12 United States Patent

Bijani et al.

US010474438B2

(10) Patent No.: US 10,474,438 B2
45) Date of Patent: Nov. 12, 2019

(54) INTELLIGENT CLOUD ENGINEERING
PLATFORM

(71) Applicant: Accenture Global Solutions Limited,
Dublin (IE)

(72) Inventors: Pramodsing Bijani, Bandra (West)
Mumbai (IN); Mahesh Bandkar,
Mumbai (IN); Anand Parulkar,
Mumbai (IN); Mufaddal Moazam
Kantawala, Mumbai (IN)

(73) Assignee: Accenture Global Solutions Limited,
Dublin (IE)

*) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 0 days.
(21) Appl. No.: 15/836,100
(22) Filed: Dec. 8, 2017

(65) Prior Publication Data
US 2019/0026085 Al Jan. 24, 2019

(30) Foreign Application Priority Data
Jul. 21, 2017 (IN) .oeeeieiiiiiieeneee, 201741026021
(51) Imt. CL
GO6F 9/44 (2018.01)
GO6F 8/35 (2018.01)
GO6F 8/10 (2018.01)
GO6N 20/00 (2019.01)
GO6F 8/60 (2018.01)
GO6F 8/30 (2018.01)
(52) U.S. CL
CPC .o, GO6F 8/35 (2013.01); GO6F 8/10

(2013.01); GO6F 8/30 (2013.01); GOGF 8/60
(2013.01); GO6N 20/00 (2019.01)

Data structure

105
Application
information

Cloud Engineering
Platform

» | Al model » Service 1 Sarvice 2

(38) Field of Classification Search
CPC e, GO6F 8/35

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,761,848 Bl 7/2010 Chaflin
2007/0276898 Al* 11/2007 Berkland HO4L 29/06

709/201
(Continued)

OTHER PUBLICATTIONS

Levcovitz, A., etal., Towards a Technique for Extracting Microservices
from Monolithic Enterprise Systems, 3rd Brazilian Workshop on
Software Visualization, Evolution and Maintenance (VEM), 2015,

https://arxiv.org/pdt/1605.03175.pdf, pp. 97-104.

Kecskemetl, G., et al., The Entice Approach to Decompose Mono-
lithic Services into Microservices, 2016 International Conference

on High Performance Computing & Simulation (HPCS), http://
eprints.sztaki.hu/8991/1/Kecskemeti 591 3171414 ny.pdf, Jul. 18-22,
2016.

(Continued)

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — Harnty & Harnty, LLP

(57) ABSTRACT

A device receives application information associated with a
monolithic application, and generates a recommendation
based on utilizing an artificial intelligence technique. The
recommendation relates to a service to be generated, a
service category for the service, and a deployment model for
the service. The artificial intelligence technique generates
the recommendation based on the application information.
The device automatically generates code for the service
based on the service category and the application informa-
tion, receives a request to deploy the generated code for the
service via the deployment model, and deploys the gener-
ated code, based on the request, to provide the service via the
deployment model.

20 Claims, 10 Drawing Sheets

ks

Recommended services to be
generated from application

Service Service 2

/ 1t
Service cateqories

{Leave 35 is) (Build new)

O\

Chat bots

123

Deployment models for services

Service 1 Sarvice 2
(IAAS) (Multi-cloud)

US 10,474,438 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0209446 Al1* 8/2008 Grechanik GO6F 8/20
719/320
2009/0037896 Al* 2/2009 Grechanik GO6F 8/65
717/168
2010/0153444 Al1* 6/2010 Nayak G06Q 10/10
707/770
2013/0007216 Al1* 1/2013 Friescooooevennnnnn, GOGF 9/4856
709/218
2014/0089888 Al 3/2014 Bhaskara et al.
2014/0122407 Al1* 5/2014 Duan GO6N 5/02
706/50

2017/0046146 Al 2/2017 Jamjoom et al.
2017/0187785 Al 6/2017 Johnson et al.

OTHER PUBLICATIONS

Gabbrielli, M., et al., Self-Reconfiguring Microservices, Theory and
Practice of Formal Methods, Lecture Notes in Computer Science,
URL: https://hal.inra.fr/hal-01336688/document, 2016, vol. 9660,
pp. 194-210.

Villamizar M. et al., “Evaluating the Monolithic and the Microservice
Architecture Pattern to Deploy Web Applications 1n the Cloud,”
10th Computing Colombian Conference (10CCC), Sep. 2015, pp.
583-590. [retrieved on Apr. 9, 2019], Retrieved from the Internet
[URL: https://1eecexplore.ieee.org/abstract/document/7333476].

Dragoni N., et al., “Microservices: How to Make Your Application
Scale”, Feb. 23, 2017, [Retrieved on Sep. 13, 2019] Retrieved from

the Internet [URL: https://arxiv.org/pdi/1702.07149.pd1].

* cited by examiner

US 10,474,438 B2

Sheet 1 of 10

Nov. 12, 2019

U.S. Patent

UoleuLoul
yoiesidde a1018

0Lt

V1 'Ol

WLONBId
Buussuibug pnoin

(eyep indut sleuuonRsSenNy)
tofjeunojul vopesidady

GOt

UOIBULIOJU]
uoneosnddy
G0l

aoIne(
»sSh

11111

Q0IND(] 1BAIDG

US 10,474,438 B2

(Svvi)
| 90INSG

{pnop-inw)
7 S0IAISS

SOIAI0S 10} sjapow usilo)jda

Sheet 2 of 10

(s1se anray) |
L aolnBeg |

~ (mau pying)

7 S0IAIRS

sauobaied eoneg

Z 9OINIRS | 90INIBS

Nov. 12, 2019

uonesidde wol paieseusbd
a8 0] SOOIAIDS PBPUBLILLIONSY
Gil

U.S. Patent

gl 9ld

sj0q 12YD |

LI BLUIOJU
uonessiddy
I

japOoW | ornrronnnnonnnnonnnsonnnsoannsonns:

NIIS B1e(]

_ UIOH®
Buussuibuzg pnoin

US 10,474,438 B2

(profo-pinu) |

— o
— Z S0IAIBS
-~ g
M DNOO~INLW Ul 7 92IAI8S JUSLUS|dLUL
- 0] paleisuab uomeoiidde MeN
e .
2 gel
7.
=
= (Svvi)
= L 90IMOS
-
. SYV] Ut | 90IASS
W e ejdiui 0} pojeibiu uonesiddy

o€t

U.S. Patent

Il 'Ol

S}oq 14D

AN
uoceisusb

9poD)

Aan
uoneius
SOINOS

S}10Q 1eYD

7 90IAIBS

L 90IAIBS

uoneosidde wol pajeseusb
a(] 0} S92IAISS PAPUBLLILIOTD YN

IO 1Rl A

\ Buuesuibuy pnojD

US 10,474,438 B2

Sheet 4 of 10

Nov. 12, 2019

U.S. Patent

PROR- A

S04 184D

(pnojo-ginuu)
7 QUINIOS

SIRIOILS P

ABojodo pur sisjauseied
usWwAQidap ‘pPnojo
-nw ‘Aoldap 0} 7 aIAeg

| uojBwOINe
| jusuwifolde(

SVYY| Ul padojdep | adaIeg
(SVYVI)
| 8oIAeg

AII-IEEEEEEEIII
ABojodoy JuswiAoidep

o _ ‘siejpuwieied JuswAoidap
| S0IABG] ‘[YYI ‘Acidep 0] | 8oineg

AIOMSIR Y SYY|

\ Bunasuibug pnoin

US 10,474,438 B2

Sheet 5 of 10

Nov. 12, 2019

U.S. Patent

B a0 h e e e e e e e e e e e e e e e e e a e e e e e e e
L] P T T T
T T T T T T T T R T T T T T R T |
Fl - . . FF FFPFPCFrrrrrrrrrrrrrrr
T T e R |
- -
T]
- . . e
e |

ﬂii F.Y
xmm#%ﬁmﬁx

e e e e e S S S S S S S L L

- e e . L T T o T
P “ + 4 = s 4 2 s = x x s = a2 w %+ = . mEFFFTFPFCFPCEFrCrTCT
P 5 T T R R R T R T T TR T Y T T T R N R R S Y N N R R R R e |

- om
L

e e S na a aa n aal n a waa a a na n a na naa ntan na n an wa aa n anl nan nana a na na

!IH.III lunlluﬁl

IH HHHH!H]

e

nti-_.. e e

rror
oo

S .

l"“ﬁ"u.:r.li iy N S ol ol et A r

J s L + r L]

2 = s .
Hﬂ%ﬁﬂﬂ%ﬂ.ﬂhﬁﬁhﬁﬁhﬂ.ﬂﬁﬁhﬁ“ A

K L A E H X KA ME M M |

IH J H!-n. IHH Hll H“l"l“lll l”ﬂﬂ L HIILI - .IE ﬁl K .HH !lﬂl!lﬂ-..!

KR X

| J
ol Forom g F

.-__-. e !_-_"I-._-_......_lnin_-_.. oL's E P Syl s B TNy

o

A A

v

Fs C e e e .
n f e e s
o LI T TR T R TR T | . -
FrFFrCFrCErCErCrErCrErCECrCrErCECrCrErCECrCr. s ososoxoxs

ol
pole
A A A A A

LA
e oMo

h]

E A A
Fole i e e
PR P R R
A A
P B A

Py K E Ko,

ol
ol e
P v.vv.v.v_,_.v. ;
AR
P P PR BN
B W

i
A
o

2w
PN

]
.

Ry
P o g K R M P R
Py P

Y
E

F Hﬂﬂﬂﬂxﬂﬂﬂxﬂﬂﬂ Hﬂ
F F H F

.

e i a na n aa na a a n a a wa n aa naa -_.u_.w

uLole| 4
Suussuibugly pnoin

L L]

PN NN NN

X ¥

*
o
&
L3
*
[3
[}
*
&
L3
*
[3
&
*
[}
lj.

b

g

L
]

US 10,474,438 B2

Sheet 6 of 10

Nov. 12, 2019

U.S. Patent

Ayan
uogesbnu
AVINIDQ

-
--- .-. -.. ..-- .-.- .-. 0 ..- ... -.. ..- .-.- .-. -.. ..- ... -.. ..- .-.- .-. -.. 0 .-. -.. ..- .-. -.. ..
l.1..-..-...........-..-........... . --..-..-........-..-..-........-..-. - - .-..-.....-..-..-..-........-..-..-.. - . ..-.....-..-..-..-.....-..-..-..-.... - . . - . . - .-..-..-..-..-..-..-..
A T R T N N N N N N N I N R D R T T T .
e
T LT .
- - . L] . .
Cow e LT LT .
Com . . ' . .
T Coe e .
ol T T LT
R LT .
Lom . . ' . .
B o .
e LT
et LT LT .
e . . ' . .
. LT - a - r LT .
. a4 4K - . ' . .
0T L a . - . Coe e .
.. . s [
. LT LT '
. ' . .
LT rrrrrrrrrrrrrrrrrrrrrrrrrFrFrPEFrEFrEFRErREFRErREPRErRE SRR P E PR EREEFrRErRE R FEFRErRE PR FRErRE R PR FRErRErREEERErEE P Err P rE R FE PR R R R R R R EOEE L '
. P T T e T T T P T T T T e T T T T T T T T T P T T e T T T R T T T
ﬁ. -.. ..-- .-.- .-. 0 ..- ... -.. ..- .-.- .-. -.. .- ... -.. ..- .-.- .-. -.. 0 .-. -.. ..- .-. -.. .. L]
.1.-..-..-........-..-..-........-..-. .-..-.....-..-..-..-........-..-..-. .-.....-..-..-..-.....-..-..-..-.... .-..-..-..-..-..-..-.. L]
.1. -.. ..-- .-.- .-. . ..- ... -.. ..- .-.- .-. -.. .- ... -.. ..- .-.- .-. -.. . --. -.. ..- .-. -.. .. L] "
-
-
-

i da st o G upeauIbug PNo
S . \?%&.%Eﬁ%ﬁxﬁmx%x R L o ﬂ st i _w Y __U
e e e e eThrat oS taa et | (- L e e
s \

o e DoLIn :

o e 00
OO e1“......”.“,...“...._...........".“n.”.“r.. L e e e T ..,...u....._..” p T FHI IO B m..—O . “.mml‘ “wm,,w
.h_hwH.h_h_h.H.h_hu.H.h_h_h.H.h_h_N.H.h_w.k.ﬂh_h. ;

T I AlED Sur ” f

e m ;

NS Sl il m !

R N BRI BRI m i

L L L L m /

oty
Al

s
.

]

-
-
r
-
-
-
-
-
r
-
-
r
-
-
-
-
-
r
-

]

-

US 10,474,438 B2

Sheet 7 of 10

Nov. 12, 2019

U.S. Patent

C e e e
. M
e
Froa .
Tt
I om -
L Y]
e . .

R

i

e

R
R

L

i

e m
S “

e |
L e e

A

iy ‘_.L_....-_._

A oa

L

+
L
*

-..-.

=i

A

A

A

e
P

2

o
LA

o N,

..-“v. ;
Y

>,

.
o

b

o
o
PR R
e
ol

o
o

A

P M
Al

|

N,

W,

ol ol il

A
A

A

X, .Hv.!v.ﬂv.!v.! F
. oK E M
]

>,

A

o
o
P

o
.v.v.v”v
e

o
x.

A
e
o

A A A AN

o i
..-“v“!v..-“u_
..__.v”u_.v.

.

!
A

ol
A

o

A A A

.,

AW

L

L,

A

a A

A

i

ey
H.Hﬂ.ﬂﬂ.ﬂﬂ.ﬂﬂﬂﬂ.ﬂﬂ.ﬂﬂﬂ

uolBIoINE
WwelwAoidaqg

UI0f)e]

Buuiseuwtbuy phoin

US 10,474,438 B2

Sheet 8 of 10

Nov. 12, 2019

U.S. Patent

;

vee
82IN0SOY
busindwon

92.IN0SeY
buindwion

vee
B0IN0SOY
Hugndwion

82.N0SSY
Bunndwion)

727 JUBLUUOIAUT
bunndwos pnojn

¢ Ol

gl
30IA8(]
IDAIBG

0} 74
HIOMIBN

0ic

asine(]

US 10,474,438 B2

Sheet 9 of 10

Nov. 12, 2019

jusuodiuon)
aobriois

U.S. Patent

g€

LT RN

| UOHBOIINMULIOD

¢ Old

euodwio

0ct

108S82014

JUSUCOWO D

1183
sng

IOpoLL JUBWACIASP 8] BIA 82IAISS
8L} apinoid 0} ‘1senbal ayj uo paseq 'epo pajessusb sy Aoyda(g

US 10,474,438 B2

|2pow JuBwAoidap oy} BIA
SDIALES OY] JO) P00 pajrisualb oyl Aojdep 0131senbal e oAI808Y

—
1 ...
> uogewloul uoiealdde ey
— pue AloDaied asiAIes SY) U0 POSE(Q 93IAISS 84} IO} P02 81RI8USK)
7 - A A B e
Qo
Qs
- siepow Juswioidap au) woi

[epou uswAoidep e pue ‘salnbsaied aoiAles sy} woly Alobaies

SOIAIOS B ‘SODIAISS S} WO 92IAISS B JO SUONDBISS SAIDI0M

=N
y—
N S30IAIDS 81 JO4 S{8potu JUsWAOdBP pUue ‘S82IAISS
~i auyi 10} sauohajen adiAIes ‘patriaush 8Q 0] SO0IAISS "UOIBWION
— uonedde yo peseq ‘pusuiwiedal 0} soushijieiul jBIiue aziun
>
rd

uoneoydde
SIYNIOUCW B LM PBJBIDOSSE UoBULIOjUl uonedljdde aAisoaYy

U.S. Patent

09v
~0Gy

0ty

0¥

OCV

~0L

US 10,474,438 B2

1

INTELLIGENT CLOUD ENGINEERING
PLATFORM

RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119 to
Indian Patent Application No. 201741026021, filed on Jul.
21, 2017, the content of which 1s incorporated by reference
herein 1n 1ts entirety.

BACKGROUND

Applications, such as enterprise applications, have tradi-
tionally been designed in a monolithic fashion. A monolithic
application may include a single-tiered application in which
the user interface and data access code are combined 1nto a
single program from a single platform. In some cases, a
monolithic application may be responsible for not just a
particular task, but for every task or step needed to complete
a particular function. A monolithic application may be
associated with a single device, such as a server or main-
frame, which 1s selif-contained and independent from other
computing resources.

SUMMARY

In some 1mplementations, a device may include one or
more memories, and one or more Processors, communica-
tively coupled to the one or more memories, to: receive
application information associated with a monolithic appli-
cation, and generate a recommendation based on utilizing an
artificial intelligence technique. The recommendation may
relate to a service to be generated, a service category for the
service, and a deployment model for the service. The arti-
ficial intelligence technique may generate the recommenda-
tion based on the application information. The one or more
processors may automatically generate code for the service
based on the service category and the application informa-
tion, receive a request to deploy the generated code for the
service via the deployment model, and deploy the generated
code, based on the request, to provide the service via the
deployment model.

In some 1mplementations, a non-transitory computer-
readable medium may store instructions that include one or
more 1nstructions that, when executed by one or more
processors, cause the one or more processors to receive
application information associated with a monolithic appli-
cation, and generate a recommendation based on utilizing an
artificial intelligence technique. The recommendation may
relate to a service to be generated, a service category for the
service, and a deployment model for the service. The arti-
ficial intelligence technique may generate the recommenda-
tion based on the application information. The one or more
instructions may further cause the one or more processors to
automatically generate code for the service based on the
service category and the application information, receive a
request to deploy the generated code for the service via the
deployment model, and deploy the generated code, based on
the request, to provide the service via the deployment model.

In some 1mplementations, a method may include receiv-
ing, by a device, application information associated with a
monolithic application, and generating, by the device, a
recommendation based on utilizing an artificial intelligence
technique. The recommendation may relate to a service to be
generated, a service category for the service, and a deploy-
ment model for the service. The artificial intelligence tech-
nique may generate the recommendation based on the appli-

10

15

20

25

30

35

40

45

50

55

60

65

2

cation information. The method may further include
automatically generating, by the device, code for the service
based on the service category and the application informa-
tion, receiving, by the device, a request to deploy the
generated code for the service via the deployment model,
and deploying, by the device and based on the request, the

generated code to provide the service via the deployment
model.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1G are diagrams of an overview ol an example
implementation described herein;

FIG. 2 1s a diagram of an example environment in which
systems and/or methods, described herein, may be 1imple-

mented;
FIG. 3 1s a diagram of example components of one or

more devices of FIG. 2; and
FIG. 4 1s a flow chart of an example process for generating,
one or more services based on a monolithic application.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers in different drawings may identify the
same or similar elements.

Cloud computing has seen increasing use for a variety of
reasons, including cost savings, ease ol maintenance, scal-
ability, and versatility. Cloud computing provides a level of
scalability and versatility for which a monolithic application
1s not well suited. For example, assume that a particular
clement of a monolithic application processes data at a
particular rate. Since the monolithic application 1s a single
program, the particular element may not be scalable when
the data rate increases past the particular rate. This may lead
to bottlenecking and other inefliciencies.

Many application providers are replacing monolithic
applications with collections of services or microservices. A
microservice 1s a suite of independently deplovable, small,
modular services (e.g., software applications) in which each
service executes a unique process and communicates
through a well-defined, lightweight mechanism to serve a
business goal. Collections of services or microservices may
provide scalability 1 a cloud environment, because 1f a
particular service causes a bottleneck, the particular service
may be duplicated or parallelized in the cloud environment.
However, many difliculties arise when replacing an appli-
cation with a collection of services. As an example, consider
a business context, where a monolithic business application
1s being replaced with a collection of business services. In
such a case, an application designer may need to identily
business and technology imperatives that should be priori-
tized and may need to identily services, of the application,
that need to be modernized or built from scratch to satisiy
the business imperatives. Furthermore, the application
designer may benefit from using application programming
interfaces (APIs) that are predefined, highly available, and/
or always available.

One challenge with the above 1s that entities that have
information regarding business imperatives may be different
from entities that have knowledge regarding technology
imperatives, and both of these may be different from an
application engineer that creates the business services.
Theretfore, the application engineer may lack full visibility
of business and technology imperatives. Further, even 11 the

application engineer has full wvisibility of business and

US 10,474,438 B2

3

technology 1mperatives, the application engineer may use a
subjective, error-prone, or non-rigorous approach to priori-
tizing the business and technology imperatives. This may
lead to development of a collection of business services that
does not adequately address the business and technology
imperatives. Furthermore, in some cases, an application
engineer may not use a rigorous approach to selection of
APIs. In such a case, identification of services that need to
be modernized or built from scratch, creation of the services,
and modernization of services may be inconsistent and
ineflicient. Furthermore, sigmificant operational overhead
may be involved with deploying these collections of services
to a cloud environment.

Some 1mplementations described herein provide a seam-
less and interactive way to identify and create future-ready
services from traditional monolithic applications. For
example, some 1implementations described herein may uti-
lize artificial intelligence (Al) to identily a monolithic
application amenable to being modernized (e.g., updated or
built from scratch) through integration of services or micros-
ervices based on business imperatives and/or technology
imperatives associated with the application and/or based on
an enftity associated with the application. Additionally, or
alternatively, some implementations described herein may
generate code for the services or microservices, and may
deploy the generated code so that the monolithic application
1s 1mplemented via the services or microservices.

FIGS. 1A-1G are diagrams of an overview of an example
implementation 100 described herein. As shown in FIG. 1A,
a user device and a server device may be associated with a
cloud engineering platform. The server device may be
associated with an application, such as a monolithic appli-
cation. As shown 1n FIG. 1A, by reference number 103, the
user device and the server device may provide application
information to the cloud engineering platform. In some
implementations, the application mformation may include
information associated with the application. For example,
the application information may include code of the appli-
cation, mformation about technical parameters of the appli-
cation, business parameters of the application, business
imperatives and/or technology imperatives associated with
the application, a software license agreement of the appli-
cation, availability information associated with the applica-
tion, operational needs of the application, and/or the like.

In some mmplementations, the application information
may be provided 1n a particular format, such as a spreadsheet
format that includes the application information, a spread-
sheet-based questionnaire that includes the application infor-
mation, and/or the like. In some implementations, the user
device or the server device may provide the particular
format to a user of the user device or the server device, and
the user may provide the application information via the
particular format. In some 1implementations, the cloud engi-
neering platform may provide (e.g., for display) the particu-
lar format to the user device or the server device, and the
user may provide the application information via the par-
ticular format. In some implementations, the cloud engi-
neering platform may automatically retrieve the application
information from the server device and/or from other
devices (e.g., devices that provide iformation associated
with business parameters, business needs, architectures
capable of hosting the application, and/or the like).

As further shown i FIG. 1A, and by reference number
110, the cloud engineering platform may receive the appli-
cation information, and may store the application informa-
tion 1n a data structure, such as a database, a table, a
linked-list, a tree, and/or the like. In some 1implementations,

10

15

20

25

30

35

40

45

50

55

60

65

4

the data structure may be provided 1n a memory associated
with the cloud engineering platform. The cloud engineering
platform may store the application imnformation so that the
cloud engineering platiorm may perform further processing
on the application information, such as determining services
or microservices that may generated based on the applica-
tion. In some 1implementations, the cloud engineering plat-
form may provide security features, such as integration with
vaults or secret data sources for secure distribution of
confidential data across services and/or containers.

As shown in FIG. 1B, an artificial intelligence (Al) model,
provided by the cloud engineering platform, may retrieve or
receive the application information from the data structure,
as indicated by reference number 105. In some implemen-
tations, the Al model may include a machine learning model,
a naive Bayes biased classifier model, a deep learning neural
network model, a neural network model, a support vector
machine model, and/or the like. In some 1mplementations,
the cloud engineering platform may process the application
information using natural language processing. In this case,
the Al model may include or be associated with a natural
language processing application that recognizes, parses,
and/or interprets the application imnformation. Natural lan-
guage processing 1s a field of computer science, artificial
intelligence, and/or computational linguistics concerned
with the interactions between computers and human (natu-
ral) languages and, in some cases, may be particularly
concerned with programming computers to fruitifully pro-
cess large natural language corpora.

As further shown in FIG. 1B, and by reference number
115, the Al model may 1dentily recommended services (or
microservices) to be generated from the application. For
example, the Al model may determine that two services
(e.g., Service 1 and Service 2) may be generated from the
application. In some implementations, the Al model may
identily new capabilities that could be delivered using the
recommended services, may 1dentily application program-
ming interfaces (APIs) or types of APIs that could be
serviced using the recommended services, may identily
business imperatives that could be accelerated or improved
using the recommended services, and/or the like.

As further shown in FIG. 1B, and by reference number
120, the Al model may identify a service category for each
of the recommended services (or microservices). In some
implementations, the service category may include a “leave
as 1s” category (e.g., indicating that the application need not
be altered to implement a recommended service), a “build
new’” category (e.g., indicating that the application may not
provide a recommended service, and that the recommended
service needs to be created), a “modernize™ category (e.g.,
indicating that the application needs to be modernized 1n
order to implement a recommended service), and/or the like.
For example, the Al model may categorize Service 1 1n the
“leave as 1s” category, indicating that the application need
not be altered to implement Service 1. The Al model may
categorize Service 2 1n the “build new” category, indicating
that the application may not provide Service 2 and that
Service 2 needs to be created.

As further shown in FIG. 1B, and by reference number
125, the Al model may i1dentity a deployment model best
suited for each of the recommended services (or microser-
vices). In some implementations, the deployment model
may include information as a service (IAAS) on a web
service, IAAS on a cloud application platform, platform as
a service (PAAS) on a cloud application platform, a multi-
cloud platform deployment, and/or the like. For example,
the Al model may determine that Service 1 1s best suited to

US 10,474,438 B2

S

be deployed as IAAS on a web service, and that Service 2
1s best suited to be deployed as a multi-cloud platiorm
deployment.

In some implementations, the Al model may 1dentify what
applications need to be modernized (e.g., re-factored or
re-engineered) nto either services or microservices, based
on a combination of technical viability and business impact.
In some implementations, the Al model may determine what
new capabilities could be delivered by creating new services
or microservices. In some implementations, the Al model
may determine what kind of APIs could be serviced by
leveraging these new or modermized services. In some
implementations, the AI model may determine what busi-
ness imperatives could be accelerated by the new or mod-
ernized services. In some implementations, the Al model
may provide analyses of how business imperatives are likely
to benefit by recommendations.

As further shown in FIG. 1B, the Al model may interact
with one or more chat bots (e.g., computer programs that
conduct conversations via auditory or textual methods)
when 1dentifying the recommended services, the service
categories, and/or the deployment models. In such imple-
mentations, the chat bots may provide mechanisms for user
input to and interaction with the Al model. For example, the
chat bots may guide the process from determining the
recommended services, to determining the service catego-
ries for the recommended services, and to determining the
deployment models for the recommended services. In some
implementations, each chat bot may include an Artificial
Intelligence Virtual Assistant (AIVA) chat bot, a JavaScript
(JS) chat bot, a node JS (or Node.js, an open source
JavaScript run-time environment) chat bot, a Hubot chat bot,
and/or the like.

In some implementations, a user of the cloud engineering
platform may be presented with information identitying the
recommended services, the service categories, and the
deployment models, and may select one or more of the
recommended services, the service categories, and/or the
deployment models for further processing. In some 1mple-
mentations, the cloud engineering platform may automati-
cally select one or more of the recommended services, the
service categories, and/or the deployment models for further
processing.

As shown 1 FIG. 1C, depending on the recommended
service selected by the cloud engineering platform or the
user, the cloud engineering platform may migrate the appli-
cation to implement the recommended service or generate
new code for the recommended service. For example, since
the cloud engineering platform determined that the applica-
tion need not be altered to implement Service 1, the cloud
engineering platform may provide information associated
with Service 1 to a service migration utility of the cloud
engineering platform. In some implementations, the service
migration utility may include a spring boot service migration
utility, a spring cloud service migration utility, a node
JavaScript (IS) service migration utility, a react.js code that
1s compiled with webpack, and/or the like. In some 1imple-
mentations, the service migration utility may automatically
convert existing application code into services (e.g., using
spring boot, spring cloud, node IS, HITML5/React.js, Spring
Cloud Serverless, AWS Lambda, and/or a stmilar language).
Some 1mplementations described herein may be extensible
to cover other languages. As shown by reference number
130, the service migration utility may migrate the applica-
tion to implement Service 1 in IAAS. For example, the
service migration utility may migrate the application by
creating a web archive for the application, executing a

10

15

20

25

30

35

40

45

50

55

60

65

6

conversion utility based on the web archive and a target
location, and generating remediated run-anywhere code with
support for service discovery and registration, distributed
logging, and cloud implementation, based on executing the
conversion utility.

In another example, since the cloud engineering platiorm
determined that the application may not provide Service 2
and that Service 2 needs to be created, the cloud engineering
platform may provide information associated with Service 2
to a code generation utility of the cloud engineering plat-
form. In some implementations, the code generation utility
may include a template-based code generation utility, a
spring boot code generation utility, and/or the like. In some
implementations, the code generation utility may automate
code generation using reusable templates or scenario out-
lines, such as cucumber outlines and/or the like. In some
implementations, the code generation utility may automate
creation of a data access layer or system, such as a database
management system, data sources, big data systems, and/or
the like, for the services or microservices. As shown by
reference number 135, the code generation utility may
generate new code (e.g., a new application) to implement
Service 2 1n a multi-cloud platform.

As further shown in FIG. 1C, the service migration utility
and the code generation utility may 1nteract with one or more
chat bots when migrating the application and generating the
new code, respectively. In such implementations, the chat
bots may provide mechanisms for user input to and inter-
action with the service migration utility and the code gen-
cration utility. For example, the chat bots may guide the
process for migrating the application to implement Service
1 mn TAAS, may guide the process for generating the new
application to implement Service 2 1 a multi-cloud plat-
form, and/or the like. In some 1mplementations, the cloud
engineering platform may provide automated monitoring of
the generated service (e.g., the migrated application or the
generated new application). For example, the cloud engi-
neering platform may perform tests on the generated service
to determine whether the generated service i1s functioning
properly.

As shown 1n FIG. 1D, and by reference number 140, the
cloud engineering platform may provide information asso-
ciated with a service to deploy (e.g., Service 1), a deploy-
ment model (e.g., IAAS) for the service, deployment param-
cters for the service, a deployment topology for the service,
and/or the like to a deployment automation mechanism of
the cloud engineering platform. As further shown in FIG.
1D, and by reference number 145, the cloud engineering
platform may provide information associated with a service
to deploy (e.g., Service 2), a deployment model (e.g.,
Multi-cloud platiorm) for the service, deployment param-
cters for the service, a deployment topology for the service,
and/or the like to the deployment automation mechanism.

In some implementations, the deployment parameters
may include mstructions to deploy the recommended ser-
vices or microservices via corresponding deployment mod-
cls. In some implementations, the deployment topologies
may include always-on deployment topologies, single cloud
deployment topologies, multi-cloud deployment topologies,
blue-green deployment topologies, and/or the like, across a
variety of cloud providers.

In some implementations, the deployment automation
mechanism may automate development operations and con-
tainerization scripts for the recommended services on target
platforms (e.g., service categories). For example, as shown
by reference number 150, the deployment automation
mechanism may deploy Service 1 (e.g., the migrated appli-

US 10,474,438 B2

7

cation) 1n an IAAS framework. In another example, as
shown by reference number 155, the deployment automation
mechanism may deploy Service 2 (e.g., the new application)
in a multi-cloud platform. In some implementations, the
deployment automation mechanism may include a Docker
mechanism (e.g., a technology that uses containers for the
creation, deployment, and/or execution of applications), a
Salt mechanism (e.g., a Python-based open source configu-
ration management soltware and remote execution engine),
a Terraform mechanism (e.g., an infrastructure as code
software), and/or the like. In some implementations, the
cloud engineering platform may provide automated moni-
toring of deployed services. For example, the cloud engi-
neering platform may perform tests on the deployed services
to determine whether the deployed services are functioning
properly. In some implementations, the cloud engineering
plattorm may provide a secure environment (e.g., via
encryption and/or the like) that manages and protects con-
fidential information across containers, systems, environ-
ments, and/or the like when the services are deployed.

As turther shown in FI1G. 1D, the deployment automation
mechanism may interact with one or more chat bots when
deploying the recommended services. In such implementa-
tions, the chat bots may provide mechanisms for user input
to and interaction with the deployment automation mecha-
nism. For example, the chat bots may guide the process for
deploying Service 1 1n the IAAS or PAAS framework, may
guide the process for deploying Service 2 1n the multi-cloud
platiorm, and/or the like. The deployments to IAAS and
PAAS frameworks may be based on principles such as
immutable infrastructure, immutable environments, service
discovery, circuit breakers, and blue/green deployments for
which the code and devops scripts are generated by the chat
bots

The deployment automation may provide chat bots that
automate transier of the application code, devops scripts,
container-based scripts, build scripts, configuration files, etc.
to a continuous deployment framework (e.g., Fabric8).
Through this framework, features, such as a continuous
deployment workflow, canary releases, AB testing and
deployment to production may be implemented.

The architecture that 1s created by the chat bots may
include security features, such as creation of scripts for
automated provision of vaults for storing secrets, firewall
rules and surface area reduction through ingress methods
such as reverse proxy farms. Scripts for provisioning these
may be automatically generated by the chat bots.

As shown 1 FIG. 1E, and by reference number 160, the
cloud engineering platform may utilize a chat bot to provide
a user mterface that aids 1n generating new code (e.g., a new
application) to create a new service based on the application.
For example, a user of the cloud engineering platform may
utilize the user interface to indicate that the user wishes to
create a new service based on the application. The user
interface may provide an assistant for creating the new
service, for creating new code based on the application,
and/or the like. In some implementations, the user may chat
with the chat bot and provide inputs needed for service
generation based on the application. Once the user triggers
the service generation using the chat bot, the service may be
created and the user may be provided an address (e.g., a
uniform resource locator, URL) where the user may verily
logs and download source code of the generated service.

As shown 1n FIG. 1F, and by reference number 163, the
cloud engineering platform may utilize a chat bot to provide
a user interface that aids 1n migrating the application to
provide a new service. For example, a user of the cloud

10

15

20

25

30

35

40

45

50

55

60

65

8

engineering platform may utilize the user mterface to ndi-
cate that the user wishes to migrate the application to create
the new service. The user interface may provide an assistant
for converting the existing code of the application, for
migrating the converted code to a target platform, and/or the
like. In some 1mplementations, the user may chat with the
chat bot and provide mputs needed for application migra-
tion. Once the user triggers the application migration using
the chat bot, the application may be migrated and the user
may be provided an address (e.g., a URL) where the user
may verity logs and download source code of the migrated
application.

As shown 1n FIG. 1G, and by reference number 170, the
cloud engineering platiorm may utilize a chat bot to provide
a user interface that aids in deploying a new service that 1s
created based on the application. For example, a user of the
cloud engineering platform may utilize the user interface to
indicate that the user wishes to deploy the new service. The
user interface may provide an assistant for deploying the
migrated application, for deploying the new service, and/or
the like. In some 1mplementations, the user may chat with
the chat bot and provide inputs needed for deployment of the
migrated application or the new service. Once the user
triggers the deployment using the chat bot, the migrated
application or the new service may be deployed and the user
may be provided an address (e.g., a URL) where user may
verily deployment logs and launch the migrated application
or the new service.

In this way, several different stages of the application
design or modernization process are automated using Al,
which may remove human subjectivity and waste from the
process, and which may improve speed and efliciency of the
process and conserve computing resources (€.g., processors,
memory, and/or the like). Furthermore, implementations
described herein use a rigorous, computerized process to
perform tasks or roles that were previously performed using
subjective human intuition or input. These roles may include
identification and prioritization of business and technologi-
cal imperatives, 1dentification of services or microservices
that may be modernized or that should be built from scratch,
code conversion for creation of services or microservices,
data access layer creation for services or microservices,
selection of deployment environments or deployment mod-
els, security processes or procedures, and/or management of
deployment across multiple different cloud providers. Fur-
thermore, by automating the service creation and deploy-
ment process, performance of the services and/or the process
that was previously performed by a monolithic application 1s
improved.

As indicated above, FIGS. 1A-1G are provided merely as
examples. Other examples are possible and may differ from
what was described with regard to FIGS. 1A-1G.

FIG. 2 1s a diagram of an example environment 200 1n
which systems and/or methods, described herein, may be
implemented. As shown in FIG. 2, environment 200 may
include a user device 210, a cloud engineering platform 220,
a server device 230, and a network 240. Devices of envi-
ronment 200 may 1nterconnect via wired connections, wire-
less connections, or a combination of wired and wireless
connections.

User device 210 includes one or more devices capable of
receiving, generating, storing, processing, and/or providing
information, such as information described herein. For
example, user device 210 may include a mobile phone (e.g.,
a smart phone, a radiotelephone, etc.), a laptop computer, a
tablet computer, a desktop computer, a handheld computer,
a gaming device, a wearable communication device (e.g., a

US 10,474,438 B2

9

smart wristwatch, a pair of smart eyeglasses, etc.), or a
similar type of device. In some implementations, user device
210 may receive information from and/or transmit informa-
tion to cloud engineering platform 220 and/or server device
230.

Cloud engineering platform 220 includes one or more
devices that 1dentily services or microservices based on a
monolithic application, generate code for the services or
microservices, and deploy the generated code so that the
monolithic application 1s implemented via the services or
microservices. In some implementations, cloud engineering,
plattorm 220 may be designed to be modular such that
certain soltware components may be swapped 1 or out
depending on a particular need. As such, cloud engineering
platform 220 may be easily and/or quickly reconfigured for
different uses. In some 1implementations, cloud engineering
platform 220 may receive information from and/or transmit
information to one or more user devices 210 and/or server
devices 230.

In some implementations, as shown, cloud engineering
platform 220 may be hosted 1n a cloud computing environ-
ment 222. Notably, while implementations described herein
describe cloud engineering platform 220 as being hosted 1n
cloud computing environment 222, in some implementa-
tions, cloud engineering platform 220 may not be cloud-
based (i1.e., may be implemented outside of a cloud com-
puting environment) or may be partially cloud-based.

Cloud computing environment 222 includes an environ-
ment that hosts cloud engineering platiorm 220. Cloud
computing environment 222 may provide computation, soit-
ware, data access, storage, etc. services that do not require
end-user knowledge of a physical location and configuration
of system(s) and/or device(s) that hosts cloud engineering
platform 220. As shown, cloud computing environment 222
may include a group of computing resources 224 (referred to
collectively as “computing resources 224 and individually
as “‘computing resource 224”).

Computing resource 224 includes one or more personal
computers, workstation computers, server devices, or other
types of computation and/or communication devices. In
some 1mplementations, computing resource 224 may host
cloud engineering platiorm 220. The cloud resources may
include compute 1nstances executing 1n computing resource
224, storage devices provided in computing resource 224,
data transfer devices provided by computing resource 224,
ctc. In some implementations, computing resource 224 may
communicate with other computing resources 224 via wired
connections, wireless connections, or a combination of
wired and wireless connections.

As further shown i FIG. 2, computing resource 224
includes a group of cloud resources, such as one or more
applications (“APPs™) 224-1, one or more virtual machines
(“VMs™) 224-2, virtualized storage (“VSs”) 224-3, one or
more hypervisors (“HYPs”) 224-4, and/or the like.

Application 224-1 includes one or more software appli-
cations that may be provided to or accessed by user device
210 and/or server device 230. Application 224-1 may elimi-
nate a need to install and execute the software applications
on user device 210 and/or server device 230. For example,
application 224-1 may include soitware associated with
cloud engineering platform 220 and/or any other software
capable of being provided via cloud computing environment
222. In some 1mplementations, one application 224-1 may
send/recerve mnformation to/from one or more other appli-
cations 224-1, via virtual machine 224-2.

Virtual machine 224-2 includes a software implementa-
tion of a machine (e.g., a computer) that executes programs

10

15

20

25

30

35

40

45

50

55

60

65

10

like a physical machine. Virtual machine 224-2 may be
either a system virtual machine or a process virtual machine,
depending upon use and degree of correspondence to any
real machine by virtual machine 224-2. A system virtual
machine may provide a complete system platform that
supports execution of a complete operating system (“OS”).
A process virtual machine may execute a single program,
and may support a single process. In some implementations,
virtual machine 224-2 may execute on behalf of a user (e.g.,
server device 230 or an operator of cloud engineering
plattorm 220), and may manage inirastructure of cloud
computing environment 222, such as data management,
synchronization, or long-duration data transters.

Virtualized storage 224-3 includes one or more storage
systems and/or one or more devices that use virtualization
techniques within the storage systems or devices of com-
puting resource 224. In some implementations, within the
context of a storage system, types ol virtualizations may
include block virtualization and file virtualization. Block
virtualization may refer to abstraction (or separation) of
logical storage from physical storage so that the storage
system may be accessed without regard to physical storage
or heterogeneous structure. The separation may permit
administrators of the storage system flexibility 1n how the
administrators manage storage for end users. File virtual-
1zation may eliminate dependencies between data accessed
at a file level and a location where files are physically stored.
This may enable optimization of storage use, server con-
solidation, and/or performance of non-disruptive file migra-
tions.

Hypervisor 224-4 may provide hardware virtualization
techniques that allow multiple operating systems (e.g.,
“ouest operating systems”’) to execute concurrently on a host
computer, such as computing resource 224. Hypervisor
224-4 may present a virtual operating platiorm to the guest
operating systems, and may manage the execution of the
guest operating systems. Multiple instances of a variety of
operating systems may share virtualized hardware resources.

Server device 230 includes a device that 1s capable of
communicating with one or more other devices included 1n
environment 200. For example, server device 230 may
include a computing device, such as a server, a desktop
computer, a laptop computer, a tablet computer, a handheld
computer, or a similar device. In some 1mplementations,
server device 230 may receive information from and/or
transmit information to user device 210 and/or cloud engi-
neering platform 220.

Network 240 includes one or more wired and/or wireless
networks. For example, network 240 may include a cellular
network (e.g., a fifth generation (3G) network, a long-term
evolution (LTE) network, a third generation (3G) network,
a code division multiple access (CDMA) network, etc.), a
public land mobile network (PLMN), a local area network
(LAN), a wide area network (WAN), a metropolitan area
network (MAN), a telephone network (e.g., the Public
Switched Telephone Network (PSTN)), a private network,
an ad hoc network, an intranet, the Internet, a fiber optic-
based network, and/or the like, and/or a combination of
these or other types of networks.

The number and arrangement of devices and networks
shown 1 FIG. 2 are provided as an example. In practice,
there may be additional devices and/or networks, fewer
devices and/or networks, different devices and/or networks,
or diflerently arranged devices and/or networks than those
shown 1n FIG. 2. Furthermore, two or more devices shown
in FIG. 2 may be implemented within a single device, or a
single device shown in FIG. 2 may be mmplemented as

US 10,474,438 B2

11

multiple, distributed devices. Additionally, or alternatively, a
set of devices (e.g., one or more devices) of environment
200 may perform one or more functions described as being
performed by another set of devices of environment 200.

FIG. 3 1s a diagram of example components of a device
300. Device 300 may correspond to user device 210, cloud
engineering platform 220, computing resource 224, and/or
server device 230. In some implementations, user device
210, cloud engineering platform 220, computing resource
224, and/or server device 230 may include one or more
devices 300 and/or one or more components of device 300.
As shown 1 FIG. 3, device 300 may include a bus 310, a
processor 320, a memory 330, a storage component 340, an
input component 350, an output component 360, and a
communication interface 370.

Bus 310 includes a component that permits communica-
tion among the components of device 300. Processor 320 1s
implemented 1n hardware, firmware, or a combination of
hardware and software. Processor 320 is a central processing,
unit (CPU), a graphics processing umt (GPU), an acceler-
ated processing unit (APU), a microprocessor, a microcon-
troller, a digital signal processor (DSP), a field-program-
mable gate array (FPGA), an application-specific integrated
circuit (ASIC), or another type of processing component. In
some 1mplementations, processor 320 includes one or more
processors capable of being programmed to perform a
function. Memory 330 includes a random access memory
(RAM), a read only memory (ROM), and/or another type of
dynamic or static storage device (e.g., a flash memory, a
magnetic memory, and/or an optical memory) that stores
information and/or instructions for use by processor 320.

Storage component 340 stores information and/or sofit-
ware related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
and/or a solid state disk), a compact disc (CD), a digital
versatile disc (DVD), a tloppy disk, a cartridge, a magnetic
tape, and/or another type of non-transitory computer-read-
able medium, along with a corresponding drive.

Input component 350 includes a component that permits
device 300 to receive information, such as via user input
(e.g., a touch screen display, a keyboard, a keypad, a mouse,
a button, a switch, and/or a microphone). Additionally, or
alternatively, input component 350 may include a sensor for
sensing information (e.g., a global positioning system (GPS)
component, an accelerometer, a gyroscope, and/or an actua-
tor). Output component 360 includes a component that
provides output information from device 300 (e.g., a display,
a speaker, and/or one or more light-emitting diodes (LEDs)).

Communication interface 370 includes a transceiver-like
component (e.g., a transceiver and/or a separate recerver and
transmitter) that enables device 300 to communicate with
other devices, such as via a wired connection, a wireless
connection, or a combination of wired and wireless connec-
tions. Communication intertace 370 may permit device 300
to receive information from another device and/or provide
information to another device. For example, communication
interface 370 may include an Fthernet interface, an optical
interface, a coaxial interface, an infrared interface, a radio
frequency (RF) interface, a universal serial bus (USB)
interface, a Wi-F1 interface, a cellular network interface,
and/or the like.

Device 300 may perform one or more processes described
herein. Device 300 may perform these processes based on
processor 320 executing software instructions stored by a
non-transitory computer-readable medium, such as memory
330 and/or storage component 340. A computer-readable

10

15

20

25

30

35

40

45

50

55

60

65

12

medium 1s defined herein as a non-transitory memory
device. A memory device includes memory space within a
single physical storage device or memory space spread
across multiple physical storage devices.

Software instructions may be read into memory 330
and/or storage component 340 from another computer-
readable medium or from another device via communication
interface 370. When executed, software instructions stored
in memory 330 and/or storage component 340 may cause
processor 320 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or 1n combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

The number and arrangement of components shown 1n
FIG. 3 are provided as an example. In practice, device 300
may include additional components, fewer components,
different components, or diflerently arranged components
than those shown 1n FIG. 3. Additionally, or alternatively, a
set of components (e.g., one or more components) of device
300 may perform one or more functions described as being
performed by another set of components of device 300.

FIG. 4 1s a flow chart of an example process 400 for
generating one or more services based on a monolithic
application. In some implementations, one or more process
blocks of FIG. 4 may be performed by cloud engineering
platiorm 220. In some implementations, one or more process
blocks of FIG. 4 may be performed by another device or a
group of devices separate from or including cloud engineer-
ing platform 220, such as user device 210 and/or server
device 230.

As shown 1 FIG. 4, process 400 may include receiving
application information associated with a monolithic appli-
cation (block 410). For example, cloud engineering platform
220 may receive application information associated with a
monolithic application. In some implementations, server
device 230 may be associated with a monolithic application.
User device 210 and/or server device 230 may provide the
application information to cloud engineering platiorm 220,
and cloud engineering platform 220 may receive the appli-
cation nformation from user device 210 and/or server
device 230. In some implementations, the application infor-
mation may include code of the application, information
about technical parameters of the application, business
parameters of the application, business imperatives and/or
technology imperatives associated with the application, a
soltware license agreement of the application, availability
information associated with the application, operational
needs of the application, and/or the like.

As further shown in FIG. 4, process 400 may include
utilizing artificial intelligence to recommend, based on the
application information, services to be generated, service
categories for the services, and deployment models for the
services (block 420). For example, cloud engineering plat-
form 220 may utilize artificial intelligence to recommend,
based on the application information, services to be gener-
ated, service categories for the services, and deployment
models for the services. In some implementations, cloud
engineering platform 220 may provide the application infor-
mation to an Al model, and the Al model may 1dentify, based
on the application information, recommended services (or
microservices) to be generated from the application.

In some 1mplementations, the Al model may 1dentify a
service category for each of the recommended services (or
microservices). In some implementations, the service cat-

US 10,474,438 B2

13

cgory may include a “leave as 1s” category (e.g., indicating
that the application need not be altered to implement a
recommended service), a “build new” category (e.g., mdi-
cating that the application may not provide a recommended
service, and that the recommended service needs to be
created), a “modernize” category (e.g., indicating that the
application needs to be modernized 1n order to implement a
recommended service), and/or the like. In some 1mplemen-
tations, the Al model may 1dentity a deployment model best
suited for each of the recommended services (or microser-
vices). In some implementations, the deployment model
may include TAAS on a web service, IAAS on a cloud
application platform, PAAS on a cloud application platiorm,
a multi-cloud platform deployment, and/or the like.

As further shown in FIG. 4, process 400 may include
receiving selections of a service from the services, a service
category from the service categories, and a deployment
model from the deployment models (block 430). For
example, cloud engineering platform 220 may receive selec-
tions of a service from the services, a service category from
the service categories, and a deployment model from the
deployment models. In some 1mplementations, cloud engi-
neering platform 220 may receive selections of the service
and the deployment model, but not the service category. In
some 1implementations, cloud engineering platform 220 may
receive a selection of the service prior to receiving a
selection of the deployment model.

In some implementations, cloud engineering platform 220
may receive selections of the service, the service category,
and/or the deployment model from a user of cloud engi-
neering platform 220. In some implementations, cloud engi-
neering platform 220 may automatically select the service,
the service category, and/or the deployment mode without
user interaction with cloud engineering platform 220.

As further shown i FIG. 4, process 400 may include
generating code for the service based on the service category
and the application information (block 440). For example,
cloud engineering platform 220 may generate code for the
service based on the service category and the application
information. In some implementations, 1f the service cat-
cgory indicates that the application need not be altered to
implement the service, cloud engineering platiorm 220 may
provide information associated the service to a service
migration utility of cloud engineering platform 220. In some
implementations, the service migration utility may automati-
cally convert existing application code into the service (e.g.,
using spring boot, spring cloud, node JS, and/or a similar
language).

In some implementations, 1f the service category indicates
that the application may not provide the service and that the
service needs to be created, cloud engineering platform 220
may provide information associated with the service to a
code generation utility of cloud engineering platform 220. In
some i1mplementations, the code generation utility may
automate code generation using reusable templates or sce-
nario outlines, such as cucumber outlines and/or the like. In
some 1mplementations, the code generation utility may
generate new code (e.g., a new application) to implement the
service.

As further shown i FIG. 4, process 400 may include
receiving a request to deploy the generated code for the
service via the deployment model (block 450). For example,
cloud engineering platform 220 may receive a request to
deploy the generated code for the service via the deployment
model. In some 1mplementations, cloud engineering plat-
form 220 may receive the request to deploy the generated
code from a user of cloud engineering platform 220. In some

10

15

20

25

30

35

40

45

50

55

60

65

14

implementations, cloud engineering platform 220 may auto-
matically deploy the generated code, once the code 1s
generated and without user interaction with cloud engineer-
ing platform 220.

As further shown in FIG. 4, process 400 may include
deploying the generated code, based on the request, to
provide the service via the deployment model (block 460).
For example, cloud engineering platform 220 may deploy
the generated code, based on the request, to provide the
service via the deployment model. In some implementations,
cloud engineering platform 220 may provide information
associated with the service to deploy, the deployment model
for the service, deployment parameters for the service, a
deployment topology for the service, and/or the like to a
deployment automation mechanism of cloud engineering
plattorm 220. In some implementations, the deployment
parameters may include instructions to deploy the service
via the deployment model, and the deployment topologies
may include always-on deployment topologies, single cloud
deployment topologies, multi-cloud deployment topologies,
blue-green deployment topologies, and/or the like, across a
variety ol cloud providers. In some implementations, the
deployment automation mechanism may deploy the service
via the deployment model.

In some implementations, cloud engineering platform 220
may deploy the generated code in one or more devices
remote from cloud engineering platform 220, and the one or
more device may provide the service based on the deploy-
ment of the generated code. In some implementations, cloud
engineering platform 220 may deploy the generated code
within cloud engineering platform 220. In such implemen-
tations, cloud engineering platform 220 may select one or
more VMs (e.g., within cloud computing environment 222)
that are capable of executing the generated code, that can
provide the service, and/or the like. Cloud engineering
plattorm 220 may deploy the generated code in the one or
more VMSs, and the one or more VMs may provide the
service based on the deployment of the generated code.

In some immplementations, once the generated code 1s
deplovyed, the service may be accessed by one or more users
so that functionality of the service may be available to the
one or more users. For example, the service may include, but
are not limited to, a software-defined infrastructure service,
a deployment management service, a security management
service, a business service, a web service, a financial service,
an accounting service, a mobile service, a manufacturing
service, and/or the like.

Although FIG. 4 shows example blocks of process 400, 1n
some 1mplementations, process 400 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted 1n FI1G. 4. Additionally,
or alternatively, two or more of the blocks of process 400
may be performed in parallel.

Some 1mplementations described herein provide a seam-
less and interactive way to identity and create future-ready
services from traditional monolithic applications. For
example, some 1mplementations described herein may uti-
lize Al to identily a monolithic application amenable to
being modernmized (e.g., updated or built from scratch)
through integration of services or microservices based on
business imperatives and/or technology imperatives associ-
ated with the application and/or based on an entity associ-
ated with the application. Additionally, or alternatively,
some 1mplementations described herein may generate code
for the services or microservices, and may deploy the
generated code so that the monolithic application 1s 1mple-
mented via the services or microservices.

US 10,474,438 B2

15

The 1foregoing disclosure provides illustration and
description, but 1s not intended to be exhaustive or to limait
the implementations to the precise form disclosed. Modifi-
cations and variations are possible 1 light of the above
disclosure or may be acquired from practice of the imple-
mentations.

As used herein, the term component 1s mntended to be
broadly construed as hardware, firmware, or a combination
of hardware and software.

Certain user interfaces have been described herein and/or
shown 1n the figures. A user interface may include a graphi-
cal user interface, a non-graphical user interface, a text-
based user intertface, or the like. A user interface may
provide information for display. In some implementations, a
user may interact with the information, such as by providing
input via an input component of a device that provides the
user interface for display. In some implementations, a user
interface may be configurable by a device and/or a user (e.g.,
a user may change the size of the user interface, information
provided via the user interface, a position of information
provided via the user interface, etc.). Additionally, or alter-
natively, a user interface may be pre-configured to a standard
configuration, a specific configuration based on a type of
device on which the user interface 1s displayed, and/or a set
of configurations based on capabilities and/or specifications
associated with a device on which the user interface 1is
displayed.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, or a combination of hardware and software. The
actual specialized control hardware or software code used to
implement these systems and/or methods 1s not limiting of
the implementations. Thus, the operation and behavior of the
systems and/or methods were described herein without
reference to specific software code—it being understood that
software and hardware may be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of possible implementations
includes each dependent claim in combination with every
other claim in the claim set.

No element, act, or instruction used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “an’ are
intended to include one or more 1tems, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the term “set” i1s intended to include one or more
items (e.g., related i1tems, unrelated 1tems, a combination of
related and unrelated items, etc.), and may be used inter-
changeably with “one or more.” Where only one item 1s
intended, the term “one” or similar language 1s used. Also,
as used herein, the terms “has,” “have,” “having,” or the like
are 1tended to be open-ended terms. Further, the phrase
“based on” 1s mtended to mean “based, at least in part, on”
unless explicitly stated otherwise.

What 1s claimed 1s:

1. A device, comprising:

one or more memories; and

one or more processors, communicatively coupled to the
one or more memories, to:

10

15

20

25

30

35

40

45

50

55

60

65

16

receive application information associated with a
monolithic application;

generate a recommendation based on utilizing an arti-
ficial intelligence technique:
the recommendation relating to:

a service 1o be generated that i1s 1dentified by the
artificial 1ntelligence technique,

a service category, for the service, that 1s 1dentified
by the artificial intelligence technique from
among a plurality of service categories,
the plurality of service categories including a
first category that indicates the monolithic
application need not be altered to implement the
service and a second category that indicates the
service needs to be created, and

a deployment model, for the service, that 1s 1den-
tified by the artificial intelligence technique
from among a plurality of deployment models
that may be used for the service,

the artificial intelligence techmique generating the
recommendation based on the application infor-
mation;
automatically generate code for the service based on
the service category and the application information,
where, when automatically generating the code, the
one or more processors are to:

determine that the service cannot be generated
from the monolithic application based on the
service category being i1dentified as the second
category that indicates the service needs to be
created; and

automatically generate the code, without reference
to the monolithic application, using reusable
templates or scenario outlines, and based on
determining that the service category 1s the
second category that indicates the service needs
to be created;

receive a request to deploy the generated code for the
service via the deployment model; and
deploy the generated code, based on the request, to
provide the service via the deployment model.
2. The device of claim 1, where the one or more proces-
sors are further to:
determine that another service 1s to be migrated via the
deployment model; and
automatically convert the other service to code for the
other service based on determining that the other ser-
vice 15 to be migrated via the deployment model.
3. The device of claim 1, where the one or more proces-
sors are further to:
provide, to another device associated with the application
information, a particular format for the application
information; and
receive the application information in the particular for-
mat from the other device.
4. The device of claim 1, where the service includes one
Or mMOore microservices.
5. The device of claim 1, where the deployment model
includes one or more of:
information as a service (IAAS) on a web service,
IAAS on a cloud application platform,
plattorm as a service (PAAS) on a cloud application
platform, or
a multi-cloud platform deployment.
6. The device of claim 1, where the one or more proces-
sors are further to:

US 10,474,438 B2

17

provide one or more chat bots to assist in automatically

generating the code or deploying the generated code.

7. The device of claim 1, where a cucumber outline 1s used
to automatically generate the code.

8. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors 1o:

receive application information associated with a
monolithic application;

generate a recommendation based on utilizing an arti-
ficial intelligence technique:
the recommendation relating to:

a service to be generated that 1s 1dentified by the
artificial intelligence technique,

a service category, for the service, that 1s identified
by the artificial intelligence technique from
among a plurality of service categories,
the plurality of service categories including a
first category that indicates the monolithic
application need not be altered to implement the
service and a second category that indicates the
service needs to be created, and

a deployment model, for the service, that 1s 1den-
tified by the artificial intelligence technique
from among a plurality of deployment models
that may be used for the service,

the artificial intelligence technique generating the
recommendation based on the application infor-
mation;
automatically generate code for the service based on
the service category and the application information,
where the one or more instructions that cause the one
or more processors to automatically generate the
code, further cause the one or more processors to:
determine that the service cannot be generated
from the monolithic application based on the
service category being identified as the second
category that indicates the service needs to be
created; and

automatically generate the code, without reference
to the monolithic application, using reusable
templates or scenario outlines, and based on
determining that the service category 1s the
second category that indicates the service needs
to be created;

receive a request to deploy the generated code for the
service via the deployment model; and

deploy the generated code, based on the request, to
provide the service via the deployment model.

9. The non-transitory computer-readable medium of claim
8. where the one or more 1nstructions further cause the one
Or more processors to:

determine that another service 1s to be migrated via the

deployment model; and

automatically convert the other service to code for the

other service based on determining that the other ser-
vice 15 to be migrated via the deployment model.

10. The non-transitory computer-readable medium of
claim 8, where the instructions further comprise:

one or more 1structions that, when executed by the one

Or more processors, cause the one or more processors

to:

provide, to a device associated with the application
information, a particular format for the application
information; and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

receive the application information in the particular
format from the device.

11. The non-transitory computer-readable medium of
claim 8, where the service includes one or more microser-
VICES.

12. The non-transitory computer-readable medium of

claim 8, where the deployment model includes one or more
of:

information as a service (IAAS) on a web service,

IAAS on a cloud application platform,

platform as a service (PAAS) on a cloud application

platiorm, or

a multi-cloud platform deployment.

13. The non-transitory computer-readable medium of
claim 8, where the instructions further comprise:

one or more instructions that, when executed by the one

Or more processors, cause the one or more processors

to:

provide one or more chat bots; and

receive, via the one or more chat bots, information to
assist 1n deploying the generated code; and

where the one or more 1nstructions, that cause the one
or more processors to deploy the generated code,
cause the one or more processors to:
deploy the generated code based on the information

to assist 1n deploying the generated code.

14. The non-transitory computer-readable medium of
claim 8, where a cucumber outline 1s used to automatically
generate the code.

15. A method, comprising;

recerving, by a device, application information associated

with a monolithic application;

generating, by the device, a recommendation based on

utilizing an artificial intelligence technique:
the recommendation relating to:
a service to be generated that 1s identified by the
artificial intelligence technique,
a service category, for the service, that 1s identified
by the artificial intelligence technique from among
a plurality of service categories,
the plurality of service categories including a first
category that indicates the monolithic applica-
tion need not be altered to implement the ser-
vice and a second category that indicates the
service needs to be created, and
a deployment model, for the service, that 1s identified
by the artificial intelligence technique from among
a plurality of deployment models that may be used
for the service,
the artificial intelligence technique generating the rec-
ommendation based on the application information;
automatically generating, by the device, code for the
service based on the service category and the applica-
tion 1information,
where automatically generating the code includes:
determining that the service cannot be generated
from the monolithic application based on the
service category being identified as the second
category that indicates the service needs to be
created; and
automatically generating the code, without reference
to the monolithic application, using reusable tem-
plates or scenario outlines, and based on deter-
mining that the service category is the second
category that indicates the service needs to be
created;

US 10,474,438 B2
19

receiving, by the device, a request to deploy the generated
code for the service via the deployment model; and

deploying, by the device and based on the request, the
generated code to provide the service via the deploy-
ment model. 5

16. The method of claim 15, further comprising:

determining that another service 1s to be migrated via the
deployment model; and

automatically converting the other service to code for the
other service based on determining that the other ser- 10
vice 15 to be migrated via the deployment model.

17. The method of claim 15, further comprising:

providing, to another device associated with the applica-
tion information, a particular format for the application
information; and 15

receiving the application information i the particular
format from the other device.

18. The method of claim 15, where the deployment model

includes one or more of:

information as a service (IAAS) on a web service, 20

IAAS on a cloud application platiform,

platform as a service (PAAS) on a cloud application
platform, or

a multi-cloud platform deployment.

19. The method of claim 15, further comprising: 25

providing one or more chat bots to assist 1n automatically
generating the code or deploying the generated code.

20. The method of claim 15, where a cucumber outline 1s

used to automatically generate the code.

% x *H % o 30

	Front Page
	Drawings
	Specification
	Claims

