12 United States Patent

US010467606B2

10) Patent No.: US 10.467,606 B2

Roever et al.

45) Date of Patent:

Nov. 5, 2019

(54) ENHANCED TITLE PROCESSING 5,600,609 A 2/1997 Houser et al.
ARRANGEMENT 5,629,980 A 5/1997 Stefik
5,752,020 A 5/1998 Ando
(75) Inventors: Stefan Roever, Los Altos Hills, CA g’;;ﬁ’é% i ;ﬂggg i?’lt:;y
Egg;, Kevin Collins, Cupertino, CA (Continued)
. FOREIGN PATENT DOCUMENTS
(73) Assignee: API Market, Inc., San Mateo, CA (US)
JP 02-245970 1/1990
(*) Notice: Subject to any disclaimer, the term of this JP 2001338242 A 12/2001
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 1534(b) by 1645 days.
(21) Appl. No.: 11/742,253 OTHER PUBLICATIONS
(22) Filed Aor 30. 2007 Office Action dated Aug. 24, 2009, U.S. Appl. No. 11/155,010.
iled: r. 30, _
P (Continued)
(65) Prior Publication Data
US 2007/0286076 Al Dec. 13, 2007 Primary Examiner — Jamie R Kucab
o (74) Attorney, Agent, or Firm — Waver Austin Villeneuve
Related U.S. Application Data & Sampson LLP
(60) Provisional application No. 60/746,032, filed on Apr.
29, 2006.
(37) ABSTRACT
(1) Int. €I H Methods, apparatus, and data structures embodied 1n com-
G060 20/12 (2012.01) . . el L.
HO4L 1228 (2006.01) puter-readable media are provided for facilitating access to
04T, 29/06 (2006.0:h) a service 1 a network. Title materials are received which
(52) U.S. ClI o include one or more of a first title object, a component of the
CPC ' GO6O 2071235 (2013.01): HOAL 122856 first title object, or a reference to the first title object. The
""" % 01%2 01); HO 42 63 /j 0 ()’2 013.01); GO6 first title object 1s a first digital bearer instrument represent-
2220/177 ('201:;’ 01): GOG 2220/](;3 (2613 Ol% ing at least one right relating to the service, the first title
_ _ N QO ' object 1including a reference to the service. A second title
(58) Field of Classification Search object 1s 1dentified with reference to a service registry and
None o , the reference to the service included 1n the first title object.
See application file for complete search history. The second title object 1s a second digital bearer instrument
(56) References Cited with which redemption of the at least one right relating to the

U.S. PATENT DOCUMENTS

5,063,507 A
5,455,407 A

11/1991 Lindsey
10/1995 Rosen

3100
ECOSYSTEM 1

3300a —K

3900

1111111

W)

il T ™
Tl N w

T
T |

LTSy

LLLLLLLLLLLL

#J”.ff}.fa My,
Iﬂ'ﬂf?’ﬂ.fl_n I
L
F

USER 1

USER 2

?
%
7
]
/

L A A e
P rrsa
il TS
o g A g
A N Ny

o

service and represented by the first title object may be
ellected.

27 Claims, 19 Drawing Sheets

3200
ECOSYSTEM 2

F L rs R
e A

LLLLLL

AT
T T T rrry
e T
ﬁﬂ.ﬂﬂ?

US 10,467,606 B2

Page 2
(56) References Cited 7,444,519 B2 10/2008 Laferriere et al.
7,454,622 B2 11/2008 Laidlaw et al.
U.S. PATENT DOCUMENTS 7,580,877 Bl 8/2009 Argenbright
7,614,078 B1 11/2009 Stieglitz
5,812,670 A 9/1998 Micali 7,680,819 Bl 3/2010 Mellmer et al.
5,828,751 A 10/1998 Walker 7,707,066 B2 4/2010 Roever
5,857,023 A 1/1999 Demers et al. 7,707,121 Bl 4/2010 Roever et al.
5,892,900 A 4/1999 Ginter 7,725,260 B2 5/2010 Vos et al.
5,903,880 A 5/1999 Biffar 7,774,499 Bl 8/2010 Popek et al.
5,905,976 A 5/1999 Mijolsnes et al. 7,814,025 B2 10/2010 Roever
5,941,947 A 8/1999 Brown et al. 5,170,929 Bl 52012 Mallon et al.
5,956,736 A 9/1999 Hanson et al. 8,566,461 Bl 10/2013 Jun et al.
6,065,117 A 5/2000 White 8,571,992 B2 10/2013 Roever et al.
6,070,171 A 5/2000 Snyder et al. 8,738,457 B2 5/2014 Roever et al.
6,078,909 A 6/2000 Knutson 9,177,338 B2 11/2015 Collins et al.
6,098,056 A /2000 Rusnak et al. 9,500,704 B2 11/2016 Roever et al.
6,119,229 A 9/2000 Martinez 9,621,372 B2 4/2017 Roever et al.
6,141,006 A 10/2000 Knowlton 10,073,984 B2 9/2018 Roever et al.
6,154,214 A 11/2000 Uyehara 10,192,234 B2 1/2019 Collins et al.
6,170,744 Bl 1/2001 Lee et al. 2001/0008557 Al 7/2001 Stefik et al.
6,189,097 Bl 2/2001 Tycksen, Jr. 2001/0026287 A1 10/2001 Watanabe
6,205,436 Bl 3/2001 Rosen et al. 2001/0032312 A1 10/2001 Runje et al.
6,212,504 Bl 4/2001 Hayosh 2002/0004847 Al 1/2002 Tanno
6,292,788 Bl 0/2001 Roberts et al. 2002/0026445 Al 2/2002 Chica et al.
6,327,578 B1 12/2001 Linehan 2002/0029183 Al 3/2002 Vlahoplus et al.
6,330,544 B1 12/2001 Walker et al. 2002/0032646 Al 3/2002 Sweeney et al.
6,341,353 Bl 1/2002 Herman et al. 2002/0038278 Al 3/2002 Himmelstein
6,360,254 Bl 3/2002 Linden et al. 2002/0040346 A1~ 4/2002 Kwan
6,372,974 Bl 4/2002 Gross et al. 2002/0048369 Al 4/2002 Ginter et al.
6,378,075 Bl 4/2002 Goldstein 2002/0062249 Al 5/2002 Iannaci
6,389,541 Bl 5/2002 Patterson 2002/0082961 Al 6/2002 Abrahm et al.
6,519,573 Bl 2/2003 Shade et al. 2002/0091643 Al 7/2002 Okamoto et al.
6.574.609 Bl 6/2003 Downs 2002/0091646 Al 7/2002 Lake et al.
6:5782078 Bl 6/2003 Smith 2002/0099564 Al 7/2002 Kim
6,587,867 B1 7/2003 Miller et al. 2002/0106081 Al 82002 Yang
6,591,260 B1 7/2003 Schwarzhoff et al. 2002/0116471 Al 82002 Shteyn
6,600,823 Bl 7/2003 Hayosh 2002/0128940 Al 9/2002 Orrin et al.
6,629,081 Bl 0/2003 Cornelius 2002/0129140 Al 9/2002 Peled et al.
6,640,304 B2 10/2003 Ginter et al. 2002/0143703 A1 10/2002 Razvan et al.
6,662,340 B2 12/2003 Rawat 2002/0147929 Al 10/2002 Rose
6,675,153 Bl 1/2004 Cook 2002/0152126 A1 10/2002 Lieu et al.
6,751,670 Bl 6/2004 Patterson 2002/0152173 A1 10/2002 Rudd
6,772,341 Bl 8/2004 Shrader et al. 2002/0152262 A1 10/2002 Arkin et al.
6,820,204 Bl 11/2004 Desai et al. 2002/0156743 Al 10/2002 DeTreville
6,842,741 Bl 1/2005 Fujimura 2002/0178082 Al 11/2002 Krause
6,868,392 Bl 3/2005 Ogasawara 2002/0184504 A1 12/2002 Hughes
6,871,220 Bl 3/2005 Rajan et al. 2002/0198843 Al 12/2002 Wang et al.
6,895,392 B2 5/2005 Stefik et al. 2003/0004885 Al 1/2003 Banerjee et al.
6,898,576 B2 5/2005 Stefik et al. 2003/0023561 Al 1/2003 Stefik et al.
6,910,179 Bl 6/2005 Pennell 2003/0023564 Al 1/2003 Padhye et al.
6,913,193 Bl 7/2005 Kawan 2003/0028489 Al 2/2003 Williamson
6,920,567 Bl 7/2005 Doherty et al. 2003/0046093 Al 3/2003 Erickson et al.
6,925,439 Bl 8/2005 Pitroda 2003/0061566 Al 3/2003 Rubstein et al.
6,938,021 B2 8/2005 Shear et al. 2003/0079122 Al 4/2003 Asokan et al.
6,941,291 Bl 9/2005 Zoller et al. 2003/0084171 Al 5/2003 de Jong
6,944,776 Bl 0/2005 Lockhart et al. 2003/0084302 Al 5/2003 de Jong
6,947,556 Bl 9/2005 Matyas et al. 2003/0093695 Al 52003 Dutta
6,947,571 Bl 9/2005 Rhoads 2003/0125965 Al 7/2003 Falso
7,003,670 B2 2/2006 Heaven et al. 2003/0131048 Al 7/2003 Najork
7.010,512 Bl 3/2006 Gillin 2003/0140003 Al 7/2003 Wang et al.
7,016,877 Bl 3/2006 Steele et al. 2003/0140034 Al 7/2003 Probst et al.
7,020,626 Bl 3/2006 Eng et al. 2003/0159043 Al 8/2003 Epstein
7,028,009 B2* 4/2006 Wang GO6F 21/10 2003/0182142 Al 9/2003 Valenzuela et al.
80201 20030200439 Al 102003 Moskewitz
- : 1 oskowl1lz
;jgggéi}g E ggggg gﬁe;iglsnew 2003/0208406 A1 11/2003 Okamoto et al.
7.099.849 Bl 8/2006 Reeder et al. 2003/0217006 A1* 11/2003 Roever G06Q 20/12
7,103,574 Bl 9/2006 Peinado et al. | | 705/50
7,120,606 B1 10/2006 Ranzini et al. 2003/0220881 A1 11/2003 Pirhonen et al.
7,130,829 B2 10/2006 Banerjee et al. 2003/0229593 Al 12/2003 Raley
7,191,332 Bl 3/2007 Pankajakshan et al. 2004/0034601 Al 2/2004 Kreuzer
7.249.107 B2 7/2007 Yaacovi 2004/0039916 Al 2/2004 Aldis et al.
7,275,260 B2 9/2007 de Jong et al. 2004/0044627 Al 3/2004 Russell
7,318,049 B2 1/2008 Iannacci 2004/0044779 Al 3/2004 Lambert
7,346,923 B2 3/2008 Atkins 2004/0054630 Al 3/2004 Ginter et al.
7,392,226 Bl 6/2008 Sasaki et al. 2004/0054915 Al 3/2004 Jong et al.
7,401,221 B2 7/2008 Adent et al. 2004/0059678 Al 3/2004 Stefik et al.
7,424,747 B2 9/2008 DeTreville 2004/0083391 Al 4/2004 de Jong
7,426,492 Bl 9/2008 Bishop et al. 2004/0113792 Al 6/2004 Ireland et al.

US 10,467,606 B2
Page 3

(56)

2004/0128546
2004/0133548
2004/0139207
2004/0153552
2004/0177039
2004/0196981
2004/0199577
2004/0221045
2004/0243517
2004/0243819

2004/0267671
2004/0267673
2005/0004875
2005/0010486
2005/0027804
2005/0033700
2005/0038707
2005/0038724
2005/0091268
2005/0091545
2005/0096938
2005/0138374
2005/0177716
2005/0204168
2005/0234860
2005/0246193
2005/0247777
2005/0251452
2005/0268115
2005/0273805
2005/0276413
2006/0036447
2006/0036548
2006/0059070
2006/0064373
2006/0080592
2006/0136987
2006/0167815
2006/0170759
2006/0174350
2006/0179003
2006/0259422
2007/0016533
2007/0087840
2007/0136694
2007/0157320
2007/0162300
2007/0208720
2007/0233602
2007/0250453
2007/0255965
2007/0286393
2008/0067230
2008/0148056
2008/0205850
2008/0235043
2008/0243693
2009/0070218
2009/0119500
2009/0193249
2009/0193526
2009/0275402
2009/0288012
2010/0161444
2010/0162408
2010/0257111
2010/0299718
2011/0178861
2011/0197285
2011/0296515

2012/0090018
2012/0198513
2013/0036476
2014/0019372

AN AN ANA S AAAASAAAAAAAAA S ANAAAAAAAAAAAAA A AN AN AN AN A AN A A AN A A A AN A A AN A A A A A A A

References Cited

7/2004
7/2004
7/2004
8/2004
9/2004
10/2004
10/2004
11/2004
12/2004
12/2004

12/2004
12/2004
1/2005
1/2005
2/2005
2/2005
2/2005
2/2005
4/2005
4/2005
5/2005
6/2005
8/2005
9/2005
10/2005
11/2005
11/2005
11/2005
12/2005
12/2005
12/2005
2/2006
2/2006
3/2006
3/2006
4/2006
6/2006
7/2006
8/2006
8/2006
8/2006
11/2006
1/2007
4/2007
6/2007
7/2007
7/2007
9/2007
10/2007
10/2007
11/2007
12/2007
3/2008
6/2008
8/2008
9/2008
10/2008
3/2009
5/2009
7/2009
7/2009
11/2009
11/2009
6/201
6/201
10/201
11/201
7/2011
8/2011
12/2011

4/201
8/201
2/201
1/201

GGGG

SN I N I N

U.S. PATENT DOCUMENTS

Blakeley
Fielding et al.
De Jong
Trossen et al.
Pincus et al.
Nakano et al.
Burd et al.
Joosten et al.
Hansen
Bourne

******************* ;'05/40

******************* GOOF 21/10

713/193
Nonaka et al.
Ballard et al.
Kontio et al.
Pandhe
Cahill et al.
Vogler
Roever et al.
Roever et al.
Meyer
Soppera
Slomkowski et al.
Zheng et al.
Ginter et al.
Johnston et al.
Roever et al.
Roever et al.
Pitroda
Roever et al.
Barde et al.
Roever et al.
Neogl
Roever et al.
Roever et al.
Petruck
Kelley
Alves de Moura et al.
Okuda
Peinado et al.
Roever et al.
Roever et al.
Steele et al.
Sutton et al.
Fujimura
Fayter et al.
Friedman et al.
Collins et al.
Roever et al.
Probst et al.
/Zwelg et al.
Sako et al.
McGucken
Roever et al.
Silverbrook et al.
Ginter et al.
Collins et al.
Goulandris et al.
Thrasher et al.
Farmanfarmaian
Roth et al.
Conrado et al.
Sweazey
Backover et al.
Hertel et al.
Roever et al.
Roever et al.
Veugen et al.
Roever et al.
Georgl
Ginter et al.
Krstic et al.

Padhye et al.
Maida-Smith et al.

Roever et al.
Roever et al.

............ 705/1

..................... :‘O:"/?)

2014/0236746 Al 8/2014 Roever et al.
2015/0026080 Al 1/2015 Roever et al.
2016/0048812 Al 2/2016 Collins et al.
2017/0083720 Al 3/2017 Roever et al.
2018/0019891 Al 1/2018 Roever et al.

FOREIGN PATENT DOCUMENTS

JP 2002-140631 5/2002
WO WO 98/43211 10/1998
WO WO 01/11452 2/2001
WO WO 01/84906 11/2001
WO WO 2002/011033 2/2002
WO WO 03098398 11/2003
WO WO 2004/038567 5/2004
WO WO 2005/116841 12/2005
WO WO 07/033005 3/2007
WO WO 2007/033055 3/2007
WO WO 07/078987 7/2007
WO WO 07/130416 11/2007
WO WO 07/130502 11/2007
WO WO 13/019519 2/2013

OTHER PUBLICATTONS

Oflice Action dated May 26, 2010 U.S. Appl. No. 11/155,010.
Office Action dated Jul. 12, 2010, U.S. Appl. No. 11/940,753.
Oflice Action dated Jun. 24, 2009 from U.S. Appl. No. 10/232,861.
Oflice Action dated Dec. 14, 2009 from U.S. Appl. No. 10/232,861.
Notice of Allowance U.S. Appl. No. 10/414,817 dated Jan. 27, 2010.
Notice of Allowance and Issue Fee Due dated Dec. 24, 2009 from
U.S. Appl. No. 10/440,286.

Notice of Allowance dated May 10, 2010, U.S. Appl. No. 10/439,629.
G. Ahn and J. Lam, “Managing Privacy Preferences for Federated
Identity Management,” in Proc. DIM * 05: Proceedings of the 2005
workshop on Digital Identity Management, Fairfax, VA. ISA 2005,
pp. 28-36.

Alladin/Preview Systems, “HASP SL,” Alladin/Preview Systems,
2004.

K. Bohrer and B. Holland, “Customer Profile Exchange (CPExchange)

Specification,” International Digital Enterprise Alliance, Inc., Ver-
sion 1.0, Oct. 20, 2000.

D. Burdett. RFC 2801: Internet Open Trading Protocol. [Online].
Apr. 2000. Available: http://www.faqs.org/rfcs/rfc2801.html.
Business.com. Preview Systems, Inc. Profile. [Online]. 2006. Avail-
able: http://www.business.com/directory/telecommunications/preview
systems_inc/profile/.

Cover Pages. Internet Open Trading Protocol. [Online]. Dec. 2002.
Available: http://xml.coverpages.org/otp.html.

Cover Pages. IETF Internet Open Trading Protocol Working Group
Publishes RFC for Voucher Trading System . [Online]. May 2003.
Available: http://xml.coverpages.org/ni2003-05-15-a.html.

Cover Pages. XML Voucher: Generic Voucher Language. [Online].
May 2003. Available: http://xml.coverpages.org/xmlVoucher.html.
B. Cox, J. Tygar, and M. Sirbu, “Netbill Security and Transaction
Protocol,” First USENIX Workshop on Electronic Commerce, Jul.
1995.

FlexTicket. [Online]. Available: http://info.isl.ntt.co jp/flexticket/
index.html.

K. Fujumura et al., “Requirements and Design for Voucher Trading
System (VTS)”, Mar. 2003, RFC3506, http://rfc.net/rtc3506 html.
K. Fyyimura, Y. Nakajima, and J. Sekine, XML Ticket: Generalized
Digital Ticket Definition Language. 1999.

K. Fyimura and Y. Nakajima, General Purpose Digital Ticket
Framework. Boston, Mass.: 3rd USENIX Workshop on Electronic
Commerce, 1998.

K. Fujimura, H. Kuno, M. Terada, K. Matsuyama, Y. Mizuno, and
I. Sekine, Digital ticket controlled digital ticker circulation. USENIX,
1999.

K. Fujimura, M. Terada, and J. Sekine, “A World Wide Supermarket
Scheme Using Rights Trading System,” i Proc. ICPADS ’00.
Proceedings of the Seventh International Conference on Parallel
and Distributed Systems: Workshops, Washington, DC, USA, 2000,
p. 289,

US 10,467,606 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

M. Iguchi et al. Voucher Integrated C2B and C2C Trading Model.

May 2002. [Online]. Available: hitp://wwwconf.ecs.soton.ac.uk/
archive/00000272/01/index . html.

T. Hardjono and J. Seberry, Strongboxes for Electronic Commerce.
Oakland, Calif.: 2nd USENIX Workshop on Electronic Commerce,
1996.

A Jasang, J. Fabre, B. Hay, J. Dalziel and S. Pope. “Trust Require-
ments 1n Identity Management.” Australasian Information Security
Workshop 2005.

M. Kumar, A. Rangachari, A. Jhingran, and R. Mohan, Sales
Promotions on the Internet. Boston, Mass.: 3™ USENIX Workshop
on Electronic Commerce, 1998.

K. Matsuyama and K. Fujimura, “Distributed Digital-Ticket Man-
agement for Rights Trading System”, Nov. 1999, 1°° ACM Confer-
ences on Electronic Commerce.

G. Medvinksy and B. C. Neuman, NetCash: A design for practical
electronic currency on the Internet. Proceedings of the First ACM
Conference on Computer and Communications Security, Nov. 1993,
M. Mont, S. Pearson, P Bramhall “Towards Accountable Manage-
ment of Identity and Privacy: Sticky Policies and Enforceable
Tracing Services,” Hewlett Packard, 2003.

OECD. (Jan. 27, 2006) OECD Guidelines on the Protection of
Privacy and Transborder Flows of Personal Data [br] . [Online].
Availlable: http://www.oecd.org/document/18/0,2340,en_2649
201185 _1815186_1_1_1_1,00.

G. Skinner, S. Han, and E. Chang, “A framework of privacy shield
in organizational information systems,” Proceedings of Int’l Con-
ference on Mobile Business, 2005.

D. Stewart. The Future of Digital Cash on the Internet. [Online].
Available: http://www.arraydev.com/commerce/JIBC/9703-02.
html.

M. Terada, H. Kuno, M. Hanadate, and K. Fujimura, Copy Preven-
tion Scheme for Rights Trading Infrastructure, 2000,

M. Terada and K. Fujimura, RFC 4153: “XML Voucher: Generic
Voucher Language,” Network Working Group, Sep. 2005.

M. Terada. RFC 4154: Voucher Trading System Application Pro-
gramming Interface. Sep. 2005. [Online]. Available: http://www.
rfc-archive.org/getric.php?ric=4154.

D. Weitzel “Liberty ID-WSF Implementation Guide™ Draft Version
1.0-1.2, Liberty Alliance Project. 2004-2005.

“US Military exchanges now offer best-price guarentees,” M2
Presswire. Conventry: Jun. 4, 1998. p. 1.

http://legalminds lp.findlaw.com/list/cyberia-1/msg3 16 50.html), Rob-
ert A. Hettinga, May 29, 2001.
http://www.nettime.org/Lists-Archives/nettime-1-0009/msg002 14.
html, Dr. Richard W. Rahn, Sep. 19, 2000.

Menezes et al., “Handbook of Applied Cryptography”, 1997 CRC
Press LI.C, Section 1.7.

N. Szabo, “Contracts with Bearer” http://szabo.best.vwh.net/bearer
contracts.html, 12 pages (1997).

Kuno et al., “A Digital Ticket Circulation Architecture, 58th Con-
ference Collected Papers (4)”, Information Processing Society of
Japan, Japan, Mar. 11, 1999, pp. 4-295-4-2906.

Oflice Action dated Oct. 3, 2008 from U.S. Appl. No.
Office Action dated Sep. 15, 2009 from U.S. Appl. No.
Office Action dated Mar. 27, 2009 from U.S. Appl. No. 11/096,284.
Oflice Action dated Feb. 25, 2008 from U.S. Appl. No. 10/873,840.
Final Office Action dated Dec. 3, 2008 from U.S. Appl. No.
10/873,840.

Office Action dated May 28, 2009 from U.S. Appl. No. 10/873,840.
JP Oflice Action dated Mar. 24, 2009 from JP Application No.
2004-505848.

Oflice Action dated Feb. 9, 2005 from U.S. Appl. No.
Office Action dated Jul. 27, 2005 from U.S. Appl. No.
Office Action dated Dec. 2, 2005 from U.S. Appl. No.
Oflice Action dated Jun. 21, 2006 from U.S. Appl. No.
Oflice Action dated Nov. 30, 2006 from U.S. Appl. No.
Office Action dated Jun. 14, 2007 from U.S. Appl. No.
Office Action dated May 15, 2008 from U.S. Appl. No.

11/094,784.
10/873,841.

10/232,861.
10/232,861.
10/232,861.
10/232,861.
10/232,861.
10/232,861.
10/232,861.

Final Office Action dated Dec. 5, 2008 from U.S. Appl. No.
10/232,861.

Oflice Action dated May 22, 2006 from U.S. Appl. No. 10/414,817.
Office Action dated Nov. 28, 2006 from U.S. Appl. No. 10/414,817.
Office Action dated Apr. 30, 2007 from U.S. Appl. No. 10/414,817.
Office Action dated Oct. 3, 2007 from U.S. Appl. No. 0/414,817.
Oflice Action dated Jun. 11, 2008 from U.S. Appl. No. 10/414,817.
Office Action dated Dec. 24, 2008 from U.S. Appl. No. 10/414,817.
Final Oflice Action dated Jun. 12, 2009 from U.S. Appl. No.
10/414,817.

Oflice Action dated Dec. 22, 2005 from U.S. Appl. No.
Oflice Action dated Feb. 7, 2007 from U.S. Appl. No.
Office Action dated Dec. 20, 2005 from U.S. Appl. No.
Office Action dated Jul. 13, 2006 from U.S. Appl. No.
Oflice Action dated Jan. 30, 2007 from U.S. Appl. No.
Oflice Action dated Jun. 28, 2007 from U.S. Appl. No.
Oflice Action dated Dec. 27, 2007 from U.S. Appl. No.
Office Action dated Aug. 6, 2008 from U.S. Appl. No.
Office Action dated Nov. 18, 2008 from U.S. Appl. No.
Oflice Action dated Feb. 11, 2009 from U.S. Appl. No.
Office Action dated Jan. 14, 2008 from U.S. Appl. No.
Office Action dated Oct. 23, 2008 from U.S. Appl. No.
Office Action dated Jan. 28, 2009 from U.S. Appl. No.
Oflice Action dated Sep. 26, 2007 from U.S. Appl. No.
Oflice Action dated May 14, 2008 from U.S. Appl. No. 11/118,608.
Office Action dated Nov. 10, 2008 from U.S. Appl. No. 11/118,608.
Final Office Action dated Apr. 16, 2009 from U.S. Appl. No.
11/118,608.

Oflice Action dated Mar. 16, 2009 from U.S. Appl. No. 11/146,399.
International Search Report and Written Opinion dated Feb. 16,
2006 from PCT Application No. PCT/US2005/021057.
Notification Concerning Transmittal of International Preliminary
Report on Patentability dated Jan. 11, 2007 from PC'T Application
No. PCT/US2005/021057.

International Search Report dated Nov. 25, 2003 from PCT Appli-
cation No. PCT/US03/15614.

European Oflice Action dated Oct. 27, 2008 from EP Application
No. 03726905.7.

Chinese Oflice Action dated Dec. 26, 2008 from CN Application
No. 03816746 8.

International Search Report and Written Opinion dated Sep. 16,
2008 from PCT Application No. PCT/US07/10560.

International Search Report & Written Opinion dated Dec. 7, 2007
from PCT Application No. PCT/US07/010708.

Notification Concerning Transmittal of International Preliminary
Report on Patentability dated Nov. 13, 2008 from PCT Application
No. PCT/US2007/010708.

International Search Report & Written Opinion dated Feb. 20, 2008
from PCT Application No. PCT/US06/48776.

Notification Concerning Transmittal of International Preliminary
Report on Patentability dated Jul. 10, 2008 from PCT Application
No. PCT/US2006/048776.

Wikipedia—Hash Chain: http://en.wikipedia.org/wiki/Hash chain,
downloaded Feb. 27, 2011.

Lamport, “Password Authentication with Insecure Communica-
tion”, Communications of the ACM, Nov. 1981, vol. 24, No. 11, pp.
770-772.

The UNIX Operating System: Mature, Standardized and State-of-
the-Art, a white paper from Aug. 1997 downloaded from www.
unix.org.

Software Requirements Specification template, 2002, section 2 .4,
Operating Environments, downloaded from www.processimpact.
com.

Office Action dated Oct. 1, 2010, U.S. Appl. No. 12/716,089.
Office Action dated May 18, 2011, U.S. Appl. No. 12/716,089.
Oflice Action dated Oct. 4, 2010, U.S. Appl. No. 11/679,760.
Final Office Action dated May 27, 2011, U.S. Appl. No. 11/679,760.
Office Action dated Jan. 5, 2012, U.S. Appl. No. 11/679,760.
Office Action dated Jul. 13, 2011, U.S. Appl. No. 12/717,007.
Office Action dated Oct. 4, 2011, U.S. Appl. No. 12/717,007.
Oflice Action dated Sep. 30, 2011, U.S. Appl. No. 12/850,454.
Office Action dated Mar. 22, 2011, U.S. Appl. No. 11/741,952.
Office Action dated Sep. 27, 2011, U.S. Appl. No. 11/741,952.

10/414,830.
10/414,830.
10/440,286.
10/440,286.
10/440,286.
10/440,286.
10/440,286.
10/440,286.
10/440,286.
10/440,286.
10/439,629.
10/439,629.
10/439,629.
1/118,608.

|,_|.|._|.|,_|.

US 10,467,606 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Office Action dated Sep. 21, 2010, U.S. Appl. No. 11/645,139.
Final Office Action dated May 5, 2011, U.S. Appl. No. 11/645,139.
Office Action dated Nov. 29, 2010, U.S. Appl. No. 11/940,747.
Final Oflice Action dated Aug. 23, 2011, U.S. Appl. No. 11/940,474.
U.S. Appl. No. 14/339,325, filed Jul. 23, 2014, Roever et al.

U.S. Office Action dated Apr. 5, 2013 1ssued 1n U.S. Appl. No.
11/155,010.

U.S. Office Action dated Dec. 18, 2013 1ssued in U.S. Appl. No.
11/155,010.

U.S. Final Oflice Action dated Jul. 23, 2014 1ssued in U.S. Appl. No.
11/155,010.

U.S. Office Action dated Jul. 1, 2013 1ssued in U.S. Appl. No.
12/716,089.

U.S. Notice of Allowance dated Feb. 5, 2014 1ssued 1n U.S. Appl.
No. 12/716,089.

U.S. Oflice Action dated May 20, 2013 issued in U.S. Appl. No.
11/679,760.

U.S. Final Office Action dated Feb. 26, 2014 1ssued 1n U.S. Appl.
No. 11/679,760,

U.S. Notice of Allowance dated Jul. 8, 2013 1ssued 1n U.S. Appl.
No. 12/717,007.

U.S. Oflice Action dated Sep. 23, 2014 1ssued in U.S. Appl. No.
12/850,454.

U.S. Oflice Action dated Oct. 18, 2013 1ssued in U.S. Appl. No.
11/741,952.

U.S. Final Oflice Action dated May 20, 2014 1ssued 1n U.S. Appl.
No. 11/741,952,

U.S. Office Action dated Sep. 5, 2014 1ssued 1n U.S. Appl. No.
11/741,952.

U.S. Ofhice Action dated May 22, 2013 issued 1n U.S. Appl. No.
13/558,238.

U.S. Final Office Action dated Feb. 28, 2014 1ssued 1in U.S. Appl.
No. 13/558,238.

European Extended Search Report dated Nov. 28, 2013 1ssued in EP
06 847 910.4.

PCT International Preliminary Report on Patentability and Written
Opinion dated Feb. 13, 2014 1ssued in PCT/US2012/048182.
Manasse (“Why Rights Management 1s Wrong (and What to Do
Instead)”, SRC Technical Note, Compaq System Research Center,
Jan. 21, 2001, 7 pages).

U.S. Appl. No. 11/830,717, filed Jul. 30, 2007, Roever et al.

U.S. Miscellaneous Communication dated Jun. 11, 2010 1ssued 1n
U.S. Appl. No. 11/155,010.

U.S. Final Office Action dated Sep. 27, 2012 1ssued 1n U.S. Appl.
No. 11/679,760.

U.S. Advisory Action Before the Filing of an Appeal Brief dated
May 28, 2009 1ssued mn U.S. Appl. No. 10/440,286.

U.S. Final Office Action dated May 2, 2012 1ssued in U.S. Appl. No.
12/717,007.

U.S. Final Ofhice Action dated Aug. 31, 2012 1ssued in U.S. Appl.
No. 12/850.,454.

U.S. Restriction Requirement dated Sep. 24, 2008 issued in U.S.
Appl. No. 11/146,399.

U.S. Final Office Action dated Jan. 24, 2011 1ssued 1n U.S. Appl.
No. 11/940,753.

European Communication dated Oct. 19, 2006 1ssued in EP Appli-
cation No. 03 72 6905.7.

European Office Action dated Nov. 6, 2008 1ssued in EP Application
No. 03 72 6905.7.

European Office Action dated Apr. 9, 2010 1ssued 1n EP Application
No. 03 72 6905.7.

JP Office Action dated Mar. 24, 2009 1ssued i1n JP Application No.
2004-505848.

PCT International Preliminary Report on Patentability and Written
Opinion dated Nov. 4, 2008 1ssued in PCT/US07/10560.

PCT International Search Report and Written Opinion dated Jan. 17,
2013 1ssued 1n PCT/US2012/048182.

“The OAuth 2.0 Authorization Protocol”, (Abstract) draft-ietf-oauth-
v2-28, Network Working Group, E. Hammer, Ed., Jun. 19, 2012, 48
pages.

Cobena, (2003) “These d’Informatique, specialite Algorithmique,
Change Management of Semi-Structure Data on the Web”, soutenue
le Jun. 26, 2003 par, Ecole Doctorate de | ’Ecole Polytechnique, 228
pages.

Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, University of California, Irvine, Disserta-
tion 2000, 90 pages.

Tilkov, Stefan, “A Brief Introduction to REST”, posted on Dec. 10,
2007 at http://www.infoq.com/articles/rest-introduction, 10 pages.
U.S. Appl. No. 14/831,713, filed Aug. 20, 2015, Collins et al.
U.S. Ofhice Action dated Jan. 5, 2015 1ssued 1n U.S. Appl. No.
11/679,760.

U.S. Oflice Action dated Jun. 9, 2015 1ssued in U.S. Appl. No.
11/679,760.

U.S. Final Office Action dated Mar. 6, 2015 1ssued in U.S. Appl. No.
12/850,454.

U.S. Final Office Action dated Feb. 18, 2015 1ssued 1in U.S. Appl.
No. 11/741,952,

U.S. Oflice Action dated Aug. 11, 2015 1ssued 1n U.S. Appl. No.
11/741,952.

U.S. Oflice Action dated Nov. 7, 2014 1ssued mn U.S. Appl. No.
11/645,139.

U.S. Notice of Allowance dated Jul. 10, 2015 1ssued 1n U.S. Appl.
No. 11/645,139.

U.S. Oflice Action dated Mar. 26, 2015 1ssued in U.S. Appl. No.
11/940,747.

U.S. Oflice Action dated Nov. 7, 2014 1ssued 1n U.S. Appl. No.
11/940,753.

U.S. Final Oflice Action dated May 22, 2015 1ssued 1in U.S. Appl.
No. 11/940,753,

U.S. Oflice Action dated Nov. 5, 2014 1ssued 1n U.S. Appl. No.
13/558,238.

U.S. Final Office Action dated Feb. 24, 2015 1ssued 1in U.S. Appl.
No. 13/558,238.

U.S. Oflice Action dated Jul. 2, 2015 issued in U.S. Appl. No.
13/558,238.

Haller et al., (May 1996) “A One-Time Password System”, Kaman
Sciences Corporation, Network Working Group, Request for Com-
ments 1938, Category: Standards Track, 18 pp.

U.S. Office Action dated Apr. 6, 2016 1ssued 1n U.S. Appl. No.
14/245,885.

U.S. Final Office Action dated Jan. 11, 2016 1ssued 1n U.S. Appl.
No. 11/679,760,

U.S. Oflice Action dated Mar. 9, 2016 1ssued 1n U.S. Appl. No.
14/031,908.

U.S. Final Ofhice Action dated Dec. 21, 2015 1ssued in U.S. Appl.
No. 11/741,952,

U.S. Final Office Action dated Feb. 1, 2016 1ssued in U.S. Appl. No.
11/940,747.

U.S. Oflice Action dated Dec. 4, 2015 1ssued 1n U.S. Appl. No.
11/940,753.

U.S. Final Office Action dated Apr. 13, 2016 1ssued 1n U.S. Appl.
No. 11/940,753,

U.S. Final Office Action dated Mar. 9, 2016 1ssued 1in U.S. Appl. No.
13/558,238.

U.S. Oflice Action dated Jul. 1, 2016 issued in U.S. Appl. No.
11/155,010.

U.S. Final Oflice Action dated Feb. 22, 2017 1ssued 1n U.S. Appl.
No. 11/155,010,

U.S. Final Oflice Action dated Nov. 17, 2016 1ssued in U.S. Appl.
No. 14/245,885.

U.S. Ofhice Action dated Jan. 10, 2018 1ssued in U.S. Appl. No.
14/245,885.

U.S. Final Office Action dated Aug. 29, 2016 1ssued in U.S. Appl.
No. 14/031,908.

U.S. Oflice Action dated Feb. 9, 2017 1ssued 1n U.S. Appl. No.
14/031,908.

U.S. Ofhice Action dated Oct. 12, 2016 1ssued 1n U.S. Appl. No.
12/850,454.

US 10,467,606 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

U.S. Final Office Action dated Jun. 19, 2017 1ssued 1n U.S. Appl.

No. 12/850,454.

U.S. Notice of Allowance dated Jan. 20, 2017 1ssued 1n U.S. Appl.

No. 11/741,952.

U.S. Ofhice Action dated Oct. 27, 2017 1ssued 1n U.S. Appl. No.

15/448,473.

U.S. Final Office Action dated Jun. 5, 2018 1ssued in U.S. Appl. No.

15/448,473.

U.S. Ofhice Action dated Dec. 29, 2016 i1ssued 1n U.S. Appl. No.

14/831,713.

U.S. Final Office Action dated Jun. 15, 2017 1ssued 1n U.S. Appl.

No. 14/831,713.

U.S. Ofhice Action dated Dec. 29, 2016 issued 1n U.S. Appl. No.

11/940,747.

U.S. Final Office Action dated Oct. 6, 2017 1ssued 1n U.S. Appl. No.

11/940,747.

U.S. Oflice Action dated Apr. 18, 2017 1ssued 1n U.S. Appl. No.

11/940,753.

U.S. Notice of Allowance dated Sep. 19, 2016 1ssued 1n U.S. Appl.

No. 13/558,238,

U.S. Oflice Action dated May 19, 2017 issued in U.S. Appl. No.

15/298,103.

Miller, Mark S. and Shapiro, Jonathan S. (2003) “Paradigm Regained:
Abstraction Mechanisms for Access Control,” HP Laboratories,

Palo Alto, HPL-2003-222, 22 pages; to be published 1n and pre-
sented at ASIAN’03, Dec. 10-13, 2003, Mumbai, India [Down-
loaded on Jul. 12, 2017 from http://www.hpl.hp.com/techreports/
2003/HPL-2003-222].

U.S. Office Action dated Sep. 13, 2018 issued 1n U.S. Appl. No.
12/850,454.

U.S. Oflice Action dated Jan. 2, 2019 1ssued in U.S. Appl. No.
12/850,454.

U.S. Notice of Allowance dated Sep. 12, 2018 1ssued in U.S. Appl.
No. 14/831,713.

U.S. Notice of Allowance dated Sep. 11, 2018 1ssued 1n U.S. Appl.
No. 11/940,747,

U.S. Corrected Notice of Allowance dated Sep. 25, 2018 1ssued in
U.S. Appl. No. 11/940,747.

U.S. Ofhice Action dated Sep. 21, 2018 1ssued 1n U.S. Appl. No.
11/940,753.

U.S Notice of Allowance dated Jul. 2, 2018 1ssued 1n U.S. Appl. No.
15/298,103.

U.S. Appl. No. 16/100,658, filed Aug. 10, 2018, Roever et al.
U.S. Appl. No. 16/206,925, filed Nov. 30, 2018, Collins et al.
U.S. Appl. No. 16/216,523, filed Dec. 11, 2018, Collins et al.

* cited by examiner

US 10,467,606 B2

Sheet 1 of 19

Nov. 5, 2019

U.S. Patent

ECOSYSTEM 1

1100

J o I ‘. = v o 4 . ; .'. , .I

1200

ALY, SRR R,

ECOSYSTEM 2

f 2 T T T

. " i.’;if

AT TETTIISLT.

- RN,

B i T T S
AFTT I T T IETT T T T TTITEEE I T,

SR T ETIRTE T TTETETIETT TP OO rIrEyi J)
EOT SIS TEOI ST I ITIITTIITTIIITETITYS P
RS TIET IO G AT ENLOOTEIE TS ETIETEITL PP
T T T R T T T P o T P T T
CRR Y ETEDTESE ST IIIIITEIIIFISIIIEIIID I
VAT AT BT ETTITTT G NTAT TSI IIIEIITIIS I
N EE T T ET I LT TSI ETErTIrErIrr ¥

N e & e e e A

P AN MR,

N o

1300

ECOSYSTEM 3

FIGURE 1

US 10,467,606 B2

Sheet 2 of 19

Nov. 5, 2019

U.S. Patent

2900

2200

2100

ECOSYSTEM 1

ECOSYSTEM 2

. __.. oy kﬁﬁ\iﬁﬁuﬂiﬁiﬁ%ﬂﬁ&%ﬁ o

y L A i L N

i i s PRI Trrrs.
Eﬁhﬁh %ﬂhﬁnﬁ%

__r.__W sy
_ ..1 o h m EAE AN,
%ﬁﬁ“ﬁﬂ% k= %ﬁ&hﬂa _
%w{{h%uﬁ > X
B AT AT E LI GILE <{ = BT VP 4
O L VEE PO TN OIIED.
PRI rr) .
Z IILIGIELECIES B
) Eﬁhﬂhﬁ%\
EES TS
> VOIS I LTS
BRI LTI TON
- () %%hﬁ‘g
P A A e
A%%Hﬁ%% LU
] £ B
o2 = e
WSS ST = e ,1

W, TR, 7l o
RN NN DGR T TITET N LTI

O i it et ied el il B o 7 o 8 2

Ml il i i i T

O i il A o

M L

AT T T

L

...............

FIGURE 2

US 10,467,606 B2

Sheet 3 of 19

Nov. 5, 2019

U.S. Patent

3900

3200

ECOSYSTEM 2

3100

ECOSYSTEM 1

R T T
7 E\hﬁhﬁﬁ&

E\\\%ﬁ%

.m

§ NI ET LI
§ WSO rryyi
e A
i
E A
L S
Al A]
%%%%%%
%%%%&
t i i A
§ WA EPE Frarrs

\ Wl AW

A %hﬁ%ﬁhﬁ\%siﬁs
Ak m%%%&i%ﬁ%ﬁiﬁ%&i&ﬁuﬁﬁﬁ. o

%‘h\ﬁh&u
7 BT

i BRI,
e e e g o 2

(il i e i
N P
LM o Tl
bl o o e
e i i 2

o Y T ————————" i
- NN T T FSF Ty rryyres
M o i i A PR
. WA ROV P VRS ETEPS
M T S
i%ﬁsaﬁ

%ﬁﬁh\hﬂg S

CTTETEFS Y
WETTITEE.
CEITEIIED
T ETIIIr O
OIS IIR. I
T P X g
R F K
o e A AN
EEPL GG RETEFIS o
EOIETELEL LIS A

SYSTEM

{ TITLE TRANSACTION

ﬁ*ﬁg‘a

o
n
L]
2,
-

ML e i il

praray

Ml L i

N i

3300a

FIGURE 3

U.S. Patent Nov. 5, 2019 Sheet 4 of 19 US 10,467,606 B2

4110

Controller
(OPTIONAL)

4140

Title Resolver
/‘ 4120 4150
Context Service
(OPTIONAL) Router

- 4130 " 4160

Identity
Provider

4180a

Title Enabled
Application

- 4180b

Title Enabled
Application

Application

.oader 41653
OPTIONAL

4170 g5
58
W 8
- , oo
Service Q =
Resolver and =
Regist 2=

4175

o 4165b ©
Communication 1 g &
L=
Manager N 5 g
oo
4190 g _,_é:
£5
G O
- €
User Interface

4100

FIGURE 4

U.S. Patent Nov. 5, 2019 Sheet 5 of 19 US 10,467,606 B2
j 5000
I OPERATING 5 PO
CONTEXT ID or NAME
(optional}
5011 - B ODITION, >
ADDITIONAL
SFNCDL:S'IY OPERATING |
CONTEXTS
5021 - o >
USER INTERFACE
L SECURITY COMPONENT
| INDICIA SPECIFICATIONS
| B -
WW - 5030
5031 OPERATING
SFNCD%:;Y ENVIRONMENT
COMPONENTS
5040
5041
PROCESSING
SECURITY WORKELOW
INDICIA SPECIFICATIONS

SECURITY
INDICIA
(optional)

B

5050

N

FIGURE 5

U.S. Patent Nov. 5, 2019 Sheet 6 of 19 US 10,467,606 B2

6100
TITLE
RESOLVER
6110 61403 o
)
6180a — g oo
5 8 - CODEC =
- . M |5
% E Title Materials MODULE ! .%
-
R 3
6120 6140Cb o
O
© 150b
6180b l ' E 85
—_ 5
c 8 State Server CODEC |5
85 MODULE =
i & 8
6130 6140¢
D
2
r g ; 6150c
6180¢c - o =
l T O Authentication CODEC :g-
8L Provider MODULE 2
» = S

Interface to Service
Resolvers and
Reqistries

N

External interface to
ldentity Provider

N

6160 6170

FIGURE 6

U.S. Patent

Nov. 5, 2019 Sheet 7 of 19

o k Title Resolver verifies integrity
of title materials.

7120 KI Title Resolver obtains copies |

of any referenced title

materials. |

v

7130 o
Title Resolver validates all title
o materials.
7140 ;
K Title Resolver validates \

| operating contexi(s).
7190 Title Resolver ensures
ownership of the fitle.

Title Resolver decodes/
decrypts title elements.

v __

7170 Title Resolver retrieves any
content or resource(s)
requested by the title.

Process
Terminates

FIGURE 7

US 10,467,606 B2

U.S. Patent Nov. 5, 2019 Sheet 8 of 19 US 10,467,606 B2

5110 Client sends title to Title
Resolver
o120 K Title Resolver examines title’s
digital signature

8130 -

/ Signature | |
QOK? |

Process Terminates
{Invalid Title)

8140 _
Title Resolver sends Title to
m§tate Sen{er

8150

State Server calculates
expected value from
authentication stub.

State Server compares
computed value with value
stored in database.

NoO

8160 K

8170

Process Terminates
(Invalid Title)

Yes

State Server validates title.
8190
State Server returns validated
| title to Title Resolver.
8200 |
Title Resolver returns
validated title {o client
Process FIGURE 8A
Termlnates (PRIOR ART)

8180

U.S. Patent Nov. 5, 2019 Sheet 9 of 19

8210
Consumer device sends request to Title
Manager.

8215 K i
I Title Manager performs title processing. |

8220 ~ N J _
KL Title Manager sends redirect command to \

consumer device

5225 k_ I

J

Consumer device communicates title to
Content Proxy

8230
Content Proxy communlcates title to Title
Resolver
8240 k _._____
| Title Resolver communicates title to State l

Server
K‘ State Server authenticates title. ‘

8245

8150

Title valid?

State server endorses title. |

8260 k
8270 _ _ L - _
| State server returns authentication and
security indicia to Title Reso_lver.

8280 KI—TE [e Resolver refurns authentication to

| Content Proxy and security indicia to Title
| o Manager.

8290 _ _J_ N
Content Proxy sends content to consumer
device..

Process
Terminates

Process
Terminates

US 10,467,606 B2

FIGURE 8B

U.S. Patent Nov. 5, 2019 Sheet 10 of 19 US 10,467,606 B2
9020 \ 9030 9040
OTA DRM Other
Service Service Service
5 5 5
9100 —
Router ¥

ldentity
Provider

FIGURE 9

Service
Regqisiry

U.S. Patent Nov. 5, 2019 Sheet 11 of 19 US 10,467,606 B2

| 1. Request

2. Authenticate

|
|
|

3:Loqkup

|
|
|
|

4. Open

5: Pre-Process

7 Process

DL 1

8. Response

vvvvvvvvvvvvvvvvvvvv

10:. Response

11. Response

FIGURE 10

US 10,467,606 B2

Sheet 12 of 19

Nov. 5, 2019

U.S. Patent

1S9NDal I8N0y
9VIAIBG B BIA
108JipUl JO 8DIAI0S
108UUCD 1021ID B 94

ueD uodpus syl

AR== 1A=

—_— (S p— (3 — '

ssuodsey Gl

$$90014-1S0d ‘|

mmcoamwm d)

g Jutodpug

_;%mv_o%_ 0l

$$80014-1S0d 6

$59001d :/

v julodpuzg

asuodsey g

NN e R = T un BN e U L S U U =i S N = S U

S9MOAU[‘O

$$80014-91d .G

asuodsay

uadQ

e — e — — —

RN R RN PR RN PR S R, S—"

8)BoNUBUINY 7

1

E Y IERINELS

1sonbsy L

US 10,467,606 B2

Sheet 13 of 19

Nov. 5, 2019

U.S. Patent

S e e — — = — =

¢l 3dNOi

R O T A 0 L, e A i A T

1 §8900.d-1S0d 02

— [S R Sy PR p—

$S80044-1S0d i/ 1

asuodsey gl

—— e e e e e e e e e F ek

mmmomi Gl

.*s _ _
- OYOAU] 17|

1
1
1
1
r.%:%..%..%:g:

asuodsey gl

$58004d-0.d €| e _

N N

[TELELEEEEI EEFEeTEeIT)

e e

g jurodpu3 g 151depy

dnyoo ;11|

“asuodsayd mw |

Sl A A P e e R W LTI DER LR AT e NS NS AR AR e BER e e SO AR AN W A S S Nl e O T e e e e N WA PO S A0 e e e e P AT WU e e e Tl DS S T e e Nl N NS e SO P N e e e R P B S e Ml LR S WSy AP S i

= WEI)Y

CRINYELS

SMOAU] 01

[S pR—

——— —— e e e e e e e e e e e e e

mmmuo‘i.,u‘mom m -,

ﬁ _____________ ssuodsey g

SS800.d
d-’ aMOAU] 19

i
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
1

v jutodpuz |

SS80014-01d G

............................. asuodsay Zz7
osuodsay 17

v i9)depy

usdQ ¥

|

dnyooT ¢

i
i

|

aleonuBUINyY 7 .

7 J91noy

U.S. Patent Nov. 5, 2019 Sheet 14 of 19 US 10,467,606 B2

AR LA R TR LR LR LN

Barred

B B Ay By, e A B e By A

TR T R TR LT LR LR TRt LR TR '\.'\.'\.uﬂ.lﬁa'h.‘hﬂ.ﬁ.'\.ﬂa'l.\.'h'?_\.ﬁ.'\.'h'\.'\.\.\.‘h'h"ﬁ ".'h"l-'\.'h."\ll.'\.'h."‘h'\.'h"-'\.'h"-'\.'ﬁ.'\a'\.‘\.'h'h.‘h\.'h.‘l'\.'h"-'h\"-'\.'\.\.:

Sarvios Rowlsy

e A B, B B i B, By, P, e,

PP
et b
P PPN
o of oF oF f of &

-~
-~

o T M M My Ty T M L T Ty T ey T Ty e T e, T P e, e, T, e, T Ty T T, T T L ﬂ-ﬂr‘hﬁ-‘ﬁ.ﬂ-ﬂ-‘bhﬂ-ﬂu"q‘\-ﬂuhﬂ-‘.}

L

'q.4..-..-1.--'..*.-11.1.'-.-..-1.-.-..-'.'q.-..-.-‘h-..-.ﬁ.--l-..*.-1-..-h.ﬂ,:..uﬂ.wunﬂ.ﬂun'ﬁ.m-.-ﬁ.m-.ﬂum-.-muﬂ.iﬂp‘.-l-..-u.'l.-'h-'-.

ry
£ n
X,
*

:?é : i:;iﬁiﬁ%ﬁﬁﬂgiLiﬁE%yiagzl

1.

.

<0 Suthaantioahs

i L B e LR R LN

r
[
[
'
1

.

:
i
i
:

£
.
")
.
*,
&
L
%,

Ay By oy Ry Ry Py Ty By

: L o s .
3 LooRup

R T T T T e Ry T Ty T Ty R Ty i

P o o Y

: i

o

'ﬁ:uﬁuﬂluu#u#*u#iuh g
r r
\

e e B B R e N e e B B e A e R e i B B B e M e B e i e M e e B B B B e B e R B e R e R e B e B B B B A B B L

8 FrOOEMRR

A L L L R

o oF O o oF OF

T T T T Ty T T Ty Ty Ty

Wl ‘ﬁ“ VO S TR N
T, MPRLEINRS

B e T T e T B T T T T A T A T T e B e T e e R R R S R R S R R TR R T R R R R

1 REaponss

IR, 0 e e e e e e b e L e e e el v e R e b e e T e e e, e R R e e e e e e e e

x

%"

N

o,
-k

e o
L
= &

FIGURE 13

U.S. Patent Nov. 5, 2019 Sheet 15 of 19 US 10,467,606 B2

1401
1403

1402
1404

Regular Web Browser __
Title Helper Dormant

. Title Helper Active

Normal web page content

FIGURE 14

U.S. Patent Nov. 5, 2019 Sheet 16 of 19 US 10,467,606 B2

| Browser _______ _ _ . ~

‘ L(?pen or Close the AV Viewer

FIGURE 15A

U.S. Patent Nov. 5, 2019 Sheet 17 of 19 US 10,467,606 B2

Browser

Email or Mobile #

l kginter@klgai.com

Password

ll(Login) { Cancel) —:}J

Lost my password
Reaqister

FIGURE 15B

U.S. Patent Nov. 5, 2019 Sheet 18 of 19 US 10,467,606 B2

Browser

[Home]

Your Stuff

| Your Wallet
[View wailet

Your Profile
| View profile

FIGURE 15C

U.S. Patent Nov. 5, 2019 Sheet 19 of 19 US 10,467,606 B2

Browser

T mw

! Digital Music | My Stuff l
ALIEN vs. PREDATOR Media l Views l , l

Southern Lights 1. Back (Me dia)

| Youcan ... 4 Southern Lights
(Sample) Southern Lights

| (Terms of Use)

— (Get Hglp)
Publisher { Contact Us) I

ALIEN vs. | m—

Graphic

1

Friend
chimes, wind like (Play/Download)
anticipation,
sweet sound,
romantic |

R

[_Q—__C!ase Y(More Details)

R

FIGURE 15D

US 10,467,606 B2

1

ENHANCED TITLE PROCESSING
ARRANGEMENT

1 CROSS REFERENCE TO RELATED U.S.
PATENT APPLICATIONS

This application claims priority under 35 U.S.C 119(e) to
U.S. Provisional Patent Application No. 60/746,032 filed

Apr. 29, 2006, the entire disclosure of which 1s incorporated
herein by reference for all purposes.

The present application also relates to subject matter
described in the following applications, each of which 1is
incorporated herein by reference 1n its entirety for all pur-
poses.

U.S. patent application Ser. No. 10/439,629 filed May 13,
2003, which continuation 1n part of U.S. patent application
Ser. No. 10/232,861 filed Aug. 30, 2002 and claims priority
to U.S. Provisional Patent Application No. 60/380,787 filed
May 135, 2002, U.S. Provisional Patent Application No.
60/407,466 filed Aug. 30, 2002, and U.S. Provisional Patent
Application No. 60/407,382 filed Aug. 30, 2002.

U.S. patent application Ser. No. 11/146,399 filed Apr. 29,
2003, and claims priornity to U.S. Provisional Patent Appli-
cation No. 60/649,929 filed Feb. 3, 2005.

U.S. patent application Ser. No. 11/118,608 filed Jun. 3,
2003, and claims priornity to U.S. Provisional Patent Appli-
cation No. 60/649,928 filed Feb. 3, 2005.

U.S. patent application Ser. No. 11/096,284 filed on Mar.
30, 2005, a continuation in part of U.S. patent application
Ser. No. 10/873,841 filed on Jun. 21, 2004, which 1s a
continuation-in-part of each of U.S. patent application Ser.
No. 10/439,629 filed on May 15, 2003, U.S. patent appli-
cation Ser. No. 10/440,286 filed on May 15, 2003, U.S.
patent application Ser. No. 10/414,830 filed on Apr. 15,
2003, U.S. patent application Ser. No. 10/414,817 filed on
Apr. 15, 2003, and U.S. patent application Ser. No. 10/232,
861 filed on Aug. 30, 2002.

U.S. patent application Ser. No. 11/645,139 filed on Dec.
22, 2006, which claims priornity to U.S. Provisional Patent
Application No. 60/755,750 filed Dec. 29, 2005, and U.S.
Provisional Patent Application No. 60/765,388 filed Feb. 2,
2006.

2 COPYRIGHT NOTIC.

(Ll

A portion of the disclosure of this patent document may
contain material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears in the Patent and Trademark Oflice patent
files or records, but otherwise reserves all copyright rights
whatsoever. The following notice shall apply to this docu-
ment: Copyright 2007, Navio Systems Inc.

3 BACKGROUND OF THE INVENTION

3.1 Field of the Invention

The present invention provides architectures, systems,
methods, and software for providing and managing rights
using digital bearer istruments that express at least one
right. The invention has applications in the fields of com-
puter science and electronic business methods.

3.2 The Related Art

The Internet has become an eflicient mechanism for
globally distributing digital content, such as documents,

10

15

20

25

30

35

40

45

50

55

60

65

2

pictures, music, and other types of digital content. Informa-
tion can now be transmitted directly and instantly across the
Internet from the content owner to the content buyer, without
having to first convert 1t into physical form, such as paper
documents, compact disks, photographs, etc.

However, the advantage of easy digital communication
has also allowed digital content to be easily pirated by just
about anyone with a computer and Internet access. The
combination of high-speed broadband Internet access, digi-
tal content compression soitware (which reduces the size of
digital content files), peer-to-peer file trading networks
(which allows users to post content files), and lack of a
viable digital rights standard, has caused content owners to
lose control of their content. Consequently, content owners
are experiencing a loss of potential revenue.

Existing systems that attempt to provide confidence
between buyers include escrow agreements, third party
confirmations, third party appraisals and other similar tech-
niques. These systems are slow and complex, and they do
not provide the content user with suflicient confidence that
the buyers and sellers are not 1llegally replicating the content
or otherwise attempting to sell pirated copies of works.

4 SUMMARY OF TH.

(L.

INVENTION

According to a first class of embodiments, methods,
apparatus, and data structures embodied in computer-read-
able media are provided for implementing a workflow 1n a
network. The worktlow 1s a sequence of operations relating
to a set of services deployed 1n the network. Title materials
are recerved which include one or more of a title object, a
component of the title object, or a reference to the fitle
object. The title object 1s a digital bearer imnstrument speci-
tying the worktlow and representing at least one right
relating to implementation of the workilow 1n the network
which may be redeemed by presentation of the title object to
a title-enabled device or process operating 1n the network.
Upon validation of the title object, the worktlow 1s 1mple-
mented 1n accordance with the at least one right represented
by the title object.

According to another class of embodiments, methods,
apparatus, and data structures embodied in computer-read-
able media are provided for facilitating access to a service 1n
a network. Title materials are received which include one or
more ol a first title object, a component of the first title
object, or a reference to the first title object. The first title
object 1s a first digital bearer instrument representing at least
one right relating to the service, the first title object includ-
ing a relerence to the service. A second title object 1is
identified with reference to a service registry and the refer-
ence to the service included in the first title object. The
second title object 1s a second digital bearer instrument with
which redemption of the at least one right relating to the
service and represented by the first title object may be
cllected.

According to yet another class of embodiments, methods,
apparatus, and data structures embodied in computer-read-
able media are provided for facilitating redemption of rights.
Title matenals are received which include one or more of a
first title object, a component of the first title object, or a
reference to the first title object. The title materials represent
at least one right. A title object template 1s 1dentified from
among a plurality of title object templates with reference to
the title matenals. A second title object 1s dynamically
assembled using the identified title object template and at
least some of the title materials. The second title object 1s a

US 10,467,606 B2

3

digital bearer instrument with which redemption of the at
least one right represented by the title materials may be
ellected.

A further understanding of the nature and advantages of
the present invention may be realized by reference to the
remaining portions of the specification and the drawings.

> BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example of a Title Processing Environ-
ment (TPE) and 1ts components.

FI1G. 2 depicts three overlapping ecosystems according to
an embodiment of the invention.

FIG. 3 1s an example of a logical representation of two
ecosystems sharing a common component.

FIG. 4 extends the example shown 1n FIG. 3 to illustrate
three users.

FIG. 5 1s an 1illustration of an operating context imple-
mented according to a specific embodiment of the invention.

FIG. 6 depicts an example of a Title Resolver and 1its
components.

FIG. 7 1s a flowchart illustrating a process for resolving
title materials according to a specific embodiment of the
invention.

FIGS. 8A and 8B are tlowcharts showing two alternative
title validation processes according to specific embodiments
of the mvention.

FIG. 9 1s a schematic diagram of an example of a Service
Router and 1ts connections to services and applications 1n
accordance with one embodiment of the present invention.

FIG. 10 1s a message flow diagram that 1llustrates a simple
flow example mtermediated by a Service Router in accor-
dance with one embodiment of the mmvention.

FIG. 11 1s a message flow diagram that 1llustrates a more
complex flow example with a plurality of endpoints 1n
accordance with one embodiment of the invention.

FIG. 12 1s a message flow diagram that illustrates a
complex tlow example utilizing a plurality of endpoints and
Service Routers 1 accordance with one embodiment of the
present mvention.

FIG. 13 1s a message tlow diagram that illustrates a flow
utilizing an adapter as an endpoint 1n accordance with one
embodiment of the present invention.

FIG. 14 depicts a simplified user interface to a fitle
manager, shown as an independent overlay window, accord-
ing to one embodiment of the mvention.

FIGS. 15a-d illustrate examples of a user interface which
facilitates interaction with title objects according to a spe-
cific embodiment of the invention.

6 DESCRIPTION OF SPECIFIC EMBODIMENTS
OF THE INVENTION

6.1 Definitions

The following definitions are used throughout, unless spe-
cifically indicated otherwise:

A class of materials that are used to
provide authentication and authorization
when validated by an Identity provider.
In embodiments where SAML 1s used, a
SAML artifact 1s an example of
authorization materials.

Digital Commerce Engine, a product of
Navio Systems, Inc., of Cupertino,
Califorma.

Authorization
materials

DCE

5

10

15

20

25

30

35

40

45

50

55

60

65

4

-continued

Embedded

A software representation that 1s stored
within a software container, i such a
manner that the software representation
may be uniquely i1dentified and
optionally removed.

A small, fixed-size, structured data
object pointing to a typically larger,
variably-sized SAML protocol message.
An encoding of information that is
used to convey one or more of identity,
authenticity, or authorization. Examples
of security indicia include SAML
artifacts, id/passwords, digital hashes,
Kerberos tickets.

A service 1s an application program
assoclated with at least one network
address and port, which receives and
processes request messages and
optionally generates response messages.
A general service description language
may be provided, for example, by WSDL.
Document ID, service definition name,
or service alias

A network service

Bearer-based rights representation

such as, for example, titles implemented
by Navio Systems, Inc., of Cupertino,
California.

SAML artifact

Security indicia

Service

Service Identifier

Service endpoint
Title or title object

6.2 Overview

Retference will now be made in detail to specific embodi-
ments of the invention including the best modes contem-
plated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated 1n
the accompanying drawings. While the invention 1s
described in conjunction with these specific embodiments, 1t
will be understood that 1t 1s not intended to limit the
invention to the described embodiments. On the contrary, 1t
1s intended to cover alternatives, modifications, and equiva-
lents as may be included within the spirit and scope of the
invention as defined by the appended claims. In the follow-
ing description, specific details are set forth in order to
provide a thorough understanding of the present invention.
The present invention may be practiced without some or all
of these specific details. In addition, well-known features
may not have been described in detail to avoid unnecessarily
obscuring the invention.

Aspects of the mvention are directed to the creation,
ownership, exchange, management, reselling, marketing,
bartering, and auctioning of titles. In this context, a title 1s
an object that may have a number of elements and attributes
including embedded digital content, ownership attributes,
copy permissions, and others as described herein. A title can
represent the rights to a single piece of digital content or a
single resource, or 1t can represent the rights to a plurality of
digital content and resources and 1n a variety of formats.

One aspect of the invention 1s the providing of an inte-
grated title processing environment that provides seamless
title processing services across a plurality of system and
deployment models.

Embodiments of the mvention are described with refer-
ence to specific apparatus and embodiments. Those skilled
in the art will recognize that the description 1s for illustration
and to provide the best mode of practicing the invention. For
example, references are made to computer servers and
clients, but 1n a peer-to-peer network, any computer 1s
capable of acting 1n either role. Likewise, reference 1s made

US 10,467,606 B2

S

to Internet protocols while any substantially comparable
data transmission protocols can be used.

6.3 Title Materials

A title object 1s a digital bearer instrument that expresses
at least one night. Title materials include ftitle objects,
portions of title objects, for example, such as a specific right
definition, a reference to specific title materials, such as
reference to a specific title object, a specific right specified
by a ftitle object, or a reference to other independently
validatable portions of title objects. A stub 1s one example of
an independently validatable portion of a title object. A
template 1s an additional example of an independently
validatable portion of a title object.

Title materials may include worktlow and service speci-
fications, including service interface specifications. In some
embodiments, a service definition 1s sometimes stored 1n a
tf: Title/Content/Detail element, or it can be stored 1n a
ti:Stub element.

Titles may express specific operating contexts required to
redeem specific rights expressed by the title. In a first
embodiment, there may be no operating context provided by
the title. In an alternate embodiment, a single operating
context can be provided by the title which applies to all
rights expressed by the ftitle. In still additional alternative
embodiments, there may be a plurality of specific operating
contexts, each associated with one or more rights or sets of

rights. Alternatively, a combination of these approaches may
be utilized.

Title materials may also include specific instances of
digital bearer instruments that may not include a specific
right. Title materials are presented to title-enabled processes,
computers, and devices, which use the presented title mate-
rials to operate on and/or facilitate redemption of rights
expressed by a ftitle. Titles employed by specific embodi-
ments of the present invention are related to the title tech-
nologies provided by Navio Systems, Inc., of Cupertino
Calif.

The creation and use of titles and rights in accordance
with embodiments of the invention can be achieved by those
having skill in the art with reference to specific examples
which can be found in the above-referenced International
and U.S. patent applications.

6.4 'Title Processing Environment

A title expressed right processing environment 1s a sub-
stantially complete environment for the processing of title
objects and the rights expresses thereby. A title expressed
right processing environment COmprises one or more oper-
ating contexts, components, and services that are combined
to produce a customizable method of processing at least one
right expressed by title materials.

A title processing environment (TPE) 1s an instance of a
title expressed right processing environment that defines
various computer systems, components, configurations, and/
or processing methods necessary to process at least one
aspect of a title. A specific arrangement of computer sys-
tems, components, configurations, and/or processing meth-
ods may comprise a complete mstance of a TPE. Alterna-
tively, a specific arrangement of computer systems,
configurations, and/or processing methods may comprise a
specific functional subset of a TPE. Sometimes this func-
tional subset provides a set of functionality and 1s called a
TPE application.

10

15

20

25

30

35

40

45

50

55

60

65

6

All required functionality for providing a complete title
materials processing system may be provided by a single
TPE, by a collection of TPEs that interoperate, or one or
more TPEs that interact with existing systems and services
(collectively called external services).

A specific arrangement of components, configurations,
and methods 1s typically specified using one or more oper-
ating context(s). Alternatively, an arrangement of compo-
nents, configurations, and methods may be specified and
managed using other means such as static configuration
files, lookup tables, and service registry entries. A plurality
ol operating contexts may share one or more components,
modules, configurations, or method instances. Each arrange-
ment of components and optional context specifications
describes a TPE instance. Optionally, TPEs may be disjoint
and have no components or confligurations i common.
Furthermore, a TPE can be integrated with and coordinate
the use of external services. Such TPE implementations can
be provided using the techmiques described herein and
methods known to those having skill in the art.

Examples of specified components include core system
functionality required to implement the TPE 1tself, and those
components that implement features required to make the
use and processing of title materials commercially success-
tul. Specified components may be provided by one or more
TPEs, and may include user interface, application, and title
processing functions. For example, TPE applications
include Wallet(s), My Stuil, and Shopping Cart functions, as
well as title processing functions provided by a title trans-
action system (TTS).

In a typical embodiment, each instance of a TPE com-
bines user interface, service, and workilow specifications
with implementation components 1n the form of services,
components, and user mterface elements to produce a seam-
less, repeatable, and secure title processing environment. In
more specific embodiments, a TPE may be deployed using
servers, desktop and portable (laptop) computers, mobile
devices (including, but not limited to, cell phones, PDAs,
and music players), and embedded devices such as set top
boxes, DVRs, and home entertainment controllers such as
Microsoit’s Media Center. Portions of a TPE may be
deployved on different systems in differing ways as deter-
mined by the implementation requirements. In some
embodiments, portions of a TPE may be deployed on
disparate systems that cooperate to provide the functions of
the TPE. For example, a user interface component and
related user-centric title handling functions such as
Wallet(s), My Stuil, and Shopping Cart applications may be
provided on a user’s desktop or handheld, and backend
processing such as title transaction servers and DCEs can be
provided on a logically separate server. In most embodi-
ments, the TPE architecture includes a user interface oper-
ating on the currently 1n-use device (the device the user 1s
currently using). Alternate embodiments are envisioned
where the TPE operates upon a device other than the
currently 1n-use device and communicates the user interface
components to the currently in-use device using a protocol
such as RDP or HI'TP. More specifically, the TPE architec-
ture extends title expressed right processing operations to an
arbitrary user interface presented upon a user interface
device of a user’s choice. Implementations of TPE archi-
tectures, including distributed TPEs can be provided using
the techniques described herein and methods known to those
having skill in the art.

In some deployments, the TPE architecture may be
deployed as one or more application programs that operate
within an extant processing environment such as Windows

US 10,467,606 B2

7

XP or Java Runtime Environment. In some deployments,
one or more components or functions of the TPE architec-
ture may be embedded within third party applications pres-
ent in these environments. Alternatively, portions of the TPE
architecture may directly embedded within said extant oper-
ating system and may be used, i part, to fulfill title
expressed right processing requests at the operating system
level. In other embodiments, portions of the TPE architec-
ture may serve as the underlying operating system when
implemented upon specific devices. Such TPEs can be
provided using the techniques described herein and methods
known to those having skill in the art.

In an example embodiment, the TPE 1s implemented as a
desktop application. In such an embodiment, the TPE’s user
interface may be implemented using a development platiorm
such as Macromedia’s Flash MX 7, although 1t may be
developed using any commercially available application
development platform, including alternative versions of
Macromedia’s Flash such as Flash Lite, or alternative devel-
opment platforms such as J2ME and BREW. In other
embodiments, one or more aspects ol a TPE may be con-
figured as a server application. Additional alternative ver-
s1ons of the TPE may also be developed for specific deploy-
ments. Each of these versions of the TPE architecture may
be developed using the techniques described herein, plat-
form specific development tools such as Windows .NET,
commercially available from Microsolt, Java from Sun
Microsystems, or other development environments, and
methods known to those having skill 1n the art.

An 1nstance of a TPE may be invoked 1n several ways. In
a first embodiment, a specific TPE 1nstance 1s invoked by the
user when they select a user interface-enabled indicator on
a web site or as part of an application. In other embodiments,
a specific TPE may be mvoked when the user selects an
application link that identifies an instance of a user interface
to be run. Alternatively, a specific TPE may be directly
called by an external applications program or web site, or
may be started based upon recognition of specific recerved
content. Examples of the latter may include starting a
specific TPE on the basis of a file type association, MIME
type, or upon receipt and recognition of a title, upon receipt
an out-of-band communications media such as e-mail or
instant messaging containing a title. Another example 1s
distribution of content on a network such as P2P 1n a format
that can be recognized and mvoked by client applications
such as P2P applications. These files are distributed 1n a
format recognized by the application. Alternatively, a spe-
cific TPE instance may be started at device startup and may
be always running. In implementations where TPE func-
tionality 1s embedded in other applications or operating
system components, the TPE and 1ts components may be
directly called by the applications (such as a media player
licensing interface) or by operating system components
within which the TPE components are embedded. For
example, a TPE may be mnvoked by the Microsoit Media
Player license acquisition page. Alternatively, a specific TPE
may be involved by a file browser such as Windows
Explorer. Such TPE invocation methods can be provided
using the techniques described herein and methods known to
those having skill 1n the art.

Still other embodiments 1nclude embodiments 1n which
the operating environment 1s further configured to review an
operating context upon presentation of a title. In more
specific embodiments, an operating environment 1s config-
ured with a title resolver, and service registry, or controller,
or other component capable of determining whether the
operating environment can process said at least one right

10

15

20

25

30

35

40

45

50

55

60

65

8

expressed by the ftitle materials. In still more specific
embodiments, the operating environment 1s configured to
determine whether one or more additional objects require
configuration or instantiation to enable the operating envi-
ronment to process said at least one right. In yet more
specific embodiments, the operating environment 1s further
coniigured to configure or instantiate one or more additional
objects required to enable said operating environment to
process said at least one right. As described below, this
component 1s called a Controller or a Service Manager. In
some embodiments, the functions of Controller and Title
Resolver and Service Registry are combined into a single
component.

According to various embodiments, the present invention
provides an architecture that enables provision of an exten-
sible applications framework that tflexibly supports a variety
of features and functionality supporting title-based rights
processing operations. Specifically, the present invention
provides additional methods of defining and assuring rights
processing operating environments to extend the capabilities
of rights processing operating environments in a variety of
novel ways. Environments for processing titles and the
rights expressed therein have been established using systems
and methods as described 1n the above-referenced Interna-
tional and U.S. patent applications. These environments are

statically defined rights operating environments that operate
in controlled server environments; the environments are
established by configuring an arrangement of rights process-
ing systems, and then providing titles that are processed by
these systems.

According to some embodiments, additional capabilities
have been created for rights operating environments. These
capabilities permit rights processing environments to be
used outside of controlled server-based environments,
including operating rights processing environments 1n which
one or more portions are formally defined or in which
configurations are formally assured against tampering,
spoofing, and other Internet ills. Formally defining ftitle
processing environments permits a title processing environ-
ment to determine 11 1t 1s able to properly process a redeemed
right expressed by at least one title prior to starting the
processing of that right. It also eases the burden of provi-
sioning title processing environments by system adminis-
trators responsible for keeping these environments operat-
ing. The formal definition of an operating environment 1s
sometimes called an operating context. Assurance of ftitle
processing environments are technical means by which the
components and configurations which comprise a title pro-
cessing environment may be determined to be free from
tampering or changes from a known, defined standard. In
many cases, assurance 1s provided using cryptographic
means, such as digital signatures and hashes. Application of
these cryptographic means for assurance of processing envi-
ronments 1s well understood to those skilled 1n the art. Some
title processing environments may be both defined and
assured, meaning that they are formally defined and their
components are assured to be free from tampering or unau-
thorized changes. Defined, assured, and defined+assured
title processing environments significantly extend the capa-
bilities of title processing environments by:

supporting the seamless deployment of distributed title

processing capabilities to untrusted host computing
platiorms,

by permitting ethicient identification of whether a specific

title or right being presented for redemption i1s being
processed by an authentic title processing environment,

e

US 10,467,606 B2

9

by permitting efficient determination by the title process-
ing environment as to whether the specific istance of
a title processing environment 1s able to process the
presented title 1n accordance with the specifications of
the right, and

by providing instructions to the instance of a title pro-

cessing environments as to the components required 1n
order to process the title.

According to some embodiments, portions of a TPE may
be cryptographically protected against tampering, and are
validated and verified using techniques and processes simi-
lar to those described herein prior to use.

Furthermore, 1n accordance with specific embodiments of
the present invention, the user interaction with a title pro-
cessing environment may be specified and defined in order
to assure content providers and merchant sellers of the user
interaction provided during title processing.

6.4.1 Title Processing Ecosystems

Instances of TPEs of the present invention may be oper-
ably combined, either within one or more applications,
servers, and systems as understood by those skilled 1n the art
to form a title processing arrangement. Each arrangement 1s
typically defined as described above. Each title processing,
arrangement may have one or more users, vendors, and/or
customers who 1nteract with one or more aspects of the title
processing arrangement to effect business transactions using,
title materials. The set of TPEs, combined with the set of
users, vendors, and customers who use a particular title
processing arrangement to conduct title-enabled commerce
1s called an ecosystem. Ecosystems may share one or more
TPEs, users, customers, and vendors.

FIG. 1 depicts three overlapping ecosystems according to
an embodiment of the ivention. Ecosystems illustrate the
logical separation between processing domains. FIG. 1
illustrates three partially overlapping ecosystems (1100,
1200, 1300). The logical separation of processing domains
enables the construction of provider-specific title processing
environments based upon a set of common components
while maimtaiming an appropriate logical and/or physical
separation between the information being processed within
cach title processing environment. For example, a first set of
ecosystems can be constructed to support the business of
music and ring-tone distribution and have as customers the
music industry, mobile telephony carriers, and their respec-
tive customer bases. These ecosystems have common com-
ponents including applications such as ftitle transactions
systems, customer and user applications including wallets,
shopping carts, etc, and have a disparate components appli-
cations such as an OTA server (for ringtones) and a music
player plug-ins and applications (for music). This 1s 1llus-
trated 1n FIG. 2, 1n which two ecosystems (2100, 2200) are
shown sharing a common component (2900) of a ftitle
transaction system (T1TS) application. A second set of dis-
parate ecosystems may include a set of public networking,
companies providing title enabled networks, and using title
technologies to provision and provide specific network
services. This second set of ecosystems also include com-
mon applications, such as a title transaction system, and may
include additional operating system components such as a
title enabled network stack. The set of users and vendors for
these second ecosystems may be disjointed between the
networking provider ecosystems, and may or may not over-
lap with the music and ringtone provider ecosystems. This 1s
illustrated using FIG. 3, 1n which two ecosystems (as shown
in FIG. 2) support a plurality of users. A first user (33004a)
1s a participant 1n ecosystem 3100. A third user (3300¢) 1s a
participant 1n ecosystem 3200, while a second user (33005)

5

10

15

20

25

30

35

40

45

50

55

60

65

10

1s a participant 1n both ecosystems. Vendors and customers
may be shared between ecosystems 1n similar ways.

As shown above, each ecosystems may have one or more
instances of the same or similar components, may share
components, and may have the same or diflering users,
customers, and vendors. Each ecosystem may have separate
instances of a common component. In some embodiments,
sets of instances of a common component may operate
together (e.g., 1n one or more clusters) to provide redun-
dancy and performance improvements. The specification of
specific application component instances and the definition
of their membership 1n particular ecosystems 1s provided
using environments and contexts as described herein. The
interoperability between ecosystems 1s described herein and
1s definable using the components and techniques described
herein.

6.4.2 Architecture and Logical Configuration

Referring to FIG. 4, a specific embodiment of a TPE
(4100) comprises optional one or more operating context(s)
(4120), an optional context, application, and component
loader component (4130), an optional service manager or
controller component (4110), an identity provider compo-
nent (4160), title resolver component(s) (4140), a service
resolver and registry component (4170), a service router
component (4150), an optional communications manager
component (4175), optional TPE applications (e.g. 4180a/b)
such as a title transaction system (T1S) and Wallet appli-
cations, at least one user interface (4190), and optional
interfaces to external services (e.g. 4165a/b).

Operating contexts (4120) are used to define the arrange-
ment of TPE components, the arrangement being managed
and made operational by components such as the context,
application and component loader (4130) and the service
manager or controller (4110). In some embodiments, the
context, application and component loader, and service
manager and controller components may be omitted and the
configuration of the TPE components statically defined.
Various embodiments may combine the features and func-
tions of the context, application, and component loader, the
service manager, and controller components.

A TPE (4100) additionally provides an identity provider
(1160) and/or an interface to one or more external 1dentity
providers (e.g. 4165a/b). The TPE uses the 1identity provider
in numerous ways as described herein.

A TPE further provides one or more title resolver com-
ponent(s) (4140), service resolver and registry component
(4170), and service router component(s) (4150), and an
optional communications manager component (4175),
which provide inirastructure support for title processing
within the TPE. In some embodiments, the communications
manager Ifunctionality 1s embodied 1n a service router,
service manager, or other TPE component that provides
service orchestration, marshalling, and related services to
the TPE. In other embodiments, the communications/session
management component of the TPE manages the commu-
nications between the TPE components. This component 1s
sometimes called a connection manager. Diflerent connec-
tion managers may be provided to support different proto-
cols, for example, a TPE may simultaneously support a
connection manager that supports the SOAP protocol, one
that supports an RPC over HI'TP protocol, and yet another
that supports SHTTP. The connection manager is preferably
implemented as discrete components, but may be 1mple-
mented as a single component 1n some 1implementations. The
communications management component optionally
includes the capability to orchestrate the completion of one

[

or more services on behalt of the TPE.

US 10,467,606 B2

11

The TPE further provides one or more optional TPE
applications, such as a previously described TSS and Wallet
title-based applications (e.g., 4180a/b) that provide business
functionality, and one or more user interface components
(4190) effective to provide an interface between TPE appli-
cations and users, customers, and vendors. The user inter-
face components may also provide user interfaces to other
TPE components as required.

Specialized implementations of a TPE may be constructed
that omit one or more the above described components, and
the functionality of any of the described TPE components
may be integrated together with, or deployed separately
from, any other TPE component. For example, an integrated
Service Resolver and Registry may be combined with a
Service Router as part of a particular TPE application.
6.4.2.1 Base TPE Components and Modules.
6.4.2.1.1 Operating Context

According to some embodiments, the present imnvention
provides systems, methods, and software for processing
digital bearer instruments 1n accordance with configurations
specified 1n at least one operating context. The operating
content(s) required may be provided within an existing
operating environment, as part of a title for which a right 1s
being redeemed, or as part of an external service to one or
more operating environments.

In a particular embodiment, the system further comprises
at least one operating context corresponding to one or more
right(s) expressed by a title. The operating context 1s con-
figured to describe and/or provide components ol an oper-
ating environment that 1s eflective to process the right(s).
The operating context may define or reference a specific
TPE, or may provide a specification for a TPE that 1s created
“on-demand” to process one or more rights.

Additional embodiments include those 1n which the fitle
includes at least one right that 1s associated with the oper-
ating context. Alternative additional embodiments include
those for which the title includes at least one operating
context that 1s associated with at least one right. If a plurality
ol operating contexts are provided, the title resolver com-
ponent in the operating environment i1s responsible for
determining the eflective operating context to use 1n pro-
cessing each redeemed right.

Furthermore, each operating context, whether expressed
as part of an operating environment or by a title, may be
provided 1n a plurality of ways. In a first embodiment, the
operating context may be “embedded,” 1n which case, the
operating context 1s present within the operating environ-
ment or title. In a second embodiment, an operating context
may be “named” by the operating environment or title using,
a name or description suitable for the purpose. For example,
a name might be a globally unique 1D, a textual name, or a
combination of a plurality of elements such as a textual
name and a version number. A named operating context may
be located and made available to the operating environment
by use of a directory service, a name service, a database, or
equivalent service 1n the operating environment such as a
service router. In particular, an operating context may be
obtained from a service resolver and registry to which 1t has
been published. Alternatively, an operating context may be
referenced from an operating environment or a title using
any supported referencing technology. Some well known
technologies include an XPointer and a URI. It a plurality of
operating contexts are expressed within a title, each oper-
ating context may be expressed using a similar or different
means. The provisions of such operating contexts can be
provided by those having ordinary skill in the art using this
disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

12

An operating context 1s a data structure that specifies one
or more aspects ol an operating environment. FIG. § 1llus-
trates an example of a representation of an operating context.
Each operating context may be represented 1n any common
format used for representing information. One such repre-
sentation 1s an XML data structure such as 1s commonly
used by those skilled in the art. Other representations, such
as ASN.1, database tables, tag-value pairs, etc. may also be
used without loss of generality.

Each operating context (5000) comprises zero or more
instances of its component elements, each of which may be
named, referenced, or included by embedding within the
operating context. These component elements 1nclude an
optional name or ID (5005), additional operating contexts
(5010), user interface component specifications (5020),
operating environment components (5030), and processing
workilow specifications (5040). Each element reference may
be accompanied by security indicia that may be used to
verily 1ts integrity (5011, 5021, 5031, 5041). Optional
security indicia (5050) may be included for the operating
context itsell to permit the vernfication of the operating
context itself.

An optional name or unique 1dentifier may be included
within each operating context in order to make the operating
context uniquely i1dentified. A preferred 1dentification
mechanism 1s to use a globally unique identifier such as a
Microsoit GUID or a UUID as specified by DCE. Alterna-
tively, a textual name may also be used, either in conjunction
with the unique ID, or on a stand-alone basis.

Zero or more additional operating context specification(s)
(5010) may be included within an operating context. In some
embodiments, these additional operating context specifica-
tions are embedded within the first operating context. In
other embodiments, the additional operating context speci-
fications may be named by the first operating context instead
of being embedded within 1t. Alternatively, the additional
operating context specifications may be named by the first
operating context using any of the common referencing
schemes mentioned herein. If a plurality of additional oper-
ating context specifications are included within a first oper-
ating context, each may use the same or different method
selected from embedding, naming, or referencing. Each
additional operating context specification included within an
operating context may be accompanied by security indicia
(e.g. 5041) usetul 1n determining its authenticity and integ-
rity.

Zero or more user interface component specifications
(5020) may be included within an operating context. In some
embodiments, these user interface component specifications
are embedded within the first operating context. In other
embodiments, the user interface component specifications
may be named by the first operating context instead of being
embedded within 1t. Alternatively, the user interface com-
ponent specifications may be named by the first operating
context using any ol the common referencing schemes
mentioned herein. I a plurality of user interface component
specifications 1s included within a first operating context,
cach may use the same or different method selected from
embedding, naming, or referencing. Each user interface
component specification icluded within an operating con-
text may be accompanied by security indicia (e.g. 5021)
useiul i determining 1ts authenticity and integrity.

Zero or more operating environment components (5030)
may be included within an operating context. In some
embodiments, these operating environment components are
embedded Wlthm the first operating context. In other
embodiments, the operating environment components may

US 10,467,606 B2

13

be named by the first operating context instead of being
embedded within 1t. Alternatively, the operating environ-
ment components may be named by the first operating
context using any ol the common referencing schemes
mentioned herein. If a plurality of operating environment
components 1s included within a first operating context, each
may use the same or diflerent method selected from embed-
ding, naming, or referencing. Each operating environment
component included within an operating context may be
accompanied by security indicia (e.g. 5031) useful 1n deter-
mimng its authenticity and integrity.

Zero or more processing worktlow specifications (5040)
may be included within an operating context. In some
embodiments, these processing workiflow specifications are
embedded within the first operating context. In other
embodiments, the processing workflow specifications may
be named by the first operating context instead of being
embedded within 1t. Alternatively, the processing worktlow
specifications may be named by the first operating context
using any of the common referencing schemes mentioned
herein. If a plurality of processing workilow specifications 1s
included within a first operating context, each may use the
same or different method selected from embedding, naming,
or referencing. Each processing worktlow specification
included within an operating context may be accompanied
by security indicia (e.g. 5041) useful in determining its
authenticity and integrity.

Optional security indicia (5050) may be included for the
operating context itsell to permit the verification of the
authenticity and integrity of the operating context itself.
Security indicia 1n an operating context may be any indicia
that may be used to verily the integrity of the referenced
component, e.g., a checksum, digital hash, or digital signa-
ture.

An operating environment constructed 1n accordance with
an operating context as described above 1s said to be
“defined”. Operating environments may be check-summed
or digitally signed using well known methods, and these
security indicia may be checked when an operating envi-
ronment 1s assembled. If the environment 1s assembled
without the use of an operating context, but the security
indicia associated with the operating components are
checked to assure their integrity, the operating environment
1s said to be “assured”. In some embodiments, the security
indicia of one or more operating contexts may be used to
verily each component as the operating environment 1s
provided to ensure that the operating environment provided
has not been tampered with or otherwise corrupted. Oper-
ating environments that are defined using an operating
context and are constructed using the security indicia of an
operating context to verily their integrity are said to be
“defined+assured”.

In more specific embodiments, any one of the operating
contexts described above 1s combined with any one of the
operating environments just described, 1.e., one of each
operating context (embedded, named, and referenced) 1is
combined with one of each operating environment (assured,
defined, and assured and defined) to provide an embodiment
of the present mnvention for each of the 3x3=9 different
combinations. In still more specific embodiments, the oper-
ating environment 1s both assured and defined by an oper-
ating context. Again, the provision of such operating envi-
ronments can be accomplished by those having ordinary
skill 1n the art using this disclosure.

Each operating environment may be statically configured,
in which the configuration of the components i1s not changed
using an operating context. This implementation model 1s

10

15

20

25

30

35

40

45

50

55

60

65

14

straightforward and provides title processing within fixed
operational constraints. Some business models require dii-
ferent configurations, and these configurations may be
accommodated using a plurality of operating environments,
cach statically configured in a different manner. As 1s clear
to the reader, this deployment model scales poorly. A second
deployment option is to use operating environments that are
dynamically configured using an operating context. In this
model, the operating components are all instantiated, but are
only referenced and used on an as needed basis. This model,
while more flexible, also scales poorly across a plurality of
devices and device types. Dynamic configuration often
requires a priori knowledge of workloads and system per-
formance dynamics that are often not precomputable. Simi-
larly, dynamic configuration mechanisms introduce 1ssues of
component distribution and whether all needed components
are available at the time they are needed. A third alternative,
the dynamic loading and unloading of components based
upon an operating context 1s also provided. In this alterna-
tive model, operating environment components need not be
instantiated until they are actually needed by a specific
operating environment. Each operating environment may be
constructed using components which are not running prior to
the creation of the operating environment, which are 1nstan-
tiated as they are needed, and are unloaded as soon as they
are used. When coupled with the ability of an operating
context to embed one or more components, this provides for
a portable, assured, and defined system for the processing of
titles. This technology thus permits the digital bearer nature
of titles to be fully expressed to the point that they can be
processed immediately by a bearer. Again, the provision of
such operating environments can be accomplished by those
having ordinary skill in the art using this disclosure.

According to specific embodiments, the present invention
provides methods for processing digital bearer instruments
and computer-readable program code devices that are con-
figured to implement such methods (i.e., soitware). The
context 1s configured to provide an operating environment
ellective to process at least one right, and 1s further selected
from the group consisting of: embedded, named, and refer-
enced operating contexts; and said operating environment
being selected from the group consisting of: assured,
defined, and assured+defined operating environments.
6.4.2.1.1.1 TaskMap

As described herein, each operating environment supports
the capability to dynamically reference, locate, and 1nstan-
tiate application components. In some embodiments, pro-
cessing an operating context specification causes an oper-
ating environment to load or cause to be loaded the 1dentified
required components, including application components,
built-in components, and external services, and user inter-
face components including screen, panes, fonts, skins, and
related user interface components. Component specifica-
tions may be defined within the operating context specifi-
cation, or alternatively, the operating context specification
may specily one or more task maps that perform the speci-
fication of one or more desired components. An operating
context specification may also define distributed worktlow
parameters, and associate specific components with portions
of the worktlow. The operating environment implements the
desired security model and session handling, including
session 1solation 1n accordance with a specification provided
within an operating context.

In some embodiments, a task map i1s used within an
operational context to provide a map between specific
distributed workflow operations and specific services or
application components (either plug-in or built-in). For

US 10,467,606 B2

15

example, a task map may 1dentify the shopping cart appli-
cation component to be used 1n a specific implementation,
and may further identify the application components, lay-
outs, and styles to be used when working with this compo-
nent.

A task map may include one or the following elements:

a. Property/attributes

b. Identification

c. View 1dentification

d. Package identification

¢. Task name

f. View specification.

g. Optional localization/internationalization specification,
h. Application specifications

1. Application component specifications
1. Task definitions

k. Default package path

1. Error handling

A task map 1dentifier may comprise a unique ID or name,
consistent with other unique ID and name descriptions
within the Active User interface architecture.

A task map may comprise one or more task specifications.
Each task specification may include optional specifications
for task names, view specifications, package specifications,
skin specifications, style sheet specifications, and locale
specifications. A task name provides a descriptive name for
the task, such as “Accountless checkout.” A task may be
associated with a specific title expressed right action, a
group of title expressed right actions, or an entire operating
context.

A view specification provides a specification for the look
and feel for the task and may be provided, for example, 1n
the form of an XML specification as described above. The
view specification may be i1dentified with a view 1dentifica-
tion. A view identification may comprise a unique ID or
name, consistent with other unique 1D and name descrip-
tions within the User interface architecture.

A package 1dentification may comprise a unique ID or
name, consistent with other unique 1D and name descrip-
tions within the User interface architecture.

An optional localization/internationalization specification
specifies the localization parameters to be used for this task.
This specification may be expressly specified, or may ret-
erence a style sheet specification. In embodiments where the
localization/internationalization specification 1s provided,
there are several mechanisms available. In one embodiment,
the application may follow ISO conventions for specifying
various sets of localization parameters. For example, the
language code may use the ISO default for “US English”.

An application component specification specifies names
or describes a user interface component (either built-in,

10

15

20

25

30

35

40

45

50

<Taskmap>
<CarrierBilling Confirm

view=""[TaskPath|Cart/CarrierBilling/CarrierBilling_ Confirm.xml”
confirm="[TaskPath|Cart/CarrierBilling/CarrierBilling Confirm.xml”
gsmNumber="[TaskPath|Cart/CarrierBilling/CarrierBilling gsmNumber.xml”
thankyou_ actless="[TaskPath|Cart/CarrierBilling/CarrierBilling_ ThankYou
__actless.xml”

thankyou="[TaskPath]|Cart/CarrierBilling/CarrierBilling ThankYou.xml”
package="[TaskPath]|Cart/Cart.swi”
actless="|TaskPath]|Cart/CarrierBilling/CarrierBilling Confirm_ actless.x

ml!!

16

plug-in, or external service) that provides application ser-
vices for this task. User interface component references may
take the forms described herein, or may take other forms
appropriate to the implementation system or platiorm. In
various embodiments, the application component specifica-
tion may be a DLL or COM object, a Java class, an
application operating context such as a JAR, a CORBA
object ID, a service identifier or specification, or other
implementation dependant method of identifying the spe-
cific application component desired. Optionally, the appli-
cation component specification may specily the calling and
response 1nterface for the application component. In some
embodiments, the application component specification com-
prises a reference to an external service enabled for the
processing of title-based rights.

The task class specifications may define alternate appli-
cation components or methods of specific application com-
ponents that should be associated with specific distributed
worktlow components. For example, the task class specifi-
cation may define a specific “Thank You” screen for the
“Accountless checkout” task. It defines a specific applica-
tion component, view, and other presentation information
with a specific “Thank You Screen” as a distributed work-
flow event within the task manager. Upon receipt of the
“Thank You Screen” distributed workflow event, the User
interface causes the application component to be executed
within the specified operating context.

A title (or other application component may, indirectly
through 1ts view) may specily an operating context it
requires 1n order to provide a title expressed right processing
environment. If the User interface, operating on behalf of the
title 1s unable to locate and successiully load a specified
operating context, component, or remote service, the error
handler UI 1s invoked in accordance with the current error
handler UI specification. The error handler used is the error
handler associated with the current operating context, or if
an error handler 1s not specified for the current operating
context, the error handler of a parent task map or operating
context, or the error handle for the default operating context
1s used (1f defined).

In one example embodiment, a user has rights to both
chuld and adult content. If the user 1s operating within a
branded (for adult content) title expressed right processing
environment, the operating context specification for a piece
of child content may require a change in context to a
different operating context (either within the same fitle
expressed right processing environment, 1n a different title
expressed right processing environment, or 1 an operating
context) before permitting the user interaction to continue.

An example task map 1s provided below:

sprint__actless="[TaskPath|Cart/CarrierBilling/CarrierBilling Confirm__ ac
tless_ sprint.xml”

sprint="[TaskPath|Cart/CarrierBilling/CarrierBilling Confirm_ sprint.xml

el /}

— <!-- Mobile Input -->

US 10,467,606 B2

17

-continued

<Input_ Mobile
package="[TaskPath|Cart/Cart.swi” />
<GsmNumber

view="[TaskPath|Cart/CarrierBilling/CarrierBilling gsmNumber.xml”

package="[TaskPath|Cart/Cart.swi” />
<PhoneSelector
package="[TaskPath|Cart/cart.swi”
view="[TaskPath]|Cart/PhoneSelector.xml” />
<My Stuil
view="[TaskPath]/MyStufl/MyStuil.xmI”
package="[TaskPath]roots.swi” />
<QuickFlow
package="[TaskPath]|QuickFlow/QuickFlow.swi” />
<WalletCreditCard Address
view="[TaskPath]Wallet/'WalletCreditCard Address.xml”
package="[TaskPath|Wallet/wallet.swi”
locals="[TaskPath]Wallet/ AccountDetail” />
<WalletCreditCard
view="[TaskPath|Wallet/CreditCard.xml”
package="[TaskPath|Wallet/wallet.swi”
locals="[TaskPath|Wallet/CreditCard” />
<WalletDelete Confirm
view="[TaskPath]|Wallet/Delete_ Confirm.xml”
package="[TaskPath|Wallet/wallet.swi”
locals=""[TaskPath|Wallet/Delete_ Confirm™ />
<WalletCash
view="[TaskPath|Wallet/Cash.xml”
package="[TaskPath|Wallet/wallet.swi”
locals="[TaskPath|Wallet/Cash™ />
<WalletAddCash
view="[TaskPath]|Wallet/ AddCash.xmI”

18

package="|TaskPath|Wallet/wallet.swi” locals="[TaskPath|Wallet/AddCash”

/=
</Taskmap>

6.4.2.1.2 Service Manager/Controller

According to various embodiments, a title processing
system 1mplements one or more components called a Con-
troller and/or Service Manager. In some embodiments, the
functions of a Service Manager and Controller may be
implemented as a stand-alone service, as part of another
component, as a loadable component, or as an external
service. In some embodiments, a Service Manager and
Controller may be implemented as separate components.
Alternatively, they may be combined as a single component.
A Service Manager and Controller 1s part of a TPE that
manages the TPE’s components and provides the interface
and “glue” logic between at various title-enabled services.
These mterface and glue logic services may include param-
cter marshalling, ensuring specific services are loaded and
running, and the like.

The service manager’s functionality may be implemented
as part of the TPE itself, or may be implemented as a plug-1in,
or as an external service within a TPE. A service manager
supports, 1 conjunction with other components such as a
context, application, and component loader (described
below), the demand loading and unloading of components,
including any verification and validation requirements. The
service manager defines and controls the operation of the
context, application, and component loader in accordance
with defined method of managing services and components
for a TPE. In some embodiments, the service manager
functionality 1s contained within other TPE components.
Optionally, a service manager coordinates with an underly-
ing operating system component to ensure these functions
are performed as required to enable a TPE.

A Controller interacts with other services, such as those
described below, to facilitate the user and service interac-
tions to implement the specified interface and service calls
necessary for the specified execution within a TPE.

35

40

45

50

55

60

65

In more specific embodiments, a Controller 1s used to
control flows, views, validation, and similar interface func-
tions. In some embodiments, the controller component 1s
used to transform data tlows from one format to another so
they may be used within an existing specification. Part of the
Controller specification may define views, languages, and
protocols for communicating between user interfaces and
service components and between service components on

behalf of a user interface. A view specification defines, 1n
part, the layout, styles, user interface components, and the
like to be used when displaying the output from a TPE,
operating context, or external service. For example, when an
output of one service 1s received, the controller may trans-
form or change the format of the output to better fit within
the display pane of a user interface to which 1t 1s mapped.
Part of the definition may include a “form™ definition, that
optionally specifies how the elements of the “form™ may be
validated. In a first embodiment, a user interface component
may perform direct validation of entry fields using the form
specification rather than rely on the Controller or other
services for validation. In some embodiments, a Controller
specifies how the form and the form elements can be
validated, for example, using a regular expression (e.g.
regex) or indication of a remote service to be used (such as
phone number validation, location validation, etc.). This
capability provides improved response times to the user and
offline operation capabilities. This can be accomplished
using methods known to those having skill in the art.

In other embodiments, a Service Manager and Controller
specifies, collects from the user or other location in the
system, or otherwise manages the authentication and autho-
rization information to be used when accessing specific
services or components within a TPE. This can be accom-
plished using methods known to those having skill in the art.

6.4.2.1.3 Context, Application, and Component Loader

US 10,467,606 B2

19

According to some embodiments, a context, application
and component loader provides context, application and
component loading services, icluding downloading ser-
vices to retrieve remotely stored application components,
validation and verification services that ensure a component
has not been tampered with and i1s authorized to execute.
Optionally, a context, application and component loader
provides task management services to control and/or coor-
dinate the execution of running components and applications
components.

In some embodiments, each mnstance of a TPE may cause
the demand-load and unload of portions of its contexts,
applications, components and configurations on an
as-needed basis. In other embodiments, an operating context
loader component instantiates a complete TPE on the basis
ol a operating context specification, as outlined herein.

In some 1instances, portions of the TPE and of other
architectures that the TPE relies upon, may be distributed to
alternate systems or devices. Similarly, service requests may
be mediated by a service router or service resolver and
registry and directed to a local instance of a service provider,
may be passed to a remote service mstance, or a combination
of both approaches may be performed. For example, a TPE
may rely on an internal identity management component,
may distribute the identity management component to
another system, or may use a combination of both methods.
Such TPEs can be provided using the techniques described
herein and methods known to those having skill in the art.

In order to ensure the proper functioning of the processing
environment, a TPE may perform validation and verification
of demand-loaded and/or distributed components. Demand-
loaded components are also referred to herein as plug-ins. In
some cases, the validation and verification may be per-
tformed by the application loader itself using well-known
cryptographic means such as crypto-hashes such as those
generated by MD3, a checksum or CRC, or by using
methods such as self-validating packaging such as Micro-
soit’s CAB or Java’s signed JAR files. In alternate embodi-
ments, TPE components may be validated using SAML
assertion(s) 1 accordance with SAML specifications. Such
TPE implementations can be provided using the techniques
described herein and methods known to those having skill 1n
the art.

In other embodiments, the wvalidation and verification
functions may be performed by underlying operating system
tfunctions. For example, the validation and verification of
signed applications 1s provided by the underlying task loader
in the Windows XP and Windows CE operating systems, and
in the Java runtime environment. The processing environ-
ment may be configured to rely on these services when
executing upon these operating systems that provide this
functionality.
6.4.2.1.4 Communications Manager

In some embodiments, a communications manager com-
ponent of the TPE manages the communications between
TPE components. This component 1s sometimes called a
connection manager. Different communications managers
may be provided to support different protocols, for example,
a TPE may simultaneously support a first communications
manager that supports the SOAP protocol, a second com-
munications manager that supports an RPC over HTTP
protocol, and vet a third communications manager that
supports SHT'TP. Each aspect of a communications manager
1s preferably implemented as discrete components, but may
be implemented as one or more components 1n some 1mple-
mentations. The communications management component

10

15

20

25

30

35

40

45

50

55

60

65

20

optionally includes the capability to orchestrate the comple-
tion of one or more services on behaltl of the TPE.

Communications manager components may also utilize
directory services by calling a Service Resolver and Registry
component to resolve service locations and interface speci-
fications.

In yet other embodiments, a communications manager
component implements communications between the User
interface and one or more TPE services. In some embodi-
ments, the communications manager provides SOAP for-
matting, transmission, and retransmission services between
the User interface and one or more services. Alternatively, a
communications manager may provide XML-RPC,
CORBA, or other remote procedure call services to a TPE.
In some embodiments, a communications manager may
provide more than one type of RPC service, and may either
select the RPC format to use when communicating with a
specific service, or translate between RPC formats in order
to facilitate communications between services. These ser-
vices may be provided on the same device as the commu-
nications manager, or may be provided on a different device.

In one embodiment, the communications manager com-
ponent maintains connectivity and state for connections. An
instance of a communications manager may communicate
with more than one service at a time. Specifically, a com-
munications manager may simultaneously manage the com-
munication with multiple components, services, and TPEs,
including maintaining simultaneous communication with
similar or different versions of services hosted on different
SErvers.
6.4.2.1.5 Identity Provider

In some cases, a TPE provides, or causes to be provided,
an 1dentity management service, sometimes called an 1den-
tify provider. The identity management service may be
implemented as part of the TPE itself, or may be imple-
mented as a plug-in, or as an external service. An 1dentity
management service provides methods for validating com-
ponents of the TPE architecture to ensure that they have not
been tampered with and that their use 1s authorized within a
specific mstance of a title expressed right processing envi-
ronment. Such TPE functions can be provided using the
techniques described herein and methods known to those
having skaill in the art, and may include such methods as PKI,
multi-party authentication, and related components. The
identity management services may also used to validate and
establish the 1dentity of specific users of one or more TPEs.

The Identity Provider can comprise a title-based Identity
Provider or an external third party Identity Provider service.
A plurality of 1dentity providers services may be supported
within an 1nstance of a TPE. The Identity Provider can be
required as part of the particular implementation 11 a Service
Router needs to authenticate itself to the Identity Provider
and include a SAML Artifact in messages to the endpoints
(where specified by the service definition).

In some embodiments, a local instance of an identity
management component 1s also provided. It 1s useful to have
a local 1dentity management component as part of the User
interface for deployments where the User interface 1s not
able to maintain regular communication with an external
identity verification and authentication service. The identity
management component that may be embedded within a
TPE, such as provided by an AV (or provided as another
component) 1s typically used to validate components and
operating context specifications. In one example embodi-
ment, such an 1dentity management component would cache
and validate SAML assertions related to the validity of well

defined components and specifications. The SAML asser-

"y

US 10,467,606 B2

21

tions would be pre-stored 1n the cache for use when the TPE
1s not able to make an online connection to an identity
verification source. The local instance of the identity man-
agement component may also be used to validate an itial
or default operating context specification during TPE
startup.

6.4.2.1.6 Title Resolver

According to a set of embodiments exemplified in FIG. 6,
a title resolver (6100) provides title resolution services to a
TPE (e.g. 4140 of FIG. 4). A title resolver comprises a state
server (6120), one or more authentication providers (6130),
optional CODEC modules (6140a/b/c), optional interfaces
to content providing services (6150a/b/c), one or more
interfaces to service resolvers and registries (6170), optional
interfaces to external identity providers (6160), and other
external service interfaces (6180a/b/c).

A Title Resolver module 6100 performs the task of
resolving all title materials presented. In some embodiments,
a title resolver may be used to resolve a reference to a
specific title or right. In other cases, a title resolver 1s used
to expand incomplete title materials using caches or stored
copies ol common, well known title materials. The use of a
title resolver to expand title materials presented to 1t enables
the reuse of common title materials. This reduces the size of
individual titles at the expense of having to include those
referenced materials at use time. In some embodiments,
these common maternials are called templates. In other
embodiments, they are managed as 1items to be included at
resolution time. One example of this technique 1s the expan-
sion of title materials to include specific content from a
content store upon presentation of a title. Other examples
include expanding a title to include common definitions for
classes of rights. This permits the use of an “included by
reference” capability 1n titles, which 1 turn supports the
substantive reduction of the size of title objects.

FIG. 7 1s a flowchart which illustrates an example of a
process for resolving title materials.

In step 7110, a title resolver verifies the integrity of any
provided title materials. This ensures that all title materials
provided have not be tampered with, damaged, or are
unintentionally incomplete.

In step 7120, a title resolver 1dentifies, locates, and obtains
copies of any referenced title matenials (recursive). In each
of these cases, 1f a title material 1s referenced using a unique
ID, the title resolver may recognize the umique ID and use
that unique ID to look up the title material using a database
of title materials, a directory service, a title manager, or a
service registry. This may be recursively repeated until there
are no title materials or content left to i1dentily, locate, or
obtain.

In step 7130, a title resolver validates all title materials to
ensure authenticity and validity.

In step 7140, a title resolver validates aspects of operating,
contexts and the title materials, to ensure that provided ftitle
maternials are valid for operating within the specified oper-
ating context. A title resolver further checks to see 1f there
are contlicts or ambiguities 1n the specifications within an
operating context or within a ftitle structure, the Title
Resolver 1s responsible for resolving the conflicts or ambi-
guities 1n a manner that permits the processing of the title to
continue.

In step 7150, a title resolver ensures or authenticates
ownership of the title.

In step 7160, a title resolver eflects the decoding and
decrypting any title elements that are encoded or encrypted.

In step 7170, a title resolver eflects the retrieving of any
content or resource(s) requested by a title.

10

15

20

25

30

35

40

45

50

55

60

65

22

In alternate embodiments, a Title Resolver may be
responsible for executing and acting upon rules and triggers
that are applicable to the title maternals presented. In various
embodiments, the functions of a Title Resolver may be
implemented as a separate service, either as a loadable
component, as an external service, or combined with other
services and components.

An additional function of the Title Resolver may be to
refresh old titles. For example, 11 information contained
within a title became outdated, this information could be
automatically refreshed either by replacing the title com-
pletely or by adding a new stub object that updates the
information. A Title Resolver may invoke additional pro-
cesses as required to process and update title matenals
(6110) such as the CODEC module (6140a/b/c), a state
server module (6120), a content interface module (6150a/
b/c), an authentication provider (6130), a service resolver
and registry (6170), an 1dentity provider (6160), or other
external service (6180a/b/c) as required.

A state server module (6120) maintains and verifies state
associated with the use of titles throughout the ecosystem.
The state server may work in conjunction with the Title
Resolver in order to verily the validity of the title and may
generate new stub objects associated with the title on every
redemption and exchange. The state server may be a high-
capacity, high-availability, and high-performance system
that can be widely distributed and chained i order to
perform fast validation for titles 1n use. The state server may
perform functions and algorithms associated with the
chained hash, one-time password, and key-splitting tech-
niques.

A content interface module (6150a/b/c) performs the tasks
associated with retrieving specified content from a particular
content store. This module may generally be mvoked by a
Title Resolver to resolve a reference to external content. The
content interface module may be extensible to support a
variety of content and resource systems in use by content
publishers.

A CODEC module (6140a/b/c) performs coding and
decoding functions on the content retrieved by the Title
Resolver. The primary purpose of this module 1s to encap-
sulate content 1n a secure package as determined by the
security required of the title and established by the rules. For
example, this module can perform digital watermarking of
music and 1image content, and 1t can also be used to encrypt
the content 1n a traditional digital rights management pack-
age. Additionally, the CODEC can be used by the Title
Resolver to decode contents within the title before process-
ing by the Title Resolver. The CODEC may provide mecha-
nisms to support these functions as required within the
ecosystem.

As described 1 U.S. patent application Ser. No. 11/741,
952 filed Apr. 30, 20077, now U.S. Pat. No. 9,621,372, 1ssued
Apr. 11, 2017, the entire disclosure of which 1s incorporated
herein by reference for all purposes, titles can be validated
using a title resolver and/or a state server, both of which are
components of a title management system. FIG. 8A 1s a tlow
chart depicting an example of such a title validation process.
The title 1s submitted by a client to a title resolver service for
authentication (8110). The title resolver service examines
the title’s digital signature (8120). If the digital signature 1s
incorrect, the title resolver service rejects the title and the
title validation process terminates with an “mnvalid title”
result. If the digital signature i1s correct (8130), the title
resolver service forwards the title to the state server process
for further validation (8140) of the state value 1n the title’s
stub. The state server process uses the state value or other

US 10,467,606 B2

23

indicia that are part of the title (8150), computes a value
from these 1tem(s), and compares 1t against a value stored 1n
a database (8160). If the two values match (8170), the title
1s validated by the state server (8180). A “title valid”
response 1s returned to the ftitle resolver service (8190),
which 1 turn returns a “title valid” response the client
(8200). I1 the state server cannot validate the title, it returns
a “title invalid” response and the validation process termi-
nates. The above example 1s one method of validating titles;
additional methods of validating title materials include digi-
tal signatures, comparison of transaction indicia to transac-
tion databases, and other methods well known to those
skilled 1n the art.

As described 1n U.S. Patent Publication US 2006-
0036548 Al, entire disclosure of which 1s incorporated
herein by reference for all purposes, titles can be validated
using a title resolver and/or a state server, both of which are
components of a title management system. FIG. 8B 1s a
flowchart depicting an alternative title validation process. In
one embodiment, the consumer device 1s used to commu-
nicate the redemption request to the title manager (8210).
The title manager performs ftitle processing (8215) and
returns a title command to the consumer device (8220)
redirecting the consumer to the content. The consumer
device communicates the title directly to the content proxy
(8225), which subsequently makes a request to a trusted title
resolver (8230) 1in order to validate and authenticate the title.
In this embodiment, the title resolver 1s a separate compo-
nent. In another embodiment, the resolver functionality may
be mcorporated directly into the content proxy.

The title resolver both validates the title (by ensuring that
rules are properly executed) and also authenticates the title.
In one embodiment, 1n order to properly authenticate the
title, the title resolver communicates the title object to the
state server (8240). The state server subsequently authenti-
cates the title object (8245) using an authentication tech-
nique specified by the title and supported by state server. The
authentication process (82350) may further mvolve security
indicia included with the title object. The endorsement
process 1s responsible for placing the security indicia in the
title object (8260). In one embodiment, the state server
returns the authentication response to the title resolver along
with updated security indicia for the title (8270). If the title
1s authentic and valid, the title resolver communicates the
updated security 1ndicia to the title manager and responds to
the original request by content proxy (8280).

Upon successiul authentication, content proxy permits the
request through to content which 1s then returned to con-
sumer device (8290). It the transaction should substantially
fail, and consumer device cannot communicate with content,
an error message may be returned. In one embodiment, the
error message 1s substantially communicated to all partici-
pating parties to ensure an orderly rollback of the transac-
tion, 11 needed
6.4.2.1."7 Service Resolver and Registry

The Service Resolver and Registry 1s intended to be a
general business and service registry that can be used by all
title enabled components to lookup essential business and
service definitions, title materials, and workflows. One or
more service resolvers and registries may be configured
within a TPE configuration. Each Service Resolver and
Registry component may be used to support one or more
Service Routers and other title enabled applications, and
provides a common location from which all requests for
contexts, applications, title materials, and related services
may be resolved. A Service Resolver and Registry further
provides services to a TPE, TPE applications, and other

10

15

20

25

30

35

40

45

50

55

60

65

24

title-enabled systems to assist in resolving one or more
services referenced from title materials or processing work-
flows. Depending upon desired functionality, the resolver
and registry portions of a Service Resolver and Registry
component may be configured as separate modules. Alter-
natively, they may be configured in conjunction with each
other (as presented herein), or as part of other components.

An authorized user may use a title publisher application to
publish service and alias definitions to a Service Resolver
and Registry. The publishing process 1s described below.
Alternatively, a Service Resolver and Registry can also be
configured using any other means known to those skilled 1n
the art. Well known title materials, including templates, well
known titles, and related materials also may be published to
a Service Resolver and Registry i order to make them
available to a TPE. In addition, service definitions used by
specific rights may be published to a Service Resolver and
Registry.

A Service Defimition stored in the Service Resolver and
Registry may be stored as title matenials and can include
common service specifications, such as those defined using
UDDI data structures/elements. In other embodiments, due
to the complexity mnvolved 1n standard protocols such as
UDDI, a simpler structure may be encapsulated 1n a title. In
still other embodiments, a Service Resolver and Registry
component uses service lookup techniques, including exter-
nal service directories such as those provided by well known
mechanisms such as UDDI and LDAP, service registries,
and service lookup mechanisms provided by distributed
component systems such as COM/DCOM and CORBA. The
Service Resolver and Registry, 1n some additional embodi-
ments, can be a service that simply accepts an ID for a
service and returns a title object associated with the ID. The
ID 1s a unique ID for the title object. For XML representa-
tions of a title, this 1s also called the document ID.

In a first embodiment, a Service Resolver and Registry
requires the requesting application to know what record 1D
1s being queried, and will only support lookups for service
definitions (such as used by a Service Router). The Service
Resolver and Registry will return the Title specified by the
record identifier. "

The returned title contains the service
definition or another service ID, which 1s the further
resolved until an actual service definition 1s obtained. In an
alternate embodiment, a Service Resolver and Registry
supports lookups for arbitrary titles, including titles that
define workflows and related title processing elements. In
yet another alternate embodiment, a Service Resolver and
Registry provides lookup services to well known title mate-
rials, such as templates, contexts, and templated subsets of
rights. In still another alternate embodiment, a Service
Resolver and Registry provides an alias lookup service, by
which aliases for well known 1tems are resolved to actual
entries. Aliases are useful 1n that they permit the renaming
ol historical title materials and services without requiring
regenerating of all titles that reference the title materials or
SErvices.

Basic and Advanced search features are available for
service lookups performed by the Service Resolver and
Registry. These features include lookup by ID, and struc-
tured queries using well known structured query mecha-
nisms.

A user or application may query the Service Resolver and
Registry by sending a message containing the query. A
service lookup to the Service Resolver and Registry returns
the service defimition. In some embodiments, only Service
Definitions are supported and the Service Resolver and
Registry will only allow lookup requests for Service Defi-

US 10,467,606 B2

25

nitions. In some embodiments, this query 1s structured as a
SOAP request. In other embodiments, it may be an LDAP
query or a database query. An example SOAP message for
a Service Resolver and Registry Lookup request 1s shown
below and includes both a Lookuplype and a Recordld
clement:

5

26

authentication and authorization services associated with
titles, as well as providing service redirection services. In a
first use, a Service Router can 1solate the authentication and
authorization steps of ensuring that the title 1tself 1s valid and
1s provided 1n accordance with any specified requirements
(e.g., on 1nput data, on user credentials) before passing the

<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/’>

<soap-env:Header/>

<soap-env:Body>

<TtsRequest xmlns="http://aplaud.com/ns/0.1/tts/protocol’>
<LookupType>http://daxweb.org/ns/1.0/service</LookupType>
<RecordId>a080847000001001b3eb63400000091</RecordId>
</TtsRequest>

</soap-env:Body>

</soap-env:Envelope>

The LookupType element indicates the type of definition
being queried and can be specified as an XML namespace.
Examples of namespaces includes :http://daxweb.org/ns/1.0/
service for services, http://daxweb.org/ns/1.0/service/ota for
OTA application definitions, and http://daxweb.org/ns/1.0/
service/cdn for content delivery network definitions.

The Recordld element contains a unique identifier for the
service definition being queried. This 1s the Document ID of
the corresponding title object stored 1n the service registry.

The response to this example query from the Service
Resolver and Registry 1s a SOAP message containing a copy
of a title object that was loaded into the Service Resolver and
Registry using a title publisher.
6.4.2.1.8 Service Router

According to a set of embodiments, a Service Router
provides the function of a network-based aggregator and
choreographer of service requests providing a single point
for distributed applications to call. A Service Router sim-
plifies the distributed application services by limiting the
number of services that are available and reachable to a
specific user at any given time. A Service Router can be
deployed as part of a TPE configuration, as a stand-alone
component on a network, as part of a network applhiance or
device (such as the network devices described above), or can
be shared between multiple TPEs.

A Service Router provides a means by which a specific
service, TPE, or TPE client communicates with one or more
services. In some embodiments of the invention, a Service
Router functions as more than a dispatch or broker service.
In these embodiments although on the surface a Service
Router can appear to have the same traits as other middle-
ware tools, 1t goes far beyond these tools and defines the
rights-based commerce approach to routing, coordinating,
and 1ntegrating services. The rights-based commerce
approach to service dispatch applies rights to the invocation
of every service and the manner in which the service
invocation 1s coordinated to form an activity. In these
embodiments, a Service Router brokers the connections,
gateways the connections, and applies the rules associated
with each connection including going to the extent of
handling the commerce obligations for each discrete service.
In a more specific embodiment of the mvention, protocol
messages are sent to and from the Service Routers provided
herein which 1n turn broker the many disparate services used
to complete transactions, manage workilow, satisty contract
requirements, and implement additional value-add.

In another embodiment, a Service Router functions as a
proxy service for title-enabled services. When operating as
a proxy service, a Service Router provides a single point for

20

25

30

35

40

45

50

55

60

65

title to an endpoint service. Alternatively, a Service Router
can 1mvoke one or more rights defined 1n the title. Further
alternative embodiments can have a Service Router use the
title to locate additional information provided externally
from the user or the title itself, and use the title 1n conjunc-
tion with that additional information to invoke the network

service or application desired.

Also when used as a proxy service, a Service Router 1s
advantageous to blocking forged or otherwise invalid titles
and for eliminating non-authenticated trathic from a network
service. In this manner, a Service Router can act as a
title-enabled firewall. When coupled with the network
device capabilities described above, a title-enabled firewall
network device can be constructed that limits the network
tratlic that crosses the firewall to authorized and authenti-

cated network traiflic.

In an alternative use as a proxy, a Service Router can
redirect specific network service calls presented to 1t to a
different network service. In this example use, a Service
Router can redirect a service request from to an alternate
service host on the basis of a table lookup, directory service
lookup, a load balancing algorithm, or other network ser-
vice. A Service Router accepts the service request, looks up
the service request 1n a local or remote table, 1n a directory
service, uses the result of an output of an alternative network
service such as runtime, or applies a load-balancing algo-
rithm to determine the network destination of the service.
Alternatively, a Service Router can invoke one or more
rights specified in a title to determine the routing of a
specific service request.

In some embodiments, Service Routers are interconnect
gateways that understand and apply rights-based commerce
rules. Coordination of the various services is a tlexible and
powertul feature of a Service Router and 1s advantageous in
that 1t 1s a simpler approach to Web services coordination
than incorporating a full-fledged BPEL4WS engine (and
grammar).

A Service Router provides a mechanism by which exter-
nal third party services can easily and securely participate in
a rights-based commerce network. In some embodiments, a
Service Router provides a title-enablement front end to
non-service enabled network applications and services. In
this example user, a Service Router authorizes and authen-
ticates the ftitle-based request and calls a network-based
service or application described in association with one or
more rights defined 1n the title without passing the title to
this service. An example of this type of use was given above
in association with the ruptime call, in which an external
service 1s called by the Service Router during the processing

US 10,467,606 B2

27

ol a service request. Alternatively, a Service Router can use
the title to access a profile that contains authentication
materials to be used 1n conjunction with network services
and devices.

In other embodiments, a Service Router 1s a generic
handler for formatting and routing service requests to and
from service endpoints. In some embodiments, a Service
Router preferably sends synchronous Web service requests
to service endpoints. The use of Web-based protocols 1s
merely an example, and the protocol used can change as
required on an implementation-required basis. In some
embodiments, the SOAP over HT'TP protocol 1s supported
by a Service Router. Other protocols can be implemented by
those skilled 1n the art.

In some embodiments, a plurality of Service Routers can
operate together (e.g. clustered) to form a “virtual” service,
in which any of the cooperating Service Routers can accept
a message and process 1t. In other embodiments, Service
Routers can be operated 1n “proxy” mode to imnspect and then
route each message to a subsidiary Service Router.

In still other example embodiments, a Service Router
functions as an abstraction layer between a TPE and external
Web services; and the Service Router serves as a coordinator
for the services. In an example of such an embodiment, a
Service Router 1s a simple abstraction layer that defines the
interaction with TPE components and establishes a baseline
for services, service descriptions, and service adapters.
Other embodiments model service contracts described 1n
titles, and provide enhanced services such as coordination.
An embodiment used depends upon the implementation
requirements.

In these embodiments, a request received by a Service
Router can be directed to a plurality of network services or
network applications, either 1n senial, parallel, or in combi-
nation, and the result of one or more of these requests 1s used
to formulate the request to the requestor. Service Routers
also can be implemented in-line to the traflic, as service
endpoints, or as filters. In some embodiments of the inven-
tion, a Service Router can process message traflic inline by
intercepting or proxying message tratlic. In these embodi-
ments, a Service Router receives a message, imspects its
content, optionally processes the message 1 accordance
with one or more specifications, and then optionally for-
wards the message to the same or diflerent recipient. In one
embodiment, a Service Router can implement a worktlow
that intercepts message trailic from a cell phone, mspect the
content for the presence of rights managed content, replace
said rights-managed content with a title-based offer for the
rights-managed content, and forward the altered message to
its intended recipient. Readers skilled 1n the art understand
how a Service Router operating in this manner 1s valuable to
limit the distribution of rights-managed content without
locking the content to specific devices.

A Service Router can take many forms that include
embedding 1n network switches, routers, gateways, and
firewalls. Each of the embodiments of title enabled network
devices described above can be implemented using inline
code, or they can be implemented using a Service Router
embedded within a network device.

A component schematic and Service Router interactions
in accordance with one embodiment of the invention are
depicted 1n FIG. 9. In this figure, the DCE component (9010)
refers to any extant TPE, or a DCE, TTS, or AV component
that can mvoke a service call that can be fulfilled by a
Service Router. These components can include DCE com-
ponents such as Lockbox and Title Manager services, an AV
Viewer, or any TPE that can interact with either a DCE or

10

15

20

25

30

35

40

45

50

55

60

65

28

AV environment. Example external services are presented
by the top set of boxes, labeled OTA service (9020), DRM

service (9030), and Other Service (9040). These external
services are destination services for requests processed by
the Service Router (9100) and its components. Other ser-
vices may also be referenced by a Service Router, including,
for example, specific adapters, identity, title transaction, title
managers, TTS, DCE, TPE, and the like.

6.4.2.1.8.1 Authentication and Authorization of the Service
Router

Some embodiments described below assume that the
Service Router has been validated and 1s authorized to
provide the service routing function. Service router authen-
tication and authorization 1s orthogonal to the functionality
of the Service Router 1tself. The authentication and autho-
rization steps described below apply equally to all imple-
mentations of a Service Router, and the authentication and
authorization steps listed below can be performed by the
Service Router before commencing operation, at any step of
the example tlow processes described herein, or can be
performed during provisioning of a Service Router and
preconfigured 1nto the Service Router configuration.

In some embodiments, the Service Router verifies its own
identity and authorizations with an identity provider by
authenticating to the identity provider and obtaiming proof of
identity and optionally authorizations from that identity
provider. The step of authenticating the Service Router can
be performed 1n-line with the transaction when needed, or 1t
can be performed as a precursor operation before the Service
Router begins processing requests. An example of this type
ol authentication, performed in-line with the transaction as
a precursor to processing the transaction, 1s shown i FIG.
10 as “2: Authenticate”. The authentication and authoriza-
tion mechanism can be performed at any step for which an
authorization or authentication can be required. Alterna-
tively, the authentication and authorization steps can be
performed as a precursor to processing a transaction. In
other embodiments, the authentication can be performed, at
least 1n part, using cryptographic means, such as a crypto-
graphic hash such as MD?3, a digital signature, public/private
key pair, digital certificate, or other means well known to
those skilled 1n the art. Particularly, in some embodiments,
a cryptographic hash or digital signature 1s used to validate
the Service Router executable as part of the authorization
and authentication process. In other embodiments, a chal-
lenge/response mechanism can be used.

In some embodiments, authorization and authentication
can be provided using a SAML artifact from the identity
provider to the Service Router itself 1s provided by the
identity provider. In other embodiments, a SAML artifact 1s
provided by the original requester, and the Service Router
can either validate the artifact provided to 1t or can act as a
proxy, with request authorizations and authentications being
validated at the service endpoint. In non-SOAP/SAML
embodiments, the request authentication 1s performed using
techniques appropriate to the authentication technique
described above. Thus, the Identity Provider 1s not required
to support SOAP/SAML, but can support other authentica-
tion methods and techmiques in addition to or in place of
SOAP/SAML. If a Service Router fails to authenticate itself,
it can continue processing but will not be able to 1nvoke any
endpoint requiring authentication or authorization of the
Service Router.
6.4.2.1.8.2 Basic Process Flow

A basic process flow for a Service Router component 1s
illustrated 1n FIG. 10. A client component sends a request
(flow 1 of FIG. 10) to a Service Router. The client can be

US 10,467,606 B2

29

part of a TPE, a TPE application such as a DCE or TTS, AV,
another Service Router, or other application component
making a request to the Service Router. In some embodi-
ments, the request 1s provided as a SOAP message. In other
embodiments, alternate request message encoding can be
used without loss of generality.

The request to a Service Router preferably includes
authentication materials. In the example SOAP-based imple-
mentation, the authentication materials can take the form of

a SAML artifact included in a SOAP Header and are used by

the Service Router and/or endpoint to authenticate the
request. Other message encoding and transport mechanisms
can encode digital signatures in the request, or can establish
a secure session using a challenge/response mechanism.

The request can specily at least one right to be processed
by the Service Router. Each right can reference a title,
service, or other title-enabled process capable of processing
the request. If more than one right 1s specified, a processing,
order for rights can also be specified.

The rights specification parameters, 1 specified, identify
an “action” to be performed by the service endpoint. If no
rights specification parameters are provided, a default action
can be i1dentified, either explicitly or implicitly. The request
generally contains suflicient information about at least one
right, at least one Title, and the desired transaction infor-
mation (part of request context) to support validation and
tulfillment of the request. For example, a purchase transac-
tion can include payment information suitable for use during,

5

10

15

20

25

30

invoke the endpoint. For example, at the end of a
purchase process, the context in which the title 1s being
redeemed 1s communicated with a Service Router. This
contextual information 1s used by the Adapter to create
the desired message(s) required to complete the trans-
action(s) at the specified endpoint(s). In another
example, the user might be required to provide addi-
tional information at the point of redemption and this
information 1s passed as part of the RequestContext.
The format and structure of the RequestContext will
vary depending upon the type of service endpoint the
request 1s being sent to. In some embodiments, the
RequestContext element 1s omitted as the context of the
request 1s not relevant or available from other sources.

The Endpoint specification. For example, the request can
specily the endpoint to be used. The endpoint specifi-
cation can also specily additional elements to be
returned by the endpoint to identity the request to the
originator. For example, these parameters can be passed
to an OTA service that 1s required to return them 1n any
response. Examples of these types of elements can
include:
Transactionld—A transaction ID used for tracking the

transaction or for support.
Message—A user Iriendly message that 1s displayed to
the user or included 1n the Active Voucher.
An example SOAP-XML embodiment of Service Router
request fragment 1s shown below.

<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/ >
<soap-env:Header/>
<soap-env:Body>

<tf:TitleDocument>

message processing ol the request at an endpoint. In some
embodiments, a tf:Title element 1s sent 1n the request, 1n
other embodiments, a tf:Title element and an authenticator
stub 1s provided as part of the request.

A Service Router request can comprise the following
optional elements either embodied within, or referenced by,
the request message:

Right—A “night” element 1ndicates to a Service Router

the right being redeemed 1n a Title. A Service Router
will interpret the contents of the specified right to
retrieve the Service Resolver and Registry-based ser-
vice 1dentifier.

Title—At least one Title object 1s passed or referenced as
the Title object contains information necessary for the
Service Router to process the request. In XML-based
embodiments, this 1s referenced as an instance of a
ti: Title element.

RequestContext—The RequestContext element will con-
tain additional imformation, as required, 1 order to

<tf:Title 1d="title_1d” xmlnsrti="http://aplaud.com/ns/0.1/tts/format’>
<I[CDATA]... title detail ...]]>
</tf: Title>
<tf:Stub type=“protocol”>
<Binding type="method|”>
<Title/>
<Method/>
</Binding>
<Message>
<I[CDATA]... payload detail ...]]>
</Message>
</tf:Stub>

</tf: TitleDocument>
</soap-env:Body>
</soap-env:Envelope>

50

55

60

65

The diagram provides a sample of a SOAP message that
1s sent to a Service Router. Key points 1n this example are:

The TitleDocument element 1s a standard encapsulation of
a Title object and will contain all data to be sent to a Service
Router.

The Title continues to be sent to a Service Router and
expresses the rights as well as the standard meta-data to be
used by a Service Router.

The Stub element 1s new to the protocol but 1s a standard
extension mechanism employed by Titles. In some embodi-
ments, the Stub 1s used to contain the orniginating message
(1.e. payload) sent by the requesting party.

The Stub uses a Binding element to indicate how 1t 1s
bound to a Title (or set of Titles). In this example the Stub

1s bound directly to a Title and Right.
The Message element contains the payload.

Once a request has been receirved, there are several

optional verifications that can take place.
The Service Router optionally verifies (flow 2 of FIG. 10)
the authorization materials provided with the request. This

US 10,467,606 B2

31

verification can occur in several ways. In a SOAP/SAML
embodiment, the Service Router passes the SAML artifact
provided with the request to an 1dentity provider for verifi-
cation. The i1dentity provider can be part of the Service
Router, or can be separately instanced. The Identity provider
validates the SAML artifact, and either authenticates the
request(or), or fails the authentication by sending a failure
message. In the SOAP/SAML embodiment, the failure indi-
cation can be returned using a SOAP fault message. Alter-

natively, other messages or messaging protocols can be

used.

In some embodiments, the Identity Provider 1s acting as
the trust authority for all DCE interactions and can be used
to authenticate and authorize both the service provider and
the sending client. Optionally, the service provider can be
configured to not verity SAML artifacts. This option permits
any component to call a Service Router, even 1f its not part
of the DCE trust hierarchy.

There optionally can be an implicit trust established
between a Service Router and the DCE components based
upon the validity and authenticity of a title passed within a
request. This implicit trust model can be implemented for
simplicity when the deployed architecture permits. An
assumption for this implementation decision 1s that the DCE
1s operated 1n a secure ASP environment (1.e. not federated),
and that the Identity Provider 1s the trust authority for the
transaction based on authentication (not authorization).

In some embodiments, a Service Router will not require
authentication of the calling application or its request. This
permits backwards compatibility with older versions of DCE
implementations and helps ensure that all DCE components
can call a Service Router. A Service Router 1s, 1n these
embodiments, an unsecured service within the DCE and
should not be exposed outside the firewall. In other embodi-
ments, a Service Router can require authentication of the
calling applications, using any of the support means known
to those skilled in the art.

After the authorization materials are validated by the
Identity Provider, a Service Router examines the redemption
right being invoked, obtains the address of one or more
Service Resolver and Registry components in which to look
up the request, and well as the Service Identifier to be looked
for. The service registry can be a Service Registry compo-
nent, an external registry, part of the Service Router, or
another service that provides services of a registry. In some
embodiments, the service resolver and registry address can
be defined within the Service Router, within the title, or can
be defined within another service resolver and registry
known to the Service Router.

A Service Router preferably uses service definitions
stored 1n the service resolver and registry. The definitions
include 1dentification of parent and child services, whereby
the parent service 1s described by the current definition and
the child services are described 1n other service definitions.
Child services are 1dentified in the parent service definition
and 1s tagged appropriately for processing. In some embodi-
ments, the service definition 1s defined using a right speci-
fication embodied 1n a title. In other embodiments, a service
definition in one or more industry standard formats can be
used. For example, a UDDI registry can serve as a service
registry. Alternatively, other directory services such as
LDAP or Active Directory can act as a service registry.

The Service Router then performs a lookup (step 3 of FIG.
10) of the service identifier 1n the selected service resolver
and registry. The registry and service ID provide suflicient

information for a Service Router to look up the service

10

15

20

25

30

35

40

45

50

55

60

65

32

definition 1n the service registry. In one embodiment, a

service deflnition comprises at least one of:

A name, ID, and/or description of the destination service
endpoint,

A description of the protocol used to communicate with
the service endpoint,

A location or 1dentity of a adapter for messages sent to the
service endpoint,

A location or identity of a adapter for message received

from the service endpoint,

A location or identity of the component used to commu-
nicate between the Service Router and the service
endpoint.

Parameters to the adapter. In some embodiments, this can
take the form of a WSDL that defines the Web service
data types, messages, operations, ports, and other attri-
butes of the interface.

In some embodiments, each of the elements included 1n a
service definition can include a URI or URL that describes
a protocol, endpoint location, parameters, and other infor-
mation required. In other embodiments, the element defini-
tions can be defined using discrete fields. Additional infor-
mation can be mcluded 1n the service definition for use by
different releases of the Service Router. In some embodi-
ments, the service definition can also comprise some secu-
rity indicia that can be used to verily the mtegrity of an
adapter or endpoint, for example, a cryptographic hash value
or other mechanisms for authentication and authorization as
described above.

It will be appreciated by those having ordinary skill 1n the
art that this step of the process provides a layer of abstraction
between a Service Router and each endpoint implementa-
tion. It will be appreciated further by those having ordinary
skill 1n the art that 11 a service endpoint name changes for
any reason, then the definition need only change in the
service resolver and registry and all 1ssued Titles that use the
changed endpoint can remain unchanged.

Using the service definition, a Service Router then obtains
the 1dentity of an adapter to be used 1n order to structure the
request to the endpoint, optionally validates the adapter, and
then invokes the adapter (step 4 of FIG. 10). An adapter, 1
speciflied, 1s used to transform the original request to a
Service Router into a message 1n an appropriate format for
use by the specified endpoint. This transform process can
include data checks, calculations, replacements, configura-
tions, and formatting changes to the original message, and
can involve rewriting the original message to a new format
or structure.

In some embodiments, the Service Router obtains infor-
mation about the adapter from a service resolver and regis-
try. In alternative embodiments, a Title returned from the
service resolver and registry can contain a reference to the
adapter(s) to be used to implement the service call. In other
alternative embodiments, a NULL adapter can be specified.
If security indicia for the adapter are available, the Service
Router can optionally check the indicia and the adapter to
ensure the integrity of the adapter. Adapters can be hard
coded as stand-alone program executables, as scripts such as
in embodiments where the protocol used 1s XML-based, be
structured as XSLT stylesheets. SOAP-based embodiments
can advantageously use an XSLI-based adapter to transform
the message format.

The Service Router can have an independent trust rela-
tionship with a service endpoint, or the trust relationship 1s
maintained between the request originator and the service
endpoint. The Service Router can define an error handler to

handle authentication, authorization, and service failures of

US 10,467,606 B2

33

an endpoint, and can define alternative service endpoints to
process the request, or define the manner in which failure
information 1s returned to the request originator. In some
embodiments, the Service Router can have a plurality of
faillure handlers that provide diflerent failure handling
semantics.

In some embodiments, the Service Router caches adapter
definitions and associations of adapters to endpoints. This
improves performance (but can require an application reload
if the adapters are changed). In more specific embodiments,
the service owner can create adapters for each service
endpoint that can called by a plurality of Service Routers.
Each adapter also can be shared between a plurality of
endpoints.

While there 1s generally an adapter specified for each
endpoint, the use of an adapter 1s not required 1n embodi-
ments where the initial message 1s already 1n the correct
format for use by the service endpoint. In these embodi-
ments, the 1nitial message can be used without transforma-
tion. In other embodiments, distinct adapters are created for
the Request and another, distinct, adapter created for pro-
cessing the response from the endpoint to the Service
Router.

This second type of adapter 1s called a Response Adapter,
and 1s used to transform the response from the endpoint into
a format understood by a Service Router. Alternatively, the
same adapter can be used to process requests as 1s used to
process responses. In some embodiments of the invention,
Adapters transform a request message into the form required
by the destination endpoint. This can involve at least one of
a translation of format, structure, and transmission protocol,
and can additionally require obtaining or creating new or
additional security indicia to support the new format, struc-
ture, and transmission protocols. The format translation 1s
represented as flow 5 1 FIG. 10.

In some embodiments, the adapter can translate an origi-
nal request message to a new message format using the
SOAP format. The Service Router then sends the adapter
translated message to a specified service endpoint using the
adapter-provided message transport (flow 6 1in FIG. 10). The
sent message can optionally comprise a plurality of mes-
sages, and can further comprise additional elements 1nclud-
ing security indicia from the original message and/or the
security indicia ol at least one of the request originator,
service resolver and registry, adapter, and/or other services
associated with processing the sent message. Alternatively,
the security indicia used can be provided from an alternative
source such as a service resolver and registry. Which secu-
rity indicia to use 1s configurable when the service router 1s
configured.

It 1s assumed in this embodiment that some form of
authentication 1s required in order to invoke the remote
endpoint. The authentication can a simple username and
password passed 1n a SOAP Header, as sophisticated and
mutually authenticated SSL connections along with system
identifiers and keys, a SAML artifact, or can be based upon

5

10

15

20

25

30

35

40

45

50

55

34

other authentication technologies. Alternatively, the authen-
tication can be based upon the sending Service Router
component’s ID, or other information. In other embodi-
ments, no authentication 1s required and the authentication
materials are omitted.

The endpoint processes the request (step 7 of FIG. 10) and
returns a response (step 8 of FIG. 10) to the Service Router.
In some embodiments, the response message 1s optionally
processed by a Service Router using an optionally specified
response adapter. The response adapter 1s Tunctionally simi-
lar to the adapter described above, and 1s managed by the
Service Router 1n the same manner as other adapters.

In some embodiments, the response adapter executes the
post-processing logic (step 9 of FIG. 10) including data
checks, calculations, replacements and formatting. The final
objective of the response adapter 1s to generate a response
message (step 10 of FIG. 10) to a Service Router that 1s
consistent with all messages returned by a Service Router to
client applications. The Service Router then processes the
response and returns 1t to the client (step 11 of FIG. 10). In
some cases, SOAP Fault messages are returned. This can
occur when the original request was 1n SOAP format, and
one or more processing steps were not successful. In some
alternate embodiments, the response includes the storage of
the Fault messages in the Active Voucher that was used to
invoke the remote endpoint. In these cases, the fault message
can comprise one or more of the elements related to the
transactions, such as:

Transaction 1D

User Message

Status

Last Updated Date/Time

Initiation Date/Time

In some embodiments, a response from the endpoint (or
Service Router) 1s subsequently transformed mnto a message
block that 1s used to update Active Vouchers or inform other
server-side process. The response 1s a standard response
from a Service Router and will include at least one message
block that contains user friendly information about the status
of the request and/or the results of the request. This serves
the purpose of the original Download ID that was received
from Mobile Streams and entered 1n the Active Voucher. The
message block and other response details 1s placed 1n a
content ti:Stub element attached to the Active Voucher. In
some embodiments, other information can be placed in the
t1:Stub element and attached to the Active Voucher.

The response from the Service Router 1s, in some embodi-
ments, a standard DCE status along with a message block
that can be processed by a DCE application. A DCE appli-
cation can update the Title with the contents of the message
block. For example, 1f an OTA service request was made, the
response can include a transaction 1dentifier. In this case, the
transaction 1dentifier can be placed 1n the resulting Title (e.g.
users Active Voucher) for tracking purposes.

An example response fragment from an XML formatted
message 1s shown below:

<xs:element name="TtsResponse” type="xs:anyType”>
<xs:complexType>
<Xs:sequence-”

<xs:element name=""Transactionld” type="xs:NMTOKEN" minOccurs="0" />
<xs:element name=""TransactionldLabel” type="xs:token” minOccurs="0" />
<xs:element name="Message” type="xs:string” />

<xs:element name="Method” type="xs:token” />

<xs:element name=""Timelnitiated” type="xs:dateTime” />

<xs:element name=""TimeCompleted” type="xs:dateTime” />

</Xs:sequence>

US 10,467,606 B2

35

-continued

</xs:complexType>

</xs:element>

<xs:element name="System” type="tp:systemType” />
<xs:element name="User” type="tp:userlype” />
<xs:element name="Status” type="tp:statusType” />
</xs:schema>

</wsd
<wsd|
<wsd|
</wsd
<wsd|
<wsd|
</wsd
<WSsda
WS
<WSsda
</wsd
<wsd|
<wsd|
</wsd
<WS(
<Wsd
<WSsd
<WS(

[:types>
:message name="ServiceRouterRequest™>

:part name="TtsRequest” element="tp:TtsRequest™ />
l:message>

:message name=""ServiceRouterResponse>

:part name="TtsResponse” element="tp:TtsResponse™ />
l:message>

l:message name="TtsSystem >
l:part name="System” element="tp:System™ />
I:part name="User” element="tp:User” />

|:message>
message name="TtsStatus”>
:part name="Status” element="tp:Status” />

l:message>

I:portType name="ServiceRouter PortType”>
l:operation name="ServiceRouter ">

l:input message=""tp:ServiceRouterRequest™ />
l:output message="“tp:ServiceRouterResponse” />

</wsdl:operation>
</wsdl:portType>

36

<wsdl:binding name="“ServiceRouter__Binding” type="tp:ServiceRouter__ PortType”’>

<soap:binding style="document™ transport="http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name="ServiceRouter” >
<soap:operation soapAction="ServiceRouter” />
<wsdl:input>

<soap:header message="tp:TtsSystem™ part="System” use="literal” wsdl:required="false™ />
<soap:header message="tp:TtsSystem” part="User” use="literal” wsdl:required="false” />
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/” use="literal” />

</wsdl:input>
<wsdl:output>
<soap:header message="tp:TtsStatus™ part="Status” use="literal” />

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/” use="literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ServiceRouter”>

<wsdl:port name="ServiceRouter_Port” binding="tp:ServiceRouter_ Binding”>

<soap:address location="https://builder.navio.com/tts/service/ServiceRouter” />

</wsdl:port>

<wsdl:port name="“NonSecureServiceRouter__Port” binding="tp:ServiceRouter__Binding”>

<soap:address location="http://builder.navio.com/tts/service/ServiceRouter” />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

In some embodiments, a plurality of responses can be
processed by the Service Router in response to a single
request message. It will be appreciated by the reader how a
plurality of response messages can be processed using the
scheme described above.

6.4.2.1.8.3 Multiple Services

The previous embodiment 1llustrated the basic tlow sup-
ported by a Service Router. In such embodiments, the
adapters are responsible for sending and receiving, and the
flows can easily be extended to support more complex tlows
as well as coordinated activities. FIG. 11 depicts a slightly
more complex tlow for an alternative embodiment of the

invention:

Flows (1) thru (9) proceed as described above for FIG. 10.
After receiving the response back from a first endpoint and
processing 1t (step 9 of FIG. 10 and FIG. 11), the Service
Router or adapter can make additional calls to other end-
points. In this example, no additional adapters were selected,
and the message(s) are forwarded from the Service Router/
adapter to a second endpoint (step 10 of FI1G. 11), where they
are processed (step 11 of FIG. 11), and returned to the
Service Router/adapter (step 12 of FIG. 11). In some

45

50

55

60

65

embodiments, a pre-processing step 1s inserted between
steps 9 and 10 of FIG. 11 1n a manner consistent with step

5 of FIG. 11.

Processing continues with a post-processing step 13, an
adapter response (step 14), and a response to the client (step
15). These steps are analogous to steps 9, 10, and 11 of FIG.

10.

It should be noted that the Service Router itself can make
the further calls to additional endpoints after the response 1s
received from the first adapter.

In each case, the decision as to which message(s) to send
to the next processing step 1s made, at least 1n part, on the
basis of the service definition contained within at least one
of a request, title, service resolver and registry, or Service
Router.

6.4.2.1.8.4 Cascading Services

Cascading services are a still more complex variation of
a Service Router flows, and can be used to coordinate
complex activities while abstracting the complexity into two
or more “‘compartmentalized services”. One embodiment of
the invention using such Cascading Services 1s illustrated in

FIG. 12. In FIG. 12, a Service Router 1s being called by

US 10,467,606 B2

37

itself. This can be a recursive call, or can be a call to invoke
another service that 1s abstracted by a Service Router. In this
particular example, the second Service Router involved in
the activity 1s a completely separate instance operating in a
distributed and federated environment. In other embodi- °
ments, the second Service Router 1s the same instance as the
first Service Router.

Flows (1) thru (9) proceed as described above for FIG. 10.
After receiving the response back from a first endpoint and
processing 1t (step 9 of FIG. 10), the Service Router or
adapter can make additional calls to other endpoints. In this
example, no additional adapters were selected, and the
message(s) are forwarded from the Service Router/adapter
to a second endpoint (step 10 of FIG. 12). The second
endpoint 1s, 1n this example, another Service Router, which
processes the request as described 1 FIGS. 10 and 11, with
a response being returned in step 18 of FIG. 12. In some
embodiments, a pre-processing step 1s inserted between
steps 9 and 10 of FIG. 12 1n a manner consistent with step 20
5 of FIG. 11. Processing continues with a post-processing
step 20 of FIG. 12, an adapter response (step 21), and a
response to the client (step 22). These steps are analogous to
steps 9, 10, and 11 of FIG. 10

In a more detailed embodiment the logic expressed either 25
in the requesting Title, 1n the Service Definition, or a
combination of the two 1s as follows. A Service Router
makes calls to other Service Routers 1n order to complete an
activity. Each service implemented and handled by a Service
Router instance can be equally complex and can rely on
subsequent cascading calls. At a high-level each Service
Router instance encapsulates the processing logic for an
activity and ultimately abstracts the complexity away from
upstream implementations. In the simplest embodiment,
someone who 1s deploying a new activity need only know
what services to call and 1n what sequence and not how each
service 15 1mplemented.
6.4.2.1.8.5 Adapters as Service Endpoints

In some embodiments, the adapter 1s used as the service 4
endpoint rather than the adapter being used to invoke a
remote endpoint. This 1s 1llustrated in FIG. 13. There, the
adapter simply performs some processing logic 1n lieu of
transforming the message and forwarding i1t to an external
service. For example, the adapter can be used for informa- 45
tion services such as delivering pretty-print versions of the
Terms of Use or Privacy Policy statements.
6.4.2.1.8.6 Provisioning a Service Router

A Service Router may be provisioned as any other trusted
service. The following steps can be used to provision a 50
Service Router:

1. Setup an account for a Service Router. Since a Service
Router uses an Identity Provider for authenticating itself to
remote endpoints, a Service Router must first authenticate to
a Identity Provider 55

2. Register an account for a Service Router using the
Active Viewer or the Merchant Registration form. In some
embodiments, this account 1s no different than any other
account in the system. Other embodiments can distinguish
“system” or “application” accounts from other accounts 1 60
the Identity Provider.

If no account is setup, or the configuration 1s wrong, a
Service Router will still function but 1t will not be able to
authenticate itself to endpoints that depend on the SAML
Artifact and the Identity Provider. 65

3. Configure a Service Router’s configuration materials.

In some embodiments, these are stored in the web.xml file.

10

15

30

35

38

Configurations of each Service Router are implementation
dependent. The following parameters are generally config-
ured:
maxRetries—Used only when the remote endpoint sup-
ports SAML Artifact authentication. This parameter
determines the maximum number of times a Service
Router will retry a login to the Identity Provider and a
subsequent endpoint request. The relogin attempt 1s
done everytime the SAML Artifact (or session) expires.
The default 15 2.

createStubUrl—Specifies the URL endpoint for the Cre-
ate Stub service. This 1s generally the CreateRecordS-
tub servlet on the Title Manager.

identityProvider—Specifies the URL for the Identity Pro-
vider Login service where a Service Router can log
itself into the system.
serviceAccount—Specifies the username (1.e. email
address) for a Service Router account on the Identity
Provider.

servicePassword—Specifies the password for a Service
Router account on the Identity Provider.

A Service Router can interact with an external Web
service 1I Adapters for that service are available. In some
embodiments, these adapters are developed ahead of time
and are defined 1mn a Service Definition in the Service
Resolver and Registry. In order embodiments, adapters can
be dynamically generated. For example, an adapter refer-
ence can be to a Service Router or other Web service that
generates the correct adapter on demand. This can be
accomplished by a XSLT used to generate another XSLT
based on logic embedded 1n the XSLT and information being
passed 1n the source document.

In an embodiment using SOAP messaging, the Adapters
(both Request and Response) are XSLT stylesheets that
format the request to the endpoint, and format the response
from the endpoint.

1. Create a Request Adapter as part of the DCE build. The
Request Adapter must expect the nitial request to a Service
Router (SOAP Envelope) as the source document. A Service
Router request generally comprises a tf:Title element con-
taining the Title being redeemed and the Right element
indicating what right 1s being redeemed. Optionally, the
requesting application can provide a RequestContext ele-
ment that contains request specific information that will vary
from request to request. The adapters can use this informa-
tion 11 1t 1s anticipated/known ahead of time. As an example,
the RequestContext element can contain purchase informa-
tion if the Title 1s being redeemed as part of a purchase. The
Request Adapter must handle authentication requirements
for the external endpoint. If a username and password 1s
required, then the adapter builds the correct elements 1n the
SOAP Envelope to authenticate the request. For example,
the adapter places the authenticating material in a SOAP
Header. The exception to this 1s when the external service
uses the DCE Identity Provider for authentication. In some
embodiments, a Service Router automatically embeds a
SAML Artifact in the SOAP Header. Adapters can also use
extension mechanisms to make processing calls to external
applications. For example, an adapter can be configured to
call a java class/method of an external application. Other
types of external calls can be similarly supported by an
adapter.

2. Create a Response Adapter using the example provided
as part of the DCE build. The Response Adapter takes the
response ifrom the endpoint and puts 1t 1nto a normalized
torm for the DCE to understand and process. The response
from the endpoint 1s handled by the requesting application.

US 10,467,606 B2

39

Both the Request and Response Adapters must conform to
the standards and guidelines established for these
stylesheets, otherwise an error can occur and the stylesheets
can be rejected by the system.

3. Once the Request and Response Adapters are created,
they must be located 1n a repository accessible by the DCE.

4. A Service Router makes use of the Service Resolver
and Registry service for looking up external Web services
and retrieving service definitions. The Service Resolver and
Registry entries must be setup prior to using a Service
Router. To setup the Service Resolver and Registry entry or
entries follow the steps outlined 1n the Service Resolver and
Registry section. When the Service Resolver and Registry
has been setup with the correct Service Definition, make
note of the service definition (name, alias, or Document ID)
that was assigned the service.

5. Ensure that all Titles that need to use a Service Router
have the correct entries in their redemption rights. For
example, Polyphonic Ringtone Products need to reference
the correct Service Router URL and include a reference to
the Service Definition (e.g. Document ID, service definition
name, or service alias). In one embodiment, the following
steps are used to setup the Titles:

Edit an existing, or create a new mapping template that 1s
used for the title publisher batch load process. The mapping,
template will ensure that the published titles are constructed
properly. A sample mapping template includes global vari-
ables for the RegistryUrl, ServiceDefinition, Servicelype
and OnBuyMethod. These global varniables refer to infor-
mation that must be included 1n the Title and are used by the
mapping template to create the ‘1ssue’ right of the Product.
The ‘issue’ night 1s responsible for creating all Active
Vouchers.

The ServiceRouterEndpoint points to the publicly avail-
able URL for a Service Router as this 1s used by client
applications 1n order to mmvoke a remote service (for
example, a redeliver). The URL will generally follow this
pattern: http://buildernavio.com/tts/servlet/service/Router-
Client.

The ServiceDefinition 1s the Document ID, service defi-
nition name, or service name alias from the service Product
Title as indicated 1n the previous Service Resolver and
Registry step.

The ServiceTlype 1s the type of service that this refers to
and 1s also obtained from the Service Resolver and Registry.
In XML-based embodiments, a service type 1s defined using
a namespace. Examples of service type namespaces are
provided above.

The OnBuyMethod vanable 1s used to indicate what
redemption right should be invoked when a purchase 1s

10

15

20

25

30

35

40

45

40

complete. The Lockbox application will automatically
invoke this right after a successiul transaction. As an
example, for ringtones, the OnBuyMethod should be ‘rede-
liver’.

The mapping template also has a reference to the OnBuy-
Complete logic sheet. This logic sheet 1s used by the
Lockbox at the end of the buy process to determine what
should be executed and how it should be executed. An
example of a default logic sheet 1s an XSL script.

With the mapping template complete, the Products are
loaded using the title publisher or are updated with a
modified mapping template. Ensure that every merchant that
intends to use a Service Router with their titles has access to
the mapping template.

Modily the Merchant Pass for the merchant and add
access to the mapping template edited or created above. A
Service Router approach can require additional setup and
configuration but it 1s more extensible than the previous
right of creating custom logic sheets for each type of Title,
or action for each type of Title. There 1s preferably only one
logic sheet shared by all Titles and the control logic is
handled by adapters. Additionally, service definitions are
used to indicate what endpoint needs to be invoked and what
adapters need to be used. Since Titles refer to a service
definition and not directly to a logic sheet, the merchant can
casily change the definition in the Service Resolver and
Registry and have the changes automatically propagated
throughout the network. With the registry approach, there 1s
no need to modily Titles that are in circulation, including
Products and Oflers. This feature provides an extensible and
flexible environment by placing more control 1n the mer-
chants and/or operators hands. If a service signature
changes, or the service parameters are enhanced, or a new
operator becomes involved, the definition in the registry 1s
used to effect the change.
6.4.2.1.8."7 Adapters

As described above, Adapters can be hard coded or can be
implemented as scripted transforms. The following embodi-
ment details an XML-based description of an adapter trans-
form. The base adapter framework imports descriptions of

this type to manage the transformation and sending of
messages. The base adapter XSLT(s) imported by the adapt-
ers can support a “send message” functionality and various
message types such as SOAP, POST, GET, HI'TP/ XML,
SMTP, etc.

As an example, the following basic SendMessage func-
tion supports sending SOAP messages directly from a
Request Adapter:

<} -
This template will build and send a ProcessMessage and return a nodeset.
For this template to work correctly, the endpoint must return XML. Note,
since this template uses XALAN Java extension, it will only work on an
Xalan processor.
The Header and Footer passed to this template must be a String and not a
node-set.

>

<xsl:template name="SendMessage”>
<xsl:param name="endpoint” select="""""/>
<xsl:param name="action” select="""""/>
<xsl:param name="header” select=""""/>
<xsl:param name="body” select="*"""/>
<xsl:variable name="message’>

<Message>

<Endpoint type="url” method="post>
<xsl:value-of select="$endpoint™/>
</Endpoint>

US 10,467,606 B2

-continued
<SOAPAction=>
<xsl:value-of select="$action™/>
</SOAPAction>
<Body>

42

<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/”>

<soap-env:Header>
<xsl:copy-of select="$header”/>
</soap-env:Header>
<soap-env:Body>
<xsl:copy-of select="$body”/>
</soap-env:Body>
</soap-env:Envelope>
</Body>
</Message=>
</xsl:variable>
<xsl:copy-of select="svc:sendDocumentMessage($message)”/>
</xsl:template>

As 1ndicated 1n the example, a Xalan Java extension
(sve:sendDocumentMessage($message)) 1s used to send the
SOAP message and this particular example only supports
SOARP calls. The Java call that 1s made 1s to a Service Router
Utility method that calls the DCE’s ProcessMessage class to
handle and send the message. This basic capability must be
extended to support the other ProcessMessage types (e.g.
POST, GET, and SMTP) and to provide a cleaner integration
with Xalan. Furthermore, the “send message” capability
needs to be 1solated from other base templates as i1t will have
different implementations depending on the XSLT processor
used (such as Datapower XS40 or Saxon).

A sample RouterTemplate.xsl stylesheet 1s provided to
demonstrate the message building capabilities required by
the base templates. This 1s for example purposes only and
does not depict how the template should be written or
implemented.
6.4.2.1.9 User Interfaces

A TPE may provide one or more instances ol user
interface (UI) applications and components. In some
embodiments, the Ul components are the application inter-
face, such as the interface provided by a ftitle-enabled
merchant system or other title enabled application. In these
cases, the user mterface 1s provided by the application, and
may be constructed using traditional user interface tech-
niques such as web, thin client, or thick client interfaces.

In other embodiments, a TPE exposes titles to users and
requires a title-specific user interface to be exposed. Two
examples of TPE components, a “title helper” and an
“Active Viewer” application, provide user interface compo-
nents 1n various embodiments. A Title Helper provides a
web-based iterface for title-enabled applications that do not
otherwise have a TPE interface, and provides an interface
between the title-enabled applications and a TPE. An Active
Viewer (AV) provides a distributed TPE and integrated user
interface.

A user interface may be invoked 1n several ways. In a first
embodiment, the user interface 1s invoked by the user when
they select a user mterface-enabled indicator on a web site
or as part of an advertising banner. In other embodiments,
the User mterface may be invoked when the user selects an
application link that identifies an instance of a user interface
to be run. Alternatively, a user interface may be directly
called by an external applications program or web site, or
may be started based upon recognition of specific recerved
content. Examples of the latter may include starting the User
interface on the basis of a {file type association, MIME type,
or upon receipt and recognition of a title, upon receipt an
out-of-band communications media such as e-mail or instant

20

25

30

35

40

45

50

55

60

65

messaging containing a title. Another example 1s distribution
ol content on a network such as P2P 1n a format that can be
recognized and mvoked by client applications such as P2P
applications. These {files are distributed 1n a format recog-
nized by the application. When opened, the application
displays the contents, at least in part using User interface.
Alternatively, the User interface may be mvoked at device
startup and may be always running. In implementations
where User mterface functionality 1s embedded i other
applications or operating system components, the User
interface and i1ts components may be directly called by the
applications (such as a media player licensing interface) or
by operating system components within which the User
interface 1s embedded. For example, a user interface may be
invoked by the Microsoit Media Player license acquisition
page. Alternatively, the User interface may be involved by a
file browser such as Windows Explorer. Such User interfaces
can be provided using the techniques described herein and
methods known to those having skill in the art.

In some embodiments, a TPE’s user interface may be
integrated with web sites and accessed from computing
devices using standard Internet protocols including HTTP,
HTTPS, and WAP. In some embodiments, the User interface
may be launched from an existing web site by naming the
User interface i a link, or by naming a user interface
operating context in a link (which loads the user interface by
association), by specitying it using a scripting language such
as JavaScript, or by other means well known to those skilled
in the art.

In some embodiments, a Title Helper or Active Viewer
may be partially deployed as a web browser plug-in that
scans web pages and other content sources as they are
loaded, watching for links that name a user interface, an
operating context, or title. If an appropriate link 1s detected,
the web browser plug-in rewrites the web page on the fly,
adding the necessary scripting language (such as Javascript)
to the web page to display the Title Helper or Active Viewer
indicator shown 1n the accompanying screen shots. The Title
Helper or Active User interface indicator provides a visual
indication to the user that a page 1s title aware.

In one embodiment, the user interface 1s provisioned with
a list of web sites from which it 1s authorized to be launched.
The user interface may, depending upon configuration,
choose to not launch, launch 1n “insecure mode” (e.g. the
trust 1indicator 1s not set), or may display a popup window
indicating that the user interface i1s being inappropnately
launched. In one example embodiment, a user interface may
require a title to launch, said title may alternatively specily
a operating context to be used.

US 10,467,606 B2

43

In other implementation strategies, a Title Helper or
Active Viewer may respond to content being downloaded.
This content 1s often identified by content meta-data, such as
file type, file extension, and MIME extensions. The Title
Helper, Active Viewer, browser, operating system, or other
component may monitor downloaded content and start a
user interface when content that matches a specific content
type 1s downloaded. For example, the user interface may be
started when a MIME type that i1dentifies a title 1s down-
loaded. Alternatively, the user interface may be started when
a file with a specific file extension 1s downloaded. Further-
more, MIME encoding may additionally describe one of: a

user interface operating context associated with the down-
loaded content, a user interface title name associated with
the downloaded content, or a mime-type that 1s used to
identify content that may be managed using a Title Helper or
Active Viewer. Some examples of the above-mentioned
MIME-encoding techniques are provided below:

1234567890
http://location-goes-here
(body of title follows here)
(an example of a MIME flag)
X-navio/X--subtype

X--Operating context:
X--Title:

X--Title:
X--Protected:

Content type:

It should be understood by those skilled 1n the art that the
names and values of the MIME entries may be configured as
part of the implementation without aflecting the scope of
disclosure. The above examples describe responding to a
wake-up message may be equally applied to SMS, IM, or
other messaging protocols on other computing devices such
as desktop computers. The above examples of monitoring
downloaded content for MIME information may be applied
equally well to any situation in which MIME-specified
content 1s available, including file downloads from the
Internet.

Another example of invocation 1s the invocation of a right
to contact customer support via an online chat. In this case,
the right allows the user to invoke the contact right and runs
a supporting plug-in that provides a chat interface with the
user. A title provides the underlying right for contacting
customer support, and specifies a operating context that
specifies the look and feel of a chat or IM system. Alterna-
tively, the operating context may specily using a customer
preference for chat or IM application.
6.4.2.1.10 Title Helper

The user’s experience 1n eflecting transactions on the
Internet may be greatly enhanced by the Title Helper of the
present invention which integrates seamlessly with title-
enabled sites, e.g., e-commerce sites, and provides a con-
sistent interface for all transactions with which the user 1s
comiortable. According to one subset of functionality, the
Title Helper provides a window 1nto a user’s rights portiolio
(1.e., collection of titles) which may be stored remotely on
one or more servers (e.g., at a title-based transaction site as
described herein). As discussed elsewhere herein, the rights
portfolio may actually include one or more portiolios which
may be viewed individually or as a single portiolio. The Title
Helper allows the user to manage, collect, trade, transier,
redeem, group, and share the titles in the portiolio.

A simple yet powerful user interface to the title manager,
referred to herein as the Title Helper, 1s shown 1n FIG. 14 as
an mdependent overlay window on the user’s machine. The
Title Helper 1s a service application which acts on behalf of
the user 1n the electronic realm to eflect title-based transac-
tions. In facilitating such transactions, the Title Helper 1s

10

15

20

25

30

35

40

45

50

55

60

65

44

operable to act as a proxy for the user to varying degrees.
The Title Helper represents the user on the Web, becoming
active when invoked by the user (or by a title-enabled site
with which the user 1s interacting) to facilitate title-based
transactions. When invoked, the Title Helper manages and
controls access to the digital assets (1n the form of titles) 1n
the user’s rights portfolio. It makes the terms of a proposed
transaction visible to the user, and ensures that the parties to
the transaction adhere to those terms. This capability 1s
particularly valuable in view of the fact that the typical
consumer on the Web 1s largely unaware of the underlying
terms or the transfer of information associated with the
many transactions in which they routinely take part.

In some embodiments, the Title Helper goes beyond
proxying only the transactions on pages configured to use
the Title Helper and adds additional functionality allowing 1t
to act as a ‘trust shueld.” According to more specific embodi-
ments, a trust shield functions to filter the web page a user
1s viewing, recognizing the purchasing page and html and
javascript on the page, and reinterpreting it on behalf of the
user. Thus a user would be ‘shielded’ from a web site that did
not 1 any way specifically invoke the Title Helper. The Title
Helper would act as a proxy to purchase on behalfl of the
user, and debit his account 1n any of a variety of ways such
as, for example, from a credit card, or from digital cash or
coupons.

In another example, the Title Helper can analyze and
interpret web services that are referenced on a page and that
can be mvoked by the user. For instance, the Title Helper can
recognize form elements and form submissions. In this case,
the Title Helper can retrieve definitions for the web service
including interface definitions and information to choreo-
graph a transaction with the web service. The Title Helper
can be used to mvoke these services on behalf of the user.
Web services can be defined and placed on a registry for
discovery or can be interpreted by the DCE which the Title
Helper communicates with directly. According to various
embodiments, the Title Helper 1s operable to act as a privacy
shield such that the user does not need to reveal their identity
to the party or site with which they are transacting.

The interface on which the Title Helper 1s superimposed
or overlaid may be a Web page generated by a conventional
Web browser application. The following description
assumes such an approach for illustrative purposes. How-
ever, 1t should be understood that the underlying interface
may be generated by any of a variety of programs without
departing from the scope of the invention. For example, the
functionality of the Title Helper may be eflected on a small
device such as a credit card or ATM reader which 1s typically
used to authenticate a user and drive a purchase via their
credit card. The user would typically enter their user name
and password on the device, a magnetic card, fingerprint

reader or RFID, etc. and then various aspects of the web
based functionality would be accessible via the device.
Retferring now to FI1G. 14, Title Helper interface 1401 has
two states, dormant 1403 and active 1404. In the dormant
state, Title Helper 1s almost entirely lidden with only a
minimal amount of information displayed to indicate its
presence, thus not interfering with the content on the web
page 1402. When a predetermined event happens (e.g., the
user browses a title-enabled merchant site), or the user
allirmatively invokes the Title Helper (e.g., with a key stroke
or by placing a pomter device over the dormant Title
Helper), the Title Helper becomes active. In the active mode
the Title Helper expands 1tself to a large enough area that 1t

US 10,467,606 B2

45

can display any relevant information, while still only obscur-
ing a small part of the underlying application interface, e.g.,
a browser 1nterface.

In this case the user never completely leaves their origi-
nating environment and transactional context 1s always
maintained. This 1s a unique value proposition of the dor-
mant and active states of the Title Helper since the user
remains on the originating site. The user can resume exactly
where they left ofl when the transaction completes and they
are always visibly reassured. The merchant 1s also provided
with an opportunmty to present to the user additional nfor-
mation on the web page that can reassure them about the site
they have visited and that transactional mtegrity will be
maintained.

According to various embodiments, the Title Helper 1s a
lightweight engine (e.g., an overlay, plug-in, or virus appli-
cation) for processing titles on behalf of applications which
are not themselves title-enabled. According to a specific
embodiment, the Title Helper comprises a Macromedia
Flash application. The Title Helper can integrate relatively
casily with applications which are not operable by them-
selves to conduct transactions using titles, thereby enabling
such applications to enjoy the advantages of title-based
transactions with little or no alteration of the code of the
underlying application. In some cases, and depending upon
the degree of coupling between the two, the underlying
application may not be aware of the existence of the title
helper. In general, the title helper 1s a mechanism which
allows any site or application to become title-enabled.

For example, the Title Helper could work 1n conjunction
with an individual’s Web site and a title-based architecture
as described herein to enable the individual’s site to engage
in commercial transactions without having to incorporate
sophisticated commercial capabilities into the site. In
another example, the Title Helper could work with a digital
music player to enable the user to browse, select, sample,
and pay for music tracks. The range of applications and
utility of the Title Helper allows the user to readily enjoy the
security and efliciency of engaging in title-based transac-
tions for virtually all their online transactions.

According to various embodiments, the Title Helper may
be employed to facilitate virtually any application becoming
title-enabled, and may have various degrees ol coupling
with the underlying application. For example, the Title
Helper may be a tightly-coupled soiftware module which 1s
integrated directly into the code of the application. Alterna-
tively, the Title Helper may be a plug-in which 1s more
loosely coupled with the application, taking advantage of,
for example, available exposed interfaces of the application.

According to other alternatives, the Title Helper may be
very loosely coupled with the application. For example,
hyperlinks associated with an application can be redirected
to URLs associated with the Title Helper which may be
stored locally or located on a remote device. Such a hyper-
link might be a “buy” link which a user would select when
he wants to purchase digital content. The link might then
redirect the user’s browser to a 3’ party title-based archi-
tecture which transparently facilitates the transaction using
titles. The 37 party site serves up the Title Helper interface
which then appears on the user’s screen to facilitate the
transaction using, for example, payment or wallet functions
as described herein. Those of skill in the art will appreciate
that the degree and nature of coupling and the functionalities
provided may vary considerably without departing from the
scope of the mvention.

Regardless of the degree of coupling and according to
various embodiments, the Title Helper may facilitate many

10

15

20

25

30

35

40

45

50

55

60

65

46

of the functionalities described elsewhere herein. For
example, the Title Helper may facilitate payment and wallet
functions, and title management functions (1.e., the intelli-
gent presentation and management of titles). Specific Title
Helper capabilities which enable the capture of user mput
(e.g., PIN entry and data entry) allow user information to be
protected from the merchant or more importantly to explic-
itly define the type of information required by the merchant
for the transaction to complete. For example, the Title
Helper can accept a PIN obtained through a physical retail
transaction to convey value during an online transaction.
Additionally, the Title Helper can present a form detailing
the information required by the merchant such as mobile
information.

The Title Helper 1s also operable to facilitate synchroni-
zation between titles and data associated with any underly-
ing application which the titles represent. For example, the
Title Helper can facilitate transier of titles to/from local
devices for oflline storage or for transport via external
mechanisms. In this case, the Title Helper acts as a secure
intermediary process between the DCE and the local
machine, allowing transier of titles to a local device such as
a hard drive, secure flash drive, mobile device, or other
device. Optionally, the Title Helper can print the titles to
provide a hard copy version.

The Title Helper may also facilitate other functions relat-
ing to online transactions such as, for example, shopping
cart functions, escrow control functions, privacy functions,
etc. According to some embodiments, the container and
plug-1n capabilities of the Title Helper provides an operating
platform for functionality that can be plugged 1n dynami-
cally and during runtime. This allows the Title Helper to be
extended and offer new functionality. For example, a video
component can be added to the Title Helper for training and
instruction, while an interactive audio-video component can
be plugged 1n to allow transactions to occur over other
channels and media.

According to specific embodiments, the Title Helper
provides a single view and interface for a user’s federated
identity, where their profile information 1s spread among
many parties. In this case, titles are used to refer to and grant
rights to 1dentity information stored and managed by the
other parties. The Title Helper provides an interface to
present the 1dentity information, as well as use the informa-
tion during a transaction. The Title Helper may also be an
cllective tool for provisioning or coordinating provisioning
services. In this case, the Title Helper can be used to
provision new accounts or new services that are required as
part of, or 1n conjunction with the transaction. For example,
il a Web site only accepts payment 1n euros, the Title Helper
may employ a currency exchange service or mechanism to
cllect a translation between the user’s funds 1n U.S. dollars
(as represented by ftitles) and the currency required by the
site. This may be eflected with or without interaction by the
user and does not require that the underlying site be a
title-enabled site.

As mentioned above, the code for the Title Helper may
reside 1n a variety of places. For example, the Title Helper
may reside on the user’s machine and be associated with or
integrated to some degree with the user’s Web browser.
Alternatively, the Title Helper may be served up by a title
transaction site, e.g., the site hosting the user’s rights port-
folio. Still another alternative involves the Title Helper
being served up by the specific title-enabled site with which
the user 1s transacting.

According to some embodiments, the integration of the
Title Helper with a title-enabled e-commerce site 1s facili-

US 10,467,606 B2

47

tated by a “shopping cart” functionality 1n the Title Helper.
This functionality allows the user to collect offers for goods
or services at, for example, an e-commerce site. Each ofler
1s a title which represents the right to buy the corresponding
goods or services. The shopping cart functionality of the
Title Helper allows the user to see these titles representing
the offers and the terms of each. Thus, the Title Helper
provides a window on the terms of a proposed transaction,
as well as the necessary functionalities to facilitate the
transaction. This aspect of the Title Helper also removes the
shopping cart functionality from the control of the merchant
site to the control of the user.

As will be understood, the presentation of the actual terms
ol a proposed transaction to the user 1s beneficial to both the
user and his transaction partners in a number of respects. For
example, as mentioned above, 1t 1s relatively common for a
consumer to be unaware of the actual terms of transactions
in which they routinely engage on the Web. There 1s an
inordinate (and oftentimes unjustified) amount of trust
placed by consumers that the parties with whom they
transact are, 1in fact, who they say they are, and are actually
abiding by the terms they are proposing. Because the actual
terms of the deal are made explicit by technology not under
control of the other parties to the transaction, the user 1s able
to make informed decisions about whether to proceed with
particular transactions. Similarly, because the Title Helper
provides the ability to monitor and control what titles are
transierred during the course of a transaction, satisfaction of
the actual terms of the transaction can be verfied.

Because the Title Helper can contain a variety ol mon-
ctary instruments, 1t can also translate between them and
thus facilitate a purchase even 1f the merchant site does not
accept the monetary instruments the user has at their dis-
posal. IT a user has, for example, digital cash, but the site
does not specifically accept that cash, the AV might translate
the user’s cash into a credit on some other monetary instru-
ment that 1s accepted by the merchant and thus make the
transaction. Furthermore, since 1in some embodiments, for
example the ‘Trust Shield,” the Title Helper can act so as to
proxy the entire purchase process, acting completely on
behalf of the user such that the user’s anonymity 1s main-
tained.

As discussed elsewhere herein, transactions involving the
exchange of titles between or among multiple parties may be
cllected using a title-based escrow process, e.g., the digital
lockbox into which each party to the transaction transiers
titles to a lockbox to facilitate consummation of the trans-
action. According to some 1implementations, verification the
contents of a lockbox may be achieved manually, 1.e., by
cach party viewing the contents to the lockbox.

According to some embodiments, additional escrow guar-
antees can be expressed through the Title Helper. These may
come at an additional cost (e.g., incurred by the merchant or
passed through to the consumer). If the escrow 1s providing,
a higher degree of guarantee, this can be communicated by
the Title Helper and interaction between consumer and
escrow lacilitated.

According to one such embodiment and as mentioned
above, a site which 1s not by itself title enabled may become
titled enabled quickly and easily with some relatively simple
mechanisms. For example, an html link to a remote title
transaction infrastructure such as those described herein may
be embedded 1n one or more of the Web pages on the site.
These links are directed to the Title Helper and cause the
Title Helper to be displayed in the browsers of users
navigating the site. In addition, offer titles, e.g., 1n the form
of XML documents, may also be embedded 1n the pages of

10

15

20

25

30

35

40

45

50

55

60

65

48

the site. These offer titles may be created by the site operator
with reference to the appropriate specification, or may be
created using a title creation/publishing mechanism hosted
clsewhere, e.g., at the remote title transaction infrastructure.
The Title Helper, as a web browser plug 1n, can act to fill in
the mformation on behalf of the user with an Title Helper
account which 1s, in turn, ‘fed’ by the user’s stored titles.

In another embodiment, a title-enabled proxy server can
be mnserted between the user and the site which adds the code
to the originating site’s markup language (typically HIML)
necessary to launch the Title Helper and may modily spe-
cific merchant specific purchasing associated mark up lan-
guage.

In another embodiment the Title Helper can interpret the
page ol a participating merchant, and act upon user actions
to purchase content. In this example, the Title Helper
understands the actions the user takes, such as a click on a
buy link on the page, and adds the item to the shopping cart.
The Title Helper communicates the action to the DCE which
in turn analyzes the action according to preset site context
established by the participating merchant. The DCE can
directly interpret the action or communicate with the mer-
chant to understand the action. In this case, the action results
in a generic ofler being generated for the purchase action.
The generic offer 1s a title that accepts purchase information,
such as content name, price, and terms, at the time of
purchase. The information 1s verified by the DCE and
applied to the generic offer. The use of generic oflers allows
participating merchants to easily work with the Title Helper
and escrow process without re-tooling their merchant sites
and storefronts. Non-participating merchant transactions can
also be accomplished with this mechanism and the level of
transaction integrity and guarantee can be independently
verified by the DCE operator and/or by a third party.
6.4.2.1.11 Active Viewer

An Active Viewer 1s a TPE application that provides a
distributed TPE and user interface components. Its function-
ality follows that of a title helper. The Active Viewer extends
the functionality of a Title Helper by enforcing TPE context
semantics on the user interface. This enables a trusted user
interface called an Active User Interface, in addition to local
execution of one or more TPE components.

The Active User interface provide user interfaces for
defined TPE applications and may additionally have third-
party applications defined, either within the Active User
interface or by use of an operating context specification and
may link to these applications when so directed by a user.
The linking and subsequent execution of these applications
may be a title expressed right event, and be subject to a
rights specification within a title object. An Active Viewer
may be used to provide a TPE to enforce title-based access
control to specific services and to mediate access to these
services upon the basis of rights specified in one or more
titles.

In an example embodiment, a merchant who has a right to
run a user mterface-Reporting service to generate a report of
title-based usage of their electronic property may be pro-
vided this option upon the basis of a specific title or voucher
they possess. The fitle object may identify the specific
service, or may 1dentily a specific TPE that includes the
specified service. The user may specily the report they desire
by making a service request within the specified TPE. In the
specific example, the user would click a button linked to a
“Report” service provided by a user interface-Reporting
server associated with a specific DCE. The user’s rights as
defined 1n the title may be used to further define the rights
over the report content 1tself.

US 10,467,606 B2

49

Alternatively, a specific title or operating context speci-
fication may specily specific third party applications, such as
a music player, chat, IM, or VoIP service that should be
executed when a specific right has been selected.

In some wireless and mobile environments, an Active
Viewer may be associated with a “wake-up” or other noti-
fication message. As one skilled in the art will recogmze,
wireless mobile environments may deliver a message to a
mobile device as a “wake up” notification. These messages
may be delivered using any of SMS or other messaging
systems common to the wireless and mobile devices. The
wake-up notification may include additional information,
such as a specification for an application to respond to the
notification using, a URI of a service to connect to, a
operating context specification, and other information. The
mobile device, upon receipt of the notification message,
wakes up and uses a device specific application to connect
to a network service 1n response to the notification. In an
example embodiment, the mobile device may use a device-
specific application, or an application specified 1n the wake-
up message, to respond to the “wake up” message. In a
particular example embodiment, the application used to
respond to a wake-up message 1s the Active User interface.
In an alterative example embodiment, the wake-up message
may specily the Active User interface as the application to
respond to the wake-up message.

In alternate embodiments, the ‘wake-up’ message may
include a operating context specification, either embedded
within the URI, or as an additional data element included 1n
the message.

One method of implementing a plurality of wake-up
message responders 1s described above, where the wake-up
message specifies the desired responder. In other possible
implementations, the device itsell may make the wake-up
responder determination. For example, the device may pro-
vide a selection mechanism in which the wake-up message
responder application 1s determined upon the basis of at least
one of: the sender of the wake-up message, at least some of
the contents of the wake-up message, and device or user
preferences stored 1n a profile 1n the device. Parameters to
wake-up message responder application may be provided
from the sender of the wake-up message, at least some of the
contents of the wake-up message, and device or user pret-
erences stored i a profile in the device. These parameters
may 1nclude a operating context specification, a fitle, or
other User interface recognized information.

An example implementation might include a device that
starts an Active Viewer to respond to a wake-up request from
a specific sender or group of senders. Alternate implemen-
tation examples include recognizing a specific URI, or part
of a URI 1n the wake-up message and making the selection
of a desired user interface on that basis. A part of a URI
might include a operating context specification 1 the
address specification or in the URL parameters, as illustrated
below:

https://mysite.com/first-operating context-reference/web-
service.asp?’my-operating context-name

In a further i1llustrative example, the identification of URI
or sender mformation may be made on the basis of infor-
mation stored in the device (e.g. a list of known trusted
sites).

In various embodiments, the Active user interface man-
ages at least one display pane that is used by the Active
Viewer component, a TPE, 1ts associated components, and
external services to display service options to a user and to
collect and process mput from the user. A display pane 1s a
unique portion of a display, including a window or portion

10

15

20

25

30

35

40

45

50

55

60

65

50

of a window, used as part of an input-output operation
supporting the interaction between a user and a component
of a title expressed right processing environment. A screen
ol a display, a popup window, a slide-out or drawer display
portion, and an application-defined form are all examples of
a display pane. A display pane may be uniquely associated
with a specific application, component, or service or 1t may
be shared between one or more applications, components, or
services. In one example implementation, the Active user
interface may implement a display pane that provides an
XForms compliant display. In other example implementa-
tions, other display technologies such as SMIL or XAML
may be implemented as panes. Alternatively, the Active user
interface may provide display panes that respond to a
plurality of display technologies, and may provide a plural-
ity of display panes that respond to one or more disparate
display technologies. Such Active user interfaces can be
provided using the techniques described herein and methods
known to those having skill in the art.

6.4.2.1.11.1 Operating Contexts and the Active User Inter-
face

The set of resources required and/or desired to provide an
aspect of a specific title expressed right processing environ-
ment, including but not limited to services, directories,
components, applications, display panes, and user interface
1s called an operating context of the User interface archi-
tecture. A operating context 1s an alternate embodiment of a
subset of the elements named by an operating context and
describes at least one aspect of an operating context, and
names, describes, references, or includes services, directo-
ries, applications, components, and user interface compo-
nents required to provide the desired operating context and
user interface.

The operating context that the Active user interface
should use for a specific title expressed right processing
environment or operating context may be defined by the
Active User iterface configuration, by embedded operating
context, by the location from which the Active User inter-
face 1s i1nvoked, or by a ftitle requesting User interface
SErvices.

One or more operating contexts may be simultaneously
referenced by and/or used by an Active User Interface. A
user interface that references a operating context may locate
and load a operating context in a variety of ways. First, 1t
may have a well-known storage location from which 1t loads
a operating context. For example, a user interface may load
a operating context from a local disk or memory store, an
external disk or memory store, including an external reposi-
tory site, or the User interface may look up the location of
a operating context using a directory service, and then obtain
a operating context either from the directory service, or from
a third party source by using information provided by the
directory service. Operating contexts that are loaded from
locations external to a user interface where they may be
subject to tampering may be optionally verified and vali-
dated using techniques similar to those described above for
veritying and validating User interface title expressed right
processing environment components.

In some embodiments, a plurality of operating contexts
may be loaded and simultaneously operate within a Active
User interface, each used to define a disparate title expressed
right processing environment. In other embodiments, the
User interface operates on a single operating context at a
time. A single operating context may be used to define a
specific operating context, or a plurality of operating con-
texts may be combined to define an operating context. The
User interface optionally may have a default operating

US 10,467,606 B2

51

context associated with it. If such a default operating context
1s specified, the User interface uses the specified default
operating context 1n the absence of other operating context
specifications.

An operating context may be specifically associated with
a collection of services that comprise at least part of a title
expressed right processing environment. A specific operat-
ing context may be associated with a specific service, a TPE,
a TPE applications like the Digital Commerce Engine
(DCE), a specific DCE component, or with an external
service. The association between a specific service or ser-
vices and a specific operating context may be made on the
basis of a configuration specification, a service specification,
specified by the service, or based upon the information
returned from an external service. One example of such an
external service that may provide information describing a
required operating context i1s an identity provider. The
Active User interface, and attendant operating context speci-
fications, defines the binding between backend services, Ul
and customer-facing application components, and binds
these services and components with a specific look-and-feel.
This binding facilitates a umfied and homogonous user
experience.
6.4.2.1.11.2 UI Specifications

An operating context specification of the view portion of
a Ul specification comprises one or more optional proper-
ties. Each optional property describes an attribute of the
operating context, such as an identifier, a version, a unique
name, a rights specification, a localization specification, and
a unique location reference such as a URL. Some or all of
these properties may be present 1n a specific instance of a
operating context. A operating context may also reference
one or more additional operating contexts 1n order to specily
additional portions of a title expressed right processing
environment. Alternatively, the operating context may
specily one or more name aliases. In some embodiments, a
operating context may specily a property that provides for
the cryptographic authentication of the operating context
itself. Such a property may comprise a cryptographic hash or
digest, such as those produced by well known algorithms
such as MD5, or may embody a SAML artifact, or a
reference to a service that can provide the authentication
materials.

Each operating context optionally comprises specification
of, reference to a view specification, or relference to a
hierarchical definition that taken together, comprise the
specification for one or more views. Each view specification
optionally specifies at least one style sheet to use, at least one
skins definition, an optional task map, including the optional
specification of at least one component to be loaded, and
optionally defines permitted process flows. Additional mate-
rials related to user interface specifications, including views,
skins, style sheets, and class maps are described in U.S.
patent application Ser. No. 11/645,139 incorporated herein
by reference above.
6.4.2.1.11.3 Display Panes

In a preferred embodiment, the User interface provides
one or more display resources, called panes, to application
components. In one embodiment, a pane may comprise a
window 1n a windowing operating system. In an alternate
embodiment, a pane may be part of a screen, or may
comprise a drawing area of a larger window.

FIGS. 15a, 15b, 15¢, and 15d 1llustrate an example of the
user interface, comprising multiple panes, a first pane which
1s displayed when the User interface user accesses the User
intertace (F1GS. 155, 15¢), and a second pane which 1s made
visible when the User interface user “pulls out” the drawer

10

15

20

25

30

35

40

45

50

55

60

65

52

to expose additional content referenced by the first pane
(FIG. 15d). The “drawer” may be “pulled out” or “pushed
in”” by the user, or may be optionally “pulled out” or “pushed
in” under control of the User interface.

An operating context specification maps components,
applications, the desired user interface look-and-feel (e.g. a
skin), services, and service outputs to a specific display
panes. In some embodiments, a controller component may
be used to assist with mapping of these elements. In some
cases, the controller component may be used to transform
service outputs into a format usable within a operating
context specification.

Extensible features of the User interface also include the
ability to define an operating context’s look and feel using
“skins and to develop branded versions of the Active User
interface that enable and/or disable specific features and
component capabilities within each specific operating con-
text.

Furthermore, a user interface may have its “look and feel”
bound to 1t, so that 1t provides a specific look and feel when
operating, or when operating within a specific web site
and/or service. Alternatively, the look and feel may be bound
when User interface 1s operating as a component 1 con-
junction with a third party applications such as a music user
interface. Alternatively, the User interface may take at least
part of its look and feel from the configuration of the web
site, service, or third party application to which it 1s bound.
These bindings are eflective either for the entire instance of
the User interface, or for a specific display pane of the User
interface.

For web sites, services, and third-party applications (col-
lectively, a source) that are “User interface” aware, the
source(s) may provide a specification (e.g. a operating
context), a reference to a specification (e.g., a link to the
operating context, skin, or style sheet), or the 1dentification
information of a specification (e.g. a operating context, skin,
or style sheet search specification, or parameters to a search
service) that specifies the desired components, bindings, and
look and feel. Alternatively, a source may provide a unique
identifier that the Active User interface maps to a defined
configuration (e.g., an identifier for a provider of child
content that defines a specific operating context, skin, or
style sheet).

Finally, a title may provide a specification (e.g. a operat-
ing context), a reference to a specification (e.g., a link to the
operating context, skin, or style sheet), or the 1dentification
information of a specification (e.g. a operating context, skin,
or style sheet search specification, or parameters to a search
service) that specifies the desired components, bindings, and
look and {feel desired. Alternatively, a title may provide a
unmique 1dentifier that the Active User interface maps to a
defined configuration (e.g., an identifier for a provider of
child content that defines a specific operating context, skin,
or style sheet) to be used when processing rights associated
with that specific title.

In an example embodiment, the User interface provides
an application user interface that comprises two panes. A
first pane 1s provided as the main screen for the User
interface, as shown in the accompanying screen shots. A
second pane 1s provided for use with task-specific details. In
one embodiment, the pane 1s displayed using a metaphor of
a “pull out drawer”. An example of the second pane 1n an
extended pull-out drawer i1s shown 1n the accompanying
screen shots. The pull-out drawer metaphor shows how the
screen real estate may be changed based upon the amount
and type of information to be displayed. The pull-out drawer
1s shown as pulling to the side, but may be alternately

US 10,467,606 B2

53

configured to pull out below, above, or to the right of the first
pane’s display. Additionally, a plurality of drawers may be
provided, optionally pulling out on the same or diflerent
sides of the first pane.

In an example embodiment, plurality of panes may be
used to display information related to specific content. In the
example shown 1n the accompanying screen shots, a second
pane 1n a pullout drawer 1s used as part of a title manager
interface to display the worktflow actions embodied within a
specific title and to provide the user interface for the actions
described within that title.

The User interface provides a ““trust indication™ that
indicates that the User interface 1s 1n secure communication
with 1ts underlying services, and that the loaded display
components have been verified and validated. The trust
indicator preferably will take the form of a lock symbol, as
1S common on web browsers to indicate a secure connection,
but may be any symbol that the user understands indicates

that the processing 1s trusted.

As shown in the accompanying screen shots, a title’s
rights are presented to the user as a set of buttons that permait
the exercise of each right 1n the “drawer” display pane. The
user interface presented on this pane 1s dynamically gener-
ated from information present in a title and within the title
expressed right operating environment.

In such embodiments, the User mterface associates spe-
cific rights present 1n the title with features of the UI. For
example, a “Buy” night may specily a specific input that
must be gathered, have specific prerequisites, and 1dentifies
a service that should be invoked 1n order to process the right.
For example, a operating contexts style sheet may specily
one or more style and layout elements that the right will be
displayed in. In one example, the operating context may
specily that rights described in a title are displayed 1n the
“drawer” pane. The rights specification provides optional
additional display guidance with 1ts attributes, which
includes positioning and display guidance. The User inter-
face uses these attributes, along with Ul specifications from
the operating context, to construct portions of the user
interface, including the name, description, layout, text,
underlying User interface component, application compo-
nent, or service to be called when this Ul component 1s
accessed for each portion of the Ul In some cases, these
functions are handled by the Controller application compo-
nent, or an external service. The resulting user interface may
thus be dependent upon the specification contained within a
specific title, as well as the specific title expressed right
operating environment in use at a specific time. In some title
expressed right operating environments, not all rights for a
title may be displayed. Optionally, some rights may be
displayed on alternate screens, or they may be hidden in
scrolling areas of the UL

An advantage of this approach i1s that the User interface
provides 1mproved support for rights-based commerce,
where a user can operate within a specific rights-based
operating environment. The operating environment may
convey the desired look-and-feel to the user, down to
providing mouse-over and context-sensitive help, and merge
this information with the information provided for specific
titles and rights.

The User interface, operating within the context of its title
expressed right operating environment, may process at title
by:

a. selecting one or more rights from the title.

b. optionally combiming the rights information present 1n

the title with additional information from the title

10

15

20

25

30

35

40

45

50

55

60

65

54

c. optionally combining the above mformation with addi-

tional information from external sources.

d. Using the combined information to render a user

interface

¢. Processing the user interface by interacting with a user

f. Executing a specified distributed workflow step on the

basis of the iteractions with the user.

Step a may be performed by selecting one or more rights
from a specific title, and selecting some or all of them to be
included 1n the UI. The selection may be based, 1n part, upon
information provided with the rights 1n the title.

Step b may be performed by combining the selected rights
information with additional information provided 1n the title,
or using information referenced by the title. For example,
the title may include a copy of approved graphics and
description of the work represented by a ftitle, or it may
include a link to that information.

Step ¢ may be performed by combining the aggregated
information from external sources, such as information
provided by a storefront, from the ftitle expressed right
operating environment, or from third-party sources.

Step d may be performed by applying the user interface
specifications defined 1n a operating context, view, or style-
sheet, and rendering a user interface on a specified display
pane.

Step € may be performed by processing the user interface,
collecting information that the user enters, and optionally
veritying at least part of the information.

Step I may be performed by the User interface calling one
or more specified User interface components or external
services 1n accordance with a specified distributed worktlow.
An example of a specified distributed workflow 1s provided
by the service element 1n a right specification, alternative
distributed worktlow specifications may be provided within
the title expressed right operating environment specified by
a operating context.

In one embodiment, the user selects a right they wish by
clicking on a button presented 1n the user interface. The
mapping between a user interface component, application
component, or external service and a specific button, as well
as the button label, help definitions, and mouse-over text, 1s
performed as described above.
6.4.2.2 Title Publishing Application

A title publisher 1s a TPE application that performs the
tasks associated with publishing (that 1s, creating new titles)
and optionally makes those titles available to users using a
title manager, service registry, title enabled storefront, wal-
let, or other title based storage location. Typically, alternate
storage mechanisms are managed using a title manager
application. The title publisher provides an easy to use
interface for a user to identily, organize, and group new
content (or services and resources), and then generate a new
title object, title template, or other title materials that enable
access the specified content, services, or other resources.
Specific implementations of a title publishing application
may be produced, each optimized for creating and publish-
ing specific types of title materials without distracting from
the scope of the description.

Using a title publisher, title materials can be generated on
the fly and immediately by the title publisher which would
then invoke the title manager to store the newly generated
titles. Alternatively, the title publisher can generate new title
templates that would describe the contents of the title but
would not immediately generate a title. Title templates could
be used 1n a variety of ways by the content publisher, for
example by the content publisher’s online shopping site to
automatically generate titles when a buyer purchases new

US 10,467,606 B2

3

content. The content publisher stores work in progress (such
as grouped publishing efforts) 1n a data repository using the
data abstraction portion. Title publishers may provide
sophisticated functionality to enhance the online experience
for content publishers such as organizing content and title
publishing ito projects, sharing projects, and allowing
community projects. Workgroup and worktlow capabilities
can be built mto the ftitle publisher as well as creating
single-user and multi-user versions. As an example, a multi-
user version can be implemented by a consumer aggregator
or service provider in order to perform title publishing
activities on behalf of a user commumnity. Enhanced features
may provide additional value to people using the title
publisher such as verifying pointers to content files and
resources, automatically obtaining icons, and even pushing
titles and content out to servers.

An authorized user may use a title publisher application to
publish service definitions to a Service Resolver and Reg-
1stry. When this occurs, user uses a service mapping tems-

plate (e.g. (/tts/src/xslt/tps/merchant/Services/ServicesCata-
logToProducts.xsl), a service definition XML file that and
describe one or all services that are to be loaded into the
Service Resolver and Registry. This includes the name of the
service, and other specific details such as calling parameters
that 1s used by the Service Router and other applications.
The title publisher creates titles that describe each service,
and makes these titles available 1n the Service Resolver and
Registry.

An authorized user may use a title publisher application to
publish an operating context definitions to a Service
Resolver and Registry. When this occurs, user uses a map-
ping template that defines the operating context, a definition
XML file that and describe one or all operating contexts,
components, external services, configuration information,
and other materials that are to be loaded as part of the
operating context. The title publisher creates an operating
context that describes these materials, and makes the oper-
ating context available 1n the Service Resolver and Registry.

An authorized user may use a title publisher application to
publish one or more alias associations between a defined
alias and another defimition mm a Service Resolver and
Registry. When this occurs, user uses a mapping template
that defines an alias, a definition XML file that and describe
one or all operating contexts, components, external services,
configuration information, and other materials that are to be
loaded as part of the operating context. The title publisher
creates an alias that describes these materials, and makes the
alias available 1 the Service Resolver and Registry.
6.4.2.2.1 Rules Builder

A rules builder module performs the task of building rules
to be associated with the titles and processing of the titles.
The rules builder module may provide an easy to use
interface for the user to create and build rules that can be
embedded within a title or used during the processing of a
title. Rules that are not embedded within a title may be
stored 1n a data repository using the data abstraction portion.
The rules builder may provide an extension capability to
apply rules developed external to the rules builder ensuring
the adaptability of title processing.

The rules associated to the title are developed and applied
by the content publisher and by the user (or someone acting,
on behall of the user). The title management and fitle
publisher modules may provide an application and interface
to easily develop and apply rules to the titles. For example,
a content publisher may apply usage rules applicable to the
title and the digital content and/or resource it provides
evidence of rights to. In turn, a user may apply detfault rules

10

15

20

25

30

35

40

45

50

55

60

65

56

within the title management module to assist in controlling
and protecting their actions related to certain titles (for
example, to prevent from accidentally trading a valuable
title). In another example, a parent may establish restrictions
on the type of content their child may access and use 1n their
title management module.

Specialized rules, called triggers, may also be used.
Triggers are rules that invoke actions that are external to the
title management apparatus. For instance, a parent can be
notified by email that a child wishes to redeem a digital
content file for which there 1s some age restriction.

Specialized rules, called timers, may also be used. Timers
are rules that mvoke actions based on a specific time or
based on a spent amount of time. For example a title may
only be good for twenty four hours, or an exchange may only
be valid for one week. Timers maybe combined with triggers
in rule processing.
6.4.2.2.2 Rating System

The content rating system can be used by publishers to
determine approprate ratings for their content, and these
ratings can be enforced by title management and resolver
apparatus to ensure guardian approval. Content rating 1s an
clement within the content element to convey a rating
regarding the suitability of the content. The rating system 1s
dependent on the type of content and the regulatory factors
involved (e.g. music, video, movie, etc.).
6.4.2.3 Title Transaction System (TTS) Application

The title transaction application 1s a TPE application that
verifies the ownership of the titles by the users and selec-
tively permits the titles to be transferred 11 such rnights are

allowed. Among the modules that may be contained within
a 'TTS application are the following:
6.4.2.3.1 Title Manager

A title manager module performs management functions
on titles such as organizing, deleting, adding, transferring,
trading, copying, backing up, viewing, and redeeming. In
addition to basic title functionality, the title manager module
can provide sophisticated and value-add features to allow
the user a better online experience such as chat where
real-time redemption and trading are available during the
chat session. Furthermore, features such as sorting catego-
rizing, searching and notity can be made available to the
user. As an example, a sophisticated search capability can be
implemented whereby the user can search the network for
other users, titles available for bid, transaction makers, or
even a secure and trusted third party lockbox with which to
conduct a trade. This sophisticated discovery process may be
an integral part of the TTS ecosystem. The title manager
module 1s the primary application component that the user
may interact with on a regular basis. The title manager
module maybe designed to be a single-user or multi-user
application depending on the specific use of the module. A
single-user version can be used 1n a peer-to-peer network,
whereas a multi-user version can be deployed with con-
sumer aggregators.

The title manager implements a lockbox feature that 1s
responsible for securely executing trades between two par-
ties. The lockbox provides storage for titles being traded and
provides a secure environment where users can verily trades,
view samples, and accept a trade. Upon acceptance of the
trade by all parties mvolved, the lockbox may execute the
trade and provide each party with an updated title and stub
object-pair that evidences their new rights. The lockbox
feature of the title manager can be implemented as a
standalone service so that a trusted third party can provide
secure execution of trades.

US 10,467,606 B2

S7

6.4.2.3.2 Dagital Lockbox

Title trading 1s supported by the title technology and the
applications that process titles. Trading between parties can
be accomplished 1in many different ways and involve any
number of technologies and techniques. According to one
example, a digital lockbox component 1s used as a secure
container for the title objects that are being traded between
a party A and a party B. The digital lockbox component
includes two secure areas that contain the title objects for
trade, party A’s title objects are stored 1n a first “drawer,”
while party B’s title objects are stored in second “drawer.”
The digital lockbox component further permits inspection by
either party into the contents of the lockbox 1n order for each
to verily the title objects and approve or cancel the trade.
The digital lockbox component would not permit ownership
to be transferred and only permits viewing of sample con-
tent, or of the content permitted by a redemption method
(c.g. content legally shared). When both parties have con-
firmed the trade and approved of the title objects, the digital
lockbox component claims ownership over all title objects 1n
the lockbox, and then transiers ownership to the respective
party. Transferring ownership involves delivering the title
objects to the appropriate title managers and subsequently
having the title managers claim ownership for their respec-
tive party. The digital lockbox component in this case 1s
similar to a 3" party escrow system by providing a substan-
tial level of guarantee to both parties involved 1n the trade.
For instance, 1f any part of the trade failed during the claim
process, the digital lockbox can rollback the entire trade. The
digital lockbox can also provide a legal record of the trade
to all parties 1nvolved 1n the trade. It should be noted that,
the contents of the trade can be one or multiple title objects.

In another embodiment, a digital lockbox component
supports a transfer in which party A intends to give party B
the title objects with nothing expected i return. For
example, party B could sample the content and review it
betfore accepting the transier. The claim process for the title
objects would remain the same and the digital lockbox
component can provide a record of the transaction. In yet
another embodiment, the digital lockbox component can
support: multi-party, dependent trades, nested-trades. In yet
another embodiment, the digital lockbox component may
support complex trades involving service level agreements,
isurance, legal recourse, guarantees, and content introspec-
tion. For example, a highly confidential trade can be imple-
mented with special content inspection rights provided
through the digital lockbox component. This would provide
both parties with the ability to view the confidential content
for the duration of the trade negotiations under special
circumstances, such as viewing directly using a controlled
application similar to that provided by digital rights man-
agement software.

In another embodiment, a simplified trade can be
executed directly between two parties by having the fitle
managers simply transfer the title objects and subsequently
have the receiving title managers claim ownership over the
respective title objects. In yet another embodiment, a trade
can be executed directly by the title managers acting as
secure agents. An established protocol can be used by the
title managers to securely trade the title objects. For
example, a Boolean circuit can be utilized by the fitle
managers. In another embodiment, security ownership indi-
cia associated with each title object can be updated accord-
ing to specific title authentication techniques employed by
cach respective title object.

10

15

20

25

30

35

40

45

50

55

60

65

58

6.4.2.3.3 Transaction Tracker

A transaction tracker module performs the basic task of
tracking all inbound and outbound transactions whether
successiul or not. The tracker module 1s configurable by the
user to determine the level of tracking to be performed based
on the user’s requirements. The tracker may be used to
provide a record of all transactions performed by the user
such as trades and transfers. The tracker may be used by all
core TTS components for creating a record of all transac-
tions (for example, those performed by the title resolver and
content publisher). The tracker may record transactions 1n a
data repository using the data abstraction portion.

A component of the title system 1s the transaction tracker.
The transaction tracker 1s a module that can track all aspects
of title processing. As the transaction tracker “sees” ftitles
being processed during the course of a transaction 1t can
invoke system rights embedded within the titles to activate
additional tracking logic, e.g., generation of specific reports.
The publisher or 1ssuer of a title can put tracking rights in the
titles they publish which can be picked up by the transaction
tracker, thus allowing remote monitoring and notification.
Such implementations involve the processing of titles which
include rights, some of which are system rights which enable
the tracking function.

According to some implementations, the transaction
tracker system interacts with all the components of the
system that process titles. In this embodiment 1t would be a
title publishing system, a title resolver system, a title based
payment system, and the title manager; in other embodi-
ments 1t could be other title enabled systems, for example
the title helper, the market maker, or the title search engine.
In other embodiments of the invention the transaction
tracker system may not be a centralized solution, but an
additional functionality of the individual ftitle processing
component, or 1t maybe a combination of both a centralized
and distributed system. The transaction tracker system 1is
responsible for tracking and recording the events that occur
on the title. These events could include publishing a title,
redeeming a title, sharing a title, or storing a title 1n the title
manager. The transactions and the information that 1s
recorded are dependent upon the implementation and
requirements of the system.

In another embodiment, the transaction tracker system
can momtor the processing of all titles and execute tracking
and monitoring rules as expressed by the ftitles. In this
example, the tracker can invoke certain tracking rights
(redemption methods) in the title as the title 1s processed or
communicated. This allows the 1ssuer of the title to provide
additional monitoring over the use of the titles they have
issued. As a further embodiment, the rules processing can be
executed as a background task or even as an asynchronous
task on a separated and connected system, without impeding
the processing of the ftitle.

A report generation system 1s responsible for taking the
collected transactions and processing that information to
generate the reports. The mechanism for generating these
reports will be dependent on the actual implementation, but
they could be a function of the database that stores the
transaction records, a report generation tool, or as a function
of the title system 1tself.

According to one embodiment, the title tracking system
records any information that 1s stored in the titles that are
processed by the title system. Depending upon the configu-
ration of the title tracking system, the information for a title
may be recorded 1n 1ts entirety 1n a distinct data record, or
as part of the information 1 a distinct record; in other

US 10,467,606 B2

59

embodiments, the recording method for the title tracking
system may process the tracking information directly, and
update a summary record.

In another embodiment, the title tracking system may use
information within a title, to cross reference other informa-
tion held within the title system. For example when a title 1s
purchased, it could be cross referenced to mnformation that 1s
held within the system, such that purchases of items could
be cross matched to demographic information.

In yet another embodiment, the title tracking system, the
information that i1s available from a particular user’s title
account can be used to reflect the information that 1is
presented to the user. Of course privacy concerns may have
to be addressed in such an embodiment and mechanisms
could be provided to protect privacy. These mechanisms
could be simple policy based systems such as opt mn/out
policies, or the user could have a marketing profile title. The
marketing profile title would be a title that allows the user to
see and control the information that 1s sent to third parties.

as providing an identifier for “ifree” use. Strong authen-
tication may be required for other instances and may be
enforced by the ecosystem components. Strong authentica-
tion can take the form of two-factor such as Smartcard and
PIN, or via mobile phone using a SIM card and a PIN, or via
any other supported method such as a SecurID token card.
In basic form, authentication may be a username and pass-
word. Authorization may provide fine-grained access control
to core TTS applications as well as to use titles within the
ecosystem. Authorization may be based on rules established
within titles and configured as part of the implementation of
core TTS applications.

A payment interface A rating system module performs
rating tasks on transaction records to support billing require-
ments. The rating system may be flexible to support the
variety of billing options required within the ecosystem. The
rating system may act on transaction data but may maintain
separation between the data sets to ensure integrity of the
transaction log.

A billing 1nterface module provides an interface to the
billing system operated by the user or entity running any of
the core TTS components or modules.

A transaction viewer module provides an interface for the
user to view transactions recorded by the transaction tracker.

A synchronization & replication module performs syn-
chronization and replication across components and mod-
ules within the TTS system. This 1s required for a number of
tfunctions mcluding (but not limited to) synchronization and
replication of transaction log entries, synchronization of
titles across title management modules 1n a highly distrib-
uted environment, and replication of title databases to sup-
port redundancy and high-availability. Synchronization and
replication techmiques are well understood by those skilled
in the art and will not be discussed further.

A cryptographic interface module performs symmetric
and asymmetric cryptographic functions as required within
the TTS ecosystem.

An authentication and authorization module performs the
type authentication and authorization required by (and speci-
fied by) the title or other ecosystem configurations. Authen-
tication may not be required 1n certain instances, or can be

as simplemodule provides an interface to a payment system
operated by a user or entity of the core TTS components and

modules. This permits real-time and batch processing of

payment requests as configured by the user or entity.
A cache management module performs basic caching
functions of the content or resources retrieved by the title

10

15

20

25

30

35

40

45

50

55

60

65

60

system. This function may provide performance benefits
using cached content versus retrieving new content on every
request for the same content.

A user registration module performs registration of new
users 1nto the core TTS components and modules. This may
be used to establish new users 1n a single user environment
such as peer-to-peer, as well as establish new users 1n a
multi-user environment such as that hosted by a consumer
aggregator. A consumer aggregator 1s an entity that provides
services to a consumer base (1.e., ISP, mobile operator, etc.).

A transaction maker module performs transaction maker
functions such as operating an exchange for the sale of titles,
perform licensing of content represented by the titles, main-
taining a book of trades, closing and clearing trade transac-
tions, and performing additional value add as determined by
the market.

An mtelligent data retrieval and query module integrated
with the data abstraction portion 1n order to perform intel-
ligent searches and queries on a variety of data 1n a variety
of disparate locations. The IDR(Q module can combine, map,
and match data before presenting 1t to requesting applica-
tions through the data abstraction portion. Persistence and
caching can be developed into the IDR(Q module to enhance
performance on multiple and frequent queries/searches.

A web crawler module performs searches on the web to
catalog content and provide a mechanism to automatically
generate titles that represent the content that has been
discovered. The web crawler module can be used statically
or dynamically executed based on configuration of the
implementation and/or on inbound requests. The web
crawler module could interface with the intelligent data
retrieval and query system attached to the data abstraction
layer for intelligent searches and retrieval of web content.

A discovery mechanism that can be used by all appropri-
ate modules for discovering TTS resources that may be
available on the network. The discovery mechanism may
allow TTS modules to participate in a peer-to-peer environ-
ment as well as collaborate on activities. The discovery
process can ensure that trust third parties are available for
conducting secure transactions and well as simplifying the
user and content publisher experience for clearing titles
through the ecosystem.

While the invention has been particularly shown and
described with reference to specific embodiments thereof, 1t
will be understood by those skilled 1n the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spinit or scope of the
invention. For example, reference has been made herein to
various types of computing platforms, network configura-
tions, protocols, and processes which may be employed to
implement various aspects of specific embodiments of the
invention. It will be understood that such reference should
not be used to narrow the scope of the invention. Rather,
such references will be understood to be made by way of
example, and 1t will be further understood that any of a wide
variety of computing platiforms, network configurations,
protocols, processes, computing models, and the like, may
be employed to implement embodiments of the mmvention
without departing from the scope of the invention. For
example, embodiments of the invention are not limited to
specific types of computing platforms or network devices
referred to herein. To the contrary, virtually any type of
computing device having at least one interface for receiving
or transmitting data (e.g., packets, frames, etc.), and at least
one processor (e.g., CPU, processing cores, processor clus-
ters, etc.) to facilitate processing of such data may be

US 10,467,606 B2

61

employed to implement various aspects of the invention as
will be apparent to those of skill in the art.

In addition, although various advantages, aspects, and
objects of the present invention have been discussed herein
with reference to various embodiments, 1t will be understood
that the scope of the invention should not be limited by
reference to such advantages, aspects, and objects. Rather,
the scope of the invention should be determined with
reference to the appended claims.

What 1s claimed:

1. A computer-implemented method, comprising:

receiving a first title object that encodes one or more

references to one or more rights and a reference to a
title object template, the first title object also icluding
a state value, the first title object being a digital bearer
instrument;

validating the first title object by determining that the state

value included in the first title object corresponds to a
stored value for the first title object maintained by a
state server,

identifying the title object template based on the reference

to the title object template included in the first title
object;

retrieving the title object template;

selecting a first right of the one or more rights to which the

first title object refers;
assembling a second title object using the identified title
object template, the second title object being a digital
bearer instrument configured to effect redemption of
the first right referred to by the first title object when the
second title object 1s processed by a title processing
environment, the second title object including a state
value that corresponds to a stored value for the second
title object maintained by the state server; and

providing the second title object to a title manager pro-
Cess.

2. The computer-implemented method recited in claim 1,
wherein the second title object comprises a service defini-
tion, the service definition comprising a description of a
service, the description 1dentifying a name of the service and
one or more calling parameters configured to access the
service.

3. The computer-implemented method recited 1n claim 2,
the method further comprising:

publishing the second title object 1n a services directory,

the services directory 1dentifying a plurality of services
accessible via a network.

4. The computer-implemented method recited in claim 1,
wherein the second title object 1s associated with one or
more rules goverming processing of the second title object
and capable of being evaluated by a computing device
configured to redeem the at least one right upon presentation
of the second title object.

5. The computer-implemented method recited 1n claim 4,
wherein the one or more rules include a first rule 1dentifying,
a prohibited or permitted use of the second title object.

6. The computer-implemented method recited 1n claim 4,
wherein the one or more rules include a first rule 1dentifying
an action to be performed when a designated trigger condi-
tion 1s detected.

7. The computer-implemented method recited in claim 1,
the method further comprising:

transmitting the second title object to a computing device

in conjunction with a purchase of the second fitle
object.

8. The computer-implemented method recited in claim 1,
wherein the title object template comprises an operating,

10

15

20

25

30

35

40

45

50

55

60

65

62

context definition, the operating context definition identify-
ing iformation designated for loading 1n a title processing
environment on a computing device, the title processing
environment configured to redeem the at least one right upon
presentation of the second title object.

9. The computer-implemented method recited 1n claim 1,
wherein the second ftitle object comprises a pointer to a
content file or resource, the method further comprising:

veritying the pointer to the content file or resource.

10. A system, comprising:

an 1nterface implemented on one or more computing

devices and configured to receive a first title object that
encodes one or more references to one or more rights
and a reference to a title object template, the first title
object also including a state value, the first title object
being a digital bearer instrument; and

at least one processor of the one or more computing

devices configured to:

validate the first title object by determining that the
state value included 1n the first title object corre-
sponds to a stored value for the first title object
maintained by a state server;

identify the title object template from among a plurality
of title object templates based on the reference to the
title object template included 1n the first title object;

retrieve the title object template;

select a first right of the one or more rights to which the
first title object refers;

assemble a second title object using the 1dentified title
object template, the second title object being a digital
bearer instrument configured to effect redemption of

the first right referred to by the first title object when
the second title object 1s processed by a title pro-

cessing environment, the second title object includ-
ing a state value that corresponds to a stored value
for the second title object maintained by the state
server; and

provide the second title object to a title manager
process.

11. The system of claim 10, wherein the second fitle
object comprises a service definition, the service definition
comprising a description of a service, the description 1den-
tifying a name of the service and one or more calling
parameters configured to access the service.

12. The system of claam 11, wherein the at least one
processor 1s further configured to publish the second title
object 1n a services directory, the services directory identi-
tying a plurality of services accessible via a network.

13. The system of claim 10, wherein the second title
object 1s associated with one or more rules governing
processing ol the second title object and capable of being
evaluated by the title resolver that 1s configured to redeem
the at least one right upon presentation of the second title
object.

14. The system of claim 13, wherein the one or more rules
include a first rule identifying a prohibited or permitted use
of the second title object.

15. The system of claim 13, wherein the one or more rules
include a first rule i1dentifying an action to be performed
when a designated trigger condition 1s detected.

16. The system of claim 10, wherein the at least one
processor 1s further configured to transmit the second title
object to a computing device 1n conjunction with a purchase
of the second title object.

17. The system of claim 10, wherein the title object
template comprises an operating context definition, the
operating context definition 1dentifying imnformation desig-

US 10,467,606 B2

63

nated for loading in a ftitle processing environment on a
computing device, the title processing environment config-
ured to redeem the at least one right upon presentation of the
second title object.

18. The system of claim 10, wherein the second ftitle
object comprises a pointer to a content file or resource, and
wherein the at least one processor 1s further configured to
verily the pointer to the content file or resource.

19. One or more non-transitory computer-readable media
having instructions stored thereon for performing a com-
puter-implemented method, the method comprising:

receiving a lirst title object that encodes one or more

references to one or more rights and a reference to a
title object template, the first title object also including
a state value, the first title object being a digital bearer
instrument;

validating the first title object by determining that the state

value included 1n the first title object corresponds to a
stored value for the first title object maintained by a
state server,

identifying the title object template based on the reference

to the title object template included in the first title
object;

retrieving the title object template;

selecting a first right of the one or more rights to which the

first title object refers;
assembling a second title object using the i1dentified title
object template, the second title object being a digital
bearer strument configured to effect redemption of
the first right referred to by the first title object when the
second title object 1s processed by a title processing
environment, the second title object including a state
value that corresponds to a stored value for the second
title object maintained by the state server; and

providing the second title object to a title manager pro-
CESSs.

20. The one or more computer-readable media recited in
claim 19, wherein the second title object comprises a service
definition, the service definition comprising a description of

10

15

20

25

30

35

64

a service, the description identifying a name of the service
and one or more calling parameters configured to access the
service.

21. The one or more computer-readable media recited 1n
claim 20, the method further comprising:

publishing the second title object 1n a services directory,

the services directory 1dentitying a plurality of services
accessible via a network.

22. The one or more computer-readable media recited 1n
claim 19, wherein the second title object 1s associated with
one or more rules governing processing of the second ftitle
object and capable of being evaluated by a computing device
configured to redeem the at least one right upon presentation
of the second title object.

23. The one or more computer-readable media recited 1n
claim 22, wherein the one or more rules include a first rule
identifying a prohibited or permitted use of the second title
object.

24. The one or more computer-readable media recited 1n
claim 22, wherein the one or more rules include a first rule
identifving an action to be performed when a designated
trigger condition 1s detected.

25. The one or more computer-readable media recited 1n
claim 19, the method further comprising:

transmitting the second title object to a computing device

in conjunction with a purchase of the second fitle
object.

26. The one or more computer-readable media recited 1n
claam 19, wherein the title object template comprises an
operating context definition, the operating context definition
identifying information designated for loading in a fitle
processing environment on a computing device, the title
processing environment configured to redeem the at least
one right upon presentation of the second title object.

277. The one or more computer-readable media recited 1n
claim 19, wherein the second title object comprises a pointer
to a content file or resource, the method further comprising;:

verifying the pointer to the content file or resource.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

