US010474835B2

a2 United States Patent (10) Patent No.: US 10,474,835 B2

Egorov et al. 45) Date of Patent: *Nov. 12, 2019
(54) ZERO-KNOWLEDGE DATABASES (56) References Cited
(71) Applicant: ZeroDB, Inc., San Francisco, CA (US) U.S. PATENT DOCUMENTS
: : : : 5,263,156 A * 11/1993 Bowen GO6F 17/30351
(72) Inventors' Mlkhall Egorovﬂ S:an‘Iia Claraﬂ CA (US)? 9,361,306 Bl 2 6/2016 PﬁWﬂI ************* G06F 17/30168
MacLane Scott Wilkison, Mountain .
(Continued)

View, CA (US); Mohammad Ali Khan,

Cupertino, CA (US) FOREIGN PATENT DOCUMENTS

(73) Assignee: ZeroDB, Inc., Mountain View, CA (US) WO 2014008495 A2 112014

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days. European Search Report for Related European Patent Application

This patent is subject to a terminal dis- ~ 16790180.0, dated May 16, 2018, pp. 1 to 8.
claimer. (Continued)

OTHER PUBLICATIONS

(21) Appl. No.: 15/948,557
Primary Examiner — Robert B Leung,

(22) Filed: Apr. 9, 2018 (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw

Pittman, LLP
(65) Prior Publication Data

US 2018/0232533 Al Aug. 16, 2018 (57) ABSTRACT

Related U.S. Application Data Provided 1s a process ol operating a zero-knowledge

(63) Continuation of application No. 15/346,127, filed on encrypted database, the process including: obtaining a
Nov. 8, 2016, now Pat. No. 9,971,907, which is a request for data in a database stored by an untrusted com-

(Continued) puting system, wherein the database 1s stored 1n a graph that

includes a plurality of connected nodes, each of the nodes

(51) Imt. CL including: an 1dentifier, accessible to the untrusted comput-
GO6F 21/62 (2013.01) ing system, that distinguishes the respective node from other

HO4L 9/32 (2006.01) nodes 1n the graph; and an encrypted collection of data
(Continued) stored 1n encrypted form, wherein: the untrusted computing

system does not have access to an encryption key to decrypt

(52) US. ¢l. the collections of data, the encrypted collections of data in

CPC GoolF 21/6227 (2013.01); GO6F 21/14 . .
(2013 Ol) G09C 1/00 (2013 01) at lea.St SOINC O.f the plurallty of nodes e(‘.ﬂCh include a
7 7 plurality of keys indicating subsets of records 1n the database
(Continued) accessible via other nodes in the graph and corresponding

(38) Field of Classification Search pointers to i1dentifiers of the other nodes.
CPC ... HO4L 63/0428; HO4L 9/14; HO4L 9/3221;

GO6F 21/14; GO6F 21/6227

See application file for complete search history. 20 Claims, 19 Drawing Sheets
38
rll'"
¥ 4
38A - ,
3BA~, 388~
norle node .
40~ : - A0 - ¢
node 1dentifiar Wl node identifer l ¢
a2 , ,] ¢
ks node varsrn s “‘Ir{ node version | ¢
44'% o : G i] 2 E:
L encrypeed data collection ~J] encrypied data coltection |
: -~ 39
sse N 38D
380~ .
10 node node | node
= node identifier | node identifter node tdentifier
a2~
A pode version NOTE VErSIOn : Node vErsIon
44‘“‘5_ encrypted data collection encrypted data collection | encrypted data collection }
. -39
3BF*-,~H} 1806 ~. /
node node
A1~ e | . "y
~] noda identifier | 39 | node identifier
_ g
42 “}H noda version et node varson
#41“:. ancryoted data colerion enfryplen data collection

US 10,474,835 B2
Page 2

(60)

(1)

(52)

Related U.S. Application Data

continuation of application No. 15/148,658, filed on
May 6, 2016, now Pat. No. 9,519,798.

Provisional application No. 62/181,505, filed on Jun.
18, 2015, provisional application No. 62/158,195,
filed on May 7, 2015.

Int. CI.

GoO6F 21/14 (2013.01)

GO9C 1/00 (2006.01)

HO4L 9/00 (2006.01)

HO4L 9/14 (2006.01)

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

HO4L 9/08 (2006.01)

U.S. CL

CPC HO4L 9/00 (2013.01); HO4L 9/0822

(2013.01); HO4L 9/14 (2013.01); HO4L 9/3221
(2013.01); HO4L 63/0428 (2013.01); HO4L

67710 (2013.01); HO4L 2209/16 (2013.01);
HO4L 2209/76 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0108481 Al* 5/2005 Iyengar GOO6F 12/0817

711/141
3/2008 Cristofor et al.
5/2013 Flick ..ooovvivinninnn. GO6F 16/24
707/741

2008/0059414 Al
2013/0138658 Al*

OTHER PUBLICATTIONS

Examination Report for Related European Patent Application No.
16790180.0, dated Apr. 15, 2019, pp. 1 to 6.

* cited by examiner

U.S. Patent Nov. 12, 2019 Sheet 1 of 19 US 10,474,835 B2

untrusted data repository

- consistency
. manager

20

client device

encryplion/decryption

28

> 9

| query logic ™ 33

application

FIG. 1A

U.S. Patent Nov. 12, 2019 Sheet 2 of 19 US 10,474,835 B2

j(Eﬁi

38A~_ 285-
| " node

40~ | nade igentifier '

LN -

nnde version

4,

encrypted data collection ||

38T~ y
node

40~} A :
| node dentifier

47 | Em————— mecemcemcesee |
[mdeverson]|

44

nNOde

nooe version i

1} encrypted data coflection | encrypted data coliection |

FIG. 1B

U.S. Patent Nov. 12, 2019 Sheet 3 of 19 US 10,474,835 B2

PeROMNIE

3T EN

FIG. 1C

U.S. Patent Nov. 12, 2019 Sheet 4 of 19 US 10,474,835 B2

- obtain a request for data in a database stored :
~in a graph by a remote untrusted computing system § ™ 5>

send a reguest for a first node of the graph

t stored by the untrusted computing system 64

receive an encrypted collection of data of the requested node

. 66

obtairn an encryption key to decrypt the requested node

decrypt the encrypted collection of data

to obtain a decrypied collection of data ~ 70

daes the decrypted
collaction of data contam

o Yes
T [he requested data? e

ot .Zf}.
provide the requestead

74, data o an application

select an dentifier of a subsequent node in the graph
from the decrypted collection of data based on
cofrespondence betweean the requested data and a key in the decrypted
cotiection of data associated with the selected identifier

~ 76

1 sand a request for the subsegquent nade of
§ the graph o the untrusted conputing systam

U.S. Patent Nov. 12, 2019 Sheet 5 of 19 US 10,474,835 B2

dectypt the given encrypted collection of data
to obtain a given decrypted collection of data

will write

cause the number of

entries in the node to
exceed threshold? _g#®

wtite the vatue to the node

setect parent node aé_givﬂn node N |
ro write values for the 38

first node and the second node

| sefact first or second node o recieve the
| value to be written

FiG. 1E

U.S. Patent Nov. 12, 2019 Sheet 6 of 19 US 10,474,835 B2

decryplion

by clierg
tree raversal e

GUOLAS

A T encrypted Dxh780

FIG. 2

U.S. Patent

QoCues an the chent side

*-F"

Nov. 12, 2019

¢
|

Ciasy logic argd encryption

Chient:

fuery fogic

L Enurgption/decryption

L e R E e EE R EEEEEEERE R PR ESEREERRERESERERE RN)

................

h’,..r.
o
£
s e N .
incex of chentl data | 7
ancryntad with)
chentl bay ? ¢
t o
}
P
Ingex of chent2 deta | \
encrypbad with P
sientd key P
““"““"““"E -------------------- - y
: j
,,,,,,,,,,,,,,,,,,, v
intzy of cheptN datay o
. {
encryited with P
CHergN ey SR

Sheet 7 of 19

AnPHLaon o3n

P arafirafrafie e

US 10,474,835 B2

ss database as & fibrary
or interact thenugh an AF

Encryption and decryphon
conni@ b partdrmed bhefore
ar altar caching

incurments and ingaxes

e iermmneneeeee O30 o SO HEbwen

Dacument starages
antyptad with
Sienil Eay

##

Daciment storage
encryptad with
Chert d ey

Procument storage
sncryited with
cHergl xey

Database storage server

FiG. 3

idepanaent servars

Muttiide chents
acess thewr nduviciusd
maexss and gata
stiwad separatety

PR P S R NPT
-~

Moo,
v

U.S. Patent Nov. 12, 2019 Sheet 8 of 19 US 10,474,835 B2

Chent: - mullipie users of same data

nn

"'-"'-"'-"'-"'-"'-"'-"'-"'-"'J

-_--_--;%.

L
e

ayanoshon query dala
intoralimy willi melsaals sarver
bhravign an A

ADORGCIHGNS gol moords
\ frcam the Bata serns o dowd)
\’& \ BCnEREngG 1o S0Tess PRImiSsians

\
_, \ {'*.

;
/

"'-"'-"'-"'-"'-"'-"'-"'-““““““““““““"'-"'-"'-"'-f"'-"'-"'-"'-

Aparcation

i f

-"«"‘"h."

Motanata sever
Ha; :Ju: AT '5:*:- rontadats

3
1

N

Relums guery Bain
LIS 0 PESISEIUNS

B v L st

A L g
"‘\r‘-..h

e e T

’
J
t
: —
Hrtny

“"""‘-1.
- l"'""-:-....‘__.

|
\
B
i |
-
j
f

Piagex of centt date ! ¢ 1 Doosmentsterage 1T
$ Enciypied with o Sl ypied with 38 B,
P et key - ent keys P
... N s
A ioaatesanntosets BEENIIFSLLECES N §
{igsciew of CHentl -..ar'*;g Yo '-)ufli.'-ui“"i SEOrALRE i
P encoypted with Lo enryptad with P
UrEeid Roy : . ekl Kevs + §
YR g ;
. :
oo e A U UL SOy g
P of chentN datx it o Dognment stoonne i
b ancryprad with Pyl encRyprEd with :
pelemN ey b1 ceniN heys P
.. :

Database Staraqe server
{could be in the cloud)

FliG. 4

U.S. Patent

Nov. 12, 2019

Sheet 9 of 19

US 10,474,835 B2

__-,.--,'_:'.- e T . L o
'.1-':::::-1:1::;.' '+ = _\‘ o "*--.-a..._,__“h -‘h‘“‘&::
< h . RN ' . 4=
g s s s g Vo Mullinds JHards
s ; : ; .'1 % i st ab s
i % Clienta E i e S which access the sams
S L H_,:.i-‘-' S A [cataset
piy o, - : .1' '
i ; A : i
3 E E: " -”l‘ - \ : _._..-h"‘
e , i S A N ;
VIR WMVENR VRGeS 1 A :
contiict resoiubiog, i f rd
Sorving client knows 58 1574 N 5~ _. o
AT L K Chents can divectiy roat
OroisrngG o the g e IXc] RRRTONERS: te AR B ey werits ver s
but dogsn't Bave e ﬁ SN f?f;f{ P i“*'-}"*- .
0w i‘}p-'ﬁ?jiw}k 39 dﬁff"f"?’i Rt o : Qerice chant whish " T ’ (373 5038 SRR,

I " P n : - ¥ ' :r“ -’: . ™ _ _ Y \ s o ‘,"' rﬁf. rniﬂi&yei E-,}.,-k.‘:. cap 18 =:}=
o " o . ¥ Dyt tisdiostns S L XA OTE LD Ol 5 HE S0 1) 4
recards themssahyes 1 pwittes datal o

e PNGeX L 1
A e e e e e e e e e e e e e e e e e e et \ ' Rl
SR oo T

: A eaaal :

) bR v, ., 2

' L v . " .

LY . y " y
: ke, . g ')
N : vk :

\ A ! L :

* AN ! ;! 4 —
IS ARSI TR “'*-fz
; 'i,.;f.:k" ' - . - .

':: _____ - .{;&K, e e e 4 A A e s A i _: -_:f-. . -,I;.........s..........:f;................. E g
; R i fpdex of chivnt gats : P Ciocument sinrage f _ DEtasel acunssed by
: 3T encrypted with i1 oencrvpted with P rnstiphe Chents
ez done dweclly fraim hay troresesesesesesesees : L
_ _* -
ﬁ&f‘;‘}:{if : ___ .E =
ey OF ChentZ data i« 1 Docoment stovage '
- e i > . 1
aasrypred wih c 1o encrypbat wih '
' s . » - coma . F
chienty Koy Fob chient? xey :
.................................... : F
.-_ S S '
+ : '
e e :
fndex of chent™ dalard « 1 Dovarment storage g
. [} : . " - '
anciyptad with o oenrypted with :
chentid ey tf CherdN key :
... S |

Database storage server

FIG. 5

U.S. Patent Sheet 10 of 19

Nov. 12, 2019

Encrypted maex

ustomer 1

/.".*-' H*‘H‘u_ —
7 “
™~
, >
Castomer 2 4™ .
1 -M...,____"x .
';H"-' ‘-._\“ i\\;i .
™~ | / \ encrypied document starage __ﬂ--*"“"
¥ e
. g.‘-‘m__\ St — » -}""'M

Cugtomer 3

+ -"""'-q‘
1A s

FiG. 6

e

US 10,474,835 B2

_.. ingdexed by grods I,
encryted with Reyld

nctaxed by groups 1 angd 2,
araryplen with groupkay 12

Ingdexed by group 2,
areryntec willy Kevy?

_. Enarypted by customer
with pubkey:

Encrypied by Cystomer
with publeay?

Encrypind by customer
with group
pubkeyi?

U.S. Patent Nov. 12, 2019 Sheet 11 of 19 US 10,474,835 B2

Encrypted index . Indexed by group 1.
< Grep 1 S o encryted with keyl
e N
_ | .. indexed by groups 2 and 2,

e pnCyVited wikth groupkey 12

Castomer dgaty
Indexed by group &,
e BRCTY RO With Key2

A Encerypted by customer
p e with pubieyl
Encrypted document s;mragf;f«’”'

kT

........

with pubikeyd

Encrypted by customer
with groups
pabkeyi?

FiG. 7

U.S. Patent Nov. 12, 2019 Sheet 12 of 19 US 10,474,835 B2

FiG. 8

U.S. Patent Nov. 12, 2019 Sheet 13 of 19 US 10,474,835 B2

Firewall §

FIG. 9

U.S. Patent Nov. 12, 2019 Sheet 14 of 19 US 10,474,835 B2

.
Firewall R

...

] L.
L]

Teinininnsssisnnsissisisinininns’ninin'n'n'y LR R RN PR PR PR PR PR R R R RN RN PR PR PR R R P (R (R U PR PR R R R P P P

Encrypted Database

Encrypted index |

iii

FiG. 10

U.S. Patent Nov. 12, 2019 Sheet 15 of 19 US 10,474,835 B2

i i
¥ rirewall Firewall §

Encrypted Database |

o,

:. . .
I e
'. . i . . - - A -
) . / Cg - . ; . . .
a - - . ;) . .. -
'. . N A -
'R . . " N L " . P! " ol R \ .
I L . .
. .
B e o R al al aal el ol gl T S L]

B .
r -

L]] -

3 r =

FiG. 11

U.S. Patent Nov. 12, 2019 Sheet 16 of 19 US 10,474,835 B2

3 o T g

Entwg}%ﬁd Emmms&

| index index Emwpt&d Database |

A;:ap%tcatmm im:%ax in&&x Eﬁﬁ:“{;}tﬁd E}atabaﬁa

E%’?Cryp{@{j Database

Pk ok ks ks sk ks ks sk sk sk sk ks sk ks ks sk sk ks s ks sk ks s sk sk sk ks s sk sk ks ks sk sk ks kR sk sk ks ks ks sk ks ks ks ks sk ks sk sk sk ks sk sk sk sk ks sk ks ks Rk ok ks sk ok ks sk ks kR sk sk ks s sk ks sk ks sk
..

FIG. 12

U.S. Patent Nov. 12, 2019 Sheet 17 of 19 US 10,474,835 B2

FIG. 13

U.S. Patent Nov. 12, 2019 Sheet 18 of 19 US 10,474,835 B2

e e e e i e o e i o e e o e e L R F

* -ﬂ-h i‘ hi‘ ek Nyt Nt hdhi-ﬂf-ﬂ‘iuﬂ‘l‘-ﬁ‘i-ﬁ‘ﬂ-ﬁvﬁvﬁvﬁvﬁﬁ

+*#¥*¥#¥#¥*

R B it e -rﬂ-rrw-tmrw-im-rw&mvw e ol o T i P . i o w de ol Bl e @ e e e e e

tll’l‘lll’?llll“llll’l“‘

OOC

.t.n wiiﬂn..r.u.m .h.n.‘

o -) et N L NG L L I D
ﬂ-u'ﬁvﬁvﬁvd-vd-vﬂ-. awnmawn%* RV ERANEAREN, ' e e el o mpai”a e

[l el e el el et Sl el e e e e el e el el el el el el e et el e e e e e el el el el Sl el el el el el el el e e e e et el el el el el el el el Sl el e el e e el e et el e el el el el el el el e el el e e e e el e e el el el el el el Sl e el el e el e e e et e e e e el el el el Sl e el

result of a query {shared)

FIG. 14

U.S. Patent Nov. 12, 2019 Sheet 19 of 19 US 10,474,835 B2

! Pmmsm

yooevice ||
INTERFACE |t it

pmmm 2.

i o
v | 'f’i‘s’e‘?ﬁ’@'fﬁiné
| oaoso |

FIG. 15

US 10,474,835 B2

1
ZERO-KNOWLEDGE DATABASES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent 1s a continuation of U.S. patent application
Ser. No. 15/346,127, filed on 8 Nov. 2016, having the same
title, which 1s a continuation of U.S. patent application Ser.
No. 15/148,638, filed 6 May 2016, having the same title,
now U.S. Pat. No. 9,519,798, which claims the benefit of
U.S. Provisional Patent Application 62/138,193, having the
same title, filed 7 May 2015, and U.S. Provisional Patent
Application 62/181,505, having the same title, filed 18 Jun.
20135. The entire content of each of these earlier-filed appli-
cations, including the computer program listing filed with
the 195 application, 1s hereby incorporated by reference for

all purposes.
BACKGROUND

1. Field

The present invention relates generally to databases and,
more specifically, to encrypted databases 1n which encryp-
tion keys are withheld from the system storing the database.

2. Description of the Related Art

In certain applications, database operators remain
untrusted. Users of databases often prefer not to trust the
operator of the database to protect the security of their stored
data. In some cases, the database resides on computing
systems operated by another entity, for instance, a remote
data center operated by another company, and users prefer to
not trust the other entity to protect the secrecy of their data.
Or 1in some cases, users of databases prefer to constrain
which portions of, and users of, their own computing
systems have access to stored data (e.g., to reduce the
likelithood of an unintentional release of secure information
to an untrusted environment, such as in the event of a data
breach).

Some existing systems for encrypting databases expose
too much information to the hosting entity. For instance,
some systems allow a database server to ascertain which
database enftries match one another and which database
entries are greater than or less than one another. Exposure of
this information can weaken the underlying encryption. In
some cases, the search space for encryption keys can be
reduced by an attacker by knowing the ordinality of database
entries, and inferences can be drawn about database entries
and usage based on matching values and ordinality.

Some systems remotely store encrypted files that may be
sent to client devices, and some of these systems withhold
the encryption keys for the files (e.g., 1n zero-knowledge
cloud document storage systems). Such systems are often
not well suited for database storage or usage because the
bandwidth and latency associated with sending a full copy of
the database or other record can be intolerable for users
needing a relatively fast response to a query or other
database transaction.

SUMMARY

The following 1s a non-exhaustive listing of some aspects
of the present techniques. These and other aspects are
described in the following disclosure.

Some aspects include process of operating a client-side of
a zero-knowledge database, the process including: obtain-
ing, with a first computing system, a request for data 1n a
database stored by an untrusted computing system remote

10

15

20

25

30

35

40

45

50

55

60

65

2

from the first computing system, wherein the database 1s
stored 1n a graph that includes a plurality of connected
nodes, each of the nodes imncluding: an identifier, accessible
to the untrusted computing system, that distinguishes the
respective node from other nodes in the graph; and an
encrypted collection of data stored in encrypted form by the
untrusted computing system, wherein: the untrusted com-
puting system does not have access to an encryption key to
decrypt the collections of data, the encrypted collections of
data 1n at least some of the plurality of nodes each include
a plurality of keys indicating subsets of records in the
database accessible via other nodes 1n the graph and corre-
sponding pointers to identifiers of the other nodes, and the
encrypted collections of data in at least some of the plurality
of nodes each include records of the database, at least some
of the records including the requested data; sending, from
the first computing system to the untrusted computing
system, a request for a first node of the graph stored by the
untrusted computing system; receiving, with the first com-
puting system, the encrypted collection of data of the first
node; obtaining, with the first computing system, one or
more decryption keys; decrypting, with the first computing
system, the encrypted collection of data of the first node with
at least some of the one or more decryption keys to obtain
a first decrypted collection of data; selecting, with the first
computing system, an i1dentifier of a second node in the
graph from the first decrypted collection of data based on
correspondence between the requested data in the remotely
stored database and a key 1n the first decrypted collection of
data associated with the selected identifier; sending, from
the first computing system to the untrusted computing
system, a request for the second node with a transmission
indicating the selected 1dentifier; and receiving, with the first
computing system, the encrypted collection of data of the
second node; decrypting, with the first computing system,
with at least some of the one or more decryption keys, the
encrypted collection of data of the second node to obtain a
second decrypted collection of data; and obtaining the
requested data remotely stored in the database based on
information 1n the second decrypted collection of data.
Some aspects include a process of operating a database,
the process including: obtaining, with an untrusted comput-
ing system remote from a first computing system, a database
storing 1n a graph that includes a plurality of connected
nodes, each of the nodes including: an identifier, accessible
to the untrusted computing system, that distinguishes the
respective node from other nodes in the graph; and an
encrypted collection of data stored in encrypted form by the
untrusted computing system, wherein: the untrusted com-
puting system does not have access to an encryption key to
decrypt the collections of data, the encrypted collections of
data 1n at least some of the plurality of nodes each include
a plurality of keys indicating subsets of records in the
database accessible via other nodes in the graph and corre-
sponding pointers to identifiers of the other nodes, and the
encrypted collections of data 1n at least some of the plurality
of nodes each include records of the database, at least some
of the records including the requested data; receiving a
request for a first node among the plurality of connected
nodes from the first computing system; sending the first
node to the first computing system; receiving a request for
a second node among the plurality of connected nodes from
the first computing system; sending the second node to the
first computing system; receiving an indication that the first
computing system will write to, or has written to, the second
node; 1 response to the indication, sending a message to a
computing device storing at least part of the second node 1n

US 10,474,835 B2

3

cache memory mdicating that values in cache memory are
potentially inconsistent with the current version of the
second node

Some aspects include a tangible, non-transitory, machine-
readable medium storing instructions that when executed by
a data processing apparatus cause the data processing appa-
ratus to perform operations ncluding the above-mentioned
process.

Some aspects include a system, including: one or more
processors; and memory storing instructions that when
executed by the processors cause the processors to eflectuate
operations of the above-mentioned process.

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned aspects and other aspects of the
present techniques will be better understood when the pres-
ent application 1s read 1n view of the following figures 1n
which like numbers indicate similar or 1dentical elements:

FIG. 1A 1s a block diagram depicting an example zero-
knowledge database system;

FIG. 1B depicts an example of a graph data structure by
which subsets of data 1n the database system of FI1G. 1A may
be stored and accessed;

FIG. 1C depicts an example of a B-tree, which 1s an
example of a structure by which data may be stored 1n a
database:

FIG. 1D 1s a flow chart depicting an example of a process
to retrieve data from a remote zero-knowledge database;

FIG. 1E 1s a flow chart depicting an example of a process
to write data to a remote zero-knowledge database;

FIG. 2 1s a block diagram depicting an example protocol
specification, starting with the imtial handshake between
client and server, followed by the multiple requests/re-
sponses that are performed as the client traverses a B-tree
when making a query, 1n some embodiments;

FIG. 3 depicts an example architecture wherein each
client has a unique private tree;

FIG. 4 depicts an example architecture wherein clients
share trees by which clients may query the database server
via an mtermediary (metadata) server which filters results
according to individual client permissions or by which
clients can download objects from the storage server,
bypassing metadata server;

FIG. 5 depicts a use case 1n which multiple clients access
the same data, and a writing client 1s used to make the
architecture performant, and in some embodiments, clients
access the database server directly for all requests other than
writes;

FIG. 6 depicts a use case 1 which customers hand their
data to the database, pre-encrypted for groups of database
users allowed to handle the data and these groups may have
individual B-trees for indexing data of customers they are
allowed to access, or 1n some embodiments, once customer
data 1s recorded into the database, corresponding groups of
database users update their indexes in the background;

FIG. 7 depicts a use case i which customers hand
different fields in their records to diflerent groups of data-
base users and, 1n some cases, use field-level encryption,
wherein the fields are indexed by database users when they
are allowed to access the fields:

FIG. 8 depicts an example visualization of a commutative

aggregation algorithm, wherein values are diamond shaped
marks while sums are circles, and filled diamonds and
circles are those which are summed up 1n this example;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 shows an example of an enterprise-cloud configu-
ration 1n which the cloud keeps the encrypted database, and

the enterprise has the index and query logic and manages the
keys;

FIG. 10 shows an example of an enterprise-cloud archi-
tecture 1n which the cloud keeps the encrypted database and
the encrypted index, the enterprise has the query logic and
manages the keys, and an application can encrypt records
and sign and hand those records to the server;

FIG. 11 shows an example of an enterprise-proxy-cloud
architecture in which the proxy has the query logic and
manages the keys and the cloud keeps the encrypted data-
base and the encrypted index;

FIG. 12 shows an example of any of the previous archi-
tectures 1 which the encrypted database and index are
distributed across multiple, disparate servers;

FIG. 13 shows an example of an architecture using proxy
re-encryption;

FIG. 14 shows a tree data structure 1n which a query 1s
performed on shared data; and

FIG. 15 depicts an example computer system by which a
client or server component of the above systems and meth-
ods may be implemented.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example 1 the drawings and will
herein be described 1n detail. The drawings may not be to
scale. It should be understood, however, that the drawings
and detailed description thereto are not imntended to limit the
invention to the particular form disclosed, but to the con-
trary, the intention 1s to cover all modifications, equivalents,
and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

To mitigate the problems described herein, the inventors
had to both mvent solutions and, 1n some cases just as
importantly, recognize problems overlooked (or not vyet
foreseen) by others 1n the fields of cryptography, cyberse-
curity, and database design. Indeed, the inventors wish to
emphasize the difliculty of recognizing those problems that
are nascent and will become much more apparent 1n the
future should trends 1n the database security industry con-
tinue as the inventors expect. Further, because multiple
problems are addressed, 1t should be understood that some
embodiments are problem-specific, and not all embodiments
address every problem with traditional systems described
herein or provide every benefit described herein. That said,
improvements that solve various permutations of these prob-
lems are described below.

FIG. 1A shows an example of a computing environment
in which a remote, zero-knowledge, untrusted data reposi-
tory 12 hosts data for client devices 14 that communicate
with the data repository 12 via the Internet 16. In some
embodiments, the data may be stored in encrypted nodes of
a graph data structure, examples of which are described
below with reference to FIGS. 1B and 1C. In some embodi-
ments, the decryption keys may be stored by client devices
14, such that the data repository 12 (and entity operating the
same) does not have access to the decryption keys. Conse-
quently, 1n some embodiments, a hostile party with access to
the data repository 12, for example, a hacker or rogue
employee, cannot access the data stored in the data reposi-
tory by users of client devices 14. Further, 1n some embodi-
ments, the encrypted data may be stored 1n an encrypted

US 10,474,835 B2

S

format that obscures or entirely conceals the ordinality of,
and matches between, stored database values. For example,
the database values and graph edges may be stored in a
nondeterminmstic encrypted format (e.g., with data grouped
and or padded by appending random (e.g., pseudo random
values) bit sequences), such that individual records cannot
be compared 1n a way that leaks information to the operator
of the untrusted data repository 12. In some cases, with
nondeterministic encryption, identical values 1n different
nodes may be represented by diflerent bit sequences 1n the
encrypted format (e.g., due to diflerences in padding applied
to the same collections of values). In other embodiments,
some leakage may be permitted, in the interest of various
engineering and cost trade-ofls, for example, by using
deterministic encryption, as various other aspects described
below are independently useful, such as various caching
techniques described below.

The components of the computing environment 10 may
be built from one or more of the computer systems described
below with reference to FIG. 15. Further, such systems may
include tangible, non-transitory, machine-readable media
storing 1nstructions that when executed by one or more
computing processors eflectuate the functionality described
herein. In some cases, these computing devices may be
communicatively connected to one another via various net-
works, such as the Internet 16, local area networks, cellular
networks, and the like. In some cases, multiple client devices
14 may be connected by secure local networks, for example,
in one or more computing systems that interface with the
untrusted data repository 12, for instance, via the Internet 16.
Or in some cases, the untrusted data repository 12 may
reside within an ostensibly secure local area network with
client devices 14. In some cases, the client devices 14 may
execute processes described below with reference to FIGS.
1D and 1FE to read and write data in the data repository 12,
respectively.

In the 1llustrated embodiment, the untrusted data reposi-
tory 12 1s shown as a single component for purposes of
simplicity, but in some embodiments, the untrusted data
repository 12 may include a plurality of computing devices,
including a plurality of virtual machines, Docker™ contain-
ers, uni-kernels, or the like. In some embodiments, the
untrusted data repository 12 resides partially or entirely
within a data center, for instance, within Microsoit’s Azure
service, Amazon’s Elastic Compute Cloud service, or the
like. In other examples, the untrusted data repository 12 may
be formed by a plurality of the public’s computing devices
connected 1n a peer-to-peer network, for instance, 1 a bit
torrent network. In some cases, the graph data structure by
which the data 1s stored may be have edges defined by a
distributed hash table, accessible via an associated lookup
service by which such peers are identified 1n response to
requests from client devices 14, for example, 1n Kademlia or
Chord distributed hash tables.

In some embodiments, the untrusted data repository 12 1s
part of a larger data repository having portions that are
trusted, or for which operators of client devices 14 are
agnostic as to whether such portions are trusted, for instance,
in portions of the data repository having public data. Public
data may be data publicly accessible on the open Internet, or
may be data of a less sensitive nature suitable for more
traditional protection techniques used in conventional net-
works. In some cases, the untrusted data repository may be
a portion of a larger business application, such as an
enterprise resource planning application, or the like, and
particularly sensitive data may be stored in the untrusted
data repository 12.

10

15

20

25

30

35

40

45

50

55

60

65

6

In this example, the untrusted data repository 12 includes
a node data store 18 (which may be distributed among RAM,
persistent memory (like hard drives or solid state drives), or
other storage mediums, of one or more computing devices),
a controller 20 operative to coordinate the functionality of
the repository 12 described herein, an application program
interface server 22, a cache manager 24, and a consistency
manager 26.

In some embodiments, the node data store 18 may include
one or more of the graph data structures described below
with reference to FIGS. 1B and 1C. In some embodiments,
such graphs may include a plurality of graph nodes, each
node having a unique i1dentifier that 1s accessible to the
untrusted data repository, such as a count of the number of
nodes created to date at the time the respective node 1s
created. Each node may also have an encrypted data collec-
tion that stores links between the nodes, also referred to as
pointers from one node to another, or in some cases as edges
of the corresponding graph, or records of the data stored 1n
the data repository 12 by the client devices 14. In some
cases, records of the data stored 1n the data repository 12 are
distinct from metadata describing the arrangement of the
corresponding graph, like the edges of the graph indicating
which nodes point to which other nodes and which records
are accessible via the nodes to which pointers are directed.
In some cases, each edge may be associated with an 1ndi-
cator of which records are accessible via the edge, for
instance, a range ol records accessible by following a path
including the edge.

In some embodiments, the untrusted data repository 12
can distinguish between the nodes (e.g., as separate objects
in storage having diflerent identifiers (e.g., 1n some cases,
cach node be a distinct file, like an encrypted container,
having metadata, such as a node identifier)), but does not
have access to the edges of the graph because those edges
are stored 1n encrypted form. In some cases, the untrusted
data repository 12 may also include a graph, or portions of
the graph for which such edges are accessible to the
untrusted data repository 12, which 1s not to imply that any
characteristic attributed to any data structure herein must be
possessed by each and every 1nstance of the data structure in
an embodiment. Thus, in some cases, the node data store 18
may store, from the perspective of the data repository 12, a
plurality of units of data including a known 1dentifier and an
unknown payload, such units being, from the perspective of
the data repository 12 otherwise unrelated. To expedite
access to the nodes, 1n some embodiments, the node data
store 18 may store the nodes 1n sequential order according
to their node identifier, thereby facilitating relatively fast
retrieval with techniques such as binary searches, or some
embodiments may maintain an index of node i1dentifiers and
corresponding memory or (1.e., and/or) machine network
addresses to facilitate retrieval relatively quickly. In some
cases, such indices may be stored in memory of the con-
troller 20 for fast retrieval.

In some embodiments, the controller 20 may be operative
to receive requests for node identifiers from the API server
22, retrieve the corresponding node from the data store 18,
and advance that node to the API server 22 to be sent to the
requesting client device 14. In some cases, the controller 20
may be operative to verily whether the requested node 1s
subject to an ongoing write operation by another client
device 14 by querying a transaction log in memory of the
consistency manager 26 and determining whether respon-
s1ve transactions indicate an uncommitted write or ongoing,
write operation. In some embodiments, the controller 20
may block the read operation until the corresponding write

US 10,474,835 B2

7

operation 1s complete, or 1n some cases, the read operation
may be permitted (e.g., followed by transmission of an
updated version of the node).

In some embodiments, the controller 20 1s also operative
to recerve requests for nodes to write to from client devices
14 via the API server 22, the request specifying a node
identifier, and respond by retrieving the corresponding node
from the node data store 18. In some embodiments, before
advancing the node, a record 1n the consistency manager 26,
such as 1n a transaction log, may be created to indicate that
the node having the specified node 1dentifier 1s undergoing,
a write operation, and the log may associate that record with
a timestamp indicative of the current time. In some cases, the
retrieved node subject to the write operation may be sent to
the API server 22, which may send the node to the client
device 14 executing the operation. In some cases, belore
sending the node, embodiments may interrogate a transac-
tion log to ascertain whether another write operation on the
node 1s ongoing and uncommitted, using the techniques
described above, and the write operation may be blocked or
delayed until the other write operation 1s complete. In some
cases, after a client device writes to the node, the controller
20 may be further operative to receive the written node with
the new data from the API server 22 and store the new node
in the node data store 18. In some embodiments, the con-
troller 20 may create an updated record 1n the transaction log,
maintained by the consistency manager 26 indicating the
write 1s complete and commutted.

Upon determining that a given node 1s being (or has been)
written to, in some embodiments, the controller 20 may send
an indication to the cache manager 24, which may cause the
untrusted data repository 12 to send a message via API
server 22 to client devices, indicating that the node under-
going the write operation should be expired from (e.g.,
deleted or labeled as unreliable) cache memory in the
respective client devices 14.

In some embodiments, sending a node between the
untrusted data repository 12 and the client devices 14 may
include sending, or consist of sending, a portion of the data
in a node, such as the node 1dentifier, or equivalent thereot,
and the encrypted data collection of a node. In some
embodiments, nodes may 1include additional information
that 1s not exchanged 1n an operation 1n which a node 1s sent,
like a version of the node, a range of memory addresses 1n
which the node 1s stored, and the like.

In some embodiments, the cache manager 24 may be
operative to determine when data cached by client devices
14 has been changed 1n the untrusted data repository 12 and
send messages to the client devices 14 indicating that the
data 1n the cache 1s no longer current. In some cases, every
time a given node 1s written to, the cache manager 24 may
send a cache expiration message to every client device 14
with access to the node. The cache expiration message may
include the node i1dentifier and an indication that the node
has changed. In other cases, to reduce overhead, the cache
manager 24 may store 1n memory a list of client devices that
have cached a given node (the client devices 14 providing
this information via a message sent to API server 22 at the
time of caching), the list including a plurality of client
devices and one or more node identifiers associated with
cach of those client devices, those node 1dentifiers indicating
which nodes have data held in cache memory by the
respective client devices 14. Upon recerving an indication
that a given node has been written to, 1n some embodiments,
the cache manager 24 may query this list for network
addresses of client devices 14 having that node in cache
memory and send a message, for mstance via API server 22,

10

15

20

25

30

35

40

45

50

55

60

65

8

to each responsive client device 14 address, such as an IP
address, indicating that the corresponding cached data
should be expired.

In some embodiments, the consistency manager 26 may
maintain a transaction log. The log may include a plurality
ol transaction records, each record having a timestamp, an
identifier of a client device (or account) requesting the
transaction, a timestamp of the transaction (e.g., a timestamp
of when the transaction began and when 1t was completed),
a description of the transaction (e.g., a write transaction or
a read transaction), and a node identifier to which the
transaction pertains. For example, a record may indicate that
a given node 1dentifier underwent a write operation,
requested at a given time from a given client device. Before
receiving confirmation that the given node 1s subject to a
complete write operation, the consistency manager 26 may
store 1n the transaction log another record indicating that
another client device 14 1s attempting to write to the same
node. In some embodiments, the consistency manager may
query these records, detect temporally overlapping write
operations, 1n which a write to a given node begins for one
device, then begins for another client device, and then
completes for one device, before completing for the other
device, and resolve conflicts. In some embodiments, the
write operations may yield two different copies of a given
node, each copy having a different version 1dentifier and the
same node 1dentifier, and the consistency manager 26 may
choose between those versions to identily the authoritative
version of the corresponding node. In some cases, the choice
may be based on the transaction log, for example, the node
version corresponding to the write request that was recerved
first may be chosen, or the node version corresponding to the
write completion that was received first may be chosen. In
some embodiments, unchosen node versions may be deleted
from the node data store 18, or in some embodiments, nodes
may be immutable, and the most current version may be
generally referenced, with prior versions referred to when
transactions are rolled back (e.g., when the transaction log 1s
distributed, and remote copies are reconciled to obtain
eventual consistency). In some embodiments, a version
index may be maintained for each node, with the version
index indicating which version corresponds to the authori-
tative version as indicated by the consistency manager 26.
Read and write requests may query this index to identify the
node version upon which subsequent operations are to be
performed.

In some embodiments, the client devices 14 may be
configured to interface with the untrusted data store 12. The
client devices 14 may include (e.g., execute code, stored 1n
memory locally, and configured to provide) an encryption/
decryption module 28, a cache module 30, query logic 32,
and an application 34. In some embodiments, components
28, 30, and 32 may be modules (each module having some
or all of the described tunctionality, and not necessarily
being compiled 1n a single compilation 1nstance) of a client
application of a zero-knowledge database. In some cases,
such a zero-knowledge database may include a server appli-
cation hosted by the above-described components of the
untrusted data repository 12, and collectively, the server and
client may form a distributed zero-knowledge database
application.

The term “zero-knowledge™ should not be construed to
imply that the untrusted data repository has zero-knowledge
about information from client devices 14 1n all senses. For
example, 1n some cases, the untrusted data repository 12
may include public data, like that described above, and in
some cases, the untrusted data repository 12 may be capable

US 10,474,835 B2

9

of observing which node 1dentifiers are referenced by which
client devices 14 1n which sequence and with which fre-
quency. Such imnformation leakage, however, 1s expected to
be relatively benign, compared to more traditional tech-
niques for encrypting database applications on remote com-
puting devices. And 1n some cases, dummy requests for
nodes may obfuscate access frequencies and patterns. For
example, client devices 14 may send queries to the untrusted
data repository 12 that are not meant to retrieve any mean-
ingiul data (e.g., are not 1n response to queries), but rather
to obfuscate the true access frequencies and patterns.

In some embodiments, the encryption/decryption module
28 may be operative to encrypt and decrypt the encrypted
data collections of nodes stored in the node data store 18.
Corresponding encryption keys may be stored in memory of
the client device 14 or may be obtained by sending creden-
tials (e.g., log-in credentials, or access keys) stored in
memory of the client device 14 to a remote encryption key
data store, which 1s not to imply that such remotely obtained
encryption keys are not also at some point stored in memory
of the client devices 14.

A variety of different types of encryption may be used. In
some embodiments, the modules 28 encrypt data collections
with private key encryption, with the private keys held in
memory of the client devices 14, or otherwise being denied
to the untrusted data repository 12 and not sent over Internet
16. In some cases, private key encryption may be used, as
the untrusted data repository 12 1s not intended to access the
encrypted data. In some cases, probabilistic encryption may
be used, to prevent another from matching nodes having
identical data. Some embodiments may execute a key gen-
eration algorithm (e.g., one that selects two large random
primes and combines those primes to generate the key), and
associate the generated key with the corresponding node
identifier, using a different key for each node, or for subsets
of the nodes. Examples of encryption techniques include
elliptic curve cryptography, the RSA algorithm, or XOR 1ng
the data with a random or pseudo random key (e.g., a key
having as many characters as the data being encrypted). In
some cases, random values may be obtained with the Digital
Random Number Generator hardware feature offered in
some processors made by Intel Corporation of Santa Clara,
Calif.

In some embodiments, encrypted data may include pad-
ding added by the encryption/decryption module 28, so the
encryption 1s more diflicult to break with brute force attacks.
In some embodiments, the padding may include random
numbers (e.g., pseudorandom numbers, for instance, gener-
ated with a linear shift register, or by sampling the current
wireless environment, by the client devices 14, such that
writes of 1dentical data with identical encryption keys yield
a different encrypted collection of data, for instance, a bit
sequence, encoding the data in encrypted format, with a
different sequence of values, when received by the untrusted
data repository 12, even 1f the encoded data i1s identical
between bit sequences. The encryption keys accessible by a
client device 14 may be 1naccessible to the untrusted data
repository 12. Consequently, the untrusted data repository
12 cannot decrypt data encrypted by the client device 14.

It should be noted, however, that additional layers of
encryption may be used. For instance, public key encryption
may be applied by the untrusted data repositories API server
22 before transmission on the Internet 16 (e.g., with TLS
encryption), or the untrusted data repository 12 may apply
additional layers of encryption using other keys accessible to
the untrusted data repository 12. Decrypting these additional

10

15

20

25

30

35

40

45

50

55

60

65

10

layers 1s distinct from decrypting the encryption applied by
client devices 14 1n the present context.

In some embodiments, the client devices may include a
cache module 30, which may store previously read collec-
tions of data from the data store 18. In some embodiments,
entire nodes may be stored by the cache 30, for instance,
either 1 encrypted or decrypted form. In some embodi-
ments, the cache 30 may store a node 1dentifier 1 associa-
tion with the corresponding data in the encrypted data
collection of that respective node. In some embodiments, 1n
response to determining that a given node 1s needed from the
untrusted data repository 12 (e.g., to service a query), the
client device 14 may {first query cache memory 30 with the
cache module 30 to determine whether the corresponding
data collection 1s stored locally in cache memory. Upon
determining that a node identifier corresponding to the
needed node 1s present 1n cache memory of module 30, some
embodiments may retrieve the corresponding data collection
from cache memory of module 30 and the cache module 30
may provide that data collection to query logic 32, thereby
reducing latency relative to obtamning this data from the
untrusted data repository 12 over the Internet 16.

In some embodiments, the cache module 30 may receive
a message from the cache manager 24, via the API server 22
and Internet 16, indicating that cache memory associated
with a specified node identifier should be expired. In
response, the cache module 30 may delete the records
corresponding to the node identifier, or designate those
records as expired.

A variety of techniques may be executed by the client
device 14 to efliciently allocate a budget of cache memory.
In some embodiments, nodes may be ranked according to
the frequency with which they are retrieved from the
untrusted data repository 12, and those nodes having a
frequency ranking above a threshold number of nodes may
be stored imn cache memory. In some cases, the frequency
may be calculated over a trailing duration, such as over a
trailing minute, hour, day, week, or year. In some cases, two
rankings may be used, one over a trailing longer duration,
and one over a relatively short duration, with cache memory
allocation divided between the two rankings (e.g., the top 10
nodes 1n each ranking).

In some embodiments, the client devices 14 may include
a query logic module 32. The query logic module 32 may be
operative to receive database queries (e.g., structured query
language (SQL) commands) from application 34 and obtain
answers to those queries from the untrusted data repository
12 or cache memory of module 30. In some cases, the query
logic 32 may receive SQL queries and, in response, generate
a plurality of requests for data to obtain information by
which a query response may be formulated. For instance, a
query from the application 34 may request a phone number
associated with a given user identifier in a user identifier
namespace of the application 34. In some cases, the received
query may specily a table 1n a relational database model and
a record in that table, with a record 1n the table being
specified by the user i1dentifier (e.g., “SELECT record_x
FROM table_vy”’). Inresponse, the query logic 32 may iterate
through a sequence of nodes, traversing a path through the
portion ol a graph including those nodes, until the corre-
sponding record 1s 1dentified. Examples of this technique are
described below with reference to FIGS. 1C and 1D. Similar
techniques may be used for writing, with added logic to
maintain a balanced allocation of data within the graph, for
instance, by executing a process described below with
reference to FIG. 1E. In some cases, query logic 32 may
execute one or more processes to index data in the untrusted

US 10,474,835 B2

11

data repository 12. For instance, for frequently received
queries, some embodiments may predictively generate an
index mapping query parameters (before a query using those
parameters 1s received) to node i1dentifiers containing
responsive data corresponding to respective query param-
cters. In some cases, the resulting index may be stored on
client device 14, or 1mn some embodiments, the resulting
index may be stored 1n an encrypted portion of a node 1n the
node data store 18, for instance, to facilitate sharing of the
index by multiple client devices 14.

In some cases, responses to analytical queries (e.g., joins,
sums, or other calculations based on multiple database
records) may be precomputed by the query logic 32 to
tacilitate relatively fast responses to more complex queries.
For instance, a regularly received (e.g., more frequently than
a threshold, like more than 10 times a month) query may
request the sum of expense account expenditures 1n a given
month by each employee 1n a company, and the expenditures
may be stored in encrypted data 1n the node data store 18. In
some embodiments, to expedite such query responses, some
embodiments may precompute (e.g., before a given instance
of the query 1s received), for each record identifying an
employee, the corresponding sum of expenditures for the
preceding month, for instance, once each month, and the
sums may be stored in calculated records in the encrypted
data. A subsequent query for a total monthly expenditure by
the given employee may then be serviced relatively
promptly with reference to these records via an index of
precomputed values formed 1n the precomputaton.

As noted above, the application 34 may be a variety of
different types of applications, and 1 some cases, the
application 34 may access both encrypted data in the
untrusted data repository 12 and unencrypted data. In some
cases, the application 34 may be distributed among multiple
client devices, for instance, more than 100 client devices,
more than 1000 client devices, or more than 10,000 client
devices, within a computer system operated by an organi-
zation. For 1nstance, 1n some cases, the application 34 may
be an enterprise resource planning application, or the like,
with client applications executing on client devices, and
server applications executing on server devices, which in the
context of the computing environment 10 may be referred to
as client devices from the perspective of the untrusted data
repository 12.

FIG. 1B shows an example of a graph of the above-
mentioned nodes. The graph 36 of the illustrated example 1s
an acyclic directed graph, with some of the nodes 38
including edges, or pointers 39 to other nodes 38. For
instance, the 1llustrated node 38 A includes an edge 39, also
referred to as a pointer, to the nodes 38C and 38D. As noted
above, each of the edges, or pointers may include the node
identifier of the node to which the edge points, such as the
node 1dentifier ol node 38C and node 38D for edges 39 from
node 38A. In some cases, nodes may also store identifiers of
nodes pointing to those nodes, which may be referenced
when upstream nodes need to be updated (e.g., when a node
1s split into multiple nodes during a write operation). The
edges, or pointers, may further include a description of the
information accessible through the node to which the edge
points. For instance, this description may include an upper
and lower value of a range of database values (e.g., a range
ol database record key values) accessible in the graph 36
through a path that includes the downstream node 38. For
instance, the pointer 39 between node 38A and 38C may
indicate that node 38C includes a range of database records
spanming from records for a user identifier 111 to a user
identifier 756, and node 38C may include in the encrypted

10

15

20

25

30

35

40

45

50

55

60

65

12

data collection records for at least some of these user
accounts, for mstance, a plurality of fields having values for
cach of the corresponding user accounts. For instance, user
identifier 114 (as key value, and not as a reference to an item
in the figures) may have a record with fields for the user
identifier, a social security number, a first name, a last name,
an address, an email address, and the like. Such values may
be stored 1n association with each stored user account in
node 38C in the range of user accounts 111 to 756. In some
cases, records may be stored sparsely, for instance, with
approximately every other user account number unoccupied
or unassigned in the present example to leave room {for
additional writes 1n a desired sequence. In this example,
these records encoding the user accounts may be stored in
the encrypted data collection 44 of node 38C.

In another example, node 38B includes a pointer or edge
39 to node 38E, and node 38E may include 1n its encrypted
data collection another edge 39 the node 38G. In some cases,
some nodes 38 may include only edges to other nodes, and
not include records stored by the database, or 1n some cases,
the encrypted data collections may include both edges to
other nodes and record stored by the database.

Each node 38 may include a node identifier 40, a node
version 42, and an encrypted data collection 44. In some
embodiments, the encrypted data collection may be an
encrypted block of data encrypted by the encryption/decryp-
tion module 28 of a client device 14, with decryption keys
to which the untrusted data store 12 does not have access.
The node 1dentifiers 40 may be unencrypted, and some node
identifiers 40 may be referenced in the encrypted data
collection 44 of other nodes, 1n some cases, thereby forming
pointers or edges 39 to other nodes. Some embodiments may
track and store node versions 42, which 1n some cases, may
be changed or otherwise incremented each time a node 1s
written to by client device, and these node versions may be
referenced 1n records accessible to the consistency manager
26, such as a transaction log. Or 1n some embodiments, the
node identifier may be created by calculating a hash value on
the entries 1n the node, for instance an MDS5 hash or SHA256
hash. In some cases, the hash value may be calculated based
on the encrypted form of the entries.

A variety of different graphs 36 may be used, with various
trade-oils between programming complexity, access speeds,
and database capacities. In some cases, the graph 36 may be
a hierarchical arrangement of nodes, such as a tree, like a
binary tree or, more generally, a B-tree. In some embodi-
ments, the tree may be approximately or fully balanced. In
some cases, the graph 36 may be a plurality of trees (e.g., a
forest data structure). In some cases, the graph may include
other structures, such as a skip list to favor concurrent
access.

FIG. 1C shows an example of a graph 46 1n the form of
a B-tree. B-tree graphs are expected to be relatively robust
to large data sets, while providing relatively fast access to
individual records 1n the data set. In some embodiments, the
graph 46 includes a root node 48. The nodes of the graph 46
may 1include the format and information of the nodes
described above. In the 1llustrated example, the root node 48
has a node 1dentifier of 0X0001. An encrypted data collec-
tion of the root node 48 may include references to node
identifiers of nodes 50, 52, and 34, having node 1dentifiers
0X0003, 0X0017, and 0X009b, respectively. In some cases,
the encrypted data collection of each non-leaf node includes
a description of the range of values accessible through a path
including the referenced node. For instance, the encrypted
data collection of the root node 48 may include an 1indication
that the range of values from “aaron” to “hello” (e.g., with

US 10,474,835 B2

13

the values arranged alphabetically 1n sequence, like 1n a
keyword index indicating which documents include the
keywords) 1s accessible through the node having the node
identifier 0X003. Similarly, the encrypted data collection of
the root node 48 may further include an 1dentifier of the node
52 (1.e. 0X0017), 1n association with the range of values
accessible 1 a path including that node (1.e., terms between
the word “h1” and the term “pear™).

In some cases, nodes may include pointers to other nodes,
which contain pointers to other nodes, each pointer includ-
ing a description of the range of values accessible on a path
including respective node, until a leat node 1s reached. In the
illustrated example, leal node 56 includes records 1n the
range between the term “fancy” and the term “ifree.” In some
embodiments, a leal node 58 may include a single record, 1n
this case, the record having a key value of term “tlight,” like
a list of documents including this term and word counts 1n
those documents where the term occurs. In some embodi-
ments, the encrypted data collection may include pointers to
other nodes and associated key values that indicate the
highest value or lowest value to be stored 1n that other node,
with a parent node, and adjacent key values mmplicitly
indicating the range of values to be identified in a given
node, thereby potentially conserving memory by listing one
end of a range 1n association with each pointer. Examples of
a read and write operation consistent with the data structure
of 1C are described below.

In some embodiments, the B-tree 46 may be maintained
to comply with, or approximately comply with, a number of
rules, such as rules for constructing and interrogating a
B-tree data structure. For instance, in some embodiments,
every node may have at most a threshold amount of children
nodes pointed to by that node (or be split into two nodes 1t
the threshold 1s exceeded). In some embodiments, every
non-leal node, other than a root node, may have at least a
fraction of that threshold amount of children, such as at least
one half (or be merged with another node 11 the fraction
drops below the threshold). In some embodiments, a root
node may have at least two children nodes, unless that root
node 1s a leat node. In some cases, a non-leal node with X
number of children nodes to which that non-leal node points,
may contain X-1 keys, or indicators (e.g., max or min
values) of ranges stored by the respective children nodes, for
instance, with each key indicating a dividing point between
ranges addressable through the respective children nodes. In
some embodiments, all leal nodes may appear on the same
level. In some cases, nodes at a lowest level of the tree 46
may be referred to as leal nodes, and a node at a highest level
may be referred to as a root node. Nodes between the leaf
nodes and the root nodes may be referred to as intermediate
nodes or branching nodes. In some cases, leal nodes may
include records stored by the database, while non-leaf nodes
may include pointers to other children nodes, 1n some cases
exclusively, or 1n some cases, pointers and database records
may be mixed 1n a given node. For instance, in some
embodiments, leal nodes may include pointers of adjacent
leal nodes, having adjacent ranges of values, to expedite
sequential access to records 1n a plurality of leaf nodes.

FIG. 1D shows an example of a process 60 for reading
data from a remotely stored zero-knowledge database, such
as 1n the untrusted data repository 12 described above. It
should be noted that zero-knowledge databases include
databases 1n which a portion of the database 1s zero-knowl-
edge and another portion of the database 1s, for example,
public data. In some embodiments, the process 60 may be
performed by the above-described client devices 14. But

5

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments of the process 60, like the other processes
described herein, are not limited to the particular implemen-
tations described above.

In some embodiments, the process 60 includes obtaining,
a request for data 1n a database stored 1n a graph by a remote
untrusted computing system, as indicated by block 62. In
some cases, the request for data may be a request from the
application 34 mentioned above, or the request for data may
be generated by translating a SQL query from the applica-
tion into one or more of a plurality of requests for data to
service that query, for instance, by the above-described
query logic 32. In some cases, the request may be for data
encoded 1n records of a zero-knowledge database, for
instance, i encrypted data collections of the above-de-
scribed nodes 1n a graph. In some cases, the requested data
and edges between nodes 1n the graph may be solely stored
in encrypted data collections for which the untrusted data
repository does not have access to decryption keys.

Next, some embodiments may send a request for a first
node of the graph stored by the untrusted computing system,
as 1ndicated by block 64. Sending the request may include
sending an application program interface request to the API
server 22 by transmitting an API request to a local area
network that 1s connected to the Internet 16 described above.
In some cases, the request may 1dentify account credentials
of the client device, a session with a remote untrusted
computing system, and a node 1dentifier, for example, a node
identifier of a root node of a B-tree 46. In some cases, the
request for a first node may be a request for a non-root node
of a tree. For example, a copy of the root node may be stored
in cache memory of the client, and some embodiments may
identify lower level node identifiers 1n a path to which the
requested data 1s accessible. Or in some cases, the graph 1s
a non-tree graph, for example, some other acyclic directed
graph. In some cases, the graph nodes are 1dentified accord-
ing to a distributed hash table, and the requested node
resides at an address accessed through one or more hops
through other computing devices participating in a distrib-
uted hash table-based network, like 1n a bit torrent network.

In some cases, the sent request may be recerved by the
untrusted computing system, for instance, by the API server
22, and the corresponding node may be retrieved from a
node data store 18 and sent back to the requesting computing
device via the Internet 16. In some cases, the requested node
may be sent without decrypting an encrypted data collection
of the requested node. In some embodiments, the first node
may be a non-leal node including an index 1n its encrypted
data collection, the index mapping node pointers (e.g., graph
edges expressed, 1n part, as other node 1dentifiers) to ranges
of database records accessible in the path through the graph
including those respective nodes (e.g., through that node,
and through one or more layers of a hierarchy of nodes
accessible through that node).

Next, some embodiments may receive an encrypted col-
lection of data of the requested node, as indicated by block
66. In some embodiments, an entire node may be received,
or recerving a node may entail just receiving the encrypted
data collection and, 1n some cases, a corresponding node
identifier. In some cases, the encrypted data collection may
be a monolithic block of data when 1n encrypted form, for
example, a file, such as a zip or tar file that has been
encrypted. In some cases, the encrypted data collections may
be compressed by the encryption/decryption module 28 of
client device 14 before encryption and decompressed by the
encryption/decryption module 28 after decryption. Com-
pressing the data 1s expected to conserve bandwidth over the
Internet 16 and conserve storage space in the untrusted data

US 10,474,835 B2

15

repository 12. Compressing the data before encryption 1s
expected to facilitate more eflicient compression, providing
for the use of techmiques, such as run length coding that
would be iterfered with if applied subsequent to encryp-
tion, or some embodiments may compress after encryption.

Next, some embodiments may obtain an encryption key to
decrypt the requested node, as indicated by block 68. In
some cases, encryption keys may be stored locally on the
client device 14, or 1n some embodiments, those keys may
be retrieved from a remote client device, for instance, within
the same computing system, like from one of a collection of
networked computers on a secure network.

In some embodiments, a client device may be tasked with
periodically changing encryption keys and distributing those
changed encryption keys to other client devices 1n a com-
puting system to protect against cases 1n which an encryp-
tion key 1s madvertently disclosed, for instance, in a data
breach, by one of the client devices in the computing system.
For instance, such a computing device may run an applica-
tion that crawls recursively through a graph of nodes and
decrypts the encrypted data collections of those nodes with
a first, older key, and then re-encrypts those data collections
with a different, new encryption key, before sending the
re-encrypted nodes back to the untrusted data repository 12
for storage. The new encryption keys may be distributed to
client devices 14 within the same computing system by this
application for subsequent queries to the untrusted data
repository 12. Or 1n some cases, one client device 1n a
computing system may act as an intermediary, performing
encryption and decryption on nodes requested by another
client device 1n the same computing system, thereby limiting
the number of client devices 1n a computing system having
access to encryption keys. Another way to replace an old key
with a new one (key rotation) would be to use proxy
reencryption. Proxy reencryption was originally designed to
allow an untrusted computing device to transform data
encrypted for one party (A) so that 1t 1s subsequently
encrypted for another party (B) using a transformation key
produced by A. To make a use of 1t for key rotation, some
embodiments may let the old key be key A and the new key
be key B. Client A may produce a transformation key based
on information about key A and key B and hand 1t to the
server which, 1n turn, may perform the reencryption trans-
formation, after which data appears to be encrypted with key
B. In this case, the client may make use of the computational
power ol the server for performing key rotation without
exposing keys to the server. In some cases, the computing
system with these client devices may be a computing system
having a secure network, for instance, behind the same
firewall, connecting these two client devices.

Some embodiments may include decrypting the encrypted
collection of data to obtain a decrypted collection of data, as
indicated by block 70. Decryption may be performed with
the encryption key obtained 1n step 68. In some embodi-
ments, multiple encryption keys may be obtained, for
instance to process multiple layers of encryption.

Next, some embodiments may determine whether the
decrypted collection of data contains the requested data, as
indicated by block 72. In some embodiments, database
records may reside 1n leaf nodes of a tree, and higher-level
nodes may be populated with pointers to lower-level nodes,
but no database records. In such embodiments, the determi-
nation of step 72 may be performed by determining that the
requested node 1s a non-leaf node. In other examples, some
embodiments may include both pointers to other nodes and
database records, in which case some embodiments may
compare the database records to search parameters (e.g., a

10

15

20

25

30

35

40

45

50

55

60

65

16

key value of a sought record, or a criterion for selecting
records) to determine whether the database records include
the requested data.

Determining whether the requested data 1s present in data
records may include iterating through each of the records,
determining whether a key value matches a key value
specified in the request for data, for instance, whether a user
identifier specified 1n a request matches a user 1dentifier 1n
a data record. In some embodiments, records may be stored
as hierarchical objects, for example 1n serializes format as
JavaScript™ object notation (JSON) or extensible markup
language (XML), and some embodiments may determine
whether values 1n those records match a value specified by
the request for data. In some embodiments, the database
records may be stored 1n a sorted order, for instance, 1 a
sorted ordered list, for example, ordered by key values of the
records, to facilitate relatively fast searching with a binary
search of the records 1n the decrypted collection of data.

Upon determining that the decrypted collection of data
does contain the requested data, some embodiments may
provide the requested data to an application, as indicated by
block 74, such as an application that initiated the request for
data 1n step 62. Providing the requested data may include
translating the data into a format corresponding to a struc-
tured query language response, or 1 some cases, the data
may be provided in a hierarchical serialized format, for
instance, as a XML or JSON output. In some cases, provid-
ing the requested data to an application may include trans-
mitting the requested data to another computing device in a
computing system, or 1n some cases, the requested data may
be requested by, and provided to, an application executing
on the same computing device.

Alternatively, upon determining that the decrypted col-
lection of data does not contain the requested data, some
embodiments may proceed to block 76. In this step, some
embodiments select an 1dentifier of a subsequent node 1n the
graph from the decrypted collection of data based on cor-
respondence between the requested data and a key 1n the
decrypted collection of data associated with the selected
identifier. In some cases, the decrypted collection of data
contains an index mapping ranges ol database records, like
ranges of keys values for such records, to 1dentifiers of nodes
through which those ranges of database records are acces-
sible, for instance, pointers to child nodes, such as child
nodes that contain pointers to leal nodes in which the
requested data resides (or would reside 1 records are pres-
ent, as 1n some cases, the request for data may vyield a null
response, indicating that such a record does not exist in the
expected location). In some embodiments, selecting an
identifier may include searching a list of key values to
identily the corresponding node 1dentifier. In some embodi-
ments, the key values may be stored 1in a sorted order to
tacilitate relatively fast retrieval, for instance with the binary
search.

Next, some embodiments may send a request for the
subsequent node of the graph to the untrusted computing
system, as indicated by block 78. In some cases, the request
may be sent to a different computing device (e.g., when
navigating through a collection of computing devices
according to records 1n a distributed hash table, with each of
the computing devices having a portion of the graph, (e.g.,
one node)). Sending the request for the subsequent node may
entail the steps described above with reference to block 64,
with a different node 1dentifier that 1s closer 1n the graph to
the requested data than the first node of the graph. In some
embodiments, sending the request for the subsequent node
may include determining whether cache memory stores a

US 10,474,835 B2

17

cached version of the subsequent node on the computing
device performing process 60. Upon determining that cache
memory contains the subsequent node, some embodiments
may proceed to step 72, 1t and only if the cache memory
stores the node 1n decrypted format, or to step 68, if cache
memory stores the subsequent node 1n encrypted format.
After sending the request, embodiments may proceed to step
66, repeating step 66, 68, 70, 72 and so on for the subsequent
node, 1n some cases, looping through these steps multiple
times, as the process 60 navigates through a path through the
graph, for instance, by recursively crawling from a root node
to a leaf node either having the requested data, or being the
leal node at which the requested data would be present but
1s not, 1n which case a null response may be returned, which
may constitute the requested data for the present purposes i
the requested data 1s not present in the database.

FIG. 1E shows an example of process 80 for writing data
to a balanced tree, such as a B-tree graph encoding a
zero-knowledge database. Balancing trees 1s expected to
yield relatively fast retrieval of data, as a number of levels
of hierarchy of the tree may be kept relatively low 1n
worst-case scenarios, thereby providing for relatively few
requests and responses to navigate from a root node to a leaf
node. In some embodiments, the steps of process 80 may be
performed by one of the above-described client devices 14.

Process 80 may begin with obtaining a value to be written
to a given node of a graph, as indicated by block 82. In some
cases, the graph may be the graph described above, stored 1n
the node data store 18 of the untrusted data repository 12. In
some cases, obtaining a value to be written may include
receiving a structured query language request to write a
value to a database record and transmitting that request into
a sequence of API request API server 22 to eflectuate the
write operation. In another example, obtaining a value may
include performing the process 60 to read data; executing an
analytical query, such as calculating a sum of values, or
constructing a join of values; and writing a result as the
value to be written. In some cases, the value to be written
may be obtained by one of the above-described applications,
such as application 34. In some cases, application 34 may
reside on a different client device 1n a computing system
from a client device having the other components 28, 30, and
32, for instance, on client devices 1n a computing system
connecting the client devices 1n a secure portion of a
network.

Next, some embodiments may obtain a given encrypted
collection of data of the given node, as indicated by block
84. Obtaining the given encrypted collection of data may
include executing the process 60 to navigate to a leal node
in which the value to be written 1s to reside, for instance, as
indicated by ranges of values associated with the node
identifier of the leaf node. In some cases, step 84 may
include sending an indication to the untrusted data reposi-
tory 12 that a client device 14 1s undertaking a write
operation on the given node, and the untrusted data reposi-
tory may advance this message to the consistency manager
26, which may add a record to a transaction log. Or in some
cases, consistency manager 26 may lock the given node
(e.g., with a spinlock) to prevent other client devices from
writing to the given node until the write operation 1s com-
plete and commuitted. Next, some embodiments may decrypt
the given encrypted collection of data to obtain a given
decrypted collection of data, as indicated by block 86. Block
86 may entail steps like those described above with refer-
ence to block 68 and 70 of process 60 of FIG. 1D.

Next, some embodiments may determine whether the
write will cause the number of entries in the node to exceed

10

15

20

25

30

35

40

45

50

55

60

65

18

a threshold, as indicated by block 88. Entries may be either
key values mapped to pointers to other node 1dentifiers, or
entries may be database records, for instance, in leaf nodes.
In some cases, the same threshold may be used both for key
values mapped to pointers and to database records, or some
embodiments may use different thresholds for these different
categories of entries. In some embodiments, each node may
include a count of the number of entries. In some of those
embodiments, each time a value 1s written to the node, that
count may be incremented, and each time a value 1s deleted
from the node, that count may be decremented. Or 1n some
cases, the entries may be counted each time step 88 1is
performed. Upon determining that the write will not cause
the number of entries 1n the node to exceed the threshold,
some embodiments may proceed to step 90.

In step 90, some embodiments may write the value to the
node. Writing the value to the node may include mserting the
value 1n an ordered list of entries in the node and incre-
menting a counter of entries 1n the node, for instance, a
counter stored in the encrypted collection of data. In some
embodiments, writing the value to the node may include
writing an updated version of the node to cache memory of
the client device. In some embodiments, writing the value to
the node may 1nclude sending an updated version of the node
to the untrusted data repository 12 to be stored 1n the node
data store 18. In some embodiments, this write operation
may include encrypting an updated version of the collection
of data for the node with the client device and, then, sending
the encrypted collection of data of the node, along with an
identifier of the node to the untrusted data repository 12 for
storage as an updated version 1n the node data store 18. Upon
storing the updated version, some embodiments may assign
the node a new version i1dentifier, for instance, with the
consistency manager 26. Some embodiments of the consis-
tency manager 26 may update a transaction log, and 1n some
cases, determine whether inconsistent write operations were
undertaken, for instance, by two client devices 14 attempting
to write to the same node, 1n which case, some embodiments
of the consistency manager 26 may rollback one of the write
operations, for instance, by designating a version of the node
as non-authoritative or deleting that version of the node. In
some embodiments, updated versions of nodes may over-
write earlier versions, or 1in some embodiments, nodes may
be 1mmutable, with different versions residing in the
untrusted repository.

Upon determiming that the write will cause a number of
entries 1n the node to exceed the threshold, some embodi-
ments may proceed to step 92 and 1dentily a median value
in the node. In some embodiments, the median value may be
a median value of the entries 1n the node, such as a median
value of key values mapped to pointers, or a median value
of database records in the node. The median value may be
used to split the entries 1n the node to create two nodes, each
one with half of the entries 1n the node. In other embodi-
ments, the node may be split into more than two nodes, for
example, three or four or more. Next, some embodiments
may create a first node of values that are greater than the
median value, as indicated by block 94. Creating the first
node may entail removing values less than the median or
equal to the median from the given node, with the given
node serving as the first node for purposes of block 94.

Next, some embodiments may create a second node of
values from the given node that are less than or equal to the
median, as indicated by block 96. Creating the second node
may entaill adding the values (i.e., entries having those
values), to the data collection of the second node to create
the second node, such as the values of the given node not

e

US 10,474,835 B2

19

present 1n the first node after step 94. In some cases, creating,
the second node may include creating a node identifier of the
second node. In some cases, the 1dentifier may be a count of
nodes in the graph, and the untrusted data repository may
send a current count (reflecting both completed writes and
other concurrent writes) in response to a request for such a
count when a client device determines to split a node.

Next, some embodiments may select a parent node as the
grven node for purposes of step 84 to write pointer values for
the first node and the second node, as indicated by block 98.
In some cases, the entries 1n the parent node may be updated,
for 1nstance, with key values mapping the first node to the
values greater than the median, and the second node to
values less than or equal to the median. In some cases, the
portion of process 80 from step 84 to step 98 may repeat
recursively up a tree, splitting parent nodes to balance the
tree until a root node 1s reached, 1n which case a root node
may be split and a new root node created above the former
root node.

The process 80 further includes determining whether the
value 1s to be written in the first or second node as indicated
by steps 100 and 90. Writing this value may include insert-
ing the value 1 an ordered list of values, and then re-
encrypting the data collection of the node, before sending
the encrypted data collection back to the untrusted data
repository for storage.

Thus, 1n some embodiments, a client-server architecture 1s
provided. Query and encryption logic may be pushed client-
side. Since the server has no insight in these examples into
the nature of the data, the risk of data breach 1s much lower.
Even i1 an attacker successiully infiltrates the server, she will
not have access to the unencrypted data or even any 1nsight
into its structure. By splicing the database index into pieces
which are encrypted and stored on the server, some embodi-
ments are able to provide end-to-end encryption. The meth-
odology can include multiple users with many parallel
requests.

Further, as explained, data may be structured as B-trees or
other types of graphs. A B-tree, in this example, may include
buckets, each of which can be either a root, branch, or leat
node. The leaf nodes of a tree point to the actual objects
being stored. In some embodiments, searching the database
1s a tree traversal.

As discussed above, 1n order to make the database secure
but still capable of performing search functions, the client
may encrypt the buckets at the time of creation or modifi-
cation. The server, which in some embodiments, stores the
buckets, never knows this encryption key (which is not to
imply that the server may not apply additional layers of
encryption to otherwise encrypted files). The objects refer-
enced by the leal nodes of the B-tree indexes may be
encrypted with the same or other encryption key.

In some embodiments, the server does not know how
individual objects are organized within a tree structure (or
other linked data structure, such as an acyclic graph), or
whether they even belong to a tree structure at all. In some
embodiments, the server cannot compare objects, or even
tell whether they are the same object.

When a client performs a query, 1n some cases, it asks the
server to return buckets of the tree as 1t traverses it (e.g., 1n
a just-in-time fashion). FIG. 2 shows a sequence of client
requests for traversal of the tree from FIG. 1C.

In some embodiments, the server can provide objects
(trees and the stored data) to multiple clients simultaneously,
cach of whom may access his own private data set and
private index (FIG. 3) or a shared data set (FIG. 4). In the

latter case, the server can, 1n some embodiments, set quotas

5

10

15

20

25

30

35

40

45

50

55

60

65

20

or throttle data 1n case one of the clients 1s compromised. For
example, 1 an unauthorized user or attacker gains access to
a client and attempts to download the entire database, this
would be disallowed once the amount of data downloaded
surpasses some quota. Variations on the system architecture
can be implemented to meet the specific needs and usage
patterns of various organizations:

EXAMPLE 1

Clients access their private datasets and indexes imdividu-
ally; and

EXAMPLE 2

In some embodiments, clients access a Cloud Access
Security Broker (CASB), which i1s located within the orga-
nization. The CASB server may access a storage server in
the cloud or other remote location, which does not have to
be trusted.

Example 1 1s expected to be particularly relevant for
consumer applications. In some embodiments, each con-
sumer owns his data and encryption keys. Therefore, an
attacker would need to obtain keys of all the consumers to
compromise all the data, which 1s expected to be impracti-
cal.

Example 2 1s more relevant to enterprises, which want to
take advantage of cloud services, rather than storing every-
thing on their own servers. This approach may support
different kinds of security models within organizations (see
c.g., FIGS. 4-7). It also facilitates the implementation of
drop-in replacements for existing SQL and NoSQL database
systems such as Oracle™, PostgreSQL™, MySQL™, Mon-
goDB™, etc. In fact, the original database engine of such
database systems can be used to construct query logic by the
CASB.

Both approaches can be combined with storing public
data on the remote server, or with existing server-side
algorithms to allow querying of encrypted data while open-
ing some metadata properties to a possible adversary, such
as with CryptDB, or MONOMI. In some embodiments, the
balance of these hybrid combinations of remote index access
and server-side algorithms can be determined based on user
requirements.

Example 1 1s demonstrated by FIG. 3. In this approach,
cach client has his own private documents and private
indexes, encrypted with the client’s key. In some embodi-
ments, query logic 1s executed on the client-side. Addition-
ally, the client may be responsible for data or index encryp-
tion as well as decryption and compression. Optional (which
1s not to 1mply that other features are not optional) caching
of frequently accessed B-tree buckets can be done for either
encrypted and compressed data, or decrypted and uncom-
pressed data (or encrypted and uncompressed data, or
decrypted and compressed data). In the first case, the client
1S more secure when 1ts data 1s at rest and, 1n the second case,
the client 1s not required to have as much central processing
umt (CPU) power. Adding new data to the database and
updating data and indexes 1s also done from the client, in
SOmMeE Use cases.

In some embodiments, the application can interact with
the above-described logic by importing it as a library or via
an API.

In some embodiments, the server contains data and
indexes of multiple clients. When a client updates his data or
records new data, other mstances of the application being
run by the same client may be present (1.e., if the database

US 10,474,835 B2

21

1s being accessed from several locations or devices). There-
fore, 1n some embodiments, the server may send 1invalidation
messages for updated records or index buckets 1n order to
ensure that all instances of a client’s application have the
most recent data in their caching layer.

Approach 2 1s illustrated by FIGS. 4-7. In this approach,
multiple client applications may interact with the server
through a CASB. This can be done in order to handle
multiple concurrent write queries to the same index (FIG. 5),
manage data access permissions for shared indexes (FIGS.
6 and 7), and/or provide a compatibility layer to support
existing applications which use currently widespread data-
bases (like SQL or NoSQL varieties).

FIG. 4 1llustrates a situation where a CASB manages
access permissions within an organization which uses the
database. In some embodiments, the CASB can access
encrypted indexes on the server and knows encryption/
decryption keys for the indexes. The CASB does not nec-
essarily have to be able to access and decrypt data records—
simply accessing the index information may be suflicient 1n
SOme use cases.

In some embodiments, applications within an organiza-
tion can perform queries through the CASB and fetch
matching records either directly from the server (which may
manage access permissions via the CASB) or from the
CASB 1tself. In this scenario, the CASB 1s also a good place
to install adapters for existing databases systems.

In some embodiments, CASBs can also manage multiple
simultaneous write queries to the database. The CASB may
be responsible for conflict resolution of different records
and/or indexes written by clients to the database.

In some embodiments, managing multiple simultaneous
queries can be done separately from access permissions.

FIG. 5 shows multiple client apps having direct access to the
same data and indexes on the remote server which takes load
ofl the CASB. Here, 1n this example, the CASB participates
when and only when a client device has to write data. IT
desired, the CASB can be limited to accessing only indexes.

In some embodiments, access permissions can also be
managed without a CASB. In this case, groups within an
organization may have their data encrypted with their
encryption keys or group encryption keys. In this example,
cach group has 1ts own private subtree. Alternatively, groups
can share subtrees on data which they both have permission
to access (see e.g., FIGS. 6 and 7).

Some embodiments may use multiple client requests to
perform one query. Due to the latency between client and
server, the number of requests may be optimized. If index
size 1s 1ndex_size, bucket size 1s bucket size, and a refer-
ence to the next bucket or object occupies ref_size 1n a
bucket, the number of requests needed to perform one query
1s roughly log(index_size/rel size)/log(bucket_size/ref
s1ze). In a practical case of ref_s1ze=30 bytes, index_size=30
GB, bucket_size=110 kb, some embodiments may make
three requests to complete a query, each of which transters
~28 kb of compressed data. The number of requests, 1n some
implementations, grows logarithmically with the index size
(or the data size). There are numerous performance and
scalability optimizations in various embodiments. Optimiz-
ing bucket size for maximum throughput and query perfor-
mance 1s expected to improve performance. Further optimi-
zations are also possible. These include the filtering of
invalidation messages when an index changes so that the
network 1s not flooded with unnecessary messages, privacy
optimizations such as the creation of fake buckets to confuse
the server/outside observers, “garbage™ filler content in
buckets, dummy queries, and the distribution of data across

10

15

20

25

30

35

40

45

50

55

60

65

22

non-colluding servers. For example, the client can create
fake buckets that contain no useful data so that a potential
attacker doesn’t know which nodes contain useful data and
which nodes do not and clients may insert nonsense data into
nodes to achieve the same. Clients may occasionally send
queries to these fake nodes and fake data to further confuse
potential attackers and obfuscate the true access frequencies
and patterns. Clients may distribute their data across mul-
tiple, non-colluding servers so that 1f one server 1s somehow
compromised, only a portion of their encrypted data and
access patterns and frequencies 1s observable by a potential
attacker or unauthorized observer.

Some indexes (such as tull-text index) may involve the
search of multiple elements 1n one or multiple B-trees. For
example, an 1ndex for all the words used 1n a corpus of text
may 1nvolve the traversal of B-tree(s) for each of those
words. Therefore, indexing a new text document would be
relatively slow for some embodiments and use cases, which
1s not to 1mply that such examples are outside the scope of
some embodiments. For example, 1 a document has 100
unique words, written to modest B-trees with a height of 3,
writing the document may need to begin by reading 300
buckets of B-trees. If done sequentially, indexing such a
document would potentially take more than 1 minute (when
round-trip time=0.2 s).

Some embodiments may use the fact that the B-tree (or
multiple B-Trees) for all these words may be traversed
independently. So, 1n the first query, some embodiments may
obtain the first bucket of B-tree for each word (one bucket
if words share the same tree), the second query returns the
second bucket 1n tree traversal for each word, etc. In this
way, the number of queries drops from the number of unique
words 1 the document multiplied by mean B-tree height
(Nw times h) to just h, resulting in an equivalent improve-
ment 1n query performance.

This optimization method 1s not limited to full-text
search. It can be applied to queries which involve searching
for multiple results independently of each other or which use
multiple B-trees that can be traversed independently of each
other. Indexing of a newly added document can be done 1n
background. Or other embodiments may be optimized for
other performance parameters.

The performance of some embodiments may be improved
with pre-calculated indices. Analytical queries may rela-
tively slow in some use cases, so some embodiments may
expedite analytical queries by recording pre-computed prop-
erties 1to the database index and using advanced data
structures.

I1 the same operation 1(0) 1s to be performed on all objects
o 1n the range (e.g., a Map operation), some embodiments
may record pre-computed values of (o) for each object in
the database at the time of creation or update. Then objects
selected by any query will contain precomputed properties
for operation 1.

A different approach may be used to perform an aggre-
gation (e.g., Reduce) query (for example, to calculate sum of
values of some field 1n a range). Typically, many databases
calculate aggregations at the time of a query. Some embodi-
ments may create an mndex that allows users to calculate the
sum of any fields for objects 1n a given range, or to calculate
other commutative operations on properties 1in a given range
(such as sum, product, or, XOR, and, count).

By way of example, a pre-computed, indexed sum opera-
tion 1s described. At the time of indexing (e.g., before query
time), some embodiments may record the sum of elements
in the child node (also referred to as bucket) along with the
link to that bucket. If the bucket 1s a branch node, some

US 10,474,835 B2

23

embodiments may record the sum of all sums recorded 1n the
bucket. If the bucket 1s a leafl node, some embodiments may
record the sum of all values recorded 1n that bucket.

Example pseudocode which describes an example algo-
rithm for calculating the sum of elements 1n a given range 1s
shown below. The code may be used to calculate the sum
from field 1 of object ranging from o start to o end ordered
by some field or precomputed property. The example
pseudocode 1s as follows:

def get sumf(o_ start, o_ end):
find path [root, b[1]...,b[h]] from root to bucket which contains o_ start
result = sumf{o.f for all o >= o__start imnside b[h])
for 1 1n range(h-1, 0, -1):
result += sum(ref.sum for all ref > ref_ to(b[1+1]))
find path [root, ¢[1],...,c[h]] from root to bucket which contains o_ end
result += sum(ref.sum for all ref > ref__to(b[1]) and ref < ref_ to(c[1]))
for 1 1n range(1, h):
result += sum(ref.sum for all ref < ref to(c[i+1]))
result += sum(o.f for all o <= o__end inside c[h])
Now result 1s sum of all fields f for elements in the range
from o_ start till o__end
return result

FIG. 8 shows some embodiments that download only a
number of buckets equal to 2h-1, which 1s logarithmic to the
total number of buckets 1n the tree.

When the user changes the value of a field 1n the database
or creates a new element, he may update all the sums 1n the
parent buckets 1n the index. This takes logarithmic time and
may use a logarithmic number of client-server interactions.

As mentioned earlier, this method 1s applicable to other
commutative operations, not just sum (though sum 1is
expected to be the most common). In this manner, some
embodiments are able to precompute arbitrary Map-type
queries and pre-index arbitrary Reduce-type queries to per-
form them ethciently, 1n logarithmic time.

Examples of alternate architectures are illustrated in
FIGS. 9-13. FIG. 9 shows an example of an enterprise-cloud
configuration 1 which the cloud keeps the encrypted data-
base, and the enterprise has the index and query logic and
manages the keys. FIG. 10 shows an example of an enter-
prise-cloud architecture 1n which the cloud keeps the
encrypted database and the encrypted index, the enterprise
has the query logic and manages the keys, and an application
can encrypt records and sign and hand those records to the
server. FIG. 11 shows an example of an enterprise-proxy-
cloud architecture 1n which the proxy has the query logic and
manages the keys and the cloud keeps the encrypted data-
base and the encrypted index. FIG. 12 shows an example of
any of the previous architectures in which the encrypted
database and index are distributed across multiple, disparate
servers. In some cases, the encrypted database and index are
fragmented.

FIG. 13 depicts using proxy reencryption to share data. In
some embodiments, the cloud keeps the encrypted database
and encrypted index, while a third party performs query
logic and provides 1ts public keys. The client that owns the
data generates transformation keys from 1ts own private keys
and the third party public keys, which allow the server to
transform data. The server then transforms the relevant
pieces of the client’s data and index related to the third
party’s query so that it 1s subsequently encrypted under the
third party’s public keys using proxy reencryption. The third
party can also write to the database using this methodology.

In many cases, users desire to share parts of a database
with third parties. This may involve sharing part of the data
and part of the index. There are multiple possible methods

10

15

20

25

30

35

40

45

50

55

60

65

24

for sharing encrypted data. In some embodiments, a user
device may download part of data to be shared and reencrypt
it with the third party’s (B) public key. In some use cases,
this inflicts a significant performance hit since 1t requires
downloading all the shared data and reencrypting locally on
the side of data owner (A).

Another method consistent with some embodiments uses
the fact that, 1n some embodiments, data pieces encrypted
with asymmetric encryption are encrypted with random
content keys which are, in turn, encrypted with the data
owner’s (A) public key. In this case, data owner A (e.g., a
client computing device operated by owner A) may down-
load the encrypted content keys for all the pieces which are
to be shared with B, decrypt them with his private key,
encrypt them with B’s public key and upload them back to
the server. Now, when B wants to download the data, the
server may give B data pieces encrypted with a content key
that 1s encrypted with B’s public key.

A third method uses proxy re-encryption, as show in FIG.
13. It 1s a method wherein Client device A may compute
locally a transformation key kT based on his private key and
client device B’s public key, which B then sends to the
server. The server then applies this transformation to the data
(or content key), after which 1t 1s encrypted with B’s public
key, without the server knowing either parties private key or
the data. In the case of a database, some embodiments may
share not only the data but also the index to search that data.
One way to share pieces of the index related to a query
which determines which data to share 1s when data owner A
reads the fraction of the B-Tree related to the search query.
Data owner A decrypts that part of the index, encrypts 1t with
the public key of B and uploads 1t back to the server.
Simultaneously or concurrently, client device A figures out
which data 1s related to this search query and encrypts it for
third party B, or uses proxy reencryption as per the methods
described above.

In some cases, the fraction of the B-Tree related to the
query 1s too big to read. In this case, some embodiments may
execute the following (as shown 1n FI1G. 14). FIG. 14 depicts
sharing a fraction of an index with a third party. Buckets to
change are depicted with dotted lines. Buckets to be reen-
crypted on the server using proxy reencryption are depicted
with dot-dashed lines. Buckets which are on the path which
leads to the beginming and the end of the range that 1s to be
shared are duplicated by A locally, and the duplicates are
modified to include only references related to the shared
range, 1n some embodiments. In some 1implementations, all
the buckets inside the “triangle” whose boundaries are
formed by those paths are guaranteed to belong to the shared
range and can be reencrypted on the server using proxy
reencryption. When data owner A shares a fraction of index,
it does not know all 1ts bucket IDs in advance unless A reads
all fractions of the index related to his query. If reading this
fraction 1s undesirable, the following methods are consistent
with some embodiments:

1. Some embodiments do not restrict access of the third

party to buckets or objects once third party knows IDs.
The server reencrypts buckets or objects on demand,
using proxy reencryption. IDs are chosen completely at
random and from a large range, so that 1t 1s not practical
to brute-force any IDs to get any data.

2. Every object and bucket has a reference to the bucket
which refers to 1t, this reference 1s visible to the server.
This method may be used when opening this informa-
tion to the server 1s acceptable.

3. A more compact tree which stores only information
about children but no information about ordering or

US 10,474,835 B2

25

values 1s stored on the server, encrypted with a key of
data owner A. The data owner A uses this tree remotely,
similarly to a B-Tree, to determine only IDs of all
children of any bucket, starting with a given reference.

Some embodiments provide end-to-end encryption for
databases by performing encryption and query logic on the
client. Some embodiments accomplish this by rearchitecting
traditional DBMS systems in order to divorce query logic
and data storage. In some examples, the database server has
zero-knowledge about the data 1t 1s storing. Additionally,
some examples mcorporate obliuscation techniques, which
are used to prevent the server from gaiming insight into the
structure of the data over time by examining queries and
their associated request patterns.

Aspects of an embodiment of the above-described tech-
niques are described 1n greater detail 1n a whitepaper titled
“ZeroDB Whitepaper,” by Michael Egorov and MacLane
Wilkison, submitted on 23 Feb. 2016 (v1) to ArXiv.org,
under the Computer Science heading, in the form last
revised 8 Mar. 2016 (v3), labeled arXiv:1602.07168v3

[cs.CR], the contents of which are incorporated by reference
in their entirety.

FIG. 15 1s a diagram that illustrates an exemplary com-
puting system 1000 in accordance with embodiments of the
present technique. Various portions of systems and methods
described herein, may include or be executed on one or more
computer systems similar to computing system 1000. Fur-
ther, processes and modules described herein may be
executed by one or more processing systems similar to that
of computing system 1000.

Computing system 1000 may include one or more pro-
cessors (e.g., processors 10104-10107) coupled to system
memory 1020, an mput/output I/O device iterface 1030,
and a network interface 1040 via an input/output (I/0)
interface 1050. A processor may include a single processor
or a plurality of processors (e.g., distributed processors). A
processor may be any suitable processor capable of execut-
ing or otherwise performing instructions. A processor may
include a central processing unit (CPU) that carries out
program 1instructions to perform the arithmetical, logical,
and input/output operations of computing system 1000. A
processor may execute code (e.g., processor firmware, a
protocol stack, a database management system, an operating,
system, or a combination thereof) that creates an execution
environment for program instructions. A processor may
include a programmable processor. A processor may include
general or special purpose microprocessors. A processor
may receive instructions and data from a memory (e.g.,
system memory 1020). Computing system 1000 may be a
uni-processor system including one processor (e.g., proces-
sor 1010a), or a multi-processor system including any
number of suitable processors (e.g., 1010q-1010z). Multiple
processors may be employed to provide for parallel or
sequential execution of one or more portions of the tech-
niques described herein. Processes, such as logic flows,
described herein may be performed by one or more pro-
grammable processors executing one or more computer
programs to perform functions by operating on mput data
and generating corresponding output. Processes described
herein may be performed by, and apparatus can also be
implemented as, special purpose logic circuitry (e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific mtegrated circuit)). Computing system 1000
may 1nclude a plurality of computing devices (e.g., distrib-
uted computer systems) to implement various processing
functions.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

I/O device terface 1030 may provide an interface for
connection of one or more I/O devices 1060 to computer
system 1000. I/O devices may include devices that receive
iput (e.g., from a user) or output iformation (e.g., to a
user). I/O devices 1060 may include, for example, graphical
user interface presented on displays (e.g., a cathode ray tube
(CRT) or liquid crystal display (LCD) monitor), pointing
devices (e.g., a computer mouse or trackball), keyboards,
keypads, touchpads, scanning devices, voice recognition
devices, gesture recognition devices, printers, audio speak-
ers, microphones, cameras, or the like. I/O devices 1060
may be connected to computer system 1000 through a wired
or wireless connection. I/O devices 1060 may be connected
to computer system 1000 from a remote location. /O
devices 1060 located on remote computer system, for
example, may be connected to computer system 1000 via a
network and network interface 1040.

Network interface 1040 may include a network adapter
that provides for connection of computer system 1000 to a
network. Network interface may 1040 may facilitate data
exchange between computer system 1000 and other devices
connected to the network. Network interface 1040 may
support wired or wireless communication. The network may
include an electronic communication network, such as the
Internet, a local area network (LAN), a wide area network
(WAN), a cellular communications network, or the like.

System memory 1020 may be configured to store program
instructions 1100 or data 1110. Program instructions 1100
may be executable by a processor (e.g., one or more of
processors 10104-10107) to implement one or more embodi-
ments of the present techmiques. Instructions 1100 may
include modules of computer program instructions for
implementing one or more techniques described herein with
regard to various processing modules. Program instructions
may include a computer program (which 1n certain forms 1s
known as a program, software, software application, script,
or code). A computer program may be written 1n a program-
ming language, including compiled or mterpreted lan-
guages, or declarative or procedural languages. A computer
program may include a unit suitable for use 1n a computing
environment, including as a stand-alone program, a module,
a component, or a subroutine. A computer program may or
may not correspond to a file 1n a file system. A program may
be stored 1n a portion of a file that holds other programs or
data (e.g., one or more scripts stored 1n a markup language
document), 1n a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub programs, or portions of code). A
computer program may be deployed to be executed on one
or more computer processors located locally at one site or
distributed across multiple remote sites and interconnected
by a communication network.

System memory 1020 may include a tangible program
carrier having program instructions stored therecon. A tan-
gible program carrier may include a non-transitory computer
readable storage medium. A non-transitory computer read-
able storage medium may include a machine readable stor-
age device, a machine readable storage substrate, a memory
device, or any combination thereof. Non-transitory com-
puter readable storage medium may include non-volatile
memory (e.g., tlash memory, ROM, PROM, EPROM,
EEPROM memory), volatile memory (e.g., random access
memory (RAM), static random access memory (SRAM),

synchronous dynamic RAM (SDRAM)), bulk storage
memory (e.g., CD-ROM and/or DVD-ROM, hard-drives),
or the like. System memory 1020 may include a non-
transitory computer readable storage medium that may have

US 10,474,835 B2

27

program instructions stored thereon that are executable by a
computer processor (e.g., one or more of processors 1010a-
10107) to cause the subject matter and the functional opera-
tions described herein. A memory (e.g., system memory
1020) may include a single memory device and/or a plurality
of memory devices (e.g., distributed memory devices).

I/O imterface 1050 may be configured to coordinate 1/O
traflic between processors 1010a-10107%, system memory
1020, network interface 1040, I/O devices 1060, and/or
other peripheral devices. I/O interface 1050 may perform
protocol, timing, or other data transformations to convert
data signals from one component (e.g., system memory
1020) into a format suitable for use by another component
(e.g., processors 10104-10107). /O intertace 1050 may
include support for devices attached through various types
of peripheral buses, such as a vanant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard.

Embodiments of the technmiques described herein may be
implemented using a single instance of computer system
1000 or multiple computer systems 1000 configured to host
different portions or instances of embodiments. Multiple
computer systems 1000 may provide for parallel or sequen-
tial processing/execution of one or more portions of the
techniques described herein.

Those skilled i1n the art will appreciate that computer
system 1000 1s merely illustrative and 1s not intended to limat
the scope of the techniques described herein. Computer
system 1000 may include any combination of devices or
software that may perform or otherwise provide for the
performance of the techniques described herein. For
example, computer system 1000 may include or be a com-
bination of a cloud-computing system, a data center, a server
rack, a server, a virtual server, a desktop computer, a laptop
computer, a tablet computer, a server device, a client device,
a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a vehicle-
mounted computer, or a Global Positioning System (GPS),
or the like. Computer system 1000 may also be connected to
other devices that are not illustrated, or may operate as a
stand-alone system. In addition, the functionality provided
by the 1llustrated components may in some embodiments be
combined 1n fewer components or distributed 1n additional
components. Similarly, 1n some embodiments, the function-
ality of some of the illustrated components may not be
provided or other additional functionality may be available.

Those skilled 1n the art will also appreciate that while
various items are 1llustrated as being stored 1n memory or on
storage while being used, these 1tems or portions of them
may be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, 1n other embodiments some or all of
the software components may execute in memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as 1nstructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-accessible medium separate from computer system
1000 may be transmitted to computer system 1000 wvia
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network or a wireless link. Various
embodiments may further include receiving, sending, or
storing nstructions or data implemented 1n accordance with

10

15

20

25

30

35

40

45

50

55

60

65

28

the foregoing description upon a computer-accessible
medium. Accordingly, the present invention may be prac-
ticed with other computer system configurations.

In block diagrams, illustrated components are depicted as
discrete functional blocks, but embodiments are not limited
to systems in which the functionality described herein 1s
organized as illustrated. The functionality provided by each
of the components may be provided by software or hardware
modules that are differently organized than i1s presently
depicted, for example such soiftware or hardware may be
intermingled, conjoined, replicated, broken up, distributed
(c.g. within a data center or geographically), or otherwise
differently organized. The functionality described herein
may be provided by one or more processors of one or more
computers executing code stored on a tangible, non-transi-
tory, machine readable medium. In some cases, third party
content delivery networks may host some or all of the
information conveyed over networks, in which case, to the
extent information (e.g., content) 1s said to be supplied or
otherwise provided, the information may provided by send-
ing instructions to retrieve that information from a content
delivery network.

The reader should appreciate that the present application
describes several inventions. Rather than separating those
inventions into multiple 1solated patent applications, appli-
cants have grouped these inventions into a single document
because their related subject matter lends 1tself to economies
in the application process. But the distinct advantages and
aspects of such mventions should not be conflated. In some
cases, embodiments address all of the deficiencies noted
herein, but it should be understood that the inventions are
independently useful, and some embodiments address only

a subset of such problems or offer other, unmentioned
benelits that will be apparent to those of skill 1n the art
reviewing the present disclosure. Due to costs constraints,
some 1nventions disclosed herein may not be presently
claimed and may be claimed in later filings, such as con-
tinuation applications or by amending the present claims.
Similarly, due to space constraints, neither the Abstract nor
the Summary of the Invention sections of the present docu-
ment should be taken as containing a comprehensive listing
of all such inventions or all aspects of such inventions.

It should be understood that the description and the
drawings are not intended to limit the invention to the
particular form disclosed, but to the contrary, the imntention 1s
to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the present invention as
defined by the appended claims. Further modifications and
alternative embodiments of various aspects of the mnvention
will be apparent to those skilled 1n the art 1n view of this
description. Accordingly, this description and the drawings
are to be construed as illustrative only and are for the
purpose ol teaching those skilled in the art the general
manner of carrying out the invention. It 1s to be understood
that the forms of the invention shown and described herein
are to be taken as examples of embodiments. Elements and
materials may be substituted for those illustrated and
described herein, parts and processes may be reversed or
omitted, and certain features of the invention may be utilized
independently, all as would be apparent to one skilled 1n the
art aiter having the benefit of this description of the inven-
tion. Changes may be made 1n the elements described herein
without departing from the spirit and scope of the invention
as described in the following claims. Headings used herein
are for organizational purposes only and are not meant to be
used to limit the scope of the description.

US 10,474,835 B2

29

As used throughout this application, the word “may” 1s
used 1n a permissive sense (1.€., meaning having the poten-
t1al to), rather than the mandatory sense (1.e., meaning must).
The words “include”, “including”, and “includes” and the
like mean including, but not limited to. As used throughout
this application, the singular forms *“a,” “an,” and “the”
include plural referents unless the content explicitly indi-
cates otherwise. Thus, for example, reference to “an ele-
ment” or “a element” includes a combination of two or more
clements, notwithstanding use of other terms and phrases for
one or more elements, such as “one or more.” The term “or”
1s, unless indicated otherwise, non-exclusive, 1.e., encom-
passing both “and” and “or.” Terms describing conditional
relationships, e.g., “in response to X, Y,” “upon X, Y,”, “if
X, Y,” “when X, Y,” and the like, encompass causal rela-
tionships 1n which the antecedent 1s a necessary causal
condition, the antecedent 1s a suthicient causal condition, or
the antecedent 1s a contributory causal condition of the
consequent, e.g., “state X occurs upon condition Y obtain-
ing”” 1s generic to “X occurs solely upon Y and “X occurs
upon Y and Z.” Such conditional relationships are not
limited to consequences that instantly follow the antecedent
obtaining, as some consequences may be delayed, and 1n
conditional statements, antecedents are connected to their
consequents, e.g., the antecedent 1s relevant to the likelihood
of the consequent occurring. Statements 1n which a plurality
ol attributes or functions are mapped to a plurality of objects
(e.g., one or more processors performing steps A, B, C, and
D) encompasses both all such attributes or functions being
mapped to all such objects and subsets of the attributes or
functions being mapped to subsets of the attributes or
functions (e.g., both all processors each performing steps
A-D, and a case in which processor 1 performs step A,
processor 2 performs step B and part of step C, and
processor 3 performs part of step C and step D), unless
otherwise indicated. Further, unless otherwise indicated,
statements that one value or action 1s “based on” another
condition or value encompass both instances 1n which the
condition or value is the sole factor and instances 1n which
the condition or value 1s one factor among a plurality of
factors. Unless otherwise 1indicated, statements that “each”
instance of some collection have some property should not
be read to exclude cases where some otherwise 1dentical or
similar members of a larger collection do not have the
property, 1.e., each does not necessarilly mean each and
every. Limitations as to sequence of recited steps should not
be read to the claims unless explicitly specified, e.g., with
explicit language like “after performing X, performing Y,” 1n
contrast to statements that might be improperly argued to
imply sequence limitations, like “performing X on items,
performing Y on the X’ed items,” used for purposes of
making claims more readable rather than specifying
sequence. Unless specifically stated otherwise, as apparent
from the discussion, 1t 1s appreciated that throughout this
specification discussions utilizing terms such as “process-
ing,” “computing,” “calculating,” “determining” or the like
refer to actions or processes ol a specific apparatus, such as
a special purpose computer or a similar special purpose
clectronic processing/computing device. As would be under-
stood by one of ordinary skill in the art, references to a
“medium” having instructions includes scenarios 1 which
the medium 1s distributed among a plurality of computing,
devices, with different computing devices having different
subsets or 1stances of the istructions.

In this patent, certain U.S. patents, U.S. patent applica-
tions, or other materials (e.g., articles) have been 1ncorpo-
rated by reference. The text of such U.S. patents, U.S. patent

27 L

10

15

20

25

30

35

40

45

50

55

60

65

30

applications, and other materials 1s, however, only 1ncorpo-
rated by reference to the extent that no contlict exists
between such material and the statements and drawings set
forth herein. In the event of such conflict, the text of the
present document governs.

Some of the present techniques will be better understood
in view of the following enumerated embodiments:
1. A method of operating a client-side of a zero-knowledge
database, the method comprising: obtaining, with a first

computing system, a request for data in a database stored by
an untrusted computing system remote from the first com-
puting system, wherein the database 1s stored 1n a graph that
includes a plurality of connected nodes, each of the nodes
including: an 1dentifier, accessible to the untrusted comput-
ing system, that distinguishes the respective node from other
nodes in the graph; and an encrypted collection of data
stored 1n encrypted form by the untrusted computing system,
wherein: the untrusted computing system does not have

access to an encryption key to decrypt the collections of
data, the encrypted collections of data 1n at least some of the
plurality of nodes each include a plurality of keys indicating
subsets of records in the database accessible via other nodes
in the graph and corresponding pointers to identifiers of the
other nodes, and the encrypted collections of data 1n at least
some of the plurality of nodes each include records of the
database, at least some of the records including the requested
data; sending, from the first computing system to the
untrusted computing system, a request for a first node of the
graph stored by the untrusted computing system; receiving,
with the first computing system, the encrypted collection of
data of the first node; obtaining, with the first computing
system, one or more decryption keys; decrypting, with the
first computing system, the encrypted collection of data of
the first node with at least some of the one or more
decryption keys to obtain a first decrypted collection of data;
selecting, with the first computing system, an identifier of a
second node 1n the graph from the first decrypted collection
of data based on correspondence between the requested data
in the remotely stored database and a key in the first
decrypted collection of data associated with the selected
identifier; sending, from the first computing system to the
untrusted computing system, a request for the second node
with a transmission indicating the selected identifier; and
receiving, with the first computing system, the encrypted
collection of data of the second node; decrypting, with the
first computing system, with at least some of the one or more
decryption keys, the encrypted collection of data of the
second node to obtain a second decrypted collection of data;
and obtaining the requested data remotely stored in the
database based on information in the second decrypted
collection of data.

2. The method of embodiment 1, wherein the first computing
system 1ncludes a computing device storing the one or more
decryption keys and operative to decrypt the encrypted
collections of data stored 1n nodes of the graph stored by the
untrusted computing system, and wherein the encrypted
form 1s a nondeterministic form of encryption.

3. The method of any of embodiments 1-2, wherein the
graph 1s an acyclic directed graph, and wherein a plurality of
the connections between the nodes of the graph are not
accessible to the untrusted computing system, at least in
part, because the plurality of the connections are stored in
the encrypted collections of data.

4. The method of any of embodiments 1-3, wherein the
graph comprises a forest graph having a plurality of uncon-
nected trees.

US 10,474,835 B2

31

5. The method of any of embodiments 1-4, wherein the
graph 1s a hierarchical arrangement of nodes, the arrange-
ment comprising: a root node; children nodes having iden-
tifiers among the encrypted collection of data of respective
parent nodes; and leal nodes having no children nodes,
wherein: every node has at most a threshold amount of
children; every non-leaf, non-root node has at least a thresh-
old fraction of the threshold amount of children; and all leaf
nodes are 1n the same level of the hierarchical arrangement.
6. The method of any of embodiments 1-5, comprising:
obtaining, with the first computing system, a value to be
written to a given node of the graph; obtaining, with the first
computing system from the untrusted computing system, the
given encrypted collection of data of the given node of the
graph; decrypting, with the first computing system, the given
encrypted collection of data to obtain a given decrypted
collection of data determining, with the first computing
system, that inserting a value into the given decrypted
collection of data of a given node will cause the given node
to have more than a threshold amount of values; and in
response to the determination, with the first computing
system, creating two nodes by performing steps comprising:
allocating some of the values 1n the given node to a first new
node; allocating some of the values 1n the given node to a
second new node; including the value to be written 1n the
first new node or second new node; obtaiming i1dentifiers for
the first new node and the second new node; determining,
that adding the identifiers for the first new node and the
second new node to the encrypted collection of data of a
parent node by which the given node was identified will not
cause the encrypted collection of data of the parent node to
have more than the threshold amount of values; in response
to determining that the parent node will not exceed the
threshold, including the 1dentifiers for the first new node and
the second new node in the encrypted collection of data of
the parent node and an association between the added
identifiers and respective ranges of values stored by the first
new node and the second new node; encrypting the first new
mode; after encrypting the first new node, sending the first
new node to the untrusted computing system for storage;
encrypting the second new node; after encrypting the second
new node, sending the second new node to the untrusted
computing system for storage; encrypting the parent node;
and after encrypting the parent node, sending the parent
node to the untrusted computing system for storage.

7. The method of any of embodiments 1-6, wherein obtain-
ing, with a first computing system, a request for data 1n a
database stored by an untrusted computing system remote
from the first computing system, comprises: receiving, with
a query-language-translation computing component in the
first computing system, a structured query language (SQL)
query from a client computing device 1n the first computing
system; and translating, with the query-language-translation
computing component, the SQL query into a plurality of
request for data including the obtained request for data, the
method further comprising: obtaining responsive data for
cach of the plurality of requests for data at the query-
language-translation computing component; and sending a
response to the query including at least some of the respon-
sive data to the client device from the query-language-
translation computing component.

8. The method of any of embodiments 1-7, wherein: obtain-
ing, with a first computing system, a request for data 1n a
database stored by an untrusted computing system remote
from the first computing system, comprises: receiving, with
a security-broker computing device in the first computing
system, a query from a client computing device 1n the first

10

15

20

25

30

35

40

45

50

55

60

65

32

computing system; and decrypting, with the first computing
system, the encrypted collection of data of the first node to
obtain a {first decrypted collection of data, comprises:
decrypting the encrypted collection of data with the security-
broker computing device and sending at least some of the
first decrypted collection of data to the client computing
device via a private network of the first computing system,
wherein the client computing device does not have access to
at least some of the one or more decryption keys.

9. The method of any of embodiments 1-8, comprising:
reading multiple nodes concurrently, with the first comput-
ing system, to construct an index; encrypting the index 1n
one or more nodes; and sending the one or more nodes to the
untrusted computing system for storage.

10. The method of any of embodiments 1-9, comprising:
pre-computing responses to analytical queries with the first
computing system; encrypting the pre-computed responses
in one or more nodes with the first computing system; and
sending the encrypted one or more nodes from the first
computing system to the untrusted computing system for
storage.

11. The method of any of embodiments 1-10, wherein the
database comprises a public portion stored by the untrusted
computing system that 1s stored in unencrypted form or
encrypted 1n a form for which the untrusted computing
system has access to a decryption key to decrypt the public
portion, the method comprising: obtaining, with the first
computing system, another request for other data stored 1n
the public portion; sending, from the first computing system
to the untrusted computing system, the other request; and
receiving the other data after the untrusted computing sys-
tem executes query logic to retrieve the other data.

12. The method of any of embodiments 1-11, comprising:
alter sending, from the first computing system to the
untrusted computing system, the request for the first node,
receiving the request at a firewall separating an unsecured
network from a secured network 1n which at least part of the
first computing system 1s disposed, and sending the request
for the first node to the untrusted computing system from the
firewall via the unsecured network.

13. The method of any of embodiments 1-12, comprising:
executing query logic on the second decrypted collection of
data with a computing device of the first computing system.
14. The method of embodiment 13, wherein executing the
query logic comprises: determining whether values 1n the
second decrypted collection of data match a target value
specified by a SQL query.

15. The method of embodiment 13, wherein executing the
query logic comprises: determining whether a value 1n the
second decrypted collection of data 1s greater than or 1s less
than a comparison value specified by a database query.

16. The method of any of embodiments 1-15, comprising:
sending, from the first computing system to the untrusted
computing system, a request for a third node unrelated to the
request for data to obfuscate to the untrusted computing
system which node includes the requested data.

1’7. The method of any of embodiments 1-16, comprising:
storing, with the first computing system, at least part of the
data 1 the first node 1 a cache memory of the first
computing system; obtaining another request for data with
the first computing system; determining, based on the stored
at least part of the data 1n the first node in the cache memory,
that the first node contains pointers to identifiers of other
nodes that either contain the other requested data or point to
a path through the graph to the other requested data; select-
ing a pointer to another node in the graph from the cache
memory, the pointer specilying an identifier of the other

US 10,474,835 B2

33

node; and sending, {from the first computing system to the
untrusted computing system, a request for the other node
based on the selected pointer.
18. The method of any of embodiments 1-17, comprising:
receiving, with the first computing system from the
untrusted computing system, a message indicating that the at
least part of the data in the first node 1n the cache memory
does not match a more current version of the first node
stored by the untrusted computing system; and 1n response
to the message, expiring the at least part of the data 1n the
first node 1n the cache memory.
19. The method of any of embodiments 1-18, wherein the
first computing system comprises: a plurality of computing
devices connected by one or more networks, each of the
computing devices having an operating system and one or
more applications executing on the operating system,
wherein at least some of the computing devices are servers;
a distributed business application executing on at least some
of the plurality of computing devices, wherein at least some
data of the distributed business application is stored in the
untrusted computing system.
20. A method of operating a database, the method compris-
ing: obtaining, with an untrusted computing system remote
from a first computing system, a database stored 1n a graph
that 1includes a plurality of connected nodes, each of the
nodes including: an identifier, accessible to the untrusted
computing system, that distinguishes the respective node
from other nodes 1n the graph; and an encrypted collection
of data stored in encrypted form by the untrusted computing
system, wherein: the untrusted computing system does not
have access to an encryption key to decrypt the collections
of data, the encrypted collections of data 1n at least some of
the plurality of nodes each include a plurality of keys
indicating subsets of records i1n the database accessible via
other nodes 1n the graph and corresponding pointers to
identifiers of the other nodes, and the encrypted collections
of data 1n at least some of the plurality of nodes each include
records of the database, at least some of the records includ-
ing the requested data; receiving a request for a first node
among the plurality of connected nodes from the first
computing system; sending the first node to the first com-
puting system; receiving a request for a second node among,
the plurality of connected nodes from the first computing
system; sending the second node to the first computing
system; recerving an indication that the first computing
system will write to, or has written to, the second node; 1n
response to the indication, sending a message to a computing,
device storing at least part of the second node 1n cache
memory 1ndicating that values 1n cache memory are poten-
tially inconsistent with the current version of the second
node.
21. A tangible, non-transitory, machine-readable medium
storing instructions that when executed by a data processing
apparatus cause the data processing apparatus to perform
operations comprising: the steps of any of embodiments
1-20.
22. A system, comprising:

one or more processors; and

memory storing instructions that when executed by the
processors cause the processors to eflectuate operations
comprising: the steps of any of embodiments 1-20.

What 1s claimed 1s:
1. A method of hosting a zero-knowledge database, the
method comprising:
storing, 1 a hosting computer system, a database having
a plurality of payloads, wherein:

10

15

20

25

30

35

40

45

50

55

60

65

34

cach payload has an 1dentifier unique to that payload
among the plurality of payloads,
cach payload 1s stored in a non-deterministic encrypted
format,
at least some of the payloads have encrypted pointers to
identifiers of other payloads,
at least some of the payloads have encrypted data
written to the database 1n response to requests from
one or more client computing devices, and
the hosting computer system does not have access to
encryption keys to decrypt the payloads;
recerving, with the hosting computer system, a write
request from a client computing device for a given
payload having a given 1dentifier operable to identify
the given payload amongst the plurality of other pay-
loads:;
in response to a determination to process the write request
for the given payload based on a transaction log 1ndi-
cating that no other write operation pertaining to the
given payload has started but not completed, with the
hosting computer system:
sending the given payload to the requesting client
computing device without decrypting the given pay-
load by the hosting computer system, the given
payload being obtained from within the database
based on the given 1dentifier;
writing a transaction record to the transaction log
indicating the given payload 1s undergoing a write
operation;
receiving, 1n the encrypted format, a new version of the
payload sent by the client computing device, the new
version being received 1 a non-deterministic
encrypted format;
writing a transaction record to the transaction log
indicating that the write operation 1s completed;
storing the new version of the payload 1n the database
without decrypting the new version of the payload
with the hosting computer system; and
in response to storing the new version of the payload 1n
the database, with the hosting computer system:
obtaining a record i1dentifying first computing devices
having cached the given payload based on the given

identifier of the given payload among the payloads;
and
transmitting, to at least some of the first computing
devices based on the record, a message indicating
that cached data corresponding to the given payload
1s not current relative to the new version of the
payload;
recerving, with the hosting computer system, a read
request from a second computing device for the new
version of the payload; and
storing a record 1dentifying the second computing device
as having cached the new version of the payload.
2. The method of claim 1, wherein:
obtaining a record 1dentifying computing devices having
cached the given payload comprises storing records
identifying which computing devices among a plurality
of computing devices cached which payloads among
the plurality of payloads; and
the message indicating that cached data corresponding to
the given payload 1s not current to the new version of
the payload comprises an 1nstruction that causes
respective ones of the at least some of the computing
device to expire any locally cached data corresponding
to the given payload in response to the instruction.

US 10,474,835 B2

35

3. The method of claim 1, wherein the determination to
process the write request further comprises:

detecting overlapping write operations on the given pay-

load by examining the transaction log to identily
whether write requests were received from two or more
different client computing devices; and

in response the detecting overlapping write operations,

treating a first write operation requested between the
overlapping write operations as authoritative.

4. The method of claim 1, wherein the determination to
process the write request further comprises:

detecting overlapping write operations on the given pay-

load by examining the transaction log to identily
whether write requests were received from two or more
different client computing devices; and

in response the detecting overlapping write operations,

treating a first write operation completed between the
overlapping write operations as authoritative.

5. The method of claim 1, wherein:

at least some of the encrypted pointers i the payloads

have encrypted index values indicating ranges of values
of the data written to the database 1n response to
requests from one or more client computing devices,
the ranges of values being ranges of the data accessible
via a respective payload identified by the respective
pointer.

6. The method of claim 1, further comprising:

receiving a read request sent by another client computing

device, the read request indicating a root payload 1n a
hierarchy of the payloads;

sending the root payload to the other client computing

device;

receiving a read request from the other client computing

device for an intermediate payload 1n the hierarchy of
payloads;

sending the mtermediate payload to the other client com-

puting device;

receiving a read request from the other client computing

device for a leaf payload 1n the hierarchy of payloads;
and
sending the leal payload to the other client computing
device, wherein none of the root payload, the interme-
diate payload, or the leaf payload 1s decrypted by the
hosting computer system, and wherein the hosting
computer system stores a record identifying the other
client computing device as having cached at least one
of the root payload, the intermediate payload, or the
leat payload.
7. The method of claim 1, turther comprising;:
receiving a read request from another client computing
device after sending the given payload and before
writing a transaction record to the transaction log
indicating that the write operation 1s completed;

determining that the read request received from the
another client computing device identifies the given
payload; and

sending an indication to the other client computing device

indicating that the given payload 1s undergoing a write
operation.

8. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices eflectuate operations com-
prising:

performing steps for obfuscate access Ifrequencies and

patterns.

10

15

20

25

30

35

40

45

50

55

60

65

36

9. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices eflectuate operations com-
prising;:

performing steps for encrypting the given payload.

10. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices elflectuate operations com-
prising:

decrypting the given payload;

adding, removing, or changing data 1n the given payload;

adding padding to the given payload with means for

generating a random number with hardware.

11. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices eflectuate operations com-
prising;:

performing steps for writing data to a balanced tree.

12. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices eflectuate operations com-
prising;:

performing steps for optimizing a number of requests for

payloads by the client computing device.

13. The method of claim 1, further comprising providing
access to a tangible, non-transitory machine readable
medium storing instructions that when executed by one or
more client computing devices elflectuate operations com-
prising:

performing steps for sharing parts of the database with

other computing devices.

14. A tangible, non-transitory, machine readable medium
storing 1nstructions that when executed by one or more
computing devices eflectuate operations comprising:

storing, 1n a hosting computer system, a database having

a plurality of payloads, wherein:

cach payload has an 1dentifier unique to that payload
among the plurality of payloads,

cach payload 1s stored 1n a non-deterministic encrypted
format,

at least some of the payloads have encrypted pointers to
identifiers of other payloads,

at least some of the payloads have encrypted data
written to the database at the instruction of one or
more client computing devices, and

the hosting computer system does not have access to
encryption keys to decrypt the payloads;

recerving, with the hosting computer system, a write

request from a client computing device for a given
payload having a given identifier operable to identity
the given payload amongst the plurality of other pay-
loads;

in response to a determination to process the write request

for the given payload based on a transaction log 1ndi-

cating that no other write operation pertaiming to the

given payload has started but not completed, with the

hosting computer system:

sending the given payload to the requesting client
computing device without decrypting the given pay-
load by the hosting computer system, the given
payload being obtained from within the database
based on the given 1dentifier;

US 10,474,835 B2

37

writing a transaction record to the transaction log
indicating the given payload 1s undergoing a write
operation;
receiving, in the encrypted format, a new version of the
payload sent by the client computing device, the new
version beimng received 1 a non-deterministic
encrypted format;
writing a transaction record to the transaction log
indicating that the write operation 1s completed;
storing the new version of the payload in the database
without decrypting the new version of the payload
with the hosting computer system; and
in response to storing the new version of the payload in
the database, with the hosting computer system:
obtaining a record i1dentifying first computing devices
having cached the given payload based on the given
identifier of the given payload among the payloads;
and
transmitting, to at least some of the first computing
devices based on the record, a message indicating
that cached data corresponding to the given payload
1s not current relative to the new version of the
payload;
receiving, with the hosting computer system, a read
request from a second computing device for the new
version of the payload; and
storing a record 1dentifying the second computing device
as having cached the new version of the payload.
15. The medium of claim 14, wherein:
obtaining a record 1dentifying computing devices having
cached the given payload comprises storing records
identifying which computing devices among a plurality
of computing devices cached which payloads among
the plurality of payloads; and
the message indicating that cached data corresponding to
the given payload 1s not current to the new version of
the payload comprises an 1nstruction that causes
respective ones of the at least some of the computing
device to expire any locally cached data corresponding
to the given payload 1n response to the instruction.
16. The medium of claim 14, wherein the determination
to process the write request turther comprises:
detecting overlapping write operations on the given pay-
load by examining the transaction log to identily
whether write requests were received from two or more
different client computing devices; and
in response the detecting overlapping write operations,
treating a first write operation requested between the
overlapping write operations as authoritative.
17. The medium of claim 14, wherein the determination
to process the write request further comprises:

10

15

20

25

30

35

40

45

50

38

detecting overlapping write operations on the given pay-
load by examining the transaction log to identily
whether write requests were received from two or more
different client computing devices; and

in response the detecting overlapping write operations,
treating a first write operation completed between the

overlapping write operations as authoritative.

18. The medium of claim 14, wherein:

at least some of the encrypted pointers in the payloads
have encrypted index values indicating ranges of values
of the data written to the database 1n response to
requests from one or more client computing devices,
the ranges of values being ranges of the data accessible
via a payload identified by the respective pointer.

19. The medium of claim 14, the operations further

comprising:

receiving a read request sent by another client computing
device, the read request indicating a root payload 1n a
hierarchy of the payloads;

sending the root payload to the other client computing
device;

recerving a read request from the other client computing
device for an intermediate payload 1n the hierarchy of
payloads;

sending the intermediate payload to the other client com-
puting device;

recerving a read request from the other client computing
device for a leaf payload 1n the hierarchy of payloads;
and

sending the leal payload to the other client computing
device, wherein none of the root payload, the interme-
diate payload, or the leaf payload 1s decrypted by the
hosting computer system, and wherein the hosting
computer system stores a record identifying the other
client computing device as having cached at least one
of the root payload, the intermediate payload, or the
leal payload.

20. The medium of claim 14, the operations further

comprising;

recerving a read request from another client computing
device after sending the given payload and before
writing a transaction record to the transaction log
indicating that the write operation 1s completed;

determiming that the read request received from the
another client computing device identifies the given
payload; and

sending an indication to the other client computing device
indicating that the given payload 1s undergoing a write
operation.

	Front Page
	Drawings
	Specification
	Claims

