number of intersecting columns
between C and set B, referred to in this example as m,. In
the first row evaluation, m,=0.

At block 914, processor 722 generates a third subset C; of
C that excludes the union of C, and C,. This may be
expressed as C,=C-{C,UC,}. This effectively yields an
identification of columns of set C which have not previously
been assigned to either bin A or bin B 1n a previous row
evaluation of the particular row ordering sequence evalua-
tion.

At block 916, processor 722 determines the difference
between m, and m,, and refers to this difference, 1n this
example, as . This i1dentifies a mismatch between the
number of columns of set C that have previously been
assigned to bin A vs. bin B.

At block 918, processor 722 selects ¢ members from C,,
and places them in the bin A or B that had a smaller
intersection with C. In other words, columns are assigned to
the bin having a smaller number of previously-assigned
columns 1n an amount that evens the number of columns
assigned to each bin. This ensures that that the difference
between the number of elements from C that end up in bin
A and the number of elements that ended up 1n bin B 1s made
zero. For example, if g 1s negative, this means that there was
a greater number of columns assigned to bin B than 1n bin
A and, therefore, a number of columns, g, 1n C; should be
added to bin A 1n order to equalize the number of columns
assigned to each bin.

Next, at block 920, processor 722 assigns any remaining
columns 1 C, evenly between bin A and bin B. The term
“evenly” or “evenly assigns” means that bins A and B are
both assigned an equal number of columns having a non-
zero circulant in a particular row. If an odd number of
columns remains to be evenly assigned, one of the columns
may be randomly assigned to either of the bins.

At block 922, processor 722 determines a total number of
intersections between bin A and C, and also determines a
total number of intersections between bin B and C. Proces-
sor 722 then computes the difference to determine a column
assignment mismatch in the number of columns assigned to
the bins for the row, in this example, denoted d. This
cllectively determines a mismatch 1n columns assigned to
bin A and bin B for the current row being evaluated.

At block 924, a counter, S, 1s updated to add the mismatch
calculated at block 922. When all of the rows in the first row
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ordering sequence have been evaluated, S will represent the
total number of column assignment mismatches that result
when evaluating the rows of the LPDC H matrix in the order
prescribed by the first row ordering sequence.

After the first row has been evaluated, bin A contains an
identification of columns in the first row of the LDPC H

matrix that may be assigned to a first decoding logic, while
bin B contains an i1dentification of columns 1n the first row

of the LDPC H matrix that may be assigned to a second

decoding logic. For each successive row evaluation, the
columns 1dentified in bin A and bin B are carried to the next
row evaluation. So, for example, 1f the first row evaluation
resulted in bin A having columns 1 and 35 assigned to 1t, and
column 3 assigned to bin B, these column assignments
would be carried to the next row evaluation, beginning back
at block 904.

At block 926, processing returns to block 904 to begin
processing the next row i the LDPC H matnix (1.e., the row
denoted by the i”+1) entry in R. Blocks 904 through 924 are
then repeated for the remaining rows of the LDPC H matrix

in the order designated by the row ordering sequence.

At block 928, after all of the rows of the LDPC H matrix
have been evaluated, a final value of S 1s stored in memory
724, representing the total number of column assignment
mismatches. The higher this number, the more neflicient
and slower the decoding process will be. Also, bin A and bin
B are stored in memory 724 1n association with the first row
ordering sequence, representing how the columns of the
LDPC H matrix may be assigned to the decoding logics 1f
the first row ordering sequence results 1n the fewest number
of column assignment mismatches.

At block 930, the vaniable 7 1s incremented, and blocks
902 through 928 are repeated for each of the rows of the
LDPC H matrix, using a second row ordering sequence,
where the rows are evaluated 1n a diflerent row ordering that
the first row ordering sequence. After all of the rows have
been evaluated, a second final value for S results and stored
in memory 724, along with a column assignment set A and
set B associated with the second row ordering sequence.
Then, for each successive evaluation of the LDPC H matrix,
a final value for S and for bins A and B 1s stored 1n memory
724.

The value of Maxcount 1s selected to ensure evaluation of
a large number of row-arrangements of the LDPC H matrix,
in an attempt to determine the column assignment that
results 1 the fewest column assignment mismatches
between the decoding logics. Thus, blocks 904 through 928
are typically repeated numerous times, such as 100,000
times or, 1n one embodiment, until a threshold minimum
number for S results.

At block 932, after a Maxcount number of evaluations of
the LDPC H matrix, processor 722 determines which row
ordering resulted 1n the lowest value for S, and assigns the
columns 1n each of the bins associated with the selected row
ordering to the plurality of decoding logics, in this case,
columns assigned to bin A assigned to decoding logic 708
and columns assigned to bin B assigned to decoding logic
710. Assignment may be accomplished by processor 722
populating lookup table 726 with digital values correspond-
ing with column numbers of the LDPC H matrix assign-
ments associated with lowest S value. For example, 11 the
LDPC H matrix comprised 8 columns, and 1f bin A was
assigned columns 1, 3, 4 and 5, while bin B was assigned
columns 2, 6, 7, and 8, the lookup table 726 could be
populated as follows:

10111000
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Where a “1” indicates that a column was assigned to bin
A and a “0” indicates that a column was assigned to bin B.
This mformation 1s used by input data transier logic 702 to
assign blocks to a particular mput bufler, as well as to
retrieve decoded blocks by output data transfer logic 720, as
explained with respect to the method of FIG. 8.

It should be emphasized, again, that although the method
of FIG. 9 was described using only 2 temporary storage bins
corresponding to two decoding logics, the method can be
applied to any number of storage bins and corresponding
decoding logics.

FIG. 10 1s a table illustrating the results of the above
method as applied to several H matrices comprising a
varying number of rows. For example, in the first row, an H
matrix comprises 12 rows and 158 columns, and Maxcount
was set to 100,000. Applying the method of FIG. 9 to this
matrix resulted in a minimum d,”” of {1, 0,0, 1,1, 1, 1, 1,
1, 0, 0, 0}, meaning that 1 mismatch (i.e., the number of
columns assigned to Set A exceed the number of columns

assigned to Set B, or vice-versa, by 1) occurred in the 1%,
and 47-9” row that was evaluated, and no mismatches in the
274 37 and 10”-127 row that was evaluated. Out of the
100,000 arrangements of rows of this H matrix, the arrange-
ment that resulted 1n the fewest mismatches, with a total of
Smin=7/.

In the next example, where H comprises 15 rows by 158
columns, and a Maxcount of 100,000, the smallest number
of mismatches 1n all of the rows was equal to Smin=135,
where the first 3 rows that were evaluated each comprised 1
mismatch, and the 77 and 10” rows that were evaluated each
comprised 2 mismatches, while the 12 row that was evalu-
ated comprised 3 mismatches.

One embodiment of the method of FIG. 9 can be repre-
sented by the following:

For | = 1:MaxCount
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A and the number of elements that ended up 1n set B 1s made
zero. Once that difference 1s zeroed out, by splitting the
number of remaining columns 1n C evenly between the two
sets 1 Step viil, the difference between the number of
columns distributed to the sets 1s still zero. The actual
difference d. in computed 1n Step 1x. Sometimes, d, may not
sometimes exactly equal zero because (1) there may not be
g columns left in C; 1n Step vu (if that 1s the case, all of the
columns of C, will have been used 1n that step, and (2) 1n
Step viil, the number of columns could be an odd number,
50, an even-splitting 1s not possible. In Step x, d1 1s added to
S1 to update 1ts value each time a row 1s evaluated. This set
ol operations 1s repeated until all the rows 1n H have been
considered in the order indicated 1n R.

It should be noted that once a particular random ordering,
R of rows of H 1s chosen in Step 1, there 1s no control
anymore over di values—and, therefore, the final S; value—
that 1s calculated at the end of the mner For loop. The only
means to control the Sy value 1s to choose a diflerent random
ordering ol rows.

The outer For loop experiments with different random
orderings—MaxCount number of orderings—and a final
row ordering j 1s chosen results in the smallest Sy value. The
set of di values that resulted in S_. by {di .} and
[{di_. }l=m. The sets A and B that correspond to S . are the
final choice for sets A and B and, therefore define which
columns are assigned to decoding logic A and which col-
umns are assigned to decoding logic B, denoted as A, and
B.. Of course, blocks received by input data transfer logic
702 must be stored in mput butlers 704 and 706 to account
for the columns that were swapped, as described earlier 1n
this disclosure.

For each row chosen 1n Step 1, Steps 111 and 1v 1n the 1nner
For loop ensure that the columns that were already present

1. Choose a random ordering R of the rows of the m x n matrix H: R = {il, i2, ...,

i}

2. Initialize Sj=0, where S = the smallest number of mismatches in the j** row

arrangement
3. Initialize two empty sets A and B.
For 1= 1:m,
1 Pick the row from H indicated by i*” entry in R.

11 Generate the set C of columns containing non-negative entries in

that row 1n H.
111

Generate the subset C,; of C that 1s the intersection of C with A:

C,=(CNA). Let m;=ICNAI. (The notation || denotes the number of

clements in the set denoted by the argument.)

Y Generate the subset C, of C that 1s the intersection of C with B:

C,= (CNB). Let my=ICNBI

\Y Generate the subset C; of C that excludes the union of C1 and C2:

Cy;=C-{C; UG5}

\4 Compute q = m;—m,
Vil
q < O, put them 1n set A
vili

Arbitrarily pick g members from C;. If g > 0, put them in set B. If

Split the remaining [/C;l—ql members of C; evenly between the sets

A and B. (For the very first row in R, 1.e. fori =1, C; =C sincem, =m, =

q = O at that stage.)
1X Compute d =/ICNAI-ICNBII at this point.
X Update Sj=Sj+d..
End of the inner For loop
End of the outer For loop.

4, From the set S = {S1, S2, ..., SMaxCount} pick the minimum value and denote it by

Smin. Denote the sets A and B that correspond to Smin by Amin and Bmuin.

For each row chosen 1n Step 1, steps 111 and 1v 1n the inner
For loop ensure that the columns that were already present
in A and B are not placed again in those sets even if they

appear 1n set C in Step 11. By placing g members from C; 1n
the bin that had a smaller intersection with C, the difference

between the number of elements from C that ended up 1n set

65

in A and B are not placed again 1n those sets even 1 they

appear 1n set C 1n Step 1. By placing g members from C; 1n
the bin that had a smaller intersection with C, the difference

between the number of elements from C that ended up 1n bin
A and the number of elements that ended up 1 bin B 1s
minimized, or made zero. Once that difference 1s minimized
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or zeroed out, the number of remaining columns in C evenly
assigned between the two bins 1n Step vii1, ensuring that that
difference 1s still zero. The actual difference di1 1s computed
in Step 1x. The reason that di may not sometimes exactly
equal zero are two-fold: (1) There may not be q columns left
in C; 1n Step vii. 11 that 1s the case, all of the columns of C,
will have been used 1n that step, and would still not have
made the difference zero. (2) In Step viu, the number of
columns could be an odd number; so, an even-splitting 1s not
possible. In Step x, di 1s added to Sj to update its value. This
set of operations 1s repeated until all the rows 1n H have been
considered 1n the order indicated 1n R.

Once a particular random ordering R of rows of H 1s
chosen 1n Step 1, there 1s no longer any control over di
values—and, therefore, the final S; value—that 1s calculated
at the end of the mner For loop. The only way to control the
S1 value 1s to choose a different random ordering of rows.
The outer For loop experiments with different random
orderings-MaxCount number of orderings—and a {final
ordering j 1s chosen that resulted in the smallest S, value. The
set of d, values that resulted in Sin is denoted by {d._. }, and
1{d,.. }I=m. The sets A and B that correspond to Sin are the
final choices tfor A and B: A, and B,.

The methods or algorithms described 1n connection with
the embodiments disclosed herein may be embodied directly
in hardware or embodied in processor-readable instructions
executed by a processor. The processor-readable instructions
may reside in RAM memory, flash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium 1s
coupled to the processor such that the processor can read
information from, and write mnformation to, the storage
medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage
medium may reside i an ASIC. The ASIC may reside 1n a
user terminal. In the alternative, the processor and the
storage medium may reside as discrete components.

Accordingly, an embodiment of the invention may com-
prise a computer-readable media embodying code or pro-
cessor-readable 1nstructions to implement the teachings,
methods, processes, algorithms, steps and/or functions dis-
closed herein.

It 1s to be understood that the decoding apparatus and
methods described herein may also be used 1n other com-
munication situations and are not limited to RAID storage.
For example, compact disk technology also uses erasure and
error-correcting codes to handle the problem of scratched
disks and would benefit from the use of the techniques
described herein. As another example, satellite systems may
use erasure codes in order to trade ol power requirements
for transmission, purposetully allowing for more errors by
reducing power and chain reaction coding would be usetul
in that application. Also, erasure codes may be used 1n wired
and wireless communication networks, such as mobile tele-
phone/data networks, local-area networks, or the Internet.
Embodiments of the current invention may, therefore, prove
useful 1n other applications such as the above examples,
where codes are used to handle the problems of potentially
lossy or erroneous data.

While the foregoing disclosure shows illustrative embodi-
ments of the invention, 1t should be noted that various
changes and modifications could be made heremn without
departing from the scope of the invention as defined by the
appended claims. The functions, steps and/or actions of the
method claims 1n accordance with the embodiments of the
invention described herein need not be performed 1n any
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particular order. Furthermore, although elements of the
invention may be described or claimed in the singular, the
plural 1s contemplated unless limitation to the singular 1s
explicitly stated.

We claim:

1. A method for assigning columns of a low-density parity
check (LDPC) H matrix to a plurality of decoding logics for
cllicient decoding of codewords, comprising:

recerving the LDPC H matrix by a processor and storing

the LDPC H matrix by the processor in a memory, the
LDPC H matrix comprising a plurality of zero and
non-zero circulants arranged in a plurality of rows and
columns;

evaluating the LDPC H matrix in a first row ordering

sequence, wherein each of the rows 1s evaluated one
row at a time 1n an order prescribed by the first row
ordering sequence; determining, for the first row order-
Ing sequence, a first total number of column assignment
mismatches;

evaluating the LDPC H matrix in a second row ordering

sequence, wherein each of the rows 1s evaluated one
row at a time 1n a second order prescribed by the second
row ordering sequence;
determining, for the second row ordering sequence, a second
total number of column assignment mismatches;
assigning the columns of the LDPC H matnx to the
plurality of decoding logics based on the first row
ordering sequence when the first total number of col-
umn assignment mismatches 1s less than the second
total number of column assignment mismatches; and

assigning the columns of the LDPC H matrix to the
plurality of decoding logics based on the second row
ordering sequence when the second total number of
column assignment mismatches i1s less than the first
total number of column assignment mismatches.

2. The method of claim 1, wherein determining, for both
of the row ordering sequences, a total number of column
assignment mismatches comprises:

for each row:

determining a set of columns containing a non-zero
circulant;

distributing the columns 1n the set of columns between
or among a plurality of temporary storage bins;

determining a quantity of columns assigned to each of
the plurality of temporary storage bins;

determining a highest difference of columns assigned
between or among the plurality of temporary storage
bins and storing the highest diflerence 1in the
memory; and

totaling the highest difference calculated 1n each row to

determine the total number of column assignment mis-
matches.
3. The method of claim 2, wherein distributing the col-
umuns 1n the set of columns between or among a plurality of
temporary storage bins comprises:
determiming, from the set of columns, a plurality of
subsets of columns, each subset comprising one or
more columns of the set of columns that have been
previously assigned to a respective one of the plurality
of temporary storage bins;
determining a difference between or among a number of
columns 1n each of the plurality of subsets of columns;

determining another subset of columns of the set of
columns that exclude a union of the plurality of subsets
of columns;

assigning a number of columns from the another subset to

at least one of the plurality of temporary storage bins 1n
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order to mimimize a difference between or among the
number of columns in each of the plurality of subsets
of columns; and

evenly assigning any columns remaining in the another
subset to the plurality of temporary storage bins.

4. The method of claim 1, wherein for each row sequence
ordering, a plurality of temporary storage bins 1s stored 1n
the memory, each of the plurality of temporary storage bins
associated with a respective decoding logic, wherein assign-
ing the columns of the LDPC H matrix to the plurality of
decoding logics comprises:

assigning columns 1n a first temporary storage bin to a first
decoding logic; and

assigning columns 1n a second temporary storage bin to a
second decoding logic.

5. The method of claim 1, wherein assigning the columns
of the LDPC H matrix to the plurality of decoding logics
COmMprises:

storing a lookup table 1n the memory, the lookup table
comprising a plurality of elements, each element asso-
ciated with a particular column of the LDPC H matrix;
and

assigning a value to a first element of the lookup table
associated with one of a plurality of temporary storage
bins that has been assigned a first column of the LDPC
H matrix by the processor.

6. The method of claim 5, further comprising:

receiving the codewords by input data transter logic, each
of the codewords comprising a plurality of blocks; and

storing, by the mput data transfer logic, the blocks 1n a
plurality of mput butlers in accordance with the lookup
table.

7. The method of claim 6, wherein storing the blocks in

a plurality of mput buflers 1in accordance with the lookup
table comprises:

storing a first block 1n a first input buller when the first
clement of the lookup table comprises a value 1ndica-
tive of a first decoding logic that decodes blocks 1n the
first input bufler; and

storing a second block 1n a second input builer when a
second element of the lookup table comprises a value
indicative of a second decoding logic that decodes
blocks 1n the second 1nput builer.

8. The method of claim 7, further comprising:

decoding the blocks 1n the plurality of input buflers by the
plurality of decoding logics, respectively;

storing decoded blocks 1n a plurality of output buflers; and

retrieving the decoded blocks from the output builers in
an order determined by the lookup table.

9. A digital data decoder for efliciently decoding code-

words, comprising;:
a memory for storing processor-executable 1nstructions, a
plurality of temporary storage bins, and a low-density
parity check (LDPC) H matrix, the LDPC H matrix
comprising a plurality of zero and non-zero circulants
arranged 1n a plurality of rows and columns;
a plurality of decoding logics for decoding the codewords
using circulants stored in the LDPC H matrix; and
a processor coupled to the memory for executing the
processor-executable instructions that causes the digital
data decoder to:
evaluate the LDPC H matrnix i a first row ordering
sequence, wherein each of the rows 1s evaluated one
row at a time in an order prescribed by the first row
ordering sequence;

determine, for the first row ordering sequence, a first
total number of column assignment mismatches;
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evaluate the LDPC H matrix in a second row ordering,
sequence, wherein each of the rows 1s evaluated one
row at a time 1n a second order prescribed by the
second row ordering sequence;

determine, for the second row ordering sequence, a
second total number of column assignment mis-

matches:

assign the columns of the LDPC H matrix to the
plurality of decoding logics based on the first row
ordering sequence when the first total number of
column assignment mismatches 1s less than the sec-
ond total number of column assignment mismatches;
and

assign the columns of the LDPC H matrix to the
plurality of decoding logics based on the second row
ordering sequence when the second total number of
column assignment mismatches 1s less than the first
total number of column assignment mismatches.

10. The digital data decoder of claim 9, wherein the
processor-executable instructions that cause the digital data
decoder to determine, for both of the row ordering
sequences, a total number of column assignment mis-
matches further comprises istructions that causes the digital
data decoder to:

for each row:

determining a set of columns containing a non-zero
circulant;

distributing the columns 1n the set of columns between
or among a plurality of temporary storage bins;

determining a quantity of columns assigned to each of
the plurality of temporary storage bins;

determining a highest difference of columns assigned
between or among the plurality of temporary storage
bins and storing the highest difference 1n the
memory; and

totaling the highest difference calculated 1n each row to

determine the total number of column assignment mis-
matches.
11. The digital data decoder of claim 10, wherein the
processor-executable instructions that cause the digital data
decoder to distribute the columns in the set of columns
between or among a plurality of temporary storage bins
comprises instructions that causes the digital data decoder
to:
determine, from the set of columns, a plurality of subsets
of columns, each subset comprising one or more col-
umns of the set of columns that have been previously
assigned to a respective one of the plurality of tempo-
rary storage bins;
determine a difference between or among a number of
columns 1n each of the plurality of subsets of columns;

determine another subset of columns of the set of columns
that exclude a union of the plurality of subsets of
columns;

assign a number of columns from the another subset to at

least one of the plurality of temporary storage bins 1n
order to mimimize a difference between or among the
number of columns 1n each of the plurality of subsets
of columns; and

cevenly assign any columns remaining in the another

subset to the plurality of temporary storage bins.

12. The digital data decoder of claam 9, wherein the
processor-executable instructions that cause the digital data
decoder to assign the columns of the LDPC H matrix to the
plurality of decoding logics comprises instructions that
cause the digital data decoder to:
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store a plurality of temporary storage bins 1n the memory,
cach of the temporary storage bins associated with a
respective decoding logic;

assign columns 1n a first temporary storage bin to a first

decoding logic; and

assign columns 1n a second temporary storage bin to a

second decoding logic.

13. The digital data decoder of claim 9, wherein the
processor-executable instructions that cause the digital data
decoder to assign the columns of the LDPC H matrix to the
plurality of decoding logics comprises instructions that
cause the digital data decoder to:

store a lookup table 1n the memory, the lookup table

comprising a plurality of elements, each element asso-

ciated with a particular column of the LDPC H matrix;
and

assign a value to a first element of the lookup table

associated with one of the plurality of temporary stor-
age bins that has been assigned a first column of the
LDPC H matrix by the processor.

14. The digital data decoder of claim 13, further com-
prising:

a plurality of input buflers;

wherein the processor-executable instructions further

comprise 1instructions that cause the digital data

decoder to:

receive the codewords by input data transter logic, each
of the codewords comprising a plurality of blocks;
and

store, by the input data transfer logic, the blocks 1n a
plurality of mput buflers 1n accordance with the
lookup table.

15. The digital data decoder of claim 14, wherein the
processor-executable instructions that cause the digital data
decoder to store the blocks 1n a plurality of mput buflers 1n
accordance with the lookup table comprises 1nstructions that
cause the digital data decoder to:
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store a first block 1n a first input buller when the first
clement of the lookup table comprises a value 1ndica-
tive of a first decoding logic that decodes blocks 1n the
first 1input bufler; and

store a second block 1 a second mput bufler when a
second element of the lookup table comprises a value
indicative of a second decoding logic that decodes
blocks 1n the second 1nput builer.

16. The digital data decoder of claim 135, further com-

prising;:

a plurality of output buflers;

wherein the processor-executable instructions further
comprise 1nstructions that cause the digital data
decoder to:

decode the blocks 1n the plurality of mput buflers by the
plurality of decoding logics, respectively;

store decoded blocks 1n a plurality of output buflers; and

retrieve the decoded blocks from the output bullers 1 an
order determined by the lookup table.

17. A method, performed by a digital data decoder com-
prising n decoding logics, for efhiciently decoding code-
words, comprising;:

(a) ordering rows of a low-density parity check (LDPC) H

matrix 1n a first particular order;

(b) evaluating each row of the LDPC H matrix in
sequence as defined by the ordering to assign columns
of the LDPC H matrnix to a set of n temporary storage
bins, and to determine a mismatch 1n the assignment of
columns to the set of n temporary storage bins;

(c) repeating steps (a) and (b) a plurality of times, each
time assigning columns of the LDPC H matrix to a
different set of n temporary storage bins;

(d) determining which ordering of the rows resulted 1n a
fewest number of mismatches; and

(¢) assigning columns 1n the set of n temporary storage
bins corresponding to the fewest number of mismatches
to the n decoding logics.
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