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SIMULATION DEVICE, SIMULATION
METHOD, AND MEMORY MEDIUM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a National Stage of International
Application No. PCT/IP2015/004081, filed on Aug. 18,
2015, which claims priority from Japanese Patent Applica-
tion No. 2014-1723771, filed on Aug. 27, 2014, the contents
of all of which are incorporated herein by reference 1n their
entirety.

TECHNICAL FIELD

The present invention relates to a simulation technology
of mathematically modeling and numerically calculating 1n
a computer a phenomenon taking place 1n the real world and
a hypothetical situation.

BACKGROUND ART

Simulation mathematically models and numerically cal-
culates 1n a computer a phenomenon taking place 1n the real
world and a hypothetical situation. Mathematical modelling,
enables calculation to be performed with time and space set
as desired. Such simulation enables a situation in which
obtaining actual results 1s diflicult (for example, a situation
at a place where performing observation 1s diflicult) and an
event that may occur 1n the future to be predicted. Varying
conditions for calculation intentionally enables features and
behavior 1n a situation that 1s diflicult to actually observe to
be studied. Such a simulation result may be put to use as an
indicator 1n theoretical clarification of a cause-and-eflect
relationship, designing, planning, or the like.

In particular, simulation 1s effective in the case 1n which
it 1s desired to grasp and understand a state continuously
over a wide range 1n a situation 1 which observation data
actually obtained have a small number of data pieces and a
distribution biased not only spatially but also temporally.
However, simulation 1s only imitating a reality mathemati-
cally, and accuracy thereof thus depends on how deeply the
reality 1s understood and how faithfully imitated. Therefore,
in the case of targeting a phenomenon whose actual obser-
vation data 1s small 1n quantity as described above and which
1s 1ncompletely understood, a model comes to include
incompleteness. Moreover, since calculation 1s performed
discretely, fractionation of a target domain and a large
amount of calculation are required to grasp it continuously
over a wide range. In practice, however, there 1s no other
choice but to set a calculation condition including incom-
pleteness 1n accordance with allowable computation time
and computational resources. Such incompleteness reduces
the accuracy of simulation.

Thus, as a scheme for improving the accuracy of simu-
lation under the condition having such incompleteness, data
assimilation 1s known. Data assimilation 1s a method of
incorporating observation data obtained from reality mnto a
numerical simulation. Even performing simulation based on
the same mathematical model yields various results depend-
ing on the afore-described internal incompleteness, a given
initial condition, a boundary condition, and the like. Data
assimilation searches out a result explaining observation
data obtained in reality best from the various simulation
results and, at the same time, updates the model and con-
ditions.
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2

Data assimilation, which 1s often used 1n earth science and
oceanography, not only has been developed especially 1n
meteorology and has been contributing to improvements in
accuracy ol daily weather forecasts, but also new methods
thereol have been proposed successively. That 1s partly
because improvements in observation technologies relating
to weather have caused obtamnable observation data to
become diverse and the quantity of data has increased not
only spatially but also temporally.

In weather forecasting, improving spatial and temporal
accuracy of simulation to predict a rapidly developing
thundercloud and rain accurately 1s also a problem. As a
related technology for coping with such a problem, a
weather prediction device disclosed in PTL 1 1s known. The
weather prediction device uses precipitable water data col-
lected by GPS receivers, which are placed at a lot of
locations and which enable frequent observation, wind
direction and wind speed data collected by Doppler radars,
and rainfall intensity data collected by Radar-AMeDAS. The
weather prediction device takes in the above-described data
measured in real time or quasi-real time and performs data
assimilation using the three-dimensional variational method.
As another related technology for coping with the problem
described above, a synchronization device and a meshing
device disclosed 1n PTL 2 1s known. When data pieces from
a plurality of observation devices are asynchronous, the
synchronization device reorganizes the observation data
pieces on the time axis by means of interpolation processing
to synchronize the observation data pieces so that the
observation data pieces indicate observation data pieces of
the same time. The meshing device rearranges, 1n a target
domain, synchronized observation data pieces collected at a
plurality of places so that the observation data pieces are
positioned at mesh points (grid points) with a fixed distance
interval 1n a horizontal space.

After a natural disaster, an artificial accident, and the like
caused by a sudden change in weather or a marine environ-
ment, grasping a state of the soil accurately over a wide
range 1s required. To achieve the requirement, observing and
estimating a state of the soil by use of a wide-ranging
observation means and with high accuracy becomes a prob-
lem. As a related technology for coping with such a problem,
a method disclosed in PTL 3 1s known. Although not being
a method utilizing simulation, the method, using satellite
images collected at three or more times, estimates feature
quantities representing corresponding states of the soil. For
more details, when there 1s not enough time and cost for
conducting observation and 1nvestigation 1n the field or 1t 1s
dangerous to approach the field, the method uses image data
collected by a synthetic aperture radar (SAR) or the like
mounted on an artificial satellite. The method, using the
satellite SAR 1mages, enables a state of the soil to be grasped
speedily, over a wide range, and safely. As a specific
example, an example 1n which soil salinity and drainabaility
in a coastal area after a tsunami occurrence are estimated on
the basis of changes in index values of so1l moisture content
recorded 1n satellite 1mages collected at three times: before
the tsunami occurrence; immediately thereafter; and several
months later 1s described in PTL 3.

An example of a method of, by use of satellite SAR
images and a yield prediction model of a crop, performing
yield prediction of paddy rice fields 1n wide-ranging areas in
the first half of a growing period with little labor and with
high accuracy 1s described in PTL 4. In general, an optical
sensor mounted on a satellite that observes the intensity of
reflected light from sunlight 1n the visible and near-infrared
regions 1s substantially influenced from weather, as in the
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case 1n which, when there 1s a cloud, observation 1s not able
to be performed. Thus, 1n the method, SAR 1mage data
collected using a microwave (X-band: wavelength of 3.1
cm), which 1s not influenced by a cloud, are used. In the
method, a yield prediction expression, using regression
analysis, based on a correlation between obtained SAR
image data and a quantity representing the growth state of a
crop, such as plant height and the number of stems, 1is
calculated to perform a vyield prediction.

Although being different from simulation of the real
world, there 1s a case 1n which a mathematical model 1s used
for analysis of observation data. For example, in a use of
determining whether or not an object exists in a predeter-
mined area using millimeter wave radar or the like, accurate
determination based on only observation data was diflicult.
That 1s because, 1n particular, when an object 1s a walker,
reflection intensity of radar i1s substantially small (an SN
ratio, that 1s, a signal to noise ratio, 1s small) and, due to
various postural change of the walker, reflection intensity
changes moment by moment. As a related technology for
coping with such a problem, a method disclosed 1n PTL 5 1s
known. In the method, from a distribution of reflection
intensity with respect to detection positions of an object,
feature quantity models of a walker signal and a noise signal
are created mn advance. By comparing actual observation
data with the models, 1n the method, states including “exis-
tent”, “non-existent”, and ‘“‘unclear” are probabilistically
estimated based on non-ideal observation data. In addition,
in PTL 35, a method for, with respect to the states of
“existence”, “non-existence”, and “unclear”, unitying prob-
abilities of a plurality of states obtained from a plurality of
sensors 1s also described.
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SUMMARY OF INVENTION

Technical Problem

In each of the above-described related technologies,
increasing the types and number of pieces of observation
data to be obtained 1s the starting point of means solving the
problems of improving accuracy of simulation having
incompleteness and estimating a state based on non-ideal
observation data. However, since observation data to be
increased are not always 1deal, a processing method taking
into consideration non-ideal observation data 1s indispens-
able. For example, in PTL 1, an abnormal value removal
device that removes abnormal values after having obtained
observation data 1s described. The abnormal value removal
device determines, to be abnormal values, observation data
that have a diflerence not smaller than a predetermined value
from calculated values based on a weather model at an
identical time. However, 1n such abnormal value determi-
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nation based on a single piece of information that 1s local
and a model-based calculated value, rapidly changing states
and environments or phenomena having peculiarities 1s not
able to be taken into consideration. The related technology
disclosed in PTL 5 1s capable of estimating various states
including a possibility of a peculiarity and the like on the
basis of a greater variety of information because of perform-
ing probabilistic unification after comparing observation
data with models. However, the related technology mainly
uses a general weighted average as a unification method of
probabilities and has a problem 1n that only observation data
of the same type and with the same number of dimensions
are subject to unification. The related technique also has a
problem 1n that no scheme enabling determination or revi-
s1ion of unification results 1s taken into consideration.

As a measure to raise the accuracy of simulation having
incompleteness and perform state estimation based on non-
ideal observation data, processing obtained observation data
in advance 1s concervable 1n addition to increasing the types
and the number of pieces of observation data to be collected.
Although the synchronization device and meshing device
disclosed 1n PTL 2 perform temporal and spatial interpola-
tion statistically based on only obtained observation data,
obtaining observation data that are continuous and that have
a high correlation 1s a prerequsite. PTL 3 includes a
description of a method of estimating a state of soil by
unifying satellite 1images collected at three diflerent times.
However, PTL 3 does not refer to any measure against a case
in which satellite data have not been obtained at an optimal
time and a case in which data exhibit a peculiar value
influenced from water remaining on a soil surface and the
like. As described above, the related technologies disclosed
in PTLs 2 and 3 do not take into consideration observation
data having any discontinuity and peculiarity. The related
technology disclosed 1n PTL 4 uses microwave sensor data
with priority given to the certainty of data obtainment
instead of optical sensor data characterized by unstableness
of the time interval for collection of ideal observation data
due to intluence from weather. Since the related technology
creates a yield prediction model recursively (inductively)
based on data obtained 1n such a way, there 1s a concern that
the related technology may create an mappropriate model in
the case 1n which the data have a discontinuity or peculiarity.

Next, a problem 1n simulation using typical data assimi-
lation, disclosed in PTLs 1 and 2, will be described with
reference to the drawing. In FIG. 15, a schematic diagram
illustrating simulation using typical data assimilation 1is
presented. In FIG. 15, the horizontal axis and the vertical
axis represent the time and observation values, respectively.
The observation values are values actually measured by
sensors and the like. A state variable 1s a variable to calculate
the time evolutions thereof 1n a simulation model. Obser-
vation values are not always true values of a target quantity
because of ifluence from observation frequency, sensor
accuracy, and the like. Thus, 1n FIG. 135, the unknown true
values are wvirtually illustrated by a broken line. Since
observation values are related with a state variable by an
observation model, calculating a time variation of the state
variable enables simulation of observation values to be
performed. As described afore, however, in the case in which
there 1s mcompleteness residing in the model or an uncer-
tamnty 1 a boundary condition, or depending on a given
initial condition, 1t 1s dithcult for simulation to reproduce
true values. Thus, 1n data assimilation, a disturbance 1s
intentionally added to perform stochastic simulation and,
from obtained various simulation results, a result explaining
observation data obtained from reality best 1s searched out.
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In FIG. 15, this process 1s schematically illustrated by solid
lines expressing a plurality of calculated values (simula-

tions ). Each simulation 1s continued using, as an initial value
of the next step, a value that 1s revised on the basis of an
observation value. As 1s obvious from FIG. 15, 1f time until
obtaining a next observation value 1s long, simulation values
during the period cannot be revised, which causes errors
from the true values to be added up and grow larger. In the
case 1n which obtained observation values are mappropriate
or includes a lot of errors, since a value revised on the basis
of the data 1s to be used as an 1nitial value of the next step,
simulation values during a period until a next reliable value
1s obtained come to have large errors.

The present invention 1s made 1n consideration of the
above-described problems. That 1s, an object of the present
invention 1s to provide a technology of performing a high-
resolution and high-accuracy simulation over a wide range
taking 1nto consideration non-ideal observation data and
observation data that have a discontinuity or peculiarity.

Solution to Problem

In order to achieve the object described above, a simula-
tion device of the present mvention includes: mput means
for obtaining an 1nitial state of a state vector and a parameter
in a simulation and a plurality of pieces of observation data
as input; a system model that, based on the 1nitial state and
the parameter, simulates a time evolution of the state vector;
data selection processing means for, based on information
relating to the state vector in the system model, selecting,
from the plurality of pieces of observation data, a plurality
of pieces of observation data to be used; plurality of obser-
vation models, each being associated with one of the
selected plurality of pieces of observation data, each of
which transforms and outputs a state vector output from the
system model based on a relationship between the observa-
tion data and the state vector; posterior distribution creating,
means for, based on state vectors output from the plurality
of observation models and pieces of observation data
selected by the data selection processing means, creating
posterior distributions of the state vector, outputting a pos-
terior distribution based on all pieces of observation data
selected by the data selection processing means as a first
posterior distribution, and outputting a posterior distribution
based on a set of observation data lacking one or more pieces
ol observation data as a second posterior distribution; pos-
terior distribution unifying means for performing unification
of the first posterior distribution and the second posterior
distribution; determining means for determining which one
of the second posterior distribution and a posterior distri-
bution aiter the unification is to be used; and output means
for, 1n addition to iputting a state vector including a
posterior distribution determined by the determining means
and the first posterior distribution to the system model,
outputting a time series of the state vector.

A simulation method of the present mvention includes:
when an 1nitial state of a state vector and a parameter in a
simulation and a plurality of pieces of observation data are
input, simulating a time evolution of the state vector using
a system model based on the 1nitial state and the parameter;
selecting, from the plurality of pieces of observation data, a
plurality of pieces of observation data to be used based on
information related to the state vector in the system model;
transforming, by use of a plurality of observation models
cach of which 1s associated with one of the selected plurality
of pieces of observation data, the state vector output from
the system model based on a relationship between the piece
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ol observation data and the state vector; creating posterior
distributions of the state vector based on state vectors output
from the plurality of observation models and the selected
pieces of observation data; performing unification of a first
posterior distribution based on all the selected pieces of
observation data and a second posterior distribution based
on a set ol observation data lacking one or more pieces of
observation data; determining which one of the second
posterior distribution and a posterior distribution after the
unification 1s to be used; inputting a state vector including a
determined posterior distribution and the first posterior
distribution to the system model; and outputting a time
series of a state vector including a determined posterior
distribution and the first posterior distribution.

A storage medium of the present invention stores a
computer program, the program making a computer device
execute: an mput step of obtaining an initial state of a state
vector and a parameter 1n a simulation and a plurality of
pieces ol observation data as input; a system model calcu-
lation step of, based on the initial state and the parameter,
simulating a time evolution of the state vector using a system
model; a data selection processing step of, based on 1nfor-
mation relating to the state vector in the system model,
selecting, from the plurality of pieces of observation data, a
plurality of pieces of observation data to be used; an
observation model calculation step of, by use of a plurality
ol observation models each of which 1s associated with one
of the selected plurality of pieces of observation data,
transforming and outputting each state vector output from
the system model based on a relationship between the piece
ol observation data and the state vector; a posterior distri-
bution creating step of, based on state vectors output from
the plurality of observation models and pieces of observa-
tion data selected in the data selection processing step,
creating posterior distributions of the state vector, outputting
a posterior distribution based on all pieces of observation
data selected in the data selection processing step as a {first
posterior distribution, and outputting a posterior distribution
based on a set of observation data lacking one or more pieces
of observation data as a second posterior distribution; a
posterior distribution umifying step of performing unification
of the first posterior distribution and the second posterior
distribution; a determining step of determining which one of
the second posterior distribution and a posterior distribution
after the unification 1s to be used; and an output step of
inputting a state vector including a posterior distribution
determined 1n the determiming step and the first posterior

distribution to the system model and outputting a time series
ol the state vector.

Advantageous Elflects of Invention

The present invention provides a technology of perform-
ing a high-resolution and high-accuracy simulation over a
wide range taking into consideration non-ideal observation
data and observation data that have a discontinuity or
peculianty.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1llustrating a configuration of a
simulation device as a first example embodiment of the
present 1nvention;

FIG. 2 1s a block diagram illustrating an example of a
hardware configuration of the simulation device as the first
example embodiment of the present invention;
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FIG. 3 1s a diagram schematically illustrating a relation-
ship between a state vector and sets of observation data 1n
the simulation device as the first example embodiment of the
present mvention;

FIG. 4 1s a flowchart explaining an operation at the start
of a stmulation of the simulation device as the first example
embodiment of the present invention;

FIG. 5 1s a flowchart explaining a simulation operation of
the simulation device as the first example embodiment of the
present mvention;

FIG. 6 1s a diagram schematically explaining an advan-
tageous effect of the first example embodiment of the present
invention;

FIG. 7 1s a block diagram 1llustrating a configuration of a
simulation device as a second example embodiment of the
present mvention;

FIG. 8 1s a diagram schematically illustrating a relation-
ship between time series variations ol sets of observation
data and a calculation grid space in the second example
embodiment of the present invention;

FI1G. 9 1s a diagram 1llustrating an example of a variogram
estimation result 1n posterior distribution unification per-
formed by the simulation device as the second example
embodiment of the present invention;

FIG. 10 15 a flowchart describing a posterior distribution
unification operation performed by the simulation device as
the second example embodiment of the present invention;

FIG. 11 1s a block diagram illustrating a configuration of
a simulation device as a third example embodiment of the
present mvention;

FI1G. 12 1s a diagram schematically 1llustrating a relation-
ship between time series variations of sets of observation
data and a calculation grid space in the third example
embodiment of the present ivention;

FIG. 13 1s a block diagram 1llustrating a configuration of
a simulation device as a fourth example embodiment of the
present ivention;

FIG. 14 1s a diagram schematically 1llustrating a relation-
ship between sets of observation data and a calculation grid
space 1n the fourth example embodiment of the present
invention; and

FIG. 135 1s a diagram schematically illustrating simulation
using data assimilation of a related technique.

DESCRIPTION OF EMBODIMENTS

Hereinafter, example embodiments of the present inven-
tion will be described with reference to drawings.

(First Example Embodiment)

A simulation device 100 as a first example embodiment of
the present invention will be described. The simulation
device 100 1s applicable to simulation that solves a continu-
ous time-space partial differential equation formulated
according to physical laws and follows a time evolution.
Such partial differential equations include, for example, an
equation ol motion that describes motion, Navier-Stokes
equations that describe fluid, a thermodynamic equation that
describes thermal change, and a shallow-water wave equa-
tion that describes tsunamis. The simulation device 100 1s
also applicable to simulation using a finite element method.
In the present example embodiment, it 1s assumed that a
system subject to simulation 1s a system 1n which a state
vector the temporal change of which 1s followed 1s linked
with actual observation data by means of any relational
expression, that 1s, a system that allows comparison between
simulation results and observation data.
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First, a configuration of the simulation device 100 1s
illustrated 1n FIG. 1. In FIG. 1, the simulation device 100
includes a system model 21, a data selection processing unit
30, m observation models 31 (a first observation model 31-1
to a m-th observation model 31-m), a posterior distribution
creating unit 40, a posterior distribution unifying unit 50,
and a determining umt 51. The simulation device 100 also
includes an 1input unit 10 and an output unit 60. In the above
description, m 1s an integer not smaller than 2 and not larger
than M, where M 1s an integer not smaller than 2. In FIG. 1,
the stimulation device 100 also includes a prior distribution
storage unit 22, a first posterior distribution storage unit 414,
a second posterior distribution storage unit 415, and a
unified posterior distribution storage unit 52, as storage
arcas storing data that are input and output among the
functional blocks. The prior distribution storage unit 22 is
included 1n an example embodiment of a portion of a system
model of the present invention. In addition, the first posterior
distribution storage unit 41a and the second posterior dis-
tribution storage unit 415 are included in an example
embodiment of a portion of a posterior distribution creating
unit of the present invention. Further, the unified posterior
distribution storage umt 52 i1s included in an example
embodiment of a portion of a posterior distribution unitying
unit of the present imvention.

An example of a hardware configuration of the stmulation
device 100 1s illustrated 1in FIG. 2. In FIG. 2, the simulation
device 100 1s configured using a CPU (Central Processing
Unit) 1001, a RAM (Random Access Memory) 1002, a
ROM (Read Only Memory) 1003, a storage device 1004,
such as a hard disk, an mput device 1005, and an output
device 1006. In this case, the mput unit 10 1s configured
using the mput device 1005 and the CPU 1001 that loads and
executes, 1n the RAM 1002, a computer program stored 1n
the ROM 1003 or the storage device 1004. The system
model 21, the data selection processing unit 30, the obser-
vation models 31, the posterior distribution creating unit 40,
the posterior distribution unifying unit 50, and the deter-
mining unit 51 are configured as follows. That 1s, these
functional blocks are configured using the CPU 1001 that
loads and executes, in the RAM 1002, a computer program
stored 1n the ROM 1003 or the storage device 1004. The
output unit 60 1s configured using the output device 1006
and the CPU 1001 that loads and executes, in the RAM
1002, a computer program stored in the ROM 1003 or the
storage device 1004. The hardware configurations of the
simulation device 100 and the respective functional blocks
thereof are, however, not limited to the above-described
configurations.

Next, details of each of the functional blocks of the
simulation device 100 will be described.

First, the input unit 10 will be described. The input unit 10
obtains an 1nitial state of a state vector and parameters 1n an
observation domain over which simulation 1s to be per-
formed and M types of observation data (first to M-th sets of
observation data). Each of the M types of observation data
are observation values from a sensor and the like. Each of
the M types of observation data may have a diflerent number
of dimensions from or the same number of dimensions as
that/those of a part or all of the other observation data. The
input unit 10 may, for example, obtain the above-described
information stored 1n the storage device 1004. The input unit
10 may also obtain the above-described information by
obtaining storage position information thereof 1n the storage
device 1004 via the mput device 1005.

Next, the system model 21 will be described. The system
model 21 simulates time evolutions of the state vector on the
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basis of the 1nitial state and parameters obtained by the input
unit 10. While the time evolution of an actual phenomenon
subject to simulation 1s expressed by a continuous time-
space partial differential equation, 1n order to perform simu-
lation, a domain over which the simulation 1s performed
needs to be discretized in time and space. The simulation
device 100 uses a state vector, which 1s generated from a
combination of state variables, to follow time evolutions of
an actual phenomenon 1n an observation domain. The num-
ber of state variables may be defined in accordance with the
purpose of the simulation and be set to any number. In the
present example embodiment, a description will be made
mainly on an example 1n which the number of state variables
1s two. In this case, two state variables U and V are also
denoted, using a vector &, by E=(U, V).

The discretization 1n time 1s achieved by advancing a step
from a state variable £t at a time t and calculating a state
variable Et+1 at a time t+1. In the following description, a
time indicates a step 1n a simulation, and, for example, a time
t—1 means the step one step belfore a time t. Hereinafter, a
step 1n a simulation 1s also referred to as a time step.

The discretization 1n space 1s achieved by assuming that
a two-dimensional space 1s divided into a grid shape and
denoting a state variable that 1s defined at a k-th grid point
counting from a reference point and at a time t by (€,)t. In
the denotation, &, 1s denoted as &,=(U,, V,). In other words,
a state vector 1s generated from state variables at respective
orid points discretized within a domain over which a simu-
lation 1s performed. When 1t 1s assumed that the last grnid
point number among the grid point numbers representing a
domain over which a simulation 1s performed 1s denoted by
L., a combination of state variables at a time t 1s denoted by
a state vector X, which 1s expressed by the expression (1)
below:

XAE, oG ELLUL VY, - (U
Vi« oo (Up VLT (1).

The sign T 1 the expression denotes transposition. The
number of dimensions of the state vector 1s calculated as the
product of the number of state variables per grid point and
the number L of grid points. In the case of the expression (1),
the state vector 1s a 2L dimensional vector.

The system model 21 performs an updating operation of
a state vector X__, at a time t-1 to a state vector X at a time
t 1n the discretized time and space. When 1t 1s assumed that
a mapping representing the updating operation 1s denoted by
f, the system model 21 is described by a relational expres-
sion expressed by the expression (2) below:

Xr :ﬂXr— 1 e:vr) (2)

Here, 0 denotes a parameter vector including various param-
eters required for calculation in the model. In addition, V,
denotes a system noise at the time t. The system noise V., 1s
introduced, in order to numerically express an eflect of
incompleteness 1n the model, as a stochastic driving term
that has an eflect on the state vector. The mapping I may be
linear or non-linear depending on a target phenomenon. As
1s obvious from the expression (2), the state vector X, at the
time t does not have to be defined explicitly with the state
vector X _, at the time t-1. That 1s, the system model 21 of
the present example embodiment may calculate the state
vector X, at the time t using the state vector X,_; at the time
t—1 as mput.

The updating operation, by the system model 21, from a
state vector at a time t—1 to a state vector at a time t will be
described 1n detail below. First, ensemble approximation for
coping with a simulation having incompleteness will be
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described. Hereinafter, 1n reflection of incompleteness of the
mapping 1 and incompleteness in the parameter 0 to be input,
the state vector X, and the system noise V, in the system
model 21 are treated as, instead of definite values X, and V
probability distributions p(X,) and p(V,), respectively.
Approximating the probability distributions p(X,) and p(V,)
by sets of N ensembles 1:

{X—l(f)}zﬁlNﬁ{vr—l(f)}zﬁlN (3),

respectively, 1s referred to as ensemble approximation.
Therefore, the system model 21 1 an actual simulation
calculates a time evolution of each ensemble 1:

X, r(i) :]{(X —1 (I.): 6: vr(i)) (4)

for all ensembles. From this calculation, the probability
distribution p(X,) of the state vector X, at the time t 1s
approximated by N ensembles:

(X9 (5)-

The ensemble calculation expressed by the expression (4) 1s
characterized by being independent with respect to each
ensemble. Therefore, the system model 21 may not only
repeat calculation N times but also perform calculation once
using N parallel processors, and may change calculation
methods flexibly depending on calculation resources. Here-
inafter, the probability distribution of the state vector X, 1s
denoted by p(X,) and also referred to as a prior distribution.

As described above, using the system model 21 indepen-
dently for each ensemble enables the probability distribution
p(X,) of the state vector at the time t to be calculated from
the probability distribution p(X,_,) of the state vector at the
time t-1. The system model 21 outputs the calculated
probability distribution p(X,), as a prior distribution, to the
m observation models 31, which will be described later. The
system model 21 may, for example, store the calculated prior
distribution p(X,) 1n the prior distribution storage umit 22 or
the like, which 1s readable by the m observation models 31.

Next, the data selection processing unit 30 and the obser-
vation models 31 will be described. The data selection
processing unit 30 selects m types of plural pieces of
observation data to be used out of the first to M-th sets of
observation data on the basis of information relating to the
state vector. The data selection processing unit 30 outputs
the selected m types of observation data to the posterior
distribution creating unit 40, which will be described later.

In the present example embodiment, it 1s assumed that
information relating to the state vector 1s input from the
system model 21 to the data selection processing unit 30 as
a control signal CTL0. The control signal CTL0 may
include, for example, the number of dimensions of the state
vector X, and other information relating to the state vari-
ables. On the basis of the information included 1n the control
signal CTLO, the data selection processing unit 30 selects m
types of observation data OBS, to OBS, at a time t, which
are to be used. The data selection processing unit 30 outputs
the selected sets of observation data OBS, to OBS,  to the
posterior distribution creating unit 40.

The data selection processing unit 30 may create m
observation models 31 each of which corresponds to one of
the selected m types of observation data by comparing
information on the state vector set by the system model 21
with the respective types of observation data (for example,
physical quantities and dimensions). The data selection
processing umt 30 may, for example, create the m observa-
tion models 31 using m control signals CTL1 to C1Lm for
relating the state vector X, with the sets of observation data

OBS, to OBS .
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The creation of the observation models 31 described
above 1s to create an observation model equation that relates
the state vector X, with the sets of observation data OBS, to
OBS, . Such relations between the state vector and the sets
ol observation data are illustrated schematically in FIG. 3.
An observation model equation expressing such relations 1s
expressed by, for example, the expression (6) below:

(Ui (6)
Vi
I'(hlElx’ I'(Wlx’ l'fhlElx‘ [/ r’wl“* I'(()BSIK1
thz Wa thg . Wa OBSZ
XD+ L =] aol+ . |=| .
khmEmJ \ Wm khmEm,—‘ | \ W kOBSm /s
UL
VL /4

In this case, the data selection processing unit 30 may output
information on mappings h, to h_, and noise amounts w, to
w_, which are to be taken 1nto consideration in the respec-
tive sets of observation data, in the expression (6) to the
observation models 31-1 to 31-m as the control signals
CTL1 to CTLm, respectively. From this processing, the m
observation models 31 are created.

If 1t 1s assumed that the sets of observation data are 1deally
obtained at all grid points 1 to L, each of the noise amounts
w, to w_ . and the sets of observation data OBS, to OBS_ in
the expression (6) 1s an L-dimensional column vector. On
the basis of a variance value and noise amount of each set
ol observation data, the data selection processing unit 30
may set the noise amount i1n the observation models 31
related to the set of observation data.

In the expression (6), E, to E_ are matrices that associate
the grid points 1 to L of the system model 21 with resolu-
tions ol observation points at which the sets of observation
data are actually obtained. For example, when 1t 1s assumed
that the number of variables 1n a state variable ¢,=(U,, V)
at each grid point k 1n the state vector X, 1s two, each of the
matrices E, to E_ 1s an at most 2L.x2L. dimensional matrix.

In general, in a state variable £,=(U,, V,) at a grid point
k, U, and V, are physical quantities that differ from each
other. Thus, relations between U, and observation data and
between V, and the observation data are not able to be
defined by mappings h; to h_ of an i1dentical observation
model equation. The following description will thus be made
using a configuration for U, (k=1 to L) in the state variables
as an example. In this case, each of the above-described
matrices E, to E_ 1s a 2LxL dimensional matrix. For
example, 1t 1s assumed that the set of observation data OBS,
1s obtained with respect to all the grid points 1 to L of the
system model 21. In this case, E; 1s a 2LxL dimensional
matrix and takes the form of a matrix expressed by the

expression (7) below:

(7)

-
= = D
9o T ale S el
—_ 2 D

00000 ... 10,

In the matrix, only the element at the j-th (3 1s an 1nteger not
smaller than 1 and not larger than L) row and {1+2(j—1)}th
column has a value of 1.
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A case 1n which no data 1s observed at some grid points
in the grid points 1 to L, as the set of observation data OBS,
illustrated 1n FIG. 3, 1s considered. A sign “*” indicates a
or1id point at which a piece of data 1s observed (observation
point). In this case, the matrix E, 1s represented by a matrix
that 1s obtained by changing the values of the elements in the
row, in the expression (7), corresponding to a grid point at
which no data 1s observed to a value of 0. In this case, on the
lett side of the expression (6), the number of dimensions on
which h, acts becomes smaller than L, and becomes the
same number of dimensions as that of the set of observation
data OBS,. In the case in which, for example, J state
variables are defined, as (U,, V., ..., Z,), at a grid point k,
only the element at the j-th row and {1+J(j-1)}th column in
the expression (7) has a value of 1. Therefore, the matrices
E, to E_ can be expressed regardless of the number of state
variables. The mappings h, to h, 1n the expression (6) may
be linear or non-linear depending on relations between the
state variables and the sets of observation data. Therefore, an
arithmetic operation expressed by the expression (6) can be
expressed such that, in the case of, for example, the j-th
observation model 31-1, when the state vector X, at a time t,

calculated by the expression (4), 1s input, the model outputs:

H(X, w)=hEXAw, (8).

Thus, all the m types of observation models 31 individually
perform the arithmetic operation expressed by the expres-
s1on (8) on the state vector X, and output all the m types of
transformed state vectors X, to the posterior distribution
creating unit 40. A combination of the expression (2) or the
expression (4) and the expression (8) 1s referred to as a state
space model.

Although, 1n the above-described example of E, to E_, a
case 1n which the grid points (L-dimensional) of the system
model 21 and the grid points (L-dimensional) of the obser-
vation model coincide with each other 1s assumed, a case of
noncoincidence 1s also conceivable practically. In such a
case, the values of the respective elements of the matrices E,
to B, may be changed in such a way that each observation
point at which a piece of observation data 1s actually
obtained has, for example, a weighted average of values at
neighboring grid points. As described above, the above-
described E, to E_ express operations of relating the grid
points of the state vanables with degrees of resolution of
observation points for a plurality of pieces of observation
data in a manner of one-to-one, weighted average, weighted
sum, or the like with respect to each piece of observation
data.

As described above, each of the m observation models 31
related to one of the m sets of observation data selected by
the data selection processing unit 30. Each of the observa-
tion model 31 transforms a state vector output from the
system model 21 into a predetermined state vector on the
basis of the expression (8), which expresses a relationship
between a set of observation data and a state vector. Each of
the observation model 31 outputs the transformed state
vector to the posterior distribution creating unit 40. The
transformed state vectors have prior distributions of m types
of transformed state vectors X, at a time t.

On the basis of state vectors output from the m observa-
tion models 31 and sets of observation data selected by the
data selection processing unit 30, the posterior distribution
creating unit 40 creates posterior distributions of the state
vector. The posterior distribution creating unit 40 catego-
rizes, 1n the created posterior distributions, a posterior
distribution based on all the m types of observation data,

selected by the data selection processing unit 30, as a first
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posterior distribution. The posterior distribution creating
unit 40 also categorizes a posterior distribution based on
observation data that lack one or more types of observation
data out of the m types of observation data, selected by the
data selection processing unit 30, as a second posterior
distribution. The posterior distribution creating unit 40 out-
puts the created first posterior distribution and second pos-
terior distribution to the posterior distribution umiying unit
50 and the like. For example, the posterior distribution
creating unit 40 may store the created {first posterior distri-
bution 1n the first posterior distribution storage unit 41a that
1s readable by the posterior distribution unifying unit 50 and
the like. The posterior distribution creating unit 40 may also
store the created second posterior distribution 1n the second
posterior distribution storage unit 415 that 1s readable by the
posterior distribution unifying unit 50 and the like. The
posterior distribution creating unit 40 also outputs the cre-
ated first posterior distribution to the system model 21 and
the output unit 60. In this case, for example, the posterior
distribution creating unit 40 may store the created first
posterior distribution in the unified posterior distribution
storage unit 52 that 1s readable by the system model 21 and
the output unit 60.

Here, the creation processing of posterior distributions by

the posterior distribution creating umt 40 will be described
in detail. To the posterior distribution creating unit 40, prior
distributions of m types of transformed X, at a time t and the
sets of observation data OBS, to OBS  are input. In general,
a posterior distribution p(x|y) when a prior distribution p(x)
and a distribution p(y) of observation data are input is,
according to Bayes” theorem, expressed by the expression:

ply | x)p(x) (9)

py)

plx|y)=

In the expression (9), p(ylx) 1n the numerator 1s referred to
as a likelihood, which 1s an indicator of the goodness of {it
ol a state variable x to an observation value y. In the case 1n
which an observation model 31 can be separated into a
mapping h and a noise amount w, as expressed by the
expression (8), for the likelihood p(yIx), a quantity calcu-
lated by the expression:

d(y — A(x)) (10)

dy

p(y| x)=r(y—hx)) = LH(y — h(x))

can be used. In the expression (10), r 1s the density function
of the noise amount w. In the expression (10), the right side
1s redefined as a function LH of y and h(x). Further, a
likelihood p(y,.,,1Xx) 1n the case of m types of observation
values y={v,, V., . . ., Vv, } being obtained is, using a
multiplication theorem recursively, expressed in a product
form as:

PO L | %)= P | Ve )Py | ¥) = (1D

H.:|§

plyi | v1.i15 %)

— P(yl ‘ Y10 X)P(yZ ‘ Y1:1> X)

P(ys | Y120 %) oo Pm | Yimo1s X)-
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In the expression (11), the first term p(yv,lv,.4, X) 1s the
probability of y, when there 1s no observation data, that 1s,
the likelihood p(y,1x) of X when y, 1s obtained. The second
term p(y,1v,.;, X) 1s the probability ol y, when vy, 1s obtained.
However, the respective observation data are collected using
separate sensors or the like, and no joint distribution of y,
and v, exists. Thus, the second term, as a result, becomes the
likelihood p(y,Ix) of x when vy, 1s obtained. Therefore, the
posterior distribution expressed by the expression (9) in this
case 1s expressed by the expression:

_p [ X p(y2 1 %) oo p(ym | X)p(x) (12)

p(x‘yl:m)_ 7

In the expression (12), i1t 1s assumed that Z in the denomi-
nator 1s a normalization constant. If this relation 1s used,
because of m types of observation data y having been
obtained as OBS, to OBS,_, the posterior distribution of the
state variable U, at a grid point k 1s, assuming the prior
distribution of U, being denoted by p(U,), expressed by the
CXPression:

P(OBS, | U)p(OBS; | Uy) ... plOBSy | Udp(Uy)
p(U | OBS|.p) = 7 -

(13)

The numerator 1s, as expressed by the expression (12), the
product of the product of the likelthoods based on the
respective sets of observation data and the prior distribution
p(U,). Further, since each likelihood 1s expressed by the
expression (10), the posterior distribution of the expression
(13) 1s expressed by the expression:

LH(OBS, — H{(U,))LH(OBS, — Hy(U))...
LH(OBS,, — Hu(Up ) p(Uy)
7

(14)

P(Uk | IOIBSI:F}*!) —

As described above, the posterior distribution creating unit
40 calculates the posterior distribution of the state variable
U, at a grid point k on the basis of m types of likelithoods LH,
which are calculated on the basis of m sets of observation
data OBS, to OBS,  and the mappings h, to h_., and the prior
distribution p(U,). In a similar manner, the posterior distri-
bution creating umt 40 calculates posterior distributions with
respect to all the grid points 1 to L using the expression (13),
that 1s, the expression (14).

However, the posterior distribution creating unit 40 uses
the expression (15) below 1n place of the expression (13)
with respect to a grid point at which one or more types of
observation data in the m types of observation data are
missing. For example, as OBS, illustrated 1n FIG. 3, there 1s

a case 1n which observation data have been obtained only at
a portion of the grid points. In this case, the posterior
distribution creating unit 40 1s unable to calculate the
product of the likelithoods with respect to all the observation
data, as expressed 1n the numerator of the expression (13).
For example, 11 a case 1n which, at a grid point k', only m-1
types of observation data are obtainable 1s assumed, the
posterior distribution 1s expressed by the expression:
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P(Uﬁc" | OBSl:m—l) — (15)

p(OBS, | Uy )p(OBS | Upr) ... p(OBSy1 | Uy )p(Uyr)
Z}'

, that 1s,

LH(OBS| — H, (U, ))LH(OBS, — Hy(U,1))...
LH(OBS,| = Hp 1 (U Dp(Uy)
7/ "

(16)

P(Uﬁ(" | OBSl:m—l) —

and the number of likelihoods included 1n the numerator
decreases to m—1. In the expression (15) and the expression
(16), the expression “m—1"" indicates that at least one type of
observation data in the m types of observation data have not
been obtained and does not limit the number of types of
observation data that have not been obtained (are missing) to
one.

As described above, the posterior distribution creating
unit 40 creates a posterior distribution for each of the state
variables at each of the grid points. Hereinaftter, the posterior
distribution for each of the state variables at each of the grnid
points 1s also referred to as a posterior distribution with
respect to each combination of a state variable and a gnd
point. The posterior distribution creating unit 40 outputs a
posterior distribution calculated on the basis of all the
observation data using the expression (13) as a first posterior
distribution. The posterior distribution creating unit 40 also
outputs a posterior distribution calculated on the basis of
observation data that lack at least one type of observation
data in the m types of observation data using the expression
(15) as a second posterior distribution.

It 1s now assumed that a prior distribution p(x) follows a
normal distribution with a mean p0 and a variance vV, , and
n observation values y,, Y,, . . ., vy, also tollow a normal
distribution with a mean u and a variance V. In this case, the
posterior distribution p(xly), which is calculated according
to Bayes’ theorem expressed by the expression (9), also
becomes a normal distribution, and the variance V.,
thereot 1s expressed by the expression:

1 (17)

post —

<| =
e

prio

This indicates that, as the number of observation values used
for calculation of the posterior distribution increases, the
variance decreases, that 1s, the accuracy of the posterior
distribution 1mproves.

While a first and a second posterior distribution are not
always normal distributions individually, smaller pieces of
observation data are taken into a second posterior distribu-
tion than those into a first posterior distribution. Thus, the
variance ol the first posterior distribution P(U,IOBS,. ) of
the expression (13) and the variance of the second posterior
distribution p(U,/OBS,. _,) of the expression (15) are
respectively denoted by Var(p(U,IOBS,. )) and Var(p
(U.1OBS,.._,)). Then, an inequality expressed by the
expression (18) below holds:

Var(p(U,|0OBS ,.,.))=Var(p(U,/OBS ... ) (18).

Next, the posterior distribution unifying unit 50 will be
described. The posterior distribution unifying unit 50 unifies
a first posterior distribution and a second posterior distribu-
tion. More specifically, the posterior distribution unifying,
unit 50 calculates a new posterior distribution for each
combination of a state variable and a grid point for which the
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second posterior distribution has been calculated by unifying
the first posterior distribution and the second posterior
distribution into the new posterior distribution. The posterior
distribution unifying unit 50 outputs the new posterior
distribution after umfication to the determining unit 51.
Since, 1 the present example embodiment, a posterior
distribution 1s approximated by a set of ensembles, the
posterior distribution unifying unit 50 may perform the
unification by means of superposing ensembles approximat-
ing a first posterior distribution and ensembles approximat-
ing a second posterior distribution at a predetermined ratio.

Specifically, the posterior distribution unifying unit 350
obtains the afore-described first posterior distributions and
second posterior distributions as iput from the first poste-
rior distribution storage unit 41a and the second posterior
distribution storage unit 415. Because of the relation
expressed by the expression (18), p(U,|OBS,. _,), which is
one of the second posterior distributions, has a larger vari-
ance (that 1s, lower accuracy) than does at Ileast
p(U.IOBS, . ), which 1s one of the first posterior distribu-
tions. Thus, the posterior distribution unitying unit 50 cal-
culates a new posterior distribution for each combination of
a state variable and a grnid point for which the second
posterior distribution has been calculated by unitying the
first posterior distribution and another second posterior
distribution mto a new post-posterior distribution. For
example, 1t 1s assumed that, with respect to a grid point 1, a
second posterior distribution p(UIOBS, . ) has been cal-
culated. In this case, with respect to the grid point j, the
posterior distribution unifying unit 50, assuming that g 1s a
function, calculates a new posterior distribution
p'(U10BS, ) by the expression (19) below:

p(U;|OBS ,,,)=gp(U;|OBS ,,,) p(UIOBS 1)) (19).

Here, t denotes a parameter set that determines the function
g. In addition, k denotes a grid point at which the first
posterior distribution has been created. Further, 1 denotes
another grid point at which the second posterior distribution
has been created. In the expression, 1] holds. Hereinatter,
the dash (') of the probability distribution p' in the expression
(19) indicates that the probability distribution p' 1s a prob-
ability distribution after unification performed by the pos-
terior distribution unifying unit 50. The posterior distribu-
tion unifying unit 30 outputs the posterior distribution
p'(UlOBS, ) newly calculated in such a way and the
original second posterior distribution p(U,|OBS, ., _,) to the
determining unit 51.

Next, the determining unit 51 will be described. The
determining umit 51 determines which one of a second
posterior distribution or a unified posterior distribution 1s to
be used. More specifically, for each combination of a state
variable and a grid point for which a second posterior
distribution has been created, the determining unit 51 deter-
mines which one of the original second posterior distribution
and the unified posterior distribution 1s to be used as a
posterior distribution. Specifically, the determining unit 51
may store the determined posterior distribution 1n the unified
posterior distribution storage unit 52. In the unified posterior
distribution storage unit 352, as described above, a first
posterior distribution has been stored. The storing operation
causes the first posterior distribution or the determined
posterior distribution to be stored in the unified posterior
distribution storage unit 52 for each combination of a state
variable and a grid point.

For example, the determining umt 31 may determine, on
the basis of the respective variance values of a second
posterior distribution and a unified posterior distribution,
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which one 1s to be used. Specifically, to the determining unit
51, the unified posterior distribution p'(U,IOBS, ), which 1s
newly calculated by the posterior distribution unifying unit
50, and the oniginal second posterior distribution
p(U,JOBS, ., _,) are imnput. Both of these posterior distribu-
tions are posterior distributions at a grid point j. For
example, the determining unit 31 may, as with the expres-
sion (18), calculate and compare the variances of these
posterior distributions. In this case, 1f the variance of the
unified posterior distribution p'(U,I0BS, ) 1s smaller, the
determining unit 51 selects and outputs the umfied posterior
distribution. The determining unit 51 also stores the selected
posterior distribution in the unified posterior distribution
storage unit 32.

On the other hand, 11 the variance of the unified posterior
distribution p'(U;I0BS, ) 1s larger, the determining unit 51
may repeat the calculation by varying the parameter m of the
function g in the expression (19) until the variance of the
unified posterior distribution becomes smaller than the vari-
ance ol the original second posterior distribution. For
example, 1n the case in which the function g 1s a weighted
average function, the determining unit 31 may vary weight-
ing factors thereof. The determining unit 31 may assume a
prior distribution p(r,,,,) for the parameter 7, and calculate
a posterior distribution p(w,,,) of the parameter st that
mimmizes the variance thereol by using Bayes’ theorem,
expressed by the expression (9), with variance values of the
expression (4) treated as observation values. When varying
the parameter m results 1n the variance of the unified pos-
terior distribution becoming smaller than the varnance of the
original second posterior distribution, the determimng unit
51 selects and stores the unified posterior distribution 1n the
unified posterior distribution storage unit 52. In the case in
which varying the parameter m does not cause the variance
to be smaller, the determining unit 51 selects and stores the
original second posterior distribution in the unified posterior
distribution storage unit 52.

In this way, 1n the unified posterior distribution storage
unit 52, the whole set of posterior distributions of the state
variable U, at a time t at all the grid points k (k=1 to L) 1s
completed with the first posterior distribution and the unified
posterior distribution or the second posterior distribution,
which has been selected by the determining unit 51.

Next, the output unit 60 will be described. In the case of
continuing the simulation, the output unit 60 1nputs the state
vector at a time t, which generated from a posterior distri-
bution selected by the determining unit 51 and a first
posterior distribution, to the system model 21. The system
model 21, using the posterior distributions at the time ft,
calculates prior distributions at a time t+1, which 1s the next
time step. The output umt 60 outputs, as a result from the
simulation, a time series of the state vector, which 1s
generated from the posterior distribution selected by the
determining unit 51 and the first posterior distribution, to the
output device 1006 and the like.

As described above, 1n the unified posterior distribution
storage unit 52, the whole set of posterior distributions of the
state variable U, at a time t at all the grid points k (k=1 to
L) 1s completed with the first posterior distribution and the
unified posterior distribution or the second posterior distri-
bution, which has been selected by the determining unait 51.
The output unit 60 may 1nput posterior distributions for the
respective combinations of a state variable and a grid point,
which are stored in the unified posterior distribution storage
unit 52, to the system model 21 and output a time series
thereof.
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Although, as described thus far, the configurations of the
respective functional blocks are described using the state
variables U, (k=1 to L) as an example, the respective
functional blocks are configured 1n the same manner with
respect to other state variables (for example, V, (k=1 to L)).

An operation of the simulation device 100 configured as
described above will be described with reference to the
drawings.

First, an operation that the simulation device 100 per-
forms at the start of a simulation will be described using
FIG. 4. In FIG. 4, a time at which the simulation starts 1s
assumed to be a basis for the following steps, that 1s, a time
t=1.

In FIG. 4, to perform a simulation discretized 1n time and
space, the system model 21 first determines a time step, grid
points, and state variables to simulate the time evolutions
thereof (step S101). For example, for the time step and the
orid points, appropriate values may be chosen on the basis
of required accuracy or so that the calculation converges.

Next, the mput umt 10 obtains first to M-th sets of
observation data (step S102).

Next, referring to the information on the state variables set
by the system model 21, the data selection processing unit
30 selects m types of observation data to be used from the
first to M-th sets of observation data (step S103).

Next, the data selection processing unit 30 sets a relational
expression relating the state variables and the m types of
observation data with each other and noise amounts included
therein, and creates the observation models 31-1 to 31-m
(step S104). For example, the data selection processing unit
30 may set the relational expression and noise amounts on
the basis of types, properties, and physical quantities of the
sets of observation data, the numbers of dimensions of the
sets of observation data and state variables, and the like. This
causes the m observation models 31 to be created.

With this processing, the simulation device 100 completes
the operation performed at the start of a stmulation.

Next, an operation by which the simulation device 100
performs a simulation will be described using FIG. 5.

In FIG. §, the mput unit 10 first obtains ensembles
representing an initial state of the state vector and param-
eters, and outputs the obtained ensembles and parameters to
the system model 21 (step S201).

Next, the system model 21 calculates ensembles at a next
time step, that 1s, prior distributions, and stores the calcu-
lated prior distributions 1n the prior distribution storage unit
22 (step S202).

The input unit 10 now determines whether or not at least
any of the first to m-th sets of observation data 1s obtained
at the time of this time step (step S203).

In the case 1n which no observation data i1s obtained (No
in step S203), the system model 21, using the prior distri-
butions at the next time step, which 1s stored in the prior
distribution storage unit 22, performs step S202 again and
performs calculation of advancing one more time step.

It 1s assumed that it 1s also determined No 1n step S203 1n
the case of being specified not to revise data at this time step
even when any set of observation data 1s obtained.

On the other hand, 1n the case 1n which at least any of the
first to m-th sets of observation data 1s obtained and data are
to be revised (Yes 1 step S203), each of the observation
models 31-1 to 31-m transiorms prior distributions stored in
the prior distribution storage unit 22 (step S204).

At this time, 1n an i1dentical simulation, the observation
models created 1n step S104 at the start of the simulation are
basically used as the observation models 31-1 to 31-m.
However, even 1n an 1dentical simulation, 1n an exceptional
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case, such as a case 1n which the behavior of observation
data substantially changes and a case 1n which simulation
calculation does not work well, the afore-described step
S104 may be performed again. In this case, 1n this step S204,
transformation may be performed using newly-created m
observation models 31.

Next, the posterior distribution creating unit 40 creates a
posterior distribution for each combination of a state vari-
able and a grid point on the basis of the created m types of
transformed prior distributions and the m types of observa-
tion data at the time of this time step (step S205). This
operation causes the original prior distributions to be
revised.

Next, the posterior distribution creating unit 40 deter-
mines whether the posterior distribution, created in step
S205, for each combination of a state variable and a gnd
point 1s a posterior distribution based on all the m types of
observation data selected 1n step S103 or a posterior distri-
bution based on observation data that lack a portion of the
m types of observation data (step S206).

When the posterior distribution i1s determined to be a
posterior distribution based on all the m types of observation
data, the posterior distribution creating unit 40 stores the
posterior distribution, as a {first posterior distribution, in the
first posterior distribution storage unit 41a (step S207).

In this case, the posterior distribution creating unit 40 also
stores the first posterior distribution, as a posterior distribu-
tion for the combination of a state variable and a grid point,
in the unified posterior distribution storage unit 52 (step
S208).

On the other hand, 1 step S206, when the posterior
distribution 1s determined to be a posterior distribution based
on observation data that lack a portion of the m types of
observation data, the posterior distribution creating unit 40
categorizes the posterior distribution as a second posterior
distribution and calculates a variance value VO thereof (step
S5209). The posterior distribution creating unit 40 stores the
second posterior distribution and the variance value VO
thereol in the second posterior distribution storage unit 415.

Next, the posterior distribution unitying unit 50 calculates
a new posterior distribution (unified posterior distribution)
whose variance value V 1s mimnimum by, for each combina-
tion of a state variable and a grid point for which the second
posterior distribution 1s created, unifying the first posterior
distribution and the second posterior distribution (step
S300).

Specifically, the posterior distribution unifying unit 50
may, for each target combination of a state variable and a
orid point, calculate a unified posterior distribution repeat-
edly using the expression (19) and search for m that mini-
mizes the variance value V while varying a parameter set .
For example, the posterior distribution unifying unit 30 may
perform the search using the least squares method or Bayes’
theorem. A minimum value of the variance, obtained from
the search, 1s denoted by Vmin.

Next, the determining unit 51 compares the minimum
value Vmin of the varniance with the variance value VO
before unification (step S301).

If the mimimum value Vmin of the variance after unifi-
cation 1s smaller, the determining unit 51 sets the unified
posterior distribution as a new posterior distribution for the
combination of a state variable and a grid point (step S302),
and stores the unified posterior distribution 1n the unified
posterior distribution storage unit 32 (step S208).

On the other hand, 11 the minimum value Vmin of the
variance after unification does not become smaller, the
determining unit 51 discontinues the unification, sets the

10

15

20

25

30

35

40

45

50

55

60

65

20

second posterior distribution as a posterior distribution for
the combination of a state variable and a grid point (step
S303), and stores the second posterior distribution 1n the
unified posterior distribution storage unit 52 (step S208).

Next, 1f the simulation does not reach a predefined time or
a predefined step (No 1n step S304), the simulation device
100 repeats the operations after step S202. That i1s, the
system model 21 performs step S202 using, as input, pos-
terior distributions for the respective combinations of a state
variable and a grid point, stored in the unified posterior
distribution storage unit 52, and starts calculation of the next
step.

On the other hand, when the simulation reaches the
predefined time or the predefined step (Yes in step S304), the
output unit 60 outputs a time series of posterior distributions
for the respective combinations of a state variable and a grid
point, stored 1n the unified posterior distribution storage unit
52, and finishes the simulation operation.

Next, an advantageous eflect of the first example embodi-
ment of the present invention will be described.

The simulation device as the first example embodiment of
the present invention may perform a high-resolution and
high-accuracy simulation over a wide range taking into
consideration non-ideal observation data and observation
data that have a discontinuity or peculiarity.

The reasons for the above advantageous eflect will be
described. In the present example embodiment, the system
model simulates time evolutions of the state vector. The data
selection processing unit selects m types of observation data
from M types ol observation data. The m observation
models each of which corresponds to one of the m types of
observation data transform prior distributions of the state
vector at a next step, which 1s calculated by the system
model, on the basis of relationships between the m types of
observation data and the state vector. Based on the trans-
formed m types of prior distributions and the selected m
types of observation data, the posterior distribution creating
unit creates a posterior distribution for each combination of
a state variable and a grid point. The posterior distribution
creating unit categorizes, in the created posterior distribu-
tions, a posterior distribution based on all the m types of
observation data as a first posterior distribution and a
posterior distribution based on observation data that lack a
portion of the m types of observation data as a second
posterior distribution. The posterior distribution unifying
unit, for each combination of a state variable and a grid point
for which the second posterior distribution 1s created, unifies
the first posterior distribution and the second posterior
distribution, and creates a new posterior distribution. The
determining unit determines which one of the second pos-
terior distribution or the new posterior distribution 1s to be
selected, and sets the determined posterior distribution as a
posterior distribution after unification for the combination of
a state variable and a grid point. The system model calcu-
lates the state vector at the next step using, as input, posterior
distributions of the state vector, which are generated from
the first posterior distribution and the unified posterior
distribution.

Because of the above-described reasons, even 1n the case
in which a portion of the observation data are mappropriate
or imnclude a lot of errors, the present example embodiment
may, by unification of posterior distributions, perform revi-
s1on taking into consideration other observation data. Alter-
natively, since such observation data come not to be used for
revision, the present example embodiment may prevent an
error from increasing. Since, even for observation data that
have a low measurement frequency, the present example
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embodiment may perform revision by taking into consider-
ation observation data that have a high measurement fre-
quency, the present example embodiment enables simulation
with higher accuracy.

The advantageous eflect as described above will be
described using FIG. 6, which schematically illustrates the
advantageous eflect. In FIG. 6, the horizontal axis represents
the time. Variables for which the time evolutions are to be
calculated 1n a simulation model are set as state variables,
and values actually measured by means of sensors and the
like are set as observation values. These settings are the
same as in FIG. 15, which schematically 1llustrates simula-
tion by means of data assimilation of the related technology.
However, 1n FIG. 6, a case in which two types of observation
values (observation value set 1 and observation value set 2)
are selected by a data processing unit 1s illustrated. By using
m different types ol observation models each of which
related to one of the m types of observation data, the present
example embodiment may relate different types of observa-

tion data with the same type of state variables. In FIG. 6, an
observation model related to the observation value set 1 1s
illustrated as an observation model 1, and an observation
model related to the observation value set 2 1s illustrated as
an observation model 2. With regard to the observation value
set 1, 1t 1s assumed that observation values of the same type
and the same values as those of the observation values 1n the
simulation 1 FIG. 15, according to the related technology,
has been obtained.

Comparison between FIG. 6 and FIG. 15 indicates that, in
the simulation by the related technology illustrated in FIG.
15, errors are accumulated 1n simulations using the obser-
vation value set 1 because of influence from the measure-
ment frequency of the observation value set 1. In contrast, in
FIG. 6, the observation value set 2 are observed 1n a shorter
cycle in comparison with the observation value set 1. Thus,
ellect of revision based on observation values appears 1n the
simulation values of the observation value set 1. That 1s
because both simulation values of the observation value set
1 and the observation value set 2 are created from the same
type of state variables, even though a diflerence between the
observation models exists. Therefore, the present example
embodiment enables simulation with higher accuracy in
comparison with the related technology for not only the
observation value set 2, the observation frequency of which
1s high, but also the observation value set 1, the observation
frequency of which 1s low. A case 1n which observation
values that include more inappropriate values or errors
(observation value set 1 indicated by a triangle 1n FIG. 6) are
obtained than 1n the case of the related technique 1llustrated
in FI1G. 15 will be described. Even 1n such a case, the present
example embodiment may, by means of unification of pos-
terior distributions, revise simulation values based on such
the observation value set 1 with the other observation values,
that 1s, the observation value set 2, taken 1nto eenmderatmn,,
and, further, such the observation value set 1 come not to be
used for revision. Therefore, the present example embodi-
ment may prevent errors from increasing.

As described above, even when observation data that,
when used alone, include only an 1nsuih

icient number of
pieces ol data or have a distribution that 1s biased spatially
and temporally are provided, the present example embodi-
ment may, by using a variety of types of such observation
data, enable a high-resolution and high-accuracy simulation
to be performed over a wider range. In the future, due to
progress 1n observation technologies and information col-
lection from a large number of sensors, as 1n, for example,
M2M (Machine-to-Machine), a larger variety of and a large
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quantity ol observation data are expected to be collected. In
such a situation in which a larger variety of and a larger
quantity of data are collected, the present example embodi-
ment may, by using information from a plurality of sets of
observation data in a unmiiying manner, perform a more
cllective simulation 1n comparison with the related technol-
ogy 1n which the accuracy of simulation 1s constrained by
characteristics of observation data.

(Second Example Embodiment)

Next, a second example embodiment of the present inven-
tion will be described with reference to the drawings. The
present example embodiment 1s applicable to simulation
using observation data that are spatially discrete but the
values of which are of high accuracy and observation data
that are spatially continuous but the values of which are of
insuilicient accuracy. In the following description, a specific
example 1n which, using a simulation device 1n the present
invention, simulation of soil moisture content 1s performed
will be described. In the respective drawings referenced in
the second example embodiment of the present invention,
the same signs are assigned to the same components and
steps as those 1n the first example embodiment of the present
invention and a detailed description thereof in the present
example embodiment will be omaitted.

First, a configuration of a simulation device 200 as the
second example embodiment of the present invention 1s
illustrated 1n FIG. 7. In FIG. 7, the simulation device 200 has
a conflguration in which a soi1l model 221 1s applied as the
system model 21 1n the simulation device 100 as the first
example embodiment of the present invention. The simula-
tion device 200 also has a configuration i which two
observation models 231-1 and 231-2, which are related to
two types of observation data, are applied as the m obser-
vation models 31 in the simulation device 100 as the first
example embodiment of the present invention. The simula-
tion device 200 differs from the simulation device 100 as the
first example embodiment of the present invention 1n that the
simulation device 200 includes a posterior distribution uni-
tying unit 250 1n place of the posterior distribution unifying
unit 50.

In the present example embodiment, a soil mitial state 1s
applied as an mitial state 1n the present invention, and
terrain/weather parameters are applied as parameters in the
present mvention. As two (M=2) sets of observation data,
two types of observation data, soil moisture data OBS, and
satellite data OBS,, are applied.

Here, the two types of observation data to be used 1n the
present example embodiment, the soil moisture data OBS,
and the satellite data OBS,, will be described. In FIG. 8,
with respect to the soi1l moisture data OBS, and the satellite
data OBS,, time series variations (at four steps t-3 to t)
thereol 1n a calculation grid space (including mine grids 1 to
9) which 1s a target thereof are schematically illustrated. In
FIG. 8, shaded parts indicate grid points at which observa-
tion data are collected. In the present example embodiment,
the spatial range and interval of collection of the two types
ol observation data are assumed to be the same as those of
the calculation grid space. Even 1f a data collection point 1s
located locally within each grid, a value within the grid 1s
regarded as uniform.

The so1l moisture data OBS, may be, for example, obser-
vation values obtained from dielectric constant soil moisture
sensors, which are buried under soil and calculate soil
moisture values on the basis of dielectric constants. In
addition, the soil moisture data OBS, may be observation
values collected by other types of sensors. A feature of the

so1]l moisture data OBS;, 1s that, although observation values
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are discrete 1n space because only values at points where
sensors are placed can be measured, the observation values
are of high accuracy because physical quantities equivalent
to soi1l moisture are directly measured. In FIG. 8, 1t 1s
assumed that sensors are placed at only three points with
orid point numbers 1, 3, and 8.

The satellite data OBS, may be, for example, remote
sensing data obtained from the ASTER sensor mounted on
the Terra satellite (Terra/ ASTER). More specifically, data,
collected by the Terra/ ASTER, representing the intensity of
reflected light from sunlight 1n the near-infrared (Band 3,
0.78-0.86 um) and short-wavelength infrared (Band 4,
1.600-1.700 um) wavelengths are applicable as the satellite
data OBS,. In addition, as the satellite data OBS,, data
collected by other methods or in other wavelengths may be
applicable. A feature of the satellite data OBS, 1s that, since
the intensity of reflected light off the surface of the ground
from sunlight in the near-infrared and short-wavelength
inirared wavelength ranges can be collected as two-dimen-
sional 1mage data, observation values are continuous in
space. However, since the satellite data OBS,, are estimated
on the basis of obtained data using a statistically significant
correlation between the intensity of reflected light, retlec-
tivity, or the like 1n the above wavelengths and moisture
content of ground surface layer soil, observation values are
indirect values and, thus, there 1s a possibility that the
accuracy thereol becomes insuilicient.

Next, the so1l model 221 will be described. The so1l model
221 1s an example of the system model 21 in the first
example embodiment of the present invention. The soil
model 221 calculates the space and time vanation of soil
moisture content and the like using, as parameters, physical
properties of soil to be observed, such as degrees of slope

and drainage, and weather conditions, such as precipitation.
To the soil model 221, for example, an LSM (LAND-

SURFACE MODEL) may be applied. To the soi1l model 221,
a soi1l module of a decision support system for agriculture
DSSAT (Decision Support System for Agrotechnology
Transter) and the like may also be applied.

The posterior distribution unifying unit 250, as with the
first example embodiment of the present invention, calcu-
lates a new posterior distribution by unifying a first posterior
distribution and a second posterior distribution into the new
posterior distribution for each combination of a state vari-
able and a grid point for which the second posterior distri-
bution 1s created. In addition, 1n performing the unifying
processing, the posterior distribution unifying umt 2350 may
use a model that 1s created on the basis of spatial correlations
between respective posterior distributions having been
already calculated. As the model, for example, a covariance
function and a variogram function are applicable. However,
the posterior distribution unifying unit in the present inven-
tion may use another model based on spatial correlations
between respective posterior distributions. In this case, the
posterior distribution unifying unit 250 may apply Bayesian
updating to parameters, which characterize arithmetic opera-
tions 1n the model used for unification, on the basis of spatial
correlations between respective posterior distributions hav-
ing been already calculated. The processing using a model
based on spatial correlations and the processing of applying
Bayesian updating to the parameter thereof will be described
in the following description of an operation 1 conjunction
with a specific example.

A specific example of an operation of the simulation
device 200 configured as described above will be described.

First, the soi1l model 221 obtains a soil 1nitial state and
terrain/weather parameters via the iput unit 10 and sets soil
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moisture content SM, at a grid point k to a state variable
(step S101 1n FIG. 4 and step S201 i FIG. 5).

When 1t 1s assumed that state variables at a grid point k
(k=1 to 9) illustrated 1n FIG. 8 include only soil moisture
content SM,, a state vector at a time t 1 soi1l moisture
content simulation 1s expressed by the expression:

X=(SM,SM,, . . ., (20).

Here, a description will be made mainly on an example 1n
which only soil moisture content 1s set as a state variable at
a grid point. However, i addition to a dynamic variable
varying 1n time and a quantity the value of which 1s to be
estimated, a static variable 1s applicable as a state vanable.
The state variables may be chosen depending on a phenom-
enon subject to simulation, a system model, a purpose, and
the like. The state variables may be chosen so that, as
expressed by the expression (2), a state vector at a time can
be created on the basis of a state vector at the previous step
and the soil model 221. Since, as the number of state
variables increases, calculation amount increases, the state
variables are preferably set appropriately 1n accordance with
allowable computational resources.

Next, a data selection processing unit 30 obtains two types
of observation data (step S102 in FIG. 4), and, as m types of
observation data to be used, selects the soil moisture data
OBS, and the satellite data OBS,, (step S103).

Next, the data selection processing umt 30 create two
observation models including a first observation model
231-1 related to the soi1l moisture data OBS, and a second
observation model 231-2 related to the satellite data OBS,
(step S104).

A case 1 which the soi1l moisture data OBS,; have the
same number of dimensions as that of the state variables SM
and noises 1n observation values follow Gaussian (normal)
distributions 1s assumed here. It 1s also assumed that, as
illustrated in FIG. 8, calculation grid points and observation
orid points coincide with each other. In this case, the matrix
expressed by the expression (7) becomes an 1dentity matrix.
Theretore, the observation data OBS, and the state variables
are, according to the observation model equation expressed
by the expression (8), expressed by a linear relational
expression expressed by the expression:

OBS,=X+w, (21).

Here, the observation noise w, may be set to be, for example,
a Gaussian distribution with a mean of 0 and a variance ol.
In this way, the data selection processing unit 30 creates the
first observation model 231-1 expressed by the expression
(21).

It 1s assumed that, with regard to the satellite data OBS,,
the intensity of reflected light or retlectivity observed 1n the
near-infrared and short-wavelength inirared wavelengths
and soil moisture content are related with each other by
means of a non-linear function h,. It 1s, however, assumed
that observation grid points coincide with the calculation
grid points, as with the so1l moisture data OBS,. In this case,
the observation data OBS, and the state variables are,
according to the observation model equation expressed by
the expression (8), expressed by a non-linear relational
expression expressed by the expression:

OBS, =k, (X, w,) (22).

Here, the observation noise w, may also be set to be, for
example, a Gaussian distribution with a mean of 0 and a
variance o2. In this way, the data selection processing unit
30 creates the second observation model 231-2 expressed by
the expression (22).
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Next, the so1l model 221, at the start point of a simulation,
obtains ensembles based on the soil mitial state (t=0 1n the
expression (20)), the terrain/weather parameters, and
ensembles representing a system noise. The soil model 221
calculates prior distributions of the state vector at t=1 using
the time evolution equation of each ensemble, expressed by
the expression (4), and stores the calculated prior distribu-
tions 1n a prior distribution storage unit 22 (step S202 n FIG.
5).

Next, 1t 1s assumed that, at the time t=1, the observation
data OBS, and OBS, 1s obtained (Yes 1n step S203). Thus,
the observation models 231-1 and 231-2 transform the
ensembles of the state vector at the time t=1, stored in the
prior distribution storage unit 22, using the expressions (21)
and (22) (step S204).

Next, the posterior distribution creating unit 40, for each
orid point, calculates a posterior distribution using Bayes’
theorem expressed by the expression (9) (step S205). How-
ever, as 1llustrated 1n FIG. 8, while two observation values
OBS, and OBS,1s obtained for each of grid points 1, 3, and
8, only one observation value OBS, 1s obtained for each of
orid points 2, 4, 5, 6, 7, and 9. Therefore, for each of the
former grid points 1, 3, and 8, the posterior distribution
creating unit 40 calculates a first posterior distribution using
all the observation data selected by the data selection
processing unit 30 and the expression (23) below, which 1s
based on the expression (13):

p(OBS1; | SM;)p(OBS2; | SM;) p(SM;)
- .

(23)

p(SM; | OBS1;, OBS2;) =

Here, the expression (23) holds true for 1=1, 3, and 8. It 1s
assumed that OBS1i and OBS2i denote pieces of the obser-
vation data OBS, and OBS, obtained at the grid point 1,
respectively. The first posterior distributions at the grid
points 1, 3, and 8, which are calculated using the expression
(23), are stored 1n a first posterior distribution storage unit
41a (Y 1n step S206 and step S207). The first posterior
distributions at the grid points 1, 3, and 8 are also stored 1n
a unified posterior distribution storage unmit 52 (step S208).

Since, at each of the latter grid points 2, 4, 5, 6, 7, and 9,
one of the types of observation data selected by the data
selection processing unit 30 1s missing, the posterior distri-
bution creating unit 40 calculates a second posterior distri-
bution using the expression (24) below, which 1s based on
the expression (13):

(24)

p(OBS2; | SM;)p(SM )

p(SM ;| OBS2 ;) = ~

Here, the expression (24) holds true for 1=2, 4, 5, 6, 7, and
9. The second posterior distributions at the grid points 2, 4,
5, 6, 7, and 9, which have been calculated using the
expression (24), are stored 1n a second posterior distribution
storage unit 415 (N 1n step S206 and step S209).

Next, the posterior distribution unifying unit 250 unifies
the first and second posterior distributions, which are cal-
culated using the expressions (23) and (24) (step S300).

In the present example embodiment, as a function g for
unifying posterior distributions, which 1s expressed by the
expression (19), for example, a linear combination of pos-
terior distributions at surrounding grid points 1s considered.
For example, with regard to the grid point 2 illustrated 1n
FIG. 8, since observation data include only the satellite data
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OBS,, a second posterior distribution expressed by the
expression (24) 1s stored 1n the second posterior distribution
storage unit 415. When a posterior distribution at the gnd
point 2 1s expressed by a linear combination of posterior
distributions at the grid points other than the grid point 2, the
posterior distribution 1s expressed as:

2'(SM,IOBS ,,OBS,)=a,p(SM, |OBS | ,OBS- )+03p

(SM,|OBS,,0BS,)+ . . . +0op(SM,IOBS.) (25).

Here, al to a9 are weighting factors that are equivalent to
a parameter set i the expression (19). Hereinafter, the dash
(') of the probability distribution p' 1n the expression (235)
indicates that the probability distribution 1s a probability
distribution after unification by the posterior distribution
unmifying unit 250. Then, the expression (25) may be con-
sidered equivalent to the so-called Kriging method, in which
an unknown value at the grid point 2 1s determined on the
basis of a probabilistic interrelation with values at surround-
ing grid points, that 1s, a spatial correlation. The values at the
orid points are, however, not definite values but posterior
distributions calculated using the expressions (23) and (24).
That 1s, when a covariance function expressing a spatial
correlation between posterior distributions p(SMIOBS) of
so1]l moisture content at a position r, of a grid point k and a
position r,+y of a grid point separated from the grid point k
by a distance v.

C(y)=C1p(SM(r)|OBS) p(SM(7;+7)IOBS) } (26)

1s obtained, the weighting factors al to a9 in the expression
(25), that 1s, the parameter set m, 1s also obtained. In the
expression (26), SM(x) denotes a state variable SM at a grnid
point located at a position x. In addition, OBS denotes m
types of observation data. The parameter set can be obtained
by solving a simple Kriging equation system as expressed
by, for example, the expression (27) below. In the present
invention, the method for obtaining the parameters m in the
function g, which the posterior distribution unifying unit
uses 1n unilying posterior distributions, 1s not limited to the
above-described method, and may be another method.

( C0) Clin-r3) ... Clri—rg)Y a1y (Clri—r2)) (27)
Clrs—r1)  CO) . C(rs —Rg) || a3 B C(rs —r2)
Cl(rg —r1) Clrg—r3) ... CO)y MNag) \Clrg—r))

Next, an operation of obtaining a covariance function
expressed by the expression (26) will be described. Since,
between a covariance function C(y) and a variogram func-
tion V(v), a simple relation:

Vy)=C0)-Cy) (28)

holds, 1t may be good to obtain either of the functions. In the
tollowing description, a case of, 1n the posterior distribution
unifying unit 250, obtaining a variogram function V(y)first
will be described. A variogram, as with a covariance func-
tion, represents a probabilistic interaction, that 1s, a spatial
correlation between a position r, of a grid point k and a
position r,+y of a grid point separated from the grid point k
by a distance v. On the left side of FIG. 9, an example of a
vartogram estimation result 1s 1llustrated. In the example, to
results from calculation of variograms at grid points other
than a grid point at which unification calculation 1s to be
performed, an exponential variogram model:

V(y.8)=t"+0" (1-exp(—¢|y||"))

E:(-EE :Oznq)) (29)
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is fit, and parameters € thereof are estimated. In the expres-
sion (29), € denotes a set of three types of parameters
characterizing a variogram, which are generally referred to
as a nugget T°, a range ¢, and a sill o~. In the example, a
result from an estimation performed, according to Bayes’
theorem expressed by the expression (9), with respect to a
range ¢ and a nugget T°, among the parameters, is illustrated.
Specifically, assuming a uniform prior distribution for the
range ¢ and an exponential prior distribution for the nugget
1° because of values close to 0 being expected for the nugget
t°, posterior distributions of the respective parameters were
obtained on the basis of actually calculated variograms
according to Bayes’ theorem. Examples of obtained results
are 1llustrated on the right side of FIG. 9. As 1s evident from
the drawing, the posterior distributions have maximum
values, which may be considered to be values of the param-
cters that reproduces calculated variograms best, that is,
maximum likelihood values. The curve (estimated values)
on the left side of FIG. 9 1s drawn according to the
expression (29) under the parameters. Since a function
representing the variogram V(y) can be calculated as
described above, the covariance function can also be calcu-
lated using the expression (28). Although a parameter esti-
mation method according to Bayes” theorem 1s described in
the example, the method 1s only an example and another
method may be used. FIG. 9 1llustrates only an example of
estimation results and does not 1llustrate estimation results
relating to the grid space (grids 1 to 9) illustrated 1n FIG. 8.

Therefore, since the covariance function C(y) expressed
by the expression (26) 1s calculated, the simple Kriging
equation system expressed by the expression (27), for
example, can be solved. Since, by that, the coeflicients 1n the
expression (25) expressing unmification of posterior distribu-
tions, that 1s, the parameter set m, 1s calculated, the posterior
distribution unifying unit 250 1s able to obtain the unified
posterior distribution p'(SM,IOBS,, OBS,) at the grid point
2. The posterior distribution unifying unit 250 also obtains
a unified posterior distribution p'(SM,.IOBS,, OBS,) with
respect to another grid point k at which a second posterior
distribution 1s created in the same manner.

Here, details of the unification operation performed by the
posterior distribution unifying unit 250 in step S300 are
illustrated 1n FIG. 10. In FIG. 10, a unification operation for
a grid point, as a target, at which a second posterior
distribution 1s calculated i1s illustrated.

In FIG. 10, the posterior distribution umiying unit 2350
first calculates variograms or covariances with respect to
orid points other than a target grid point (step S401).
Next, the posterior distribution unitying unit 250 defines
a Tunction that may fit to the variograms or covariances
calculated 1n step S401 (step S402).

Next, the posterior distribution umifying unit 250 assumes
prior distributions for parameters of the function defined in
step S402 (step S403).

Next, the posterior distribution unifying unit 250 obtains
posterior distributions of the parameters by updating the
prior distributions, assumed 1n step S403, of the parameters
on the basis of the calculated variograms or covariances by
use of Bayes’ theorem (step S404).

Next, the posterior distribution unifying unit 250 derives
a covariance function using the posterior distributions of the
parameters obtained 1n step S404 (step S405).

Next, the posterior distribution unifying unit 250, using a
Kriging equation, obtains weighting factors (parameter set
) used 1 umiying posterior distributions at grid points
other than the target grid point (step S406).
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Next, the posterior distribution unifying unit 250, using
the parameter set t obtained 1n step S406, unifies posterior
distributions at grid points other than the target grid point
(step S407).

In this way, in step S300 in FIG. 5, a unified posterior
distribution 1s calculated.

Subsequently, the simulation device 200 performs steps
S301 to S304 and S208 i the same manner as in the first
example embodiment of the present invention. By this, with
respect to each grid pomnt at which a second posterior
distribution 1s created, a unified posterior distribution or the
second posterior distribution 1s stored 1n the unified posterior
distribution storage unit 52. The soi1l model 221, using the
state vector generated from posterior distributions at the
time step, which are stored in the unified posterior distribu-
tion storage unit 52, continues calculation for the next time
step.

Next, an advantageous eflect of the second example
embodiment of the present invention will be described.

The simulation device as the second example embodiment
of the present invention may perform a high-resolution and
high-accuracy simulation over a wide range taking into
consideration non-ideal observation data and observation
data that have a discontinuity or peculiarity.

The reasons for the above advantageous effect will be
described. That 1s because the present example embodiment
includes the following configuration in addition to the same
configuration as that of the first example embodiment of the
present invention. That 1s, that 1s because the posterior
distribution unifying unit, in unifying a first posterior dis-
tribution and a second posterior distribution with respect to
cach grid point at which the second posterior distribution 1s
created, uses a model that 1s created on the basis of spatial
correlations between calculated posterior distributions. That
1s also because the posterior distribution unifying unit
applies Bayesian updating to parameters characterizing
arithmetic operations 1n the model used 1n the unification on
the basis of spatial correlations between calculated posterior
distributions.

Accordingly, even when observation data that, when used
alone, include only an insuthcient number of pieces of data
or have a distribution that 1s biased spatially are provided, by
using such observation data in plural varieties, the present
example embodiment may unify posterior distributions at
orid points with higher accuracy. As a result, the present
example embodiment enables a high-resolution and high-
accuracy simulation to be performed over a wider range.

In the second example embodiment of the present mven-
tion, an example 1n which a soil model 1s applied as the
system model, so1l sensor data and satellite data are applied
as a plurality of sets of observation data, and simulation of
so1]l moisture content 1s performed 1s described. In addition
thereto, the present example embodiment may be embodied
for another object using another system model and obser-
vation data. For example, the present example embodiment
may be embodied by applying a weather model as the
system model and weather sensor data and satellite data as
a plurality of sets of observation data.

(Third Example Embodiment)

Next, a third example embodiment of the present inven-
tion will be described with reference to the drawings. The
present example embodiment may be applied to simulation
in the case 1n which observation grid intervals of a plurality
of sets of observation data difler from one another and
simulation in the case i which collection time intervals
thereol differ from one another. In the following description,
a specific example 1 which simulation of crop growth 1s
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performed using a simulation device of the present invention
will be described. In the drawings referenced in the third
example embodiment of the present immvention, the same
signs are assigned to the same components and steps as those
in the first example embodiment of the present invention and
a detailled description thereol in the present example
embodiment will be omaitted.

First, a configuration of a simulation device 300 as the
third example embodiment of the present invention 1s 1llus-
trated 1n FIG. 11. In FIG. 11, the simulation device 300 has
a configuration in which a crop model 321 1s applied as the
system model 21 in the simulation device 100 as the first
example embodiment of the present invention. The simula-
tion device 300 also has a configuration in which two
observation models 331-1 and 331-2, which related to two
types of observation data, are applied as the m observation
models 31 1n the simulation device 100 as the first example
embodiment of the present invention. The simulation device
300 differs from the simulation device 100 as the first
example embodiment of the present mvention in that the
simulation device 300 includes a posterior distribution uni-
tying unit 350 1n place of the posterior distribution unitying
unit 50.

In the present example embodiment, a soil initial state 1s
applied as an mitial state in the present imvention, and
terrain/weather/crop parameters are applied as parameters in
the present invention. As two (M=2) sets ol observation
data, two types of satellite data (remote sensing data) are
applied.

Two types of observation data to be used in the present
example embodiment, satellite data OBS, and satellite data
OBS,, will now be described.

As 1llustrated 1n FI1G. 12, 1n the present example embodi-
ment, the first satellite data are collected at a high frequency
and have a low spatial resolution, and the second satellite
data are collected at a low frequency and have a high spatial
resolution. In FIG. 12, with respect to the first satellite data
OBS, and second satellite data OBS,, time series variations
(at four steps t-3 to t) thereof 1n a calculation grid space
(including sixteen grids 1 to 16) as a target are schematically
illustrated. In FIG. 12, shaded parts indicate grid points at
which observation data are collected.

The first satellite data, which are collected at a high
frequency and have a low spatial resolution, may be data
obtained from, for example, a MODIS sensor mounted on
the Terra satellite or the AQUA satellite (Terra-AQUA/
MODIS). More specifically, data, collected by the Terra-
AQUA/MODIS, representing the mtensity of retlected light
from sunlight in the visible red band (wavelength of 0.38-
0.86 um) and near-infrared band (wavelength of 0.725-1.100
wm) are applicable as the first satellite data. The first satellite
data as described above can, although depending on the
latitude of a region where data are collected, be collected
every day basically. However, the first satellite data as
described above have a ground level spatial resolution of as
low as approximately 250 m.

Observation data that are usable as the second satellite
data, which are collected at a low frequency and have a high
spatial resolution, include observation data obtained from,
for example, a LANDSAT satellite, a PLEIADES satellite,
the ASNARO satellite, or the like. The wavelength range of
satellite data collected by the above-described satellites 1s
approximately the same as the wavelength of data collected
as the first satellite data. The collection frequency and
ground level resolution of the second satellite data as
described above are, in the case of a LANDSAT satellite,

every 8 to 16 days and approximately 30 m, and, 1n the case
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of a PLEIADES satellite and the ASNARO satellite, every
2 to 3 days and approximately 2 m.
The Normalized Difference Vegetation Index (NDVI),

which 1s generally used as a vegetation index that indicates
the growth state of a crop, can be calculated from reflectivity
values 1n the afore-described two bands (the visible red band
and the near-infrared band). The wavelength range of data
collected as observation data 1s, however, not necessarily
limited to the above bands. In the present example embodi-
ment, the crop model 321 calculates the Leal Area Index
(LAI) as a quantity representing the growth state of a crop.
The LAI 1s known to have a correlation with the vegetation
index NDVI. The LAI as described above 1s calculated upon
inputting data of a soil initial state and terrain/weather/crop
parameters set to the crop model 321.

One of the differences between the present example
embodiment and the other atore-described example embodi-
ments of the present invention 1s that the grid intervals of the
two types of observation data OBS, and OBS, differ from
cach other. Thus, the calculation grids of the crop model 321

are set 1n such a way as to coincide with the grids of at least
etther one of the observation data OBS, and OBS,. With
regard to the other observation data, a vector 1n an obser-
vation model equation expressed by the expression (7) may
be changed so as to have, for example, weighted averages of
values at neighboring grid points as elements thereof.
Another difference between the present example embodi-
ment and the other afore-described example embodiments of
the present invention 1s that the collection time intervals of
the two types of observation data OBS, and OBS, differ
from each other. Thus, the posterior distribution unifying
unit 350, by estimating posterior distributions obtained from
the observation data OBS,, which are collected at a low
frequency, on the basis of temporal correlations, unifies the
posterior distributions obtained from the observation data
OBS, with posterior distributions obtained from the obser-
vation data OBS,, which are collected at a high frequency,
in synchronization with collection times of the posterior
distributions obtained from the observation data OBS,.

Using an example of two types of observation data OBS,
and OBS, illustrated in FIG. 12, an operation of the simu-
lation device 300 will be specifically described below.

First, the crop model 321 sets leal area indices LAI, as
state variables at grid points k (k=1 to 16) illustrated in FIG.
12 (step S101 1n FIG. 4). A state variable to be set at a gnid
point may be chosen 1n accordance with the dependency of
the variable on time and the number of unknown quantities
to be estimated.

Next, a data selection processing unit 30 obtains the two
types of observation data (step S102), and selects the first
satellite data OBS, and the second satellite data OBS, as m
types of observation data to be used (step S103).

Next, the data selection processing umt 30 creates two
observation models, a first observation model 331-1 related
to the first satellite data OBS, and a second observation
model 331-2 related to the second satellite data OBS,, (step
S104).

Referring to FIG. 12, with regard to the first observation
data OBS,, a value at an observation data collection grnd
point (a shaded part 1n the drawing) can be associated with
the average of values at four calculation grid points over-
lapped by the observation data collection grid point. There-
fore, the observation model 331-1 1s, using relations
between the first observation data OBS, at four observation
orid points and the state variables LAI, (k=1 to 16),
expressed by the expression:
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OBS; = (30)
( LAL )
F 1 1 1 1 \
Sl 00 2 2 o . o]
4 4 4 4 LAL
1 1 |
00 - >0 0 - 0 || LAL
h 4 4 4 TAT +w = Hi X +wy.
0 0 0 0O 0 0 O 0 >
| LA
O 0 0 0 0 0 0O — :
\ 4 )
LAl¢

Since grid points at which the second observation data
OBS, are collected correspond to the calculation grid points
In a one-to-one manner, the observation model 331-2 is,
using an 1dentity matrix, expressed by the expression:

(1 0 0 ... 0y LA (31)
010 .. 0| LAL

OBS, =AU 0 1 ... O LAL [+wy, = HyX +w,.
0 0 0 0 1MNILALg,

Here, H, and H, are mappings that include a mapping h that
associates their respective sets ol observation data with the
state variables LAI and matrices that associate sets of grid
points with each other. In addition, w, and w, are observa-
tion noises and may be set to, for example, a Gaussian
distribution with a mean of O and a variance o and the like.
The observation models 331-1 and 331-2 expressed by the
expressions (30) and (31) are specific examples of the
observation model equation expressed by the expression (8).

Next, the crop model 321 obtains a soil 1nitial state and
terrain/weather/crop parameters and calculates prior distri-
butions of the state vector at the next step in the simulation
(steps S201 and S202 in FIG. §). The observation models
331-1 and 331-2, using the expressions (30) and (31),
transform the prior distributions (step S203). Here, 1t 1s
assumed that, 1n step S203 after the operation illustrated 1n
FIG. 5 has been repeated appropriately, transformed prior
distributions p(LAIL) at a time t-1 1n FIG. 12 have been
calculated.

Next, a posterior distribution creating unit 40 creates a
posterior distribution of the state variable LAI, at each gnid
point k (k=1 to 16) at the time t-1 1 FIG. 12. Since, at the
time t-1, both the observation data OBS, and OBS, are
obtained, the posterior distribution creating unit 40 calcu-
lates, as a first posterior distribution:

p(LAL | OBS1y), | = (32)

LH{OBS), — Hi (LA DLH(OBS5, — Hy(LAL ) p(LAL)
> :

and stores the calculated first posterior distribution in a first
posterior distribution storage unit 41a (step S203, Yes 1n step
5206, and step S207). In the expression (32), LH 1s a
function that calculates a likelithood expressed by the expres-
sion (13), and Z 1n the denominator 1s a normalization
constant.

A case 1n which transformed prior distributions p(LAI,) at
a time t 1n FIG. 12 are calculated 1n step S203 will also be
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described. In this case, since, at the time t, the second
observation data OBS,, are missing, the posterior distribution
creating unit 40 calculates, as a second posterior distribu-
tion:

LA(OBS, — H (LAL)) p(ULAL)
= :

(33)
p(LAI | OBS}), =

and stores the calculated second posterior distribution 1n a
second posterior distribution storage unit 415 (step S205, No
in step S206, and step S209).

Next, the posterior distribution unifying unit 350 unifies
the first posterior distribution expressed by the expression
(32) and the second posterior distribution expressed by the
expression (33). Specifically, mn the present example
embodiment, as a function g for unifying posterior distri-
butions, which 1s expressed by the expression (19), a linear
combination of a second posterior distribution at a present
time and a posterior distribution estimated from a first
posterior distribution at a different time on the basis of a
temporal correlation 1s applied. For example, with regard to
a posterior distribution at the time t i FIG. 12, since, as
described above, observation data include only the first
satellite data OBS,, a second posterior distribution
expressed by the expression (33) 1s stored in the second
posterior distribution storage umt 415. Thus, the posterior
distribution unifying unit 350 estimates and creates a {first
posterior distribution at the time t to be unified with the
second posterior distribution at the time t from a posterior
distribution having been created at a past time before the
time t on the basis of a temporal correlation. A first posterior
distribution at the time t estimated from posterior distribu-
tions at times t=1 to t-1 1s denoted by p(LALIOBS,,
OBS,),., ;. The posterior distribution umiying unit 350
unifies a second posterior distribution p(LAI,IOBS, ), at the
time t and the first posterior distribution p(LAI IOBS,,
OBS,), .., at the time t, which 1s estimated on the basis of
a temporal correlation, by the expression (34) below:

2'(LALIOBS,, OBS,) =c,,p(LALIOBS )+

Pop(LAILIOBS,0BS,),.. (34).

In the expression (34), o, and 3, are weighting factors that
are equivalent to the parameter set i in the expression (19).
In the expression (34), the dash (') of the probability distri-
bution p' indicates that the probability distribution 1s a
probability distribution after unification by the posterior
distribution unifying unit 350.

A specific example of the processing of estimating a
posterior distribution p(LAIL IOBS,, OBS,),.. ; at a time t
from posterior distributions at times (t-1, t-2, t-3, . . . )
betfore the time t based on a temporal correlations will now
be described. In general, as a method for estimating a value
at a time t from values at times (t-1, t-2, t-3, . . . ) belore
the time t, a so-called autoregressive (AR) model:

P(LALIOBS | ,0BS,),.. 1 =f4z(P(LALIOBS,,

OBS;), 1.p(LALIOBS,,0BS;), 5, .. . ) (35)

1s applicable. Here, a case in which an AR model 1, 1s
expressed 1n a linear form 1s considered as an example. It 1s
assumed that a time at which both the first satellite data
OBS, and the second satellite data OBS, have been observed
and a first posterior distribution has been created and that 1s
a time before a time t 1s denoted by t-1 (1=1 and 3 1n FIG.
12). The expression (335) in the case of performing estima-
tion based on only a first posterior distribution at such a time
t—1 15 specifically expressed by the expression:
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p(LAl, | OBSy, OBSy)y, | = Br-1 p(LAl, | OBS|, OBSy), | + (36)

ﬁr_gp(bﬁ'ifk | 0BS;, OBSQJI_E; + ...

= Zﬁr_fp(mhc | OBSy, OBS3), ;.
=1

A case 1 which a posterior distribution at a time at which
no second observation data OBS, 1s obtained and a second
posterior distribution 1s created (in FIG. 12, t-2, -4, . . . )
1s also taken into consideration 1s considered. In this case,
using a unified posterior distribution stored in a unified
posterior distribution storage unit 52 with respect to a time
prior to the time t, the expression (35) 1s specifically
expressed by the expression:

p(LAL | OBS|, OBSy),., | = i1 p(LAl; | OBSy, OBSy), | + (37)

ﬁr_gp"(Mfk | OBS, OBS?)I—Z + ...

= Z )Br_l-p(Mfk | OBSla OBSZ):‘—;’ +
i=1,i+§

> Bip(LAL | OBSy. OBSy),_,.
o1,

In the expression (37), the time t—1 indicates a time at which
a first posterior distribution 1s calculated, and the time t—
indicates a time at which a second posterior distribution 1s
calculated. In the case of FIG. 12, 1=1 and 3 and 1=2, and 1=
holds. In the present example embodiment, a case 1n which
a unified posterior distribution stored in the unified posterior
distribution storage unit 52 1s used in the expression (37) 1s
assumed. Therefore, 1n FIG. 11, data paths through which
information on a unified posterior distribution is transmitted
from the unified posterior distribution storage unit 32 to the
posterior distribution unifying unit 350 are indicated by
arrows.

Using the posterior distribution p(LAI IOBS,, OBS,), ..,
at the time t estimated 1n this way, the posterior distribution
unifying unit 350 performs unification using the expression
(34) (step S300).

Subsequently, the simulation device 300 executes steps
S301 to S304 and S208 as with the first example embodi-
ment of the present invention. By this, the unified posterior
distribution or the second posterior distribution 1s stored 1n
the unified posterior distribution storage unit 32 with respect
to each grid point at a time t at which the second posterior
distribution 1s created at the grid point. Using the state
vector, which 1s generated from posterior distributions at a
time t stored 1n the unified posterior distribution storage unit
52, the crop model 321 continues calculation for the next
time step.

When a predefined time 1s reached, the simulation device
300 finishes the operation.

Next, an advantageous effect of the third example
embodiment of the present invention will be described.

The simulation device as the third example embodiment
of the present invention may perform a high-resolution and
high-accuracy simulation over a wide range taking into
consideration non-ideal observation data and observation
data that have a discontinuity or peculiarity.

The reasons for the above advantageous eflect will be
described. That 1s because the present example embodiment
includes the following configuration in addition to the same
configuration as that of the first example embodiment of the

[

10

15

20

25

30

35

40

45

50

55

60

65

34

present invention. In other words, that 1s because the pos-
terior distribution unifying unit, i unifying a posterior
distribution with respect to each grid point at which a second
posterior distribution 1s created, uses a model that 1s created
on the basis of temporal correlations among posterior dis-
tributions having been already calculated 1n the past.

As described above, the present example embodiment
estimates, from posterior distributions having been already
calculated in the past prior to a time t at which second
posterior distributions are created, posterior distributions at
the time t on the basis of temporal correlations, and, using
the estimated posterior distributions, calculates unified pos-
terior distributions at the time t. With this processing, the
present example embodiment enables a plurality of sets of
observation data that are collected at diflerent frequencies to
be unified 1n synchronization with collection timings of
observation data that are observed at a higher frequency.
That 1s, 1n the present example embodiment, prior distribu-
tions at a time t (simulation results) are revised to more
probable unified posterior distributions at a shorter interval.
As a result, the present example embodiment may reduce
errors 1n estimating values after a next time step.

Although, in the present example embodiment, an
example 1 which a crop model i1s applied as the system
model and satellite data are applied as all of a plurality of
sets of observation data 1s described, the present example
embodiment does not limit the system model and the types
and contents of observation data. For example, 1n the present
example embodiment, a water dynamics and fluid model
may be applied as a system model, and water level sensor
data and satellite data of a river may be applied as obser-
vation data. As described above, the present example
embodiment may be applied to a combination of observation
data that are collected at a high frequency but are locally
discrete and observation data that are collected at a low
frequency but have a high resolution and are widespread.,
using a system model corresponding thereto appropriately.

(Fourth Example Embodiment)

Next, a fourth example embodiment of the present inven-
tion will be described with reference to the drawings. In the
present example embodiment, a specific example 1n which,
using a simulation device of the present invention, simula-
tion of precipitation 1s performed will be described. The
fourth example embodiment of the present mnvention 1s an
example embodiment 1n which the calculation grid space 1n
the second example embodiment of the present invention 1s
expanded 1nto a three-dimensional space. In the drawings
referenced in the fourth example embodiment of the present
invention, the same signs are assigned to the same compo-
nents and steps as those 1n the second example embodiment
of the present invention and a detailed description thereof 1n
the present example embodiment will be omutted.

First, a configuration of a simulation device 400 as the
fourth example embodiment of the present invention 1is
illustrated 1n FIG. 13. In FIG. 13, the simulation device 400
has a configuration in which a weather model 421 1s applied
in place of the soil model 221 1n the simulation device 200
as the second example embodiment of the present invention.
The stmulation device 400 also has a configuration 1n which
two observation models 431-1 and 431-2 are applied in
place of the two observation models 231-1 and 231-2 1n the
simulation device 200 as the second example embodiment of
the present invention. In the present example embodiment,
a weather value 1nitial state 1s applied as an 1nitial state in the
present invention, and terrain parameters are applied as
parameters 1n the present invention. As two (M=2) sets of
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observation data, GPS precipitable water data OBS, and
acoustic radar data OBS, are applied.

Here, two types of observation data, the GPS precipitable
water data OBS, and acoustic radar data OBS,, which are
assumed to be used in the present example embodiment will
be described. GPS precipitable water 1s data obtained by
estimating a vertically integrated water vapor content in the
atmosphere, on the basis of a characteristic that, as water
vapor 1n the atmosphere on a path until a radio wave radiated
from a GPS (Global Positioning System) satellite reaches a
GPS recerver increases, arrival time 1s delayed longer. GPS
precipitable water has contributed to an improvement in the
accuracy of estimation of a timing at which local heavy rain
occurs and estimation of a total amount of rainfall 1n a round
of ramnfall. GPS precipitable water has a characteristic that,
since, on the ground side, 1t 1s only required to arrange GPS
receivers, densification 1s relatively easily achieved in the
land surface. In contrast, with respect to the vertical direc-
tion, since GPS precipitable water 1s only an integrated
amount in the vertical direction, 1t 1s difhicult to express
spatial distribution properly by means of GPS precipitable
water. On the other hand, using acoustic radar enables the
altitudinal dependency of water vapor content to be mea-
sured. For example, when a sound wave 1s emitted upward
in the vertical direction and a scattering echo due to turbu-
lence 1n the atmosphere 1s received, the echo depends on the
altitudinal gradient of atmospheric refractivity. Moreover,
the altitudinal gradient of atmospheric refractivity depends
strongly on the altitudinal gradient of water vapor content.
Therefore, observing the echo enables the altitudinal depen-
dency of water vapor content to be measured.

The observation models 431 representing relationships
between such two types of observation data and state
variables will be described using FIG. 14. In FIG. 14,
calculation grid points 1 to 8 are arranged i1n a three-
dimensional space. In the present example embodiment, to
a state vector, only precipitations RAIN, are set as state
variables at the grid points k (k=1 to 8) illustrated in FIG. 14.

In the present example embodiment, with regard to the
GPS precipitable water data OBS,, a value at an observation

orid point can be associated with an integrated value of

values at two calculation grid points having the same
coordinate values in the xy-plane and different z (vertical)
coordinate values. In FIG. 14, OBS, are data collected at
observation grid points where values at respective grid
points can be associated with the integrated values of values
at calculation grid points 1 and 3, 2 and 6, and 4 and 8, each
of which have the same xy coordinate values, respectively.
Theretfore, the observation model 431-1 that represents a
relationship between the first observation data OBS, and the
state variables RAIN, (k=1 to 8) 1s expressed by the expres-

s1on (38) below. The expression (38) 1s a specific example of

an observation model expressed by the expression (8).

¢ RAIN,
RAIN,
RAIN;

(38)
(1000100 O
01000100
0001000 1,

OBSlzhl +w = Hi X +w

RAINg |

Next, with regard to the acoustic radar data OBS,, a value
at an observation data collection grid point can be associated
with the average of values at four calculation grid points that
have the same z (vertical) coordinate value, that 1s, that are
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included 1n an identical plane. In FIG. 14, OBS, are data
collected at observation points where values at observation
points can be associated with the averages of values at
calculation grid points 1 to 4 and 5 to 8, each of which have
the same z coordinate value, respectively. Therefore, the
observation model 431-2 that represents a relationship
between the second observation data OBS, and the state
variables RAIN, (k=1 to 8) 1s expressed by the expression

(39) below. The expression (39) 1s a specific example of an
observation model expressed by the expression (8).

OBS, = (39)
¢ RAIN;
1 1 1 1 \
7773 000 ot
by | RAIN3 [+ w, = H, X +wy
vz 737 37,
\ RAINg

The simulation device 400 configured as described above
operates 1n substantially the same manner as the simulation
device 200 as the second example embodiment of the
present invention.

In other words, the weather model 241 calculates prior
distributions of the state vector at the next time step, which
1s calculated on the basis of a weather value 1nitial state and
terrain parameters (steps S201 and S202 in FIG. 3). The
above-described two observation models 431-1 and 431-2
individually transform the prior distributions (steps S203
and S204). A posterior distribution creating unit 40 creates
a {irst posterior distribution or a second posterior distribution
at each grid point (steps S2035 to S207 and S209). At this
time, since no first observation data OBS, 1s observed at the
orid points 3 and 7, second posterior distributions are
created. At the other grid points, first posterior distributions
are created.

A posterior distribution unifying unit 250 and a determin-
ing unit 51, with respect to the grid points 3 and 7 at which
the second posterior distributions 1s created, create a unified
posterior distribution, and determine which one of the cre-
ated unified posterior distribution and the original second
posterior distribution 1s to be used (steps S300 to S303). The
weather model 421, using the state vector generated from
posterior distributions, each of which 1s a first posterior
distribution or a determined posterior distribution, with
respect to the respective grid points, continues simulation.
When a predefined time 1s reached (Yes 1n step S304), an
output unit 60 outputs a time series of the state vector and
finishes the operation.

As described above, the simulation device as the fourth
example embodiment of the present invention 1s applicable
to even a case 1 which observation data cannot be associ-
ated with gnid points simply 1n a one-to-one manner and a
simulation 1n a three-dimensional space. Even in such a
case, the present example embodiment may, by using appro-
priate observation models, perform a high-resolution and
high-accuracy simulation over a wide range taking into
consideration non-ideal observation data and observation
data that have a discontinuity or peculiarity.

In each of the above-described example embodiments of
the present invention, the description 1s made mainly on an
example 1 which the respective functional blocks of a
simulation device are achieved by a CPU that executes a
computer program stored in a storage device or a ROM.
Without being limited to the above example, a portion or all
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of the functional blocks or a combination thereof may be
achieved by dedicated hardware.

In each of the above-described example embodiments of
the present invention, the functional blocks of a simulation
device may be achieved 1n a distributed manner to a plurality
ol devices.

In each of the above-described example embodiments of
the present invention, an operation of a simulation device
that 1s described with reference to a flowchart may be stored
in a storage device (storage medium) as a computer program
of the present invention. Such a computer program may be
configured to be read and executed by the CPU of the
simulation device. In such a case, the present invention 1s
configured as a code of such a computer program or a
storage medium storing the computer program.

The above-described example embodiments may be
embodied appropriately combined with one another.

The present mvention 1s described using the above
example embodiments thereof as typical examples. How-
ever, the present invention 1s not limited to the above
example embodiments. That 1s, various modes that can be
understood by a person skilled in the art may be applied to
the present invention within the scope of the present inven-
tion.

This application claims priority based on Japanese Patent
Application No. 2014-1723771, filed on Aug. 27, 2014, the
entire disclosure of which 1s incorporated herein by refer-
ence.

REFERENCE SIGNS LIST

100, 200, 300, 400 Simulation device
10 Input unit

21 System model

221 Soil model

321 Crop model

421 Weather model

22 Prior distribution storage unit
30 Data selection processing unit

31, 231, 331, 431 Observation model

40 Posterior distribution creating unit

41a First posterior distribution storage unit
415 Second posterior distribution storage unit
50, 250, 350 Posterior distribution umifying unit
51 Determining unit

52 Unified posterior distribution storage unit
60 Output unit

1001 CPU

1002 RAM

1003 ROM

1004 Storage device

1005 Input device

1006 Output device

The 1nvention claimed 1s:
1. A simulation device, comprising:
a memory that stores a set of mnstructions; and
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at least one processor configured to execute the set of 60

instructions to:

obtain an 1nitial state of a state vector and a parameter
in a simulation and a plurality of pieces of observa-
tion data as input;

operate as a system model that, based on the initial state
and the parameter, simulates a time evolution of the
state vector;,

65
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select, based on information relating to the state vector
in the system model, from the plurality of pieces of
observation data, a plurality of pieces of observation
data to be used;

operate as plurality of observation models, each being

associated with one of the selected plurality of pieces
of observation data, each of which transforms and
outputs a state vector output from the system model
based on a relationship between the observation data
and the state vector;

create, based on state vectors output from the plurality

ol observation models and pieces of observation data
selected, posterior distributions of the state vector,
outputting a posterior distribution based on all pieces
ol observation data selected as a first posterior dis-
tribution, and output a posterior distribution based on
a set of observation data lacking one or more pieces
of observation data as a second posterior distribu-
tion;

perform unification of the first posterior distribution

and the second posterior distribution;

determine which one of the second posterior distribu-

tion and a posterior distribution after the unification
1s to be used; and

output, 1n addition to mnputting a state vector including,

a posterior distribution determined and the first pos-
terior distribution to the system model, a time series
of the state vector,
wherein the state vector represents a subject, and
wherein the observation data 1s obtained by di
sensors measuring the subject.

2. The simulation device according to claim 1, wherein
the at least one processor 1s configured to:

create, by comparing pieces of information that relate to

a state vector set 1n the system model with the pieces of
observation data, the observation models related to the
pieces ol observation data.

3. The simulation device according to claim 1, wherein
the at least one processor 1s configured to:

set noise amounts of the observation models related to the

pieces of observation data.

4. The simulation device according to claim 1, wherein
the at least one processor 1s configured to:

use, 1 processing of unifying the first posterior distribu-

tion and the second posterior distribution, a model
created based on a correlation between posterior dis-
tributions that are already calculated.

5. The simulation device according to claim 4, wherein
the at least one processor 1s configured to:

apply Bayesian updating to a parameter characterizing an

arithmetic operation of the model to be used 1n the
unification based on a correlation between posterior
distributions that are already calculated.

6. The simulation device according to claim 1, wherein
the at least one processor 1s configured to:

determine, based on variance values of the second pos-

terior distribution and a posterior distribution after the
unification, which one of the second posterior distri-
bution and the posterior distribution after the unifica-
tion 1s to be used.

7. The simulation device according to claim 1, wherein
the state vector includes state variables each of which related
to one of grid points discretized in a domain over which
simulation 1s performed, and

the observation models relate the grid points related to the

state variables with a degree of resolution of an obser-

.
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vation point of one of the plurality of pieces of obser-
vation data for each of the pieces of observation data.
8. The simulation device according to claim 1, wherein
a probability distribution of each of the state variables 1s
approximated by a set of ensembles that are discretized
and calculated independently of one another, and
the at least one processor 1s configured to:
perform unification by superposing probability distri-
butions of the state variables at a predetermined
ratio, the probability distributions being approxi-
mated by the sets of ensembles.
9. The simulation device according to claim 1, wherein

the subject 1s soil, and
the state vector indicates soil moisture.

10. The simulation device according to claim 1, wherein

the subject 1s a crop, and

the state vector indicates growth state of the crop.

11. The simulation device according to claim 1, wherein

the subject 1s weather, and

the state vector indicates precipitation.

12. A simulation method, the method comprising:

when an 1nitial state of a state vector and a parameter 1n
a simulation and a plurality of pieces of observation
data are input,

simulating a time evolution of the state vector using a
system model based on the 1nitial state and the param-
cler,

selecting, from the plurality of pieces of observation data,
a plurality of pieces of observation data to be used
based on information related to the state vector in the
system model;

transforming, by use of a plurality of observation models
cach of which 1s associated with one of the selected
plurality of pieces of observation data, the state vector
output from the system model based on a relationship
between the piece of observation data and the state
vector;

creating posterior distributions of the state vector based
on state vectors output from the plurality of observation
models and the selected pieces of observation data;

performing unification of a first posterior distribution
based on all the selected pieces of observation data and
a second posterior distribution based on a set of obser-
vation data lacking one or more pieces of observation
data;

determining which one of the second posterior distribu-
tion and a posterior distribution after the unification 1s
to be used;

inputting a state vector including a determined posterior
distribution and the first posterior distribution to the
system model; and
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outputting a time series of a state vector including a
determined posterior distribution and the first posterior
distribution

wherein the state vector represents a subject, and

wherein the observation data 1s obtained by di

sensors measuring the subject.

13. A non-transitory computer-readable storage medium

‘erent

storing a computer program, the program making a com-
puter device execute:

input processing ol obtaining an initial state of a state
vector and a parameter 1 a simulation and a plurality
of pieces of observation data as input;

system model calculation processing of, based on the
initial state and the parameter, simulating a time evo-
lution of the state vector using a system model;

data selection processing of, based on information relat-
ing to the state vector in the system model, selecting,
from the plurality of pieces of observation data, a
plurality of pieces of observation data to be used;

observation model calculation processing of, by use of a
plurality of observation models each of which 1s asso-
ciated with one of the selected plurality of pieces of
observation data, transforming and outputting each
state vector output from the system model based on a
relationship between the piece of observation data and
the state vector:

posterior distribution creating processing of, based on
state vectors output from the plurality of observation
models and pieces of observation data selected 1n the
data selection processing, creating posterior distribu-
tions of the state vector, outputting a posterior distri-
bution based on all pieces of observation data selected
in the data selection processing as a first posterior
distribution, and outputting a posterior distribution
based on a set of observation data lacking one or more
pieces of observation data as a second posterior distri-
bution;

posterior distribution unifying processing ol performing
unification of the first posterior distribution and the
second posterior distribution;

determining processing of determining which one of the
second posterior distribution and a posterior distribu-
tion after the unification 1s to be used; and

output processing ol inputting a state vector including a

posterior distribution determined in the determining

processing and the first posterior distribution to the

system model and outputting a time series of the state

vector,

herein the state vector represents a subject, and

herein the observation data 1s obtained by di

sensors measuring the subject.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,474,770 B2 Page 1 of 1
APPLICATION NO. : 15/506505

DATED : November 12, 2019

INVENTOR(S) : Mineto Satoh and Soichiro Araki

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 11, Description of Embodiments, Line 21; Delete “hy,” and 1nsert --hy,-- therefor
Column 11, Description of Embodiments, Line 29; Delete “wy,” and 1nsert --wy,-- therefor
Column 135, Description of Embodiments, Line 33; Delete “Y2,” and insert --y»,-- therefor

Column 26, Description of Embodiments, Lines 66-67; Delete “£=(12,6%,¢)” and insert --E=(1°,6%,¢)--
theretor

Signed and Sealed this
T'wenty-fourth Day of November, 2020

Andrei Iancu
Director of the United States Patent and Trademark Office
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