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SYSTEMS, METHODS AND DEVICES FOR
USING THERMAL MARGIN OF A CORE IN

A PROCESSOR

TECHNICAL FIELD

The present disclosure relates to power control in proces-
sors and more specifically to dynamic adjustment of core
power to reduce thermal margin between thermal design
power (TDP) and an allowable thermal load.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram illustrating a processor
thermal design consistent with embodiments disclosed
herein.

FIG. 2 1s a graph illustrating processors limited to TDP
consistent with embodiments disclosed herein.

FIG. 3 1s a graph 1llustrating processors thermal margin
when confined to TDP consistent with embodiments dis-
closed herein.

FI1G. 4 1s a diagram 1llustrating components of a controller
implementation consistent with embodiments disclosed
herein.

FIG. 5 1s a block diagram illustrating a method for

dynamic temperature control consistent with embodiments
disclosed herein.

FIG. 6 1s a diagram 1llustrating a multicore processor
consistent with embodiments disclosed herein.

FIG. 7 1s a diagram 1llustrating a computer system con-
sistent with embodiments disclosed herein.

FIG. 8 1s a diagram illustrating a representation for
simulation, emulation, and fabrication of a design consistent
with embodiments disclosed herein.

DETAILED DESCRIPTION

A detailed description of systems and methods consistent
with embodiments of the present disclosure 1s provided
below. While several embodiments are described, it should
be understood that the disclosure 1s not limited to any one
embodiment, but instead encompasses numerous alterna-
tives, modifications, and equivalents. In addition, while
numerous specific details are set forth in the following
description 1n order to provide a thorough understanding of
the embodiments disclosed herein, some embodiments can
be practiced without some or all of these details. Moreover,
for the purpose of clarity, certain technical matenial that 1s
known 1n the related art has not been described in detail in
order to avoid unnecessarily obscuring the disclosure.

Techniques, apparatus and methods are disclosed that
enable dynamic adjustment of core power to reduce thermal
margin between thermal design power (1TDP) and an allow-
able thermal load. For example, by focusing directly on the
core temperatures explicitly, a per-core closed loop tempera-
ture controller (pCLTC) can remove conservatism iduced
by the power level 1 policy (PL1, a policy which defines
frequency and/or power for the processor under sustained
load) thereby allowing for increased processor performance
when there exists margin in the thermal system.

In one embodiment, an objective of a pCLTC policy 1s to
calculate a power budget such that the processor temperature
1s at a desired setpoint temperature (Isp) which 1s slightly
below a temperature at which a processor 1s throttled
(T_trip). In this manner, a maximum allowable processor
performance 1s defined.
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2

By migrating from PL1 to dynamic temperature control,
central processing unit (CPU) users can benefit from
increased performance under a wide variety of conditions
commonly present (e.g., temperatures lower than the TDP,
differing core thermal dissipation, etc.). In addition, pCLTC
can allow customers that are willing to design (or already
have 1nstalled) thermal systems or datacenters with
improved cooling capabilities to derive direct performance
benefits from such mmvestments.

Some server customers, including cloud service provid-
ers, can be sensitive to maximum performance expectations.
As such, a turbo function (or running a processor above a
steady-state TDP-stable frequency) 1s a highly valued fea-
ture. However, the performance of turbo can be unneces-
sarily limited by existing thermal protections features which
limit the amount of time spent 1n turbo based on power
rather than temperature measurements.

In some embodiments, CPUs are bound by maximum
voltage, current and temperature reliability constraints. Volt-
age constraints can be managed by fuse settings. Current
constraints can be managed by an Iccmax policy 1mple-
mented 1n power controller firmware, hardware and/or soft-
ware (e.g., pcode). In some embodiments, server processors
can maintain compliance with maximum temperature con-
straint by a combination of thermal settings (e.g., PRO-

CHOT) and PL1 policy features. The definitions for these
features (PROCHOT and PL1) are described as follows.

For a PROCHOT example, if the processor exceeds the
maximum allowable junction temperature, a catastrophic
thermal event 1s said to have occurred and a PROCHOT
feature 1mplemented 1n pcode can aggressively throttle a
processor’s voltage and frequency to a power setting (Pm).
This can be a highly undesirable event as it can 1mpose a
drastic performance penalty. The temperature at which PRO-
CHOT 1s asserted 1s herein referred to as T_trip.

For a PL1 example, platform thermal solutions are
designed to a TDP specification ol processor power. At a
specified max local ambient temperature, a reference ther-
mal solution will provide suflicient cooling such that if the
CPU power 1s sustained at TDP for long periods of time, the

CPU temperature will be at T_TDP, which 1s below T_trip
(which 1s the junction temperature which would engage
PROCHOT).

PL1 implicitly achieves compliance with temperature
constraint by maintaining average power to TDP by dynamic
voltage and 1Irequency scaling (DVFS). This can leave
performance on the table as lower voltage/frequencies are
selected unnecessarily (e.g., when an ambient temperature 1s
lower than the TDP design, etc.). A per-core closed loop
thermal controller (pCLTC) can replace the PL1 loop and
provide explicit temperature control. The explicit tempera-
ture control can take advantage of a margin 1n the thermal
system (e.g., between TDP and actual temperature) to pro-
vide greater allowable performance across workloads than
PL1 alone. By leveraging linear system theory and dynamic
modeling, the closed loop controller can be tuned to addi-
tional performance results and further minimize conserva-
tism.

A somewhat related technology, RATL (running average
temperate limit), however, 1s not used to define maximum
allowable instantaneous power budget. Instead, RAIL 1s
used to define an alternative instantaneous allowable tem-
perature junction maximum temperature (I1max). RATL 1s
used to change what Tyjmax the processor throttles at. RATL
allows for junction temperature (17) to exceed Timax over
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short durations so long as the exponentially weighted mov-
ing average (EWMA) calculated Tj_average 1s below
T7_max.

FIG. 1 shows a processor thermal design, including
thermal relationships. A substrate 118 1s coupled to a silicon
die 116 and an integrated heat spreader 114. A heatsink 112
1s coupled to the integrated heat spreader 114. A junction
temperature (17) 110 1s measured at the border between the
silicon die 116 and integrated heat spreader 114. A case
temperature (Icase) 108 1s measured at the integrated heat
spreader 114. An ambient temperature (1, ,) 102 1s mea-
sured at or near the heatsink 112. Case to ambient thermal
resistance (PSI_CA) 104 quantifies a reference heatsink’s
thermal resistance. Junction to case thermal resistance
(PSI_JC) 106 quantifies a thermal resistance from the silicon
die 116 to heatsink 112.

To 1llustrate how thermal margin presents itself 1 sys-
tems, relevant steady state thermal relationships are shown:

T _TDP=(P_TDP*PSI JC)+I case max (EQ #1)

T_TDP i1s a steady state junction temperature (° C.) under
steady state TDP conditions (as measured by the maximum
temperature across the die). P_TDP 1s a specified package
processor Thermal Design Power (in Watts). PSI_JC 106 1s
a junction to case thermal resistance (° C./Watt).
T _case _max 1s a maximum temperature at the center of the
top of the integrated heat spreader of the processor package
(1.e., under steady state TDP).

1 case_max=(P_TDP*PSI CA)+1 LA _max (EQ #2)

PSI_CA 104 1s a case to ambient thermal resistance (°
C./Watt) that quantifies the reference heatsink’s thermal
resistance. T_LLA_max 1s a specified maximum local ambi-
ent temperature (in © C.).

In some embodiments, the required PSI_CA 104 1s speci-
fied to original equipment manufacturers (OEMs) to design
heatsinks. Through this specification, sustained TDP power
can be designed to not cause a thermal trip. Under the above
assumptions, a following relationship 1s preserved:

T_TDP<T_Trip (EQ #3)

Since the processor 1s permitted to run at turbo frequen-
cies that consume more power than TDP, PL1 can be used
to ensure average processor power over a relatively long
interval (e.g., five seconds) equals TDP. Using this design,
the processor may exceed T_trip 1n cases where a thermal
solution fails.

While PL1 can ensure that EQ #3 holds under the speci-
fied conditions, 1t can also 1mpose significant conservatism
(e.g., thermal margin). Amargin betweenIT_TDPand'T_Tnp
can be significant under any of the following conditions (or
combination thereof): (1) the local ambient temperature 1s
below T_LA_max; (2) PSI_CA 1s less than specified (a
better thermal solution than the reference design); (3)
PSI_JC 1s less than specified due to a less aggressive
workload specific powermap than assumed in EQ #2; and
(4) given core’s temperature 1s less than the package tem-
perature.

FIGS. 2 and 3 show a graphical example of a processor
running a workload where PL1 1s limiting performance to
TDP levels (FIG. 2) while the maximum die temperature
remains below the temperature limits (FIG. 3). This thermal
margin represents performance opportunity to the CPU. In
FIG. 2, a first core power 202 and second core power 204 run
near the TDP as confined by PL1. This provides a thermal
margin 306 as shown in FIG. 3. The temperature of a core
304 i1s below a temperature limit 302 (e.g., T_trip).
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For example, where a core’s temperature 1s less than the
package temperature (e.g., number 4 from above), cross-die
thermal gradients are present. Consequently, each core can
be at a different temperature. Even when one given core 1s
near the trip point, other cores can have thermal margin from
the trip point. As such, an opportunity 1s greater when
implemented on a per-core basis.

A pCLTC policy can be implemented to work in concert
with existing power management policies. For example,
pCLTC can provide a maximum allowable power budget for
p-state selection, but actual p-state can be selected after
comparing against other PM policies (e.g., hardware power
management (HWPM)).

There are systems that can determine a maximum p-state
value. For example, a running average algorithm as used for
PL1 can be applied to a max package Tj7. However, it 1s not
known what performance guarantees such a system would
provide (1.e., how much temperature error 1t would allow).
A closed loop performance can set a diflerence between
T _sp and T_trip (e.g., 1 degree, 2 degree). The smaller this
difference between a dynamic temperature control (DTC)
setpoint and a trip point, the more additional performance
that 1s possible.

A methodology to achieve a pCLTC can be found by
developing a controller based on a dynamic model and
methodologies for calculating closed loop performance, and
estimating how unmodeled dynamics can degrade perfor-
mance. For example, the controller design can be developed
through the following operations. A model for the thermal
dynamics can be developed between a core’s power and
temperature. Assumptions can be made which introduce
uncertainty in the thermal model (e.g., ambient temperature,
convective cooling, leakage temperature, etc.). Based on the
thermal model, a controller (e.g., PID) can be designed.
Controller performance can be validated across a variety of
workload and ambient conditions (e.g., simulation, empiri-
cal experiments, etc.) which may or may not be explicitly
modeled. Thermal model and controller design can be
revisited, if necessary, to achieve performance by addressing
known uncertainties 1 the model (e.g., varying ambient
temperature changes; varying convective heat transier
induced by fan speed changes; non-linear core leakage
power; and/or core-to-core thermal coupling). An advanced
model/controller can be developed to address uncertainties
that can limit DTC performance below desired performance.

For example, a controller (such as for an integrated chip)
can be constructed as shown 1n FIG. 4. A setpoint 402 (such
as temperature setpoint T_node_sp) can be mput nto the
controller (such as through a power interface that provides
a p-state). The setpoint 402 and a diflerence can be com-
pared i block 404. A controller 406 (such as a MIMO
controller, PID controller, PD controller, PI controller, etc.)
can receirve core temperatures and voltages. Core voltage
limits can be implemented 1n block 408. Block 410 can
receive the mput from the limits and estimate core power
based on voltage. Block 412 can take the output of the
voltage-to-power stage 410 and an activity ratio disturbance
value 418. Leakage power 421 can be summed with the
product from block 412 (representing dynamic power). The
sum from block 413 can be used to convert power to
temperature 1 block 414. This temperature output from
block 414 can be estimated and combined with nominal
power 420 1n block 422. The output of block 422 can be used
by the system to set and measure the actual temperature 416
(such as through a measurement interface).

For example, given the presence of thermal coupling
between cores, a Multiple Input Multiple Output controller
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design will provide benefits versus de-coupled (separate)
Single-Input-Single-Output controllers (e.g., PID). The sys-
tem can also prevent uncertainties which can be addressed,
such as voltage and temperature dependent leakage power
and/or workload activity ratio.

In the embodiment shown, a format of a MIMO controller
in state space format is:

X=Ax+F5u

v=Cx+Dut

where X 15 core(s) temperatures, U 1s core temperature
error and Y 1s core voltage(s).

In one embodiment, the controller can be implemented 1n
p-code using the following pseudo code. The following code
can be run at each loop iteration of p-code. For simplicity,
a PI controller structure 1s assumed. The appended “1” to a
variable name 1s to designate “corel” and would be repli-
cated for all cores across the die.

Calculate time since last sample/control update. Set flag
bit 1f out of tolerance.

Calculate temperature error for each core based on the
following equation:

errorl=setpoint-z1

Calculate integral of error over a finite sample time
window.

If necessary to prevent integrator windup, limit the inte-
gration sum to a predetermine maximum.

Calculate controller output. For example:

Pcontroll =Kp*errorl +Ki*integralsuml

Calculate estimate of temperature dependent leakage
assuming a nominal (conservative) assumption of voltage
and measured temperature. The following relationship can
be used:

Pleak=V1%*lol exp "(ul(Vret-V))exp (u2(Iret-1))

Calculate an estimate of activity ratio (AR) based on an
average ol previous samples. The previous samples leakage
and dynamic power can be used.

Pdynl=PFtotal1-Pleakl

AR=(Cdyn*¥V1 2*Freql )/Pdynl

Calculate the associated p-state voltage for the remaining
dynamic power assuming activity ratio calculated above.

Select the associated p-state from the voltage calculation.

It should be recognized that the operations described
herein can be performed out-of-order, m-parallel, in-order,
ctc. Examples of embodiments are given, which may
describe the operations 1n an order to aid 1n clarity. However
other orderings can be possible.

FIG. 5 1s a block diagram illustrating a method 500 for
dynamic temperature control. The method 500 can be
accomplished by systems including those described 1n con-
junction with FIGS. 1, 4, 6 and 7. For example 1n block 502,
a power unit can measure a temperature of the core. In block
504, the power unit can determine an allowable thermal
load. In block 506, the power unit can determine a tempera-
ture dependent leakage. In block 508, the power unit can
calculate available power based at least 1n part on an activity
ratio, the temperature dependent leakage and total power
available. In block 510, the power unit can determine a
p-state voltage based at least 1n part on the available power.
In block 512, the power unit can select the p-state for the
core.
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6

As used herein, the term “circuitry” may refer to, be part
of, or include an Application Specific Integrated Circuit
(ASIC), an electronic circuit, a processor (shared, dedicated,
or group), and/or memory (shared, dedicated, or group) that
executes one or more software or firmware programs, a
combinational logic circuit, and/or other suitable hardware
components that provide the described functionality. In
some embodiments, the circuitry may be implemented in, or
functions associated with the circuitry may be implemented
by, one or more software or firmware modules. In some
embodiments, circuitry may include logic, at least partially
operable in hardware.

Throughout this disclosure, a hyphenated form of a rei-
erence numeral refers to a specific istance of an element,
and the unhyphenated form of the reference numeral refers
to the element generically or collectively. Thus, widget 12-1
refers to an mstance of a widget class, which may be referred
to collectively as widgets 12, and any one of which may be
referred to generically as a widget 12.

FIG. 6 1llustrates a multicore processor used 1 conjunc-
tion with at least one embodiment. In at least one embodi-
ment, a processor mcludes a core region 620 and an uncore
622. In some embodiments, the core region 620 includes
multiple processing cores 602, but disclosed functionality
may be applicable to single core processors 1 a multi-
processor system. In some embodiments, the processor 601
includes a first processing core 602-1, a second processing
core 602-2, and so forth through an n-th processing core
602-n.

In some embodiments, the processing cores 602 include
sub-clements or clusters that provide different aspects of
overall functionality. In some embodiments, the processing
cores 602 include a front end 604, an execution pipeline 606,
and a core periphery 628. The core periphery 628 can
include a first level (LL1) data cache 608, a C6 storage 630
and an advanced programmable iterrupt controller (APIC)
632. In at least one embodiment, the front end 604 1s
operable to fetch mstructions from an instruction cache (not
depicted) and schedule the fetched instructions for execu-
tion. In some embodiments, the execution pipeline 606
decodes and performs various mathematical, logical,
memory access and flow control instructions 1n conjunction
with a register file (not depicted) and the L1 data cache 608.
Thus, 1n some embodiments, the front end 604 may be
responsible for ensuring that a steady stream of 1nstructions
1s fed to the execution pipeline 606 while the execution
pipeline 606 may be responsible for executing instructions
and processing the results. In some embodiments, the execu-
tion pipeline 606 may include two or more arithmetic
pipelines 1n parallel, two or more memory access or load/
store pipelines 1n parallel, and two or more flow control or
branch pipelines. In at least one embodiment, the execution
pipelines 606 may further include one or more tloating point
pipelines. In some embodiments, the execution pipelines
606 may include register and logical resources for executing
instructions out ol order, executing instructions specula-
tively, or both. A hyperthread core 1s a core that 1s capable
ol execution of two or more instructions in parallel. Each
execution pipeline 606 of a core 1s called a hyperthread. A
hyperthread can be exposed to an operating system as a
logical core.

The core periphery 628 can include logic that supports the
front end 604 and the execution pipeline 606, including
managing storage and interrupts. The core periphery 628 can
include the L1 data cache 608, the C6 storage 630 and the
advanced programmable interrupt controller (APIC) 632.
The C6 storage 630 can store a context (or state) of the
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processing core 602 when the processing core 602 transi-
tions 1nto a low-power state (such as a C6 state). A peripheral
controller (e.g., the APIC 632) can manage interrupts for the
processing core 602, including identifying which interrupts
apply to the associated processing core 602 and managing an
APIC ID which can be used to i1dentily an associated core.

In at least one embodiment, during execution of memory
access 1nstructions, the execution pipeline 606 attempts to
execute the instructions by accessing a copy of the appli-
cable memory address residing in the lowest-level cache
memory of a cache memory subsystem that may include two
or more cache memories arranged 1n a hierarchical configu-
ration. In at least one embodiment, a cache memory sub-
system includes the L1 data caches 608 and a last level cache
(LLC) 618 in the uncore 622. In at least one embodiment,
other elements of the cache memory subsystem may include
a per-core instruction cache (not depicted) that operates 1n
conjunction with the front end 604 and one or more per-core
intermediate caches (not depicted). In at least one embodi-

ment, the cache memory subsystem for the processor 601
includes L1 data and instruction caches per core, an inter-
mediate or L2 cache memory per core that includes both
instructions and data, and the LLC 618, which includes
instructions and data and 1s shared among multiple process-
ing cores 602. In some embodiments, if a memory access
mstruction misses 1n the L1 data cache 608, execution of the
applicable program or thread may stall or slow while the
cache memory subsystem accesses the various cache memo-
ries until a copy of the applicable memory address 1s found.

In at least one embodiment, the processor 601, the first
processing core 602-1, the second processing core 602-2 and
the processing core 602-n communicate via a crossbar 612,
which may support data queuing, point-to-point protocols
and multicore interfacing. Other embodiments of the pro-
cessor 601 may employ a shared bus iterconnect or direct
core-to-core interconnections and protocols. In at least one
embodiment, the crossbar 612 serves as an uncore controller
that interconnects the processing cores 602 with the LLC
618. In some embodiments, the uncore 622 includes a cache
controller 617 to implement a cache coherency policy and,
in conjunction with a memory controller (not depicted),
maintain coherency between a system memory (not
depicted) and the various cache memories.

In at least one embodiment, a power control umt (PCU)
624 includes a placement controller 634. The placement
controller 634 can momtor workloads of the processing
cores 602 and determine which work can be moved to a
different core to increase etliciency. Efliciency can be mea-
sured 1n thermal output, power use and/or work accom-
plished. For example, efliciency can be increased by moving,
threads between cores that differ due to in-die vanation
(lower thermal output, decreased power usage, lifetime use
management or more work performed). Efficiency can be
increased by maintaining a low-voltage operation of a core
by not providing a workload above a threshold (i.e., moving
threads between cores to prevent a core from operating
above a threshold, which 1s also known as “stressing” a
core). Efliciency can be increased by combining multiple
threads upon a single hyperthreadmg core, which saves
power of a multi-core overhead. Efliciency can be increased
by placing threads on cores that are physically separated to
enable a larger spread of heat on the processor die. Eili-
ciency can be increased by spreading heat by moving
threads from physical processor to physical processor in
sequence to heat different parts of a processor die. Efliciency
can be increased by using cores with failed arithmetic units
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migrating threads between cores when the instructions will
use the failed arithmetic units. Efficiency can be increased
by performing load balancing for lifetime use management
and/or thermal management.

In some embodiments, as a core 1s used and/or used to
perform a large workload, the efliciency of the core
decreases. The efliciency decrease can be due to a larger
operating voltage and/or a larger thermal output. In some
embodiments, a lifetime use of cores can be managed, and
workloads transitioned between cores to spread the lifetime
usage of cores. In one embodiment, the processor can report
a lower core count than actually available on the processor.
The workload can be spread among cores to increase the
overall lifetime and efliciency of the cores beyond what
would be possible without the extra unreported cores. In
some embodiments, threads can be transitioned off of a core
to sequester the core. The sequestered core can be tested
and/or determine performance characteristics of the core. In
one embodiment, core sequestering can be used 1n conjunc-
tion with virtual machine manager solutions. In other
embodiments, a sequestered core can be used to support
other dedicated-purpose, hidden execution arrangements.

In some embodiments, the PCU 624 can decide thread
placement among the core and hyperthread resources avail-
able. Logical processors can be enumerated to the OS.
However, the number of logical processors can be less than
a number of physical cores and/or hyperthreads that exist 1n
the processor (1.e., there can be more processor resources
than are enumerated to the OS). The OS places work on the
logical processors visible to 1t, and the processor (e.g., the
PCU 624) may at a later time migrate a thread to a different
resource. For example, the PCU 624 can initiate a sequence
that saves the core’s context, restores the context to a
different core, and redirects a local APIC ID of the previous
core to the new core. This migration can occur at the core or
thread level. Alternatively, the hardware can provide migra-
tion hints to the OS through an operating system interface
626, and the OS can move the work from one core or thread
to another.

In at least one embodiment, the core region 620 includes,
in addition to the processing cores 602, voltage regulator/
clock generator (VRCG) circuits 614 for each processing
core 602. In some embodiments, 1n conjunction with per-
core supply voltage signals and clock frequency signals
generated by the PCU 624 and provided to each processing
core 602, the VRCG circuits 614 support per-core power
states by applying a power state indicated by the applicable
supply voltage signal and clock frequency signal to the
applicable processing core 602, as well as to the uncore 622.

In some embodiments, the PCU 624 1s further operable to
select processing cores 602 for execution of specific threads
and to migrate a thread and its corresponding performance
objective or context information from a first core (e.g., the
first processing core 602-1) to a second core (e.g., the second
processing core 602-2), when the performance characteris-
tics of the second processing core 602-2 make the second
processing core 602-2 better suited to achieve a desired
elliciency objective than the first processing core 602-1. See,
c.g., FIGS. 2 and 3 for a more detailed description of
migration.

In some embodiments, the processor 601 may include a
hybrid assortment ol cores including, in addition to the
processing cores 602, graphics cores and other types of core
logic. In these hybrnid core embodiments, the PCU 624
determines an optimal or desirable power state, not only for
the processing cores 602, but also for these other types of
core elements 1n the core region 620. Similarly, 1n at least
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one embodiment, the processor 601 includes a VRCG circuit
614-u that provides the power state for the uncore 622 and,
in this embodiment, the PCU 624 may determine the optimal
or preferred power states for the uncore 622. In some
embodiments, the processor 601 supports individualized
power states for each processing core 602, any other types
of cores 1n the core region 620, and the uncore 622. Other
embodiments may support one power state for the entire
core region 620 and one power state for the uncore 622.

The PCU 624 can also include the operating system
interface 626. In some embodiments, the PCU 624 can
provide recommendations for work placement or migration
to an operating system through the operating system inter-
face 626. The operating system can then perform the thread
migration between cores. For example, an operating system
may not have enough information to recognize that two
logical processors are actually associated with one hyper-
thread core. The PCU 624 can recommend to the operating,
system that two threads be consolidated on the two logical
processors, which can eliminate multi-core overhead.

Embodiments may be implemented in many diflerent
platforms. FIG. 7 illustrates a computer system 700 used in
conjunction with at least one embodiment. In at least one
embodiment, a processor, memory, and input/output devices
of a processor system are interconnected by a number of
point-to-point (P-P) interfaces, as will be described in fur-
ther detail. However, 1n other embodiments, the processor
system may employ different bus architectures, such as a
front side bus, a multi-drop bus, and/or another implemen-
tation. Although a processor 1s shown 1n FIG. 7 for descrip-
tive clarity, in various embodiments, a diflerent number of
processors may be employed using elements of the illus-
trated architecture.

In at least one embodiment, the system 700 1s a point-to-
point interconnect system and includes a processor 701.
While 1n some embodiments the system 700 may include
only a single processor, in other embodiments, the system
700 may support multiple processors. In at least one embodi-
ment, the processor 701 1s a multicore processor including,
a first processing core 702-1 and a second processing core
702-2. It 1s noted that other elements of the processor 701
besides the processing cores 702 may be referred to as the
uncore 723, while the processing cores 702 may also be
referred to as the core region 721. In diflerent embodiments,
a varying number ol cores may be present 1 a particular
processor. In at least one embodiment, the processing cores
702 may comprise a number of sub-elements (not shown 1n
FIG. 7), also referred to as clusters, that provide different
aspects of overall functionality. The processing cores 702
may, 1n some embodiments, each include a memory cluster
(not shown 1n FIG. 7) that may comprise one or more levels
of cache memory. In some embodiments, other clusters (not
shown 1n FIG. 7) 1n the processing cores 702 may include a
front-end cluster and an execution pipeline cluster. In at least
one embodiment, the processing cores 702 may include an
[.1 data cache. In some embodiments, the uncore 723 may
include a crossbar 712, an LLC 718, a memory controller
(MC) 772, a PCU 724 and a P-P interface 776. In some
embodiments, the PCU 724 may be used to select a specific
core based on the individual characteristics of each core on
the die and the requirements of the task.

In particular embodiments, the processing cores 702
within the processor 701 are not equipped with direct means
of communicating with each other, but rather, communicate
via the crossbar 712, which may include intelligent func-
tionality such as cache control, data queuing, P-P protocols,
and multicore interfacing. In some embodiments, the cross-
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bar 712 may thus represent an intelligent uncore controller
that interconnects the processing cores 702 with the MC
772, the LLC 718, and the P-P mterface 776, among other
clements. In particular, to improve performance 1n such an
architecture, cache controller functionality within the cross-
bar 712 may, 1n some embodiments, enable selective cach-
ing ol data within a cache hierarchy including the LLC 718
and one or more caches present in the processing cores 702.
In at least one embodiment, the crossbar 712 1s referred to
as a global queue.

In at least one embodiment, the LLC 718 may be coupled
to a pair of the processing cores 702, respectively. In some
embodiments, the LLC 718 may be shared by the first
processing core 702-1 and the second processing core 702-2.
In some embodiments, the LLC 718 may be fully shared
such that any single one of the processing cores 702 may fill
or access the full storage capacity of the LLC 718. Addi-
tionally, 1n some embodiments, the MC 772 may provide for
direct access by the processor 701 to a memory 732 via a
memory interface 782. In some embodiments, the memory
732 may be a double-data rate (DDR) type dynamic random-
access memory (DRAM), while the memory interface 782
and the MC 772 comply with a DDR 1interface specification.
In at least one embodiment, the memory 732 may represent
a bank of memory interfaces (or slots) that may be populated
with corresponding memory circuits for a desired DRAM
capacity.

In some embodiments, the processor 701 may also com-
municate with other elements of the system 700, such as a
near hub 790 and a far hub 719, which are also collectively
referred to as a chipset that supports the processor 701. In at
least one embodiment, the P-P interface 776 may be used by
the processor 701 to communicate with the near hub 790 via
an interconnect link 752. In certain embodiments, the P-P
interfaces 776, 794 and the interconnect link 752 are imple-
mented using Intel QuickPath Interconnect architecture. In
at least one embodiment, the near hub 790 includes an
interface 792 to couple the near hub 790 with a first bus 716,
which may support high-performance I/O with correspond-
ing bus devices, such as graphics 738 and/or other bus
devices. In some embodiments, the graphics 738 may rep-
resent a high-performance graphics engine that outputs to a
display device (not shown i FIG. 7). In at least one
embodiment, the first bus 716 1s a Peripheral Component
Interconnect (PCI) bus, such as a PCI Express (PCie) bus
and/or another computer expansion bus. In some embodi-
ments, the near hub 790 may also be coupled to the far hub
719 at an imterface 796 via an interconnect link 756. In
certain embodiments, the interface 796 1s referred to as a
south bridge. The far hub 719 may, 1n some embodiments,
provide I/O 1nterconnections for various computer system
peripheral devices and interfaces, and may provide back-
ward compatibility with legacy computer system peripheral
devices and interfaces. Thus, 1n at least one embodiment, the
far hub 719 provides a network mtertace 730 and an audio
I/O 734, as well as interfaces to a second bus 720, a third bus
722, and a fourth bus 721, as will be described in further
detail.

In some embodiments, the second bus 720 may support
expanded functionality for the system 700 with I/O devices
712 and a touchscreen controller 714, and may be a PClI-type
computer bus. In at least one embodiment, the third bus 722
may be a peripheral bus for end-user consumer devices,
represented by desktop devices 725 and commumnication
devices 726, which may include various types of keyboards,
computer mice, communication devices, data storage
devices, bus expansion devices, etc. In certain embodiments,
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the third bus 722 represents a Universal Serial Bus (USB) or
similar peripheral iterconnect bus. In some embodiments,
the fourth bus 721 may represent a computer 1nterface bus
for connecting mass storage devices, such as hard disk
drives, optical drives, and disk arrays, which are generically
represented by a persistent storage 728 that may be execut-
able by the processor 701.

In at least one embodiment, the system 700 incorporates
various features that facilitate a handheld or tablet type of
operation and other features that facilitate laptop or desktop
operation. In addition, in some embodiments, the system
700 includes features that cooperate to aggressively con-
serve power while simultaneously reducing latency associ-
ated with traditional power conservation performance objec-
tives.

In at least one embodiment, the system 700 includes an
operating system 740 that may be entirely or partially stored
in the persistent storage 728. In some embodiments, the
operating system 740 may include various modules, appli-
cation programming intertaces, and the like that expose to
varying degrees various hardware and soltware features of
the system 700. In at least one embodiment, the system 700
includes a sensor application programming interface (API)
742, a resume module 744, a connect module 746, and a
touchscreen user interface 748. In some embodiments, the
system 700 may further include various hardware/firmware
features 1ncluding the capacitive or resistive touchscreen
controller 714 and a second source of persistent storage such
as a solid state drive (SSD) 750.

In some embodiments, the sensor API 742 provides
application program access to one or more sensors (not
depicted) that may be included 1n the system 700. Sensors
that the system 700 might have in some embodiments
include an accelerometer, a global positioning system (GPS)
device, a gyrometer, an inclinometer, and a light sensor. The
resume module 744 may, 1n some embodiments, be 1mple-
mented as software that, when executed, performs opera-
tions for reducing latency when transitioning the system 700
from a power conservation performance objective to an
operating performance objective. In at least one embodi-
ment, the resume module 744 may work 1n conjunction with
the SSD 750 to reduce the amount of SSD storage required
when the system 700 enters a power conservation mode. The
resume module 744 may, 1n some embodiments, flush
standby and temporary memory pages before transitioning
to a sleep mode. In some embodiments, by reducing the
amount of system memory space that the system 700 is
required to preserve upon entering a low-power state, the
resume module 744 beneficially reduces the amount of time
required to perform the transition from the low-power state
to an operating performance objective. In at least one
embodiment, the connect module 746 may include software
instructions that, when executed, perform complementary
functions for conserving power while reducing the amount
of latency or delay associated with traditional “wake-up”
sequences. The connect module 746 may, 1n some embodi-
ments, periodically update certain “dynamic” applications
including email and social network applications, so that,
when the system 700 wakes from a low-power mode, the
applications that are often most likely to require refreshing
are up-to-date. In at least one embodiment, the touchscreen
user 1nterface 748 supports the touchscreen controller 714
that enables user input wvia touchscreens traditionally
reserved for handheld applications. In some embodiments,
the inclusion of touchscreen support in conjunction with
support for the communication devices 726 enables the
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system 700 to provide features traditionally found 1n dedi-
cated tablet devices as well as features found in dedicated

laptop and desktop systems.

FIG. 8 1llustrates a representation for simulation, emula-
tion, and fabrication of a design implementing the disclosed
techniques. Data representing a design may represent the
design in a number of manners. First, as 1s useful 1n
simulations, the hardware may be represented using a hard-
ware description language or another functional description
language which basically provides a computerized model of
how the designed hardware 1s expected to perform. In at
least one embodiment, a hardware model 814 may be stored
in a storage medium 810 such as a computer memory so that
the hardware model 814 may be simulated using simulation
solftware 812 that applies a particular test suite to the
hardware model 814 to determine 11 1t indeed functions as
intended. In some embodiments, the simulation software
812 is not recorded, captured or contained in the storage
medium 810.

Additionally, a circuit level model with logic and/or
transistor gates may be produced at some stages of the
design process. This model may be similarly simulated,
sometimes by dedicated hardware simulators that form the
model using programmable logic. This type of simulation,
taken a degree further, may be an emulation technique. In
any case, reconfigurable hardware 1s another embodiment
that may involve a tangible machine-readable medium stor-
ing a model employing the disclosed techniques.

Furthermore, most designs, at some stage, reach a level of
data representing the physical placement of various devices
in the hardware model. In the case where conventional
semiconductor fabrication techniques are used, the data
representing the hardware model may be the data specifying
the presence or absence of various features on different mask
layers for masks used to produce the integrated circuit.
Again, this data representing the integrated circuit embodies
the techniques disclosed 1n that the circuitry or logic in the
data can be simulated or fabricated to perform these tech-
niques.

In any representation of the design, the data may be stored
in any form of a tangible machine-readable medium. In
some embodiments, an optical or electrical wave 840 modu-
lated or otherwise generated to transmit such information, a
memory 830, or a magnetic or optical storage 820, such as
a disc, may be the tangible machine-readable medium. Any
of these mediums may “carry” the design information. The
term “‘carry” (e.g., a tangible machine-readable medium
carrying information) thus covers information stored on a
storage device or information encoded or modulated into or
onto a carrier wave. The set of bits describing the design or
the particular part of the design 1s (when embodied n a
machine-readable medium such as a carrier or storage
medium) an article that may be sold 1n and of itself or used
by others for further design or fabrication.

EXAMPLES

The following examples pertain to further embodiments.

Example 1 1s an apparatus for estimating dynamic power
in an integrated chip. The apparatus includes a measurement
interface, a power interface, and one or more processors.
The measurement interface 1s designed to receive tempera-
ture measurements for a variety of cores. The power inter-
face 1s designed to provide a p-state for each core from a set
of cores. Each core from the set of cores 1n the one or more
processors are designed to measure a temperature of the
core; determine an allowable thermal load; determine a
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temperature dependent leakage; calculate available power
based 1n part on an activity ratio, the temperature dependent
leakage and total power available; determine a p-state volt-
age based in part on the available power; and select the
p-state for the core.

In Example 2, the subject matter of Example 1 or any of
the Examples described herein may further include the
activity ratio based on core workload with respect to the
p-state voltage.

In Example 3, the subject matter of Example 1 or any of
the Examples described herein may further include the
temperature dependent leakage based 1n part on voltage and
temperature.

In Example 4, the subject matter of Example 1 or any of
the Examples described herein may further include the
temperature dependent leakage to be estimated based 1n part
on voltage and measured temperature.

In Example 5, the subject matter of Example 1 or any of
the Examples described herein may turther include a deter-
mination that the allowable thermal load further includes
calculating time since last update; calculating temperature
error for each core; calculating integral of error over a finite
sample time window; and calculating a controller output.

In Example 6, the subject matter of Example 5 or any of
the Examples described herein may further include limiting,
an mtegration sum to a predetermined maximum to prevent
integrator windup.

In Example 7, the subject matter of Example 6 or any of
the Examples described herein may further include setting a
flag bit when the time since last update 1s out of tolerance.

In Example 8, the subject matter of Example 5 or any of
the Examples described herein may further include calcu-
lating the temperature error for each core including deter-
mimng the error using an equation ol error=setpoint—tem-
perature.

In Example 9, the subject matter of Example 5 or any of
the Examples described herein may further include calcu-
lating the controller output including using an equation of
P oo K, *error+K, *integral .

In Example 10, the subject matter of Example 1 or any of
the Examples described herein may further include calcu-
lating the available power (P, ,,) including using an equa-
tion of P, =Prorann —Preai -

In Example 11, the subject matter of Example 1 or any of
the Examples described herein may further include calcu-
lating the activity ratio (AR) based on an equation

(Cayn * Vf « Freq)

denl

AR

In Example 12, the subject matter of Example 1 or any of
the Examples described herein may further include deter-
miming that the allowable thermal load further includes
determining allowable power from the allowable thermal
load based on a model linking power and the temperature.

In Example 13, the subject matter of Example 1 or any of
the Examples described herein may further include deter-
mimng that the allowable thermal load further includes
determining thermal coupling between cores.

In Example 14, the subject matter of Example 1 or any of
the Examples described herein may further include the one
or more processors designed for a multiple-input, multiple-
output controller design for managing temperature of each
core.
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Example 15 1s a processor system for dynamically adjust-
ing power within a thermal budget. The processor system
includes a central processing unit, a set of temperature
sensors, a power interface, storage for a model of thermal
dynamics between power provided to a core and core
temperature, and one or more processors. The central pro-
cessing unit contains a set of cores. The set of temperature
sensors are attached to the set of cores. The power interface
1s designed to provide a p-state to each core from the set of
cores. The one or more processors are designed to determine
a controller output for each core based 1n part on the model;
calculate an estimate of temperature dependent leakage for
cach core; calculate an estimate of activity to power ratio for
cach core based in part on an average of previous samples;
calculate an associated p-state voltage for each core for the
remaining dynamic power based 1n part on an activity ratio;
and select the p-state associated with the associated p-state
voltage for each core.

In Example 16, the subject matter of Example 15 or any
of the Examples described herein may further include the
controller output to further include calculating time since a
last control update; calculating temperature error for each
core; calculating integral of error over a finite sample time
window; limiting an integration sum to a maximum value;
and calculating the controller output based on the error and
the integration sum.

In Example 17, the subject matter of Example 15 or any
of the Examples described herein may further include the
one or more processors configured to implement the asso-
ciated p-state voltage of each core for at least a next sample
period.

In Example 18, the subject matter of Example 15 or any
of the Examples described herein may further include the
model which further includes a PID controller, PD controller
or a PI controller.

In Example 19, the subject matter of Example 15 or any
of the Examples described herein may further include the
model which further imncludes data regarding thermal cou-
pling between cores.

In Example 20, the subject matter of Example 15 or any
of the Examples described herein may further include the
model which further includes data regarding thermal dynam-
ics between power provided to a core and processor tem-
perature.

In Example 21, the subject matter of Example 15 or any
of the Examples described herein may further include the
model which further includes data regarding temperature
dependent leakage.

In Example 22, the subject matter of Example 15 or any
of the Examples described herein may further include tem-
perature dependent leakage based in part on voltage and
measured temperature.

In Example 23, the subject matter of Example 22 or any
of the Examples described herein may further include that

temperature dependent leakage (P, .) 1s determined using
an equation of P, =V, *] eV giall1)

In Example 24, the subject matter of Example 22 or any
of the Examples described herein may further include that
calculating available power (P ,,,,) further includes using an
equation of P, =P, .1 =Prear-

In Example 25, the subject matter of Example 22 or any
of the Examples described herein may further include that

the activity ratio (AR) 1s calculated based on an equation

AR (Cayn * Vlz « Freq, )
- denl |
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Example 26 1s a computer program product. The com-
puter program product includes a computer-readable storage
medium storing program code. The program code causes
one or more processors to perform a method. The method
includes measuring a temperature of a variety of cores 1n a
central processing umt (CPU); determining a thermal margin
of a core between actual temperature and thermal design
power temperature; estimating temperature dependent leak-
age for a core based on voltage and measured temperature;
determining available power based on the thermal margin
and temperature dependent leakage; determining an associ-
ated p-state voltage for an available power and core demand;
and updating a core p-state with the associated p-state
voltage.

In Example 27, the subject matter of Example 26 or any
of the Examples described herein may further include the
determination that the available power based on the thermal
margin and the temperature dependent leakage further
includes setting a temperature set-point between the thermal
design power temperature and the measured temperature.

In Example 28, the subject matter of Example 26 or any
of the Examples described herein may further include that
the temperature dependent leakage 1s estimated based in part
on voltage and the actual temperature.

In Example 29, the subject matter of Example 26 or any
of the Examples described herein may further include the
determination that the available power based on the thermal
margin and the temperature dependent leakage further
includes converting the thermal margin to an estimate of
power that results 1n the thermal margin.

Example 30 1s a method for power state selection. The
method includes calculating an estimate of temperature
dependent leakage of a core; calculating an estimate of
activity ratio of the core based on an average ol previous
samples; calculating an associated p-state voltage of a core
for the remaining dynamic power assuming activity ratio
calculated; and selecting a e-state for the core using the
associated p-state voltage.

In Example 31, the subject matter of Example 30 or any
of the Examples described herein may further include cal-
culating a time since last update; calculating temperature
error for the core; calculating integral of error for the core
over a finite sample time window; limiting the integration
sum for the core to a predetermined maximum; and calcu-
lating a controller output for the core.

In Example 32, the subject matter of Example 31 or any
of the Examples descrlbed herein may further include that
calculating the time since last update further includes cal-
culating the time since a last sample update or control
update.

In Example 33, the subject matter of Example 30 or any
of the Examples descrlbed herein may further include the
method applied to a set of cores.

In Example 34, the subject matter of Example 30 or any
of the Examples described herein may further include deter-
mimng an allowable thermal load of the core, and using the
allowable thermal load of the core to estimate a total power
available to the core.

In Example 33, the subject matter of Example 34 or any
of the Examples described herein may further include deter-
mimng a thermal coupling efl

ect of other cores to the core.
Example 36 1s an apparatus including a manner to per-
form a method as identified 1n any of Examples 30-32.
Example 37 1s a machine-readable storage including
machine-readable instructions, which, when executed,
implement a method or realize an apparatus as identified 1n
any of Examples 30-32.
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Example 38 1s a machine-readable medium including
code, which, when executed, causes a machine to perform
the method of any one of Examples 30-32.

Embodiments and implementations of the systems and
methods described herein may include various operations,
which may be embodied 1n machine-executable mnstructions
to be executed by a computer system. A computer system
may include one or more general-purpose or special-purpose
computers (or other electronic devices). The computer sys-
tem may include hardware components that include specific
logic for performing the operations or may include a com-
bination of hardware, software, and/or firmware.

Computer systems and the computers in a computer
system may be connected via a network. Suitable networks
for configuration and/or use as described herein include one
or more local area networks, wide area networks, metro-
politan area networks, and/or Internet or IP networks, such
as the World Wide Web, a private Internet, a secure Internet,
a value-added network, a wvirtual private network, an
extranet, an intranet, or even stand-alone machines which
communicate with other machines by physical transport of
media. In particular, a suitable network may be formed from
parts or enfireties of two or more other networks, including
networks using disparate hardware and network communi-
cation technologies.

One suitable network includes a server and one or more
clients; other suitable networks may contain other combi-
nations of servers, clients, and/or peer-to-peer nodes, and a
given computer system may function both as a client and as
a server. Each network includes at least two computers or
computer systems, such as the server and/or clients. A
computer system may include a workstation, laptop com-
puter, disconnectable mobile computer, server, mainirame,
cluster, so-called “network computer” or “thin client,” tab-
let, smart phone, personal digital assistant or other hand-held
computing device, “smart” consumer electronics device or
appliance, medical device, or a combination thereof.

Suitable networks may include communications or net-
working software, such as the software available from
Novell®, Microsoft®, and other vendors, and may operate
using TCP/IP, SPX, IPX, and other protocols over twisted
pair, coaxial, or optical fiber cables, telephone lines, radio
waves, satellites, microwave relays, modulated AC power
lines, physical media transter, and/or other data transmission
“wires” known to those of skill in the art. The network may
encompass smaller networks and/or be connectable to other
networks through a gateway or similar mechanism.

Various techmiques, or certain aspects or portions thereof,
may take the form of program code (i.e., instructions)
embodied 1n tangible media, such as floppy diskettes, CD-
ROMSs, hard drives, magnetic or optical cards, solid-state
memory devices, a nontransitory computer-readable storage
medium, or any other machine-readable storage medium
wherein, when the program code 1s loaded 1nto and executed
by a machine, such as a computer, the machine becomes an
apparatus for practicing the various techniques. In the case
of program code execution on programmable computers, the
computing device may include a processor, a storage
medium readable by the processor (including volatile and
nonvolatile memory and/or storage elements), at least one
iput device, and at least one output device. The volatile and
nonvolatile memory and/or storage clements may be a
RAM, an EPROM, a flash drive, an optical drive, a magnetic
hard drive, or other medium for storing electronic data. One
or more programs that may implement or utilize the various
techniques described herein may use an application pro-
gramming interface (API), reusable controls, and the like.
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Such programs may be implemented in a high-level proce-
dural or an object-oriented programming language to com-
municate with a computer system. However, the program(s)
may be implemented in assembly or machine language, i
desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware imple-
mentations.

Each computer system includes one or more processors
and/or memory; computer systems may also include various
input devices and/or output devices. The processor may
include a general purpose device, such as an Intel®, AMD®,
or other “ofi-the-shell” microprocessor. The processor may
include a special purpose processing device, such as ASIC,
SoC, SiP, FPGA, PAL, PLA, FPLA, PLD, or other custom-
1zed or programmable device. The memory may include
static RAM, dynamic RAM, flash memory, one or more
thip-flops, ROM, CD-ROM, DVD, disk, tape, or magnetic,
optical, or other computer storage medium. The 1nput
device(s) may include a keyboard, mouse, touch screen,
light pen, tablet, microphone, sensor, or other hardware with
accompanying firmware and/or software. The output
device(s) may include a momitor or other display, printer,
speech or text synthesizer, switch, signal line, or other
hardware with accompanying firmware and/or software.

It should be understood that many of the functional units
described 1n this specification may be implemented as one or
more components, which 1s a term used to more particularly
emphasize their 1mplementation 1independence. For
example, a component may be implemented as a hardware
circuit comprising custom very large scale integration
(VLSI) circuits or gate arrays, or ofl-the-shelf semiconduc-
tors such as logic chips, transistors, or other discrete com-
ponents. A component may also be mmplemented 1n pro-
grammable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices, or the like.

Components may also be implemented 1n software for
execution by various types of processors. An identified
component of executable code may, for instance, comprise
one or more physical or logical blocks of computer instruc-
tions, which may, for instance, be organized as an object, a
procedure, or a function. Nevertheless, the executables of an
identified component need not be physically located
together, but may comprise disparate istructions stored in
different locations that, when joined logically together, com-
prise the component and achieve the stated purpose for the
component.

Indeed, a component of executable code may be a single
instruction, or many instructions, and may even be distrib-
uted over several different code segments, among diflerent
programs, and across several memory devices. Similarly,
operational data may be identified and illustrated herein
within components, and may be embodied in any suitable
form and organized within any suitable type of data struc-
ture. The operational data may be collected as a single data
set, or may be distributed over different locations including
over different storage devices, and may exist, at least par-
tially, merely as electronic signals on a system or network.
The components may be passive or active, including agents
operable to perform desired functions.

Several aspects of the embodiments described will be
illustrated as software modules or components. As used
herein, a software module or component may include any
type of computer instruction or computer-executable code
located within a memory device. A software module may, for
instance, iclude one or more physical or logical blocks of
computer instructions, which may be organized as a routine,
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program, object, component, data structure, etc., that per-
form one or more tasks or implement particular data types.
It 1s appreciated that a software module may be implemented
in hardware and/or firmware instead of or in addition to
software. One or more of the functional modules described
herein may be separated into sub-modules and/or combined
into a single or smaller number of modules.

In certain embodiments, a particular software module
may include disparate instructions stored in different loca-
tions of a memory device, different memory devices, or
different computers, which together mplement the
described functionality of the module. Indeed, a module may
include a single instruction or many instructions, and may be
distributed over several diflerent code segments, among
different programs, and across several memory devices.
Some embodiments may be practiced 1n a distributed com-
puting environment where tasks are performed by a remote
processing device linked through a communications net-
work. In a distributed computing environment, software
modules may be located 1n local and/or remote memory
storage devices. In addition, data being tied or rendered
together 1n a database record may be resident in the same
memory device, or across several memory devices, and may
be linked together 1n fields of a record in a database across
a network.

Retference throughout this specification to “an example”
means that a particular feature, structure, or characteristic
described 1n connection with the example 1s included 1n at
least one embodiment. Thus, appearances of the phrase “in
an example” 1n various places throughout this specification
are not necessarily all referring to the same embodiment.

As used herein, a plurality of items, structural elements,
compositional elements, and/or materials may be presented
in a common list for convenience. However, these lists
should be construed as though each member of the list 1s
individually identified as a separate and unique member.
Thus, no individual member of such list should be construed
as a de facto equivalent of any other member of the same list
solely based on 1ts presentation 1n a common group without
indications to the contrary. In addition, various embodiments
and examples may be referred to herein along with alterna-
tives for the various components thereof. It 1s understood
that such embodiments, examples, and alternatives are not to
be construed as de facto equivalents of one another, but are
to be considered as separate and autonomous representa-
tions.

Furthermore, the described features, structures, or char-
acteristics may be combined in any suitable manner 1n one
or more embodiments. In the following description, numer-
ous specific details are provided, such as examples of
materials, frequencies, sizes, lengths, widths, shapes, etc., to
provide a thorough understanding of embodiments. One
skilled 1n the relevant art will recognize, however, that the
embodiments may be practiced without one or more of the
specific details, or with other methods, components, mate-
rials, etc. In other instances, well-known structures, mate-
rials, or operations are not shown or described 1n detail to
avoild obscuring aspects of the embodiments.

It should be recognized that the systems described herein
include descriptions of specific embodiments. These
embodiments can be combined 1nto single systems, partially
combined into other systems, split into multiple systems or
divided or combined in other ways. In addition, 1t 15 con-
templated that parameters/attributes/aspects/etc. of one
embodiment can be used 1n another embodiment. The
parameters/attributes/aspects/etc. are merely described in
one or more embodiments for clarity, and 1t 1s recognized
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that the parameters/attributes/aspects/etc. can be combined
with or substituted for parameters/attributes/etc. of another
embodiment unless specifically disclaimed herein.

Although the foregoing has been described 1n some detail
for purposes of clanty, it will be apparent that certain
changes and modifications may be made without departing
from the principles thereof. It should be noted that there are
many alternative ways of implementing both the processes
and apparatuses described herein. Accordingly, the present
embodiments are to be considered illustrative and not
restrictive, and the embodiments are not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

Those having skill 1n the art will appreciate that many
changes may be made to the details of the above-described
embodiments without departing from the underlying prin-
ciples. The scope of the disclosure and embodiments should,
therefore, be determined only by the following claims.

The invention claimed 1s:

1. An apparatus for estimating dynamic power in an
integrated chip, comprising:

a measurement interface configured to receive tempera-

ture measurements for a plurality of cores;

a power interface configured to provide a p-state for each

core from a set of cores; and

one or more processors configured to:

for each core from the set of cores:

measure a temperature of the core;

determine an allowable thermal load;

determine a temperature dependent leakage;

calculate available power based at least 1n part on an
activity ratio, the temperature dependent leakage
and total power available;

determine a p-state voltage based at least 1n part on
the available power; and

select the p-state for the core.

2. The apparatus of claim 1, wherein the activity ratio 1s
based on core workload with respect to the p-state voltage.

3. The apparatus of claim 1, wherein the temperature
dependent leakage 1s based at least 1n part on voltage and the
temperature.

4. The apparatus of claim 1, wherein the temperature
dependent leakage 1s estimated based at least in part on
voltage and measured temperature.

5. The apparatus of claim 1, wherein to determine the
allowable thermal load further comprises to:

calculate time since last update;

calculate temperature error for each core;

calculate integral of error over a {inite sample time

window:; and

calculate a controller output.

6. The apparatus of claim 5, further comprising to limit an
integration sum to a predetermined maximum to prevent
integrator windup.

7. The apparatus of claim 6, further comprising to set a
flag bit when the time since last update 1s out of tolerance.

8. The apparatus of claim 1, wherein to determine the
allowable thermal load tfurther comprises determining
allowable power from the allowable thermal load based on
a model linking power and the temperature.

9. The apparatus of claim 1, wherein to determine the
allowable thermal load further comprises determining ther-
mal coupling between cores.

10. The apparatus of claim 1, wherein the one or more
processors are configured for a multiple-input, multiple-
output controller design for managing temperature of each
core.
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11. A processor system for dynamically adjusting power
within a thermal budget comprising:

a central processing unit comprising a set of cores;

a set of temperature sensors coupled to the set of cores;

a power 1terface configured to provide a p-state to each

core from the set of cores:

storage for a model of thermal dynamics between power

provided to a core and core temperature; and

one or more processors configured to:

determine a controller output for each core based at
least 1n part on the model;

calculate an estimate of temperature dependent leakage
for each core:

calculate an estimate of activity to power ratio for each
core based at least 1n part on an average of previous
samples;

calculate an associated p-state voltage for each core for
a remaining dynamic power based at least 1n part on
an activity ratio; and

select the p-state associated with the associated p-state
voltage for each core.

12. The system of claim 11, wherein to determine the
controller output further comprises to:

calculate time since a last control update;

calculate temperature error for each core;

calculate integral of error over a finite sample time

window:

limit an 1ntegration sum to a maximum value; and

calculate the controller output based on the error and the

integration sum.

13. The system of claam 11, wherein the one or more
processors are further configured to implement the associ-
ated p-state voltage of each core for at least a next sample
period.

14. The system of claim 11, wherein the model further
comprises data regarding thermal coupling between cores.

15. The system of claim 11, wherein the model further
comprises data regarding thermal dynamics between power
provided to a core and processor temperature.

16. The system of claim 11, wherein the model further
comprises data regarding the temperature dependent leak-
age.

17. The system of claim 11, wherein the temperature
dependent leakage 1s based at least i part on voltage and
measured temperature.

18. A computer program product comprising a non-
transitory computer-readable storage medium storing pro-
gram code for causing one or more processors to perform a
method, the method comprising:

measuring a temperature of a plurality of cores in a central

processing unit (CPU);

determiming a thermal margin of a core between actual

temperature and thermal design power temperature;
estimating temperature dependent leakage for a core
based on voltage and measured temperature;
determiming available power based on the thermal margin
and temperature dependent leakage;

determining an associated p-state voltage for an available

power and core demand; and

updating a core p-state with the associated p-state voltage.

19. The computer program product of claim 18, wherein
to determine the available power based on the thermal
margin and the temperature dependent leakage turther com-
prises setting a temperature setpoint between the thermal
design power temperature and the measured temperature.
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20. The computer program product of claim 18, wherein
the temperature dependent leakage 1s estimated based at
least 1n part on voltage and the actual temperature.

21. The computer program product of claim 18, wherein
determining the available power based on the thermal mar- 5
ogin and the temperature dependent leakage further com-
prises converting the thermal margin to an estimate of power
that results in the thermal margin.
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