US010448019B2

a2 United States Patent (10) Patent No.: US 10,448,019 B2

He 45) Date of Patent: Oct. 15, 2019
(54) USING MULTIPLE PROBABILITY MODELS (56) References Cited
FOR ENTROPY CODING IN VIDEO U.S. PATENT DOCUMENTS
COMPRESSION T -
_ _ _ 8,798,137 B2* 82014 Po ...ccoviiiiiiinnnnl, HO4N 19/176
(71) Applicant: GOOGLE LLC, Mountain View, CA 375/240.02
(US) 2005/0169374 Al1* 8/2005 Marpe HO4N 19/176
375/240.16
(72) Inventor: Dake He, Sunnyvale, CA (US) (Continued)
(73) Assignee: GOOGLE LLC, Mountain View, CA FOREIGN PATENT DOCUMENTS
US
(US) EP 2945383 Al 11/2015
(*) Notice: Subject to any disclaimer, the term of this EP 3182705 A2 672017
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days OTHER PUBLICATIONS
Bankoski, et al., “Technical Overview of VP8, An Open Source
(21) Appl. No.: 15/824,058 Video Codec for the Web”, Jul. 11, 2011, 6 pp.
(Continued)

(22) Filed: Nov. 28, 2017

Primary Examiner — Shan E Elahi
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Young Basile Hanlon &

MacFarlane, P.C.
US 2019/0068994 Al Feb. 28, 2019

(57) ABSTRACT
Entropy encoding and decoding a sequence of symbols
Related U.S. Application Data using probability mixing 1s disclosed. A method includes

selecting models that include a first model and a second
(60) Provisional application No. 62/551,341, filed on Aug. model, for at least a symbol, at a position of the symbols,

29, 2017. determining a mixed probability using the first model and
the second model, and coding the symbol using the mixed
(51) Int. CL. probability. Determining the mixed probability for the sym-
HO4N 19/13 (2014.01) bol includes determining, using the first model, a first
HO4N 19/18 (2014.01) conditional probability for coding the symbol, determining,
. using the second model, a second conditional probability for
(Continued) coding the symbol, and determining, using the first condi-
(52) U.S. CL tional probability and the second conditional probability, the
CPC ..., HO4N 19/13 (2014.11); HO4N 19/124 mixed probability for coding the symbol. The first condi-
(2014.11); HO4N 19/159 (2014.11); tional probability is a conditional probability of the symbol
(Continued) given a sub-sequence of the sequence up to the position. The
(58) Field of Classification Search second conditional probability being a conditional probabil-
CPC oo HO04B 11/00 1ty of the symbol given the sub-sequence.
(Continued) 18 Claims, 13 Drawing Sheets
1400
\ 1402
: SELECT PROBABILITY DISTRIBUTIONS
N | INCLUDING A FIRST PROBABILITY DISTRIBUTION |
£300 AND A SECOND PROBABILITY DISTRIBUTION FOR. 8
\ f/iﬁﬁz - CODING A TOKEN INDICATIVE OF A QUANTIZED
TRANSFORM COEFFICIENT OF THE QUANTIZED |
CONVERT NON-BIMARY ALPHARBET TRANSFORM BLOTK

DISTRIBUTION TO BINARY DISTRIBUTIONS

1404

1304 . I d
e B ff DETERMINE A MIXED PROBABILITY FOR CODING |
UsE THE BINARY DISIRIBUTIONS AS INPUT 4 THE TOKEN USING THE FIRST PROBABILITY |

VALUES INTO LOOKUP TABLE TO DETERMINE | SISTRIBLTION AND THE SECOND PROBABILITY |
CODEWORD LENGTH ' DISTRIBUTION

| _{/ﬂ 1406

CODE THE TOKEN USING THE MIXED
PRUBABILITY

US 10,448,019 B2
Page 2

(51) Int. CL

HO4N 19/159 (2014.01)
HO4N 19/196 (2014.01)
HO4N 19/124 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/91 (2014.01)
HO4N 19/96 (2014.01)
HO4N 19/129 (2014.01)
(52) U.S. CL
CPC ... HO4N 19/176 (2014.11); HO4N 19/18

(2014.11); HO4N 19/196 (2014.11); HO4IN
1991 (2014.11); HO4N 19/96 (2014.11);
HO4N 19/129 (2014.11)

(58) Field of Classification Search
USPC e, 375/240.03

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0190992 Al* 9/2005 Lee ..coovvvvvvviiinnnnnn, GO6T 3/4007

382/300
1/2007 Mehrotra et al.
10/2007 Halowani et al.

2007/0016418 Al
2007/0233477 Al

2009/0219991 Al* 9/2009 Po ...vvveeiinnnnnn, HO4N 19/176
375/240.02
2010/0239015 Al* 9/2010 Wang HO4N 19/197
375/240.16
2011/0002554 Al1* 1/2011 Uslubas HO4N 19/176
382/238
2011/0200104 Al 8/2011 Korodi et al.
2012/0170857 Al 7/2012 He et al.
2015/0350652 Al* 12/2015 Nellore ..ot HO4N 19/13
375/240.02
2016/0100189 Al* 4/2016 Pang HO4N 19/593
375/240.13

OTHER PUBLICATIONS

Bankoski et al., “VP8 Data Format and Decoding Guide”, Inde-

pendent Submission RFC 6389, Nov. 2011, 305 pp.

Bankoski et al., “VP8 Data Format and Decoding Guide draft-
bankoski-vp8-bitstream-02”, Network Working Group, Internet-
Draft, May 18, 2011, 288 pp.

Series H: Audiovisual and Multimedia Systems, Coding of moving
video: Implementors Guide for H.264: Advanced video coding for
generic audiovisual services, International Telecommunication Union,
Jul. 30, 2010, 15 pp.

“Introduction to Video Coding Part 1: Transform Coding”, Mozilla,
Mar. 2012, 171 pp.

“Overview VP7 Data Format and Decoder”, Version 1.5, On2
Technologies, Inc., Mar. 28, 2005, 65 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, International Telecommu-

nication Union, Version 11, Mar. 2009. 670 pp.
Series H: Audiovisual and Multimedia Systems, Infrastructure of

audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, International Telecommu-
nication Union, Version 12, Mar. 2010, 676 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Amendment 2:
New profiles for professional applications, International Telecom-
munication Union, Apr. 2007, 75 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, Version 8, International
Telecommunication Union, Nov. 1, 2007, 564 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, Amendment 1: Support of
additional colour spaces and removal of the High 4:4:4 Profile,
International Telecommunication Union, Jun. 2006, 16 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, Version 1, International
Telecommunication Union, May 2003, 282 pp.

Series H: Audiovisual and Multimedia Systems, Infrastructure of
audiovisual services—Coding of moving video, Advanced video
coding for generic audiovisual services, Version 3, International
Telecommunication Union, Mar. 2005, 343 pp.

“VP6 Bitstream and Decoder Specification”, Version 1.02, On2
Technologies, Inc., Aug. 17, 2006, 88 pp.

“VP6 Bitstream and Decoder Specification”, Version 1.03, On2
Technologies, Inc., Oct. 29, 2007, 95 pp.

“VP8 Data Format and Decoding Guide, WebM Project”, Google
On2, Dec. 1, 2010, 103 pp.

Combined Search and Examination Report in corresponding foreign
Application No. GB1621882.8, dated May 26, 2017.

Sadakane et al., “Implementing the Context Tree Weighting Method
for Text Compression”; Department of Information Science, Uni-
versity of Tokyo; Mar., 28, 2000; pp. 1-10.

Willems, et al., “The Context-Tree Weighting Method: Basic Prop-
erties”, IEEE Transactions on Information Theory, vol. 41, No. 3,
May, 1995; pp. 653-664.

International Search Report and Written Opinion in PCT/US2018/
030355, dated Jul. 9, 2018, 13 pgs.

Willems, F.MLJ. et al.; “The Context-tree Weighting Method: Basic
Properties”; IEEE Transactions on Information Theory; vol. 41,
Issue: 3, May 1995; pp. 653-664.

International Search Report and Written Opinion in PCT/US2018/
030357, dated Jul. 9, 2018, 15 pgs.

Jing Wang et al., “Transform Coeflicient Coding Design for AVS2

Video Coding Standard”, 2013 Visual Communications and Image
Processing (VCIP), IEEE, Nov. 17, 2013), 6 pgs.

* cited by examiner

S. Patent ct. 15, 2019 Sheet 1 of 13 S 10.448.019 B2

102

+

TRANSMITTING

1 g - e he
b

* + + ¥ +F + F FFFFFFFFFFEFEFAFEAFFEFEFEFEFEAFEFEAFEFEFEFEFEFEFEAFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFFFEFF
L L JEE R BOE DA BOE DO BNE NE DOK DO BNL DAL DOE BNE DN BOE BOE DO BNE BOE DAL BOE BOE DAL NOE BOE NAE BN BOE DAL DNL DOE DN NN BNE BOE DAL BNE DAL NOE BNE BAE NN BNE BIE BOE BNE DO DN BNE NI BN BNE B J

+* + + ¥ F F F FFFFFFFFFFEFEFEFEFFEFEFEFEFEFEFEAFEFEFEFEAFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFFEFFFEF
+++++++++++++++++++1-1-1-++++++++++++++++++++++++++++++++++++

+ +

+ + +

+ + + + +
+ +

+ +

+* +*
rh + +* +* + 4 & + + + +
+ + + + + + + ¥ + + + + + + + + ¥ + + 4
. 3+ + + & - L B B .

+*
. + + + ¥ + + ¥ + +
-~ -

+ +

+
L
+ + +
+ + +
o+

+

£7),

-t

CEIVING
TATION

* + + F F FFFFFFFFFFFEFFFEFFEFEFFEFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFFEEFEFEEFFEFEFFFFF

L B L N L L D O I L L L R L D L L L D

+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
* + + + F F F FFFFFEFFFEFFFEFFFEFFEFEFFEFEAFFEFEAFFEFEFFEFEAFFEFEFEFEFEAFFE AR F

] .

- G - & KA.

¢ DA

US 10,448,019 B2

*

- - -
+ + + + + + + ++ ++ o+ttt + + + + + + + ++ ottt * H...__-_-.l. 1
* + + ¥+ F F FFFFFFFFEFFFEFEFEFEFFEEFEFEEFFET * + + F F FFFFFFFFFFFFFFFFFEFEFEFFEFEFEFEFEFEFEFEFEEFEFEEFEEFEEFEFEEFEFEEFFFFFF .I..H.
>) b

AAHA

Sheet 2 of 13

* + + + + + F F o+ FFFF
L L N L B L
* + + + + + ¥ F +F FFFFF

ASHOVIN

- %
+ +
+
+ +
+
+ +
+*
“ ’
._-- +
H + +
: R
L
¥

LI L L N N L L B
* + + F F F FFFFFFFFF T

-

* F + F F F F FFFFFFEFFFFFFFFFEFFFFFFRAFFFFFFFFFRFFFFF R
+ + + + A+ FFFFFFFFEFFEFEFFFEFEFEFFFFEAFEFEFFEFFEFEFEFEFE

* ¥ F F F FFFFFFFFFFFFFFFFF S F R FF R R FF * + F F F F ¥ FFFFFFFFFFFFFFFFFFFFF R R R F
+ F F F F o+ FFFF A FFFEEFEFFEFEFEFEFEFEFEE A FEFF + 4+ F F + F o F A FFFFEFEFFFEFEFEFFEFEE A FEFEFEE

+

Oct. 15, 2019

AOVHOLS O A00dd

+ + + + + + + + + + + FFt+ Attt
+ + + F ¥ F FFFFFFFFF N
+ + + + + + + + + + + + + + + + + +
+ + + + + + + ¥ F + F FFFFFAF
L I B B L L
+ + + + + + + ¥ +F + F F FFFFF

w " MMV\M AWH 3 _

00C

U.S. Patent

US 10,448,019 B2

o K|

A0 TY ANV a4 ANV A

Sheet 3 of 13

B3 14633

Oct. 15, 2019

U.S. Patent

AONANOES
OH

f
A

NV HRML

..‘I.

b

N A A

US 10,448,019 B2

Sheet 4 of 13

Oct. 15, 2019

U.S. Patent

++

INVAYLS LY

L SSTYANOD |

OCY

L0k

DNIUOONA

WA OASNY YL
HSHHAN]

AdOdLNA

OOV

++

| ANVYHYELS
@maﬁgm%

A] I |

US 10,448,019 B2

INVAILS OddIA
LOdLNO

916

NEAKIE

m DONID0199d

S PIS

\,

E

7> NOILLOIaTdd

LA OO MAINT/VILNI

ZIS

&N

e

—

gl

— NOILONYLSNODTY

£

- 01§

INJOASN VUL
ASHAANI

906 14008 40

NOILVZILNVNOAd

U.S. Patent

ONIAODHd
AdOYULNA

OCv

00§

INVAILS LI

ASSHUdINO D

S. Patent ct. 15, 2019 Sheet 6 of 13 S 10.448.019 B2

v k

YUANTI
CURRENT BLOCK ~ TRANSFORN

620 R
o
i [=
e
&7
I .

F W FTYT FYTET AT LT NI T EFWTFYFYFYFLF

Jork
prowwon
i

I
L
N A
Z

04

LI
hr b r

"

4 F PR E R E R EEERER
* n wnm bk bk d o+ d Fdohd o+

el e e,

d ¥ L ¥ 5 ¥ LT ETEFITTWTFWEFYTFYFYFEFYF

+
-
+
-
+
T
-
-
+
.
*
-
+
*
4
*
.
] v - r
+
.
-
" .
+ .
.
N =
.
+
.
*
W u
*
. r
r u)
r i
- -
. .
+ -
. n L1 1.
- .
- -
) ¥]
- r
. -
* . i
- . b -
bl + +
- r " . . .
. -
- 1
+ *
. . M
- -
I . F
r . *
- o E R T o m i E w o m E T E E e m o wm o E R E E E W m T m T m T oE T -
u 1
'+ *
. .
- »>
- . e
4 L 4 4 4 4 4 4 L A 4 4 4 A 4 L B L N L B & B L L L B & L 4 h 4 B 4 b 4 4 A a 4 B & 4k d 4 d L 4 L 4 L o4 L W .
- -
4T 1
+ o . -
r » » *
. i
+ A -
+ b 1
- -]
: * *
. .
r »
. . [
. * - Iy
. w -
* -
-]
* o - % m %..a T & E & FuWETWFS, EF AN & LN T E LN T E S, E T EFd LA LA RS NS FSE NS RS ETETE AR
r i ok ok o Bl k kool ok d ko A P R R R T I e e o N I
. -
.
* -
u
a

+
R N B g B o B R R BN R M L A Rl g ok kol Bk o Nk N N kN B o N OEE RN EE RS RS RS EA &
L] L L, + | L b, L, L L L

g

- MN-ZERO MAP 506

S 4+ A+ 4+ d AN+ E S d] dFd A A A+ N+ EFE R+

. n
+ [} | +*
..

~ " F a2 a2 m- = 28" EL ETWELEY§EETE - A TSENFJFaFraraAwaA LAy A § A FWFrTEFrTE LTy W L8

+
-
+*
+
+
+
+*
+
+
+
L
+
- L
-

F % L m 4 @ rE 3" rEF S TELTELELELY AT LFAETALTESE FE LN S} ETETELE LY LERLS
(DR BE B BE DESE DESE LT BN SR S BN SR BN S BN U BN S B N BN RN N B B R B B R UL N B N B B UL I N B N B N B N I S R

LIG-ZAG ORDED

N

EOB MAP - SIGN MAP #

+ + F + + + +FF 2 F r+ VP FEPF P FFAFF S FFFFE R A FAFrrF R FFE

ofof |

h+ w ¥+ Fwm o+ hFFFF FFFFFEFAd A FAd FrFLDLF s A Fw e dw Y FFFFFFFFFFA O+

F + F + v+ + ++ ++ ++ ++ ++ %+ %+ %+ &+ 1 + 0+ F + F + F + b +4% +4% 4 4+ ++ ++ ++ ++ + + 41+

+

+ [}
+

cd

+

<

-

* e

-+

: .
-

+

-+

+

L J

+,

+

+

w

" -
oL

. Nl

" .
+

+

+

o+

i F w A+ &+ d F e F ke Y e Fwo ok hFFFFFF o+ d AR F e e ke e F

+

L P AN - I

+ + + F ~F + + 1 A+ FFA A+ FAF

B - - P L,

..

.-

..
4 = n p g p

o+ P+ A+ F A+ F b+ F Tk NNk Ed LA P AP FE P Rk eE
P T F & p B2 L §p B F

ﬂ.
L]
L
L]
-
r
[

+
L]
-
4
[
F
L]
. .
g
N+ F 4 = & oE 4 F &4 4 P4

=
o,

=
+
=

- s T A R A RS ESE Ra R

L] = = [} [[[[
+ 4 + b ok F ok F o+ kA FAdF Fod d F+a 4+ b + b

r a2 = a =T & w1 omoaom =
Fd + d +d F b+ d+ b+

T

x

T T

+ + 4+ + F + + + + 4+ + + +
+ 4+ 4 = 4+ 8+ 4+ A
i
: .!
’
+ 4 + + +F A+ FY A Y A PP

B R e I N I L

= " a2 = romoaom = § X = r =2 1ETETHE S + = o+ om = [} [= [
+ b + b + b + 5 + F + LK T N N N N N e + &+ 4+ o+ B+ b+ F +F+ A FF kS Fd +ad + b + &

S. Patent ct. 15, 2019 Sheet 7 of 13 S 10.448.019 B2

700

“heckBHOR =
7033

“heckBEOR = 0

EOB TO

4 4+t T

+ d + r b+ b+ d +

-|++i+-'+-|+-|+-|--'+l‘-l--!‘-l--lllll+"‘+-|+-|i-|-"+l+-|+-l-"+f‘+-|‘+-l

rrrdrrrbrrir

A+ A 40+~ F FF

+* L +* + 1+ +* * 4 & +* LI L +* L L N + F +* +*
T T T T T T T e T e T T T T T T T T

1
i {)4

TSN

L L B NE B N N NN BE
= F 4 = 4 = P 4

+ + + k¥ d ¥ +F FhFrFdFFRDF R FFF R F FF A A FRF A+
[RN NN E B LB E N LB RN LB RN BB B EBEEEE LN EBEENREN,.

-

- 5 + + ¥+ + ¥

.
-
+‘|

3 : H L™

! H :

+

] .

T

e

1 4

“

= e, e .

o

R m m o m E g R 4 N 4 om omom o p R oE R R} R o 4 omeoaom PR E R poEE R a e e
I:i‘i'll.ilﬁ. <€ L E L bR AR R L A B L B L & b4 b LB E &R R L B B]

708 ~ o

+
r +
-
- - T ¥
* +
1 F + * d
-
- .
r ih'! - ‘.
1 +
+ -
T . s e - -'.
. + [
+ r
F *
4 Vv "
.
I T B I T T T R o T T I e
L o T o e R R I o A R N R A A N T R N O N N I N N
E{) -
-
+
-]
1
-
.
+
4
+
+ &
L] l“I.J
PTa? +
L] o+
ateh Tt —
n i

* *
[] +
+ +
- L3
- -
- + i
4 + +
.II- _.+ -+
- +
* +
+ +
“r
r -
- +
~ +
A R E g B o B A A Ak Bk E M R A& E A N G E o om o AR
L I N R rr AT A T T " e Ta Tl ew T w e w

F B AR ALEF & A k% B4 EAEFE R ERA

+
-
- - -
® (\ +
; A, ¥ i‘ LN i
o
+
-
"
L
- *
* +
M- Lay
- = -
+
+
'+
4
+ £y
-
-
*
+ +
-
- -
"
+ -
*
"]
-
> »
+
+ r
4 =
- L O I e I R I e R R N N I N o o
AR N N R N ok b ok sk kb ko bkl ok ok ok ol ki ok

a
- =
[]
+* +*
L -
+ =
- -
+ d
+ +
'1' +.
* L
[]]
+ +
r
e -
F+ o+ ++ +F+ rF+ kbt At F+ ++ + b8+ttt kR At
+ + + + F + %+ F+F=-FFFFFEFTFEFE R + + F + 1 + + + + 4 + 1 + %+ 2%+ 0 F + 4+ P
ERh M i L R il it Rt ot Lo Amr e =y Ty =y = g e T e T g ey e g e
-
-
-
+ -

¥

FIG.

S. Patent

ct. 15, 2019

L

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ + + + + F + ++
* + F + F FFFFFFFFEFFEFEFEFEFEFEFFF

+ * + + * + + +t+ ot
+ + + F ¥ +F F o FFFFFEFFEFFEFEFEFFFEFFF

Sheet 8 of 13

00

+* + + ¥ + + ¥ + + +
L I B B DAL B B B)

+
+
Ll
+ +
+ + + +
+ + + + + +
L . + + *
+ + + +
+ + + +

+ +

+ F + F FF o FF A FFFEFFE S
L L B DL B B B UL B L BE BN BN B BN BN BN BN BN BN BN B BN BN BN

+
+
+
+
+
+
+
+
+
+
+
+
¥ +
+
+
+
+
+
+
+
-

+ + + + + + + + +F F FF o FFFFFFFEFFEFFF
LI R RN

KI1G.

* kbt
 + +F + o+ o+

S 10,448,019 B2

S. Patent ct. 15, 2019 Sheet 9 of 13 S 10.448.019 B2

Y00

-

B koo &k od h ok oo d ok B koM ok Bk Bk B b B & B b B A d ko kod ok Bk B & ok B ok B koM ok od koM Ak d ko hod ok koA b ok Bk Mok B ok Mok Bk B Ak B koM ok d koo kod ko ok B ok oS ok Bk B ok Bk oM ok d b oS ko d ko kod b ok ok ok hosk Bk B o B ok oM ok B kS & B ko kod bk f &k d ko ok Bk B ok &bk A g kA N R kN A& & B B oA R

INITIALIZE
;o : _E:G; Zgz

o b+ b+ Fh o+ FhF A A FFrF ok kA F o FhF A F kA h ok FrF kR hF ok rh o F R+ kAl F F kA Fd o F kR F ok F R+ R+ kA ko F FdF Rk F A FF FRF FFhF kA F R FF R F S FRF F A
[- +* E

£
hd £=
L4
+ . *
1]
L}
L I
+ & B
+ d +
&+
T
n
+
)
+
L]
.
i
LS
Ll
+
+*
+
-
*H-l\“. ay u.i.m.-qt‘iuw.q .‘H-h‘i ™ - ..-\...i.:‘,pw‘.'i:u..- u v (AT 4 . [prrryrerTTrY quwﬁuuﬁw‘ r
1 L
) I *
] *
) H i : .
- -u . v Lrl'll- afas. ' a . ' . . . a ' ih. -
o
+ &+ & +
++-|‘+++
a7 A | it
-
| *jf,...f % i Ty, -
| - - *
-
| i | *,
N -y a +
| +
TI ‘ v § 'zl.-" +
+
" '*"I . 1'i. ! - o
+
+*
-
T
4
-
L]
+i-
1 F + + 4 F - 4+ % F + + + F + +d A+ + 1+ R R A Y R FFERE A F YRR A AR AR A At YRR A A 4 F + + 41 F + +
i+++F++‘F+z‘*+1‘.++"++l‘+‘F#+‘F++“++“++‘i++F++I'F'1"'Fl'1‘l'.lll1‘l'.1‘+-"1-1-1"1-‘*'l'1--'Fl'lll“1‘1‘l"++l"1‘!‘1.1'1‘Flll1‘1“1‘1‘1-‘1‘1‘-'F++“++‘i+‘l‘+‘F'+‘F‘+‘.++‘.++li++lz++l+++ﬂ++‘
\ \ \ \ \ \
-

%

ot
IHX;

B+ 4 w4 + 4 k4 + 1 bk FLid b+ 4 wrbh +4dorbh + 4 F b+ rerw F e b+ 4 b8 b4 r b+ 4dr b +F4d b Fderd F+FAdrs i T 1 rws v r rh ¥4 rw Frswdra+sdiores bders s r + 4 r 4 + 4 r b 41k bhbdda bdrbh FdrwsFdrrbh +drd Fdwbh 4 b+ LA A dd FF R FLARF
+++il@ii+ii+++i++il++il++ii++ii++ii+ii++ii++l-i++l--i++-I.-i++l++l-i++l-l-l--l-l--i-l--l-l-l++li++bi++ii+ii++l--l++l-b++ii++ii++ii++i++ii++ll++ii++ti++l@

| %
b
]
o,
Tk
ER k kA Ak ko k kA Rk kN kA A+
N I L

+
+
+
]

+ +
+ 0
* "
*
* [N

¥

+

+

-

-

L

+

+,

+

+

L]

-

T

+

L

+

- N +F

L] -

. . 4 "

*-

H +

+

+

-

-

-

+,

+

+

+

-

=

- or moaow o A m e e omon - rem oo - r » » i T r - » -7 + - - o - - T r » » T T - r r - - - - awor ik

Mlitrl+trltiiltf'iTrli}tiivii+J-rl--I.l.-i-I.+b-i-rr---i-I.-I.-i-i-ri--i-i-ri--i++l.l-I--I.l.l-I.i--i-i-ri--i-i-I.i-h.-l--l.l--i+-I.l.l-I.rl.l-I.-I.h.-i-rrl.-iJ--I.-iiJ--I.l-I-rlh++tiTt'iTrii}iil}iiiriiittl+r”

Update
[1= 1~ log pi(x,
o pf?g - .Gﬁpg{x; A

4 + + A4 F+ At A A A A AT AR At A A AT A AR YRt A ARt A AR AP AP AR AR+ AT A AR+ T A ARt
A+ %A A R AN EFFAF AT F PSS FFE R A LS FLF A F TP F T F PR FFPEF PR FY RS FPFFFEFFFFAFEFPESFFAFFERAFFFESFF P F A FEEFFFESF Y FFA TR F A A EF YRS AP

+ + 1 &+ + + 4 + + F~ F 4+ + 1A F +F~F + + 1 FF ~EAF F +0F
+ 1.0 F % = F 4+ %0 F %L F+FF SRR+ PR RS

~ 312

* % F + % FF % 8% & F &+ % 8 F & &P

Fa % F o+ + L dFFrdFd R F + & 0 4+ + ¥ F + + & 4 ¥ + F 4+ +* % F =+ % FhoF ¥Rkt FEEF D L F o FRES A FPEFEF LD L E AT F A A + % 1 += + % F + + FFAFF+FFF+ + % 1 + +
+++HI++il++‘+++‘+++P++ih++‘l++ih++‘1—++!-1-1-1-!1-1-!--|1-+|-I-+++I-1-+lll-++ﬁ+++l+++l++l-I-lll+lll-++lll-1-+ll+++|l++ll-|i++l-++l-l-++ih++‘+++¥+++‘+++P++i!i++h++i#++H!++

T&TY - * f

o +
+ + &
+ +
+
L]
L]
i
+ x
+ & h * L
-+ =
' + F + _ [i
x .o
- H
L 4
-+ a4
- +
- + +
+ +
s -+
= Iy
r w
+ ‘ d -
) I
Y - * F
+ + — - + +
- % F o+ = - + + + PN -
L LA P+ + Ay e
" s e o oaw PR T
+ T e . . - hor L bt o1 L § ™
4 L h + + d 4 + i-l--l-l.i-l-‘l-l.i
4 + + d =+ 4 + #+ d b ¥ +
. et e RGN D
= -+ + 4 ¥ 1 ¥ 4+ + + F + + + + + 41 =
% 4 + ¥ =2 +‘+ - - e ‘-I-‘l.‘--l-‘!-l"‘l-lﬂ
- r*"‘-“-rj'r}l J}rrl“- r
b o+ bk k +om ka4 e
d FFF kW +d 4+ + & b+
g+ F ¥ +FF + & 1 F + ¥+ -4+ 4

- LI B
= % F+ + Fh T
0 L

+
L] =

a

YES 016

—4
wi

+

ny Lo T ']

. s T orrwrr T em = r mon + L b T e r pT e de T ek
oy T T e T T e T T T T T T Ry E

FIG. 9

S. Patent ct. 15, 2019 Sheet 10 of 13 S 10.448.019 B2

A+

-

+
F TI
*
- 1
-
F d
C - - Pary—, +*
- !
O | r) i
+ -t +
- o v L
* +
L J -.u-.-j.. -a‘r -
r i
+
-]
F T‘l
- +I.
* ' +F'
=
- '] I - .ﬂﬂ.....m. .
A , ey ‘.
] - [l
» ¥, x - :
r —t L]
-
* i
+
- 1
F ++
4 b L L L d b L b dod g L R L p odod BoA k d b LA W L ok b d Ak B oL p oAoh dod B L p odoh ok ook h p kh kg ok p AL ko h ok bohoh B o B o b odod B oL ko= b odod B L B g R ohod B oA b ook d b Mo b od ok 4 kW g p okok & g ok b ohoh o ko k h p okok B oA k& b Ad B oL ok b oA d B L oad AL N g B ok N o B LR AL oo R
Tr " LW W W W AW ATYTSNTAT AYTE N AT AYTEY A ACE N TYAE AT [T AT A - e R - T " AW AT YW N W OAY AEY N AT ATE NEYTATYT AT ST AYTE EY ST Al TET AT ALdT ST AT ATE N AT AEY ST AT ATE ENYT A AYTY AY AYE jEY AEAE fFTYE ST ATEYTE ARl W

Q04

5 COMPUTE CONDITIONAL PROBABILITIES :
: o i . &L « W : : < - b FAN - - . AN 2
: ;¥ 7 T ‘
: _ ;/ i= i g A :
; 3% X7) and pafx; X
r 1 ol I)

o GG

+ 4 + b + + F + 4+ ko F A FFF A A F A F FEFd S FFF A FA F A FEd R - kA A Fd A+

- +

=
-

[
+ F
=
+

B+ A+ F A AR FE AN A+ F AR F o F A FF A+ FFE A FEFFEAEAFA A FEFEA N -+

COMPUTE MIXED PROBABILITY
Pl

Ll
L N R R I N B R N N RN N N NN N N R L R N N N L O B N T B L BN N N R R T T R NN N I N N N N N R L NN R N B N N N B
= a §y g ® 4 p Ay N AR p Y 4 N R A R AN 4 pRE RPN R E RS RSNy 4 F R A R R Ny R P ESE R RS RSN R fE P RSN S 4 A RSy ELSERSEAY PR A Ry PR E R R N R A EE Ny Sy} A EE Ny FF F RS R R RS g EEE RS R R PP f AR AN f F-A REE 4 PR SEA Ry R R EARp Y

-k B LY ok B B B o Bk B oA R [Y R N B ok Bk B B M Bk Bk ok B e Bk Bk R ok R sk EoA R LY ok B B B Bk Bk B R A R Bk B ok o B ok B ok B I S W A Y Lo Y [Y [Y [y " m [Y LY Ly FARTY £y e R R R R A R OEOEE A R = LY [y

: -y '-..'1 - - --I :
i o My ey ! Hr. - nr‘ ¥ :
d J | A .

e or oa Lo

r ¥

R d 4 F 4 L d L J 4 B ELF]+ B & F 4 b d B Jd &P 4 B d & & F 4 BT & +~ m o r a2 4+ " ®m 2@ r = %emEr-rsr@s=-2mr-r8 "8 TaA= - =L E 4L A8+ JdaF 4 LT 4B & F J
A+ m vk d +d +wrr *m ru vk d+d dkworddFw kel Fwr *w rr rF d o+ b+ bk d o+t d kwdk b FEd ek tw ke d kR F

r 1+ ®m L @ 4 L 4 & B & F . L7 L B L 8 EE L 8
=T rrd dw rr rdd ¥

L 4 4 B & F J B a
*mrr rdad

. ®m®" ®T:E*1T1TEr1TELTELTATTLTETTTETETSTE TTETETTETETETTETETEFRTETETETLETATT LTI ETT ISR MR * " *T=m1*1nAT1tETATTLITTLETLELTITLELERTETSETT®TTELTETT T ELTE®TTARLTETATLTLTETE LT ETETEFT TR

—_ .

i

T = w ron

Update
L= log pdx,
e :3(X;

nT mom

=T = ora

i

t

T = wr a

N o B b B A Bk ok B ok fok B Rk § ok B RS B g B 4 B ORA B &

LN R N B N N N O A B B N B B O B B A DA D R B R B B B N L B A B B B B T N B B B N B B B N B
+ -+ " A+ttt AP EA A A Y AP Y YN - YA + 4 + 1+ H
P, T B - R L |- I L ~ B = B | | kA |4 I} & P~ - + C | P~ - L 3

+ dd +ad ko FaAddhF AR A+
+F*F+ 1T+ PEFARF A A
L - | B % & % 5 A ¥ oE R

F A+ b+ o+
+ + + 1+ F + +
A L

A+ 4 4 FaAdF A+ ok wd et w o wd ko d R+ Fd A
++ A+ = +F ++ VAT AP PRt A-tF
-] L T - L] LI L L L -

LI B I B B I N O]
++ 1+ F ++ ++HAFF++
- kA - I} %3

Fa R v e

+ +
+.F L]
o
LIG]
+]
+, *
.
d
L]
.
L
"
a
.
d
r
.
-
1 - — — - —— - [
o Ii| = L r a , :
4 £ Z —_—— I-
Wb .
M 1 ————
.
Fl i } F
a . - , , ' 1 .
1
r
L
-
¥
.
.
-
-
.
1
-
.
" 5 -
RN RN NN RN NN N N N T N N NN N I N I N T I N T N N T T N T T I O B T O T I I N N B)
Sy mTFrRTFTETHWLEIETETRARTATTAE AR TA B AR A FrFR T ATETATAFAFRFTATAFA R AP TARTEAFARTETETART E TR TR rTra*" RTETRARTTTRTFRTRAOBEYFTAKRTETIETTETE AR TE LB AT RTETRTATTRTTRTAATTA AT RAFTATATART RO
'
) iﬂ-
, 1
+r
= -
b + .
"
/ -|.

=rwLmnTr

* =

- 1w d ¥+ -
4+ b+ dF kA
L L L T,

T - ® orwmE T g

F s b F okl -

F + = % & % & .

L

v omT
I
= 4+ 1 + F + F
. a

- tnrw TN

L L I N B N N

AN NP R AN 4

“

L
FEERE LN Y

ok d b LEd ot
+ + A + 4 + & -
LI N N =
= rw e wa Ty

+* F ¥+ % &4+ F + & =
+I‘+.+'|l+l'i'| .

= rowm
i b b ok od o+
.*++1‘

F+
e m T N oW
L+ r +
e B oA B oA N R oA & el
R E N
u o+ b+t
h

LK J
-
[

gy | 4 m L E } ER

4 ko ruwrFd Furvewrr rtrbaFFirrd =

ok S =% b FF A A
=

FIG. 10

US 10,448,019 B2

- -

T
a

* + d + F ¥+ ++ F+A F+FF +4 F+d+FF FFA + 1+ 4% + + 1+ F + A FPFFFFFEF RS FEA T+ F + + & + b + 4 %+ 1 + F + 4+ 1 + 4 + 4+ 1 + 4 & + F + + 1 + 4 + %+ % +F +4% &+ 1 +4 & + 01 + 4 + 45 F + %+ 1 + F ++ % + F + + + + F+ 4 + + 1 + 4 % + 14 + + 1 4 + F FFF+FFNFA S P A + F + F + + 1 + F ++ 1+ F+4% ++F +9 ++ b8 +4 F 4+ + &+ d + F ++ 1 + s +F %+ r+ F ++ b+ F+
L R N L N L T N N L L L L T . TN L AL L A R P L L T L L e I L L A N L L L N L L N L T N N L L A P L N A L LA N A L L D LN L L L N L D L
+ L] + - + o+ d +
._.... wrbrarlewfr .t et n wiratrrarle Wt wwerlrterr - et + wubrwwtrred .t ._._. drvrretrer

+ + i + 1 * + d
+ - + - F + + 4 +

* - n T r a - .

- . -] 4 - i *

+ - d + - + + r
+ 1 + - + L +
.—..-. ! T.l .-.l —.._. .-.- .—.l -.l .—.l

B
-t - 25 - - «' .t -t +

+ [] d + [] [+ d
* - * F * + 5 *

a - - - N a - N

+ 1 L] F L} *
+ F + + d d ¥ - LI
1+ + 1 4+ + L + kb F ¥ 4 +
P Y ay e a . =T N a .
- T d + d d 4 .+ - d = d * d
F F o+ + 4 + i + + F + +
" 1 - d - r =
k- o - .
F .-..—. .—.- +
i, - Y
o + A i
- ¥ r -
- = L]
+ 1 k +
¥ *] 1 - +
- -
+ +
¥
-
K #
+ +
L] , =
r r .
+, + +
["
k- .
+ +
N K +
- o 1 - A

Sheet 11 of 13

- B
[]
+ 4
] w
n
1
-
l
¥
4
r
[}
4
™
&
-
= l
. r
o+ 4
' l
L
+ 4
Ly =
(]
-
& 1
- (]
4
F
"
d 4
) +
-]
+ +
L] -T +
F " F
1
-
[2o .
L]
4
Gl
g
- [l
e 4
+)
— _ ‘
+
+ .]
+ L]
-
k -
h [
+
4
L] - [Tl T
+
E
— +
=3
+ +
d *
H '+ L r -
[}
= ;
+
L
+
L) *
] -
-
¥
F
Jr]
+ +
-
1
-
[]
&
1y
- b
L]
+
ol 4
F +
H -
+
+
Iy
L)]
o+ [}

$16201 Nﬁﬂw.zl

U.S. Patent

U.S. Patent Oct. 15, 2019 Sheet 12 of 13 US 10,448,019 B2

1200

SELECT MODELS INCLUBING A FIRST MODEL
AND A SECOND MODEL

rrr

DETERMINE, USING TF E* ARST MODEL, A FIRST
CONDITIONAL PROBABILITY FOR CODING A
%Y\iBO i

--

DETERMINE, USING THE SECOND MO DEL A
SECOND CONDITIONAL PROBABILITY FOR
CODING THE SYMBOL

+
++
L I N N N I o T N I N I T T o T N i e I N e T I I o I o i T T I T R o N e T o I S B T U SN TR T N T N

DETERMINE, USING THE FIRNT CONDITIONAL
PROBABILTI kf AND THE SECOND CONDITIONAL
PROBABILITY, A MIXED PROBABILITY FOR
CODING THE SYMBOL

CODE THE SYMBOL USING THE MIXED
PROBABILITY. _;j

FIG. 12

U.S. Patent Oct. 15, 2019 Sheet 13 of 13 US 10,448,019 B2

1300

CONVERT NON-BINARY ALPHABET
DISTRIBUTION TO BINARY DISTRIBUTIONS

USE THE BINARY DM SREB UTIONS AS INPUT

L
+-I.
+
*
“l.
}r 3) EE N wFEE T PR TRy B ' TETN
;7 E : ; :
[[| f 1
Frm " L - - --lr - - - -
“‘ sa oy gy -\.r.- - - LT e o R n.lr-\. ..,ilp.u 'pﬁn.l T
F |
. .
+++
ey L 4 '.1.‘4. ‘‘‘ .|."

FIG. 13

1400
1402

SELECT PROBABILITY DISTRIBUTIONS
INCLUDING A FIRST PROBABILITY DISTRIBUTION |
AND A SECOND PROBABILITY DISTRIBUTION FOR. |

CODING A TOKEN INDICATIVE OF A QUANTIZED |
TRANSFORM COEFFICIENT OF THE QUANTIZED |
TRANSFORM BLOCK

+ .
++

+++
ll

+ d F
+ +
1

DETERMINE A MIXED PROBABILITY FOR CODING
THE TOKEN USING THE FIRST PROBABILITY '
PISTRIBUTION AND THE SECOND PROBABILITY
DISTRIBUTION

CODE THE TOKEN UMNG THE MIXED
PROBABILITY

FIG. 14

US 10,448,019 B2

1

USING MULTIPLE PROBABILITY MODELS
FOR ENTROPY CODING IN VIDEO

COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Application Patent Ser. No. 62/551,341, filed
Aug. 29, 2017, the entire disclosure of which 1s hereby
incorporated by reference.

BACKGROUND

Digital video streams may represent video using a
sequence ol frames or still images. Digital video can be used
for various applications including, for example, video con-
terencing, high definition video entertainment, video adver-
tisements, or sharing of user-generated videos. A digital
video stream can contain a large amount of data and con-
sume a significant amount of computing or communication
resources of a computing device for processing, transmis-
s10n, or storage of the video data. Various approaches have
been proposed to reduce the amount of data in video
streams, 1ncluding compression and other encoding tech-
niques.

Encoding based on motion estimation and compensation
may be performed by breaking frames or images into blocks
that are predicted based on one or more prediction blocks of
reference frames. Diflerences (1.e., residual errors) between
blocks and prediction blocks are compressed and encoded 1n
a bitstream. A decoder uses the diflerences and the reference
frames to reconstruct the frames or images.

SUMMARY

An aspect 1s a method for entropy coding a sequence of
symbols 1ncluding selecting models that include a first
model and a second model, for at least a symbol, at a
position of the symbols, determining a mixed probability
using the first model and the second model, and coding the
symbol using the mixed probability. Determining the mixed
probability for the symbol includes determining, using the
first model, a first conditional probability for coding the
symbol, determining, using the second model, a second
conditional probability for coding the symbol, and deter-
mimng, using the first conditional probability and the second
conditional probability, the mixed probability for coding the
symbol. The first conditional probability 1s a conditional
probability of the symbol given a sub-sequence of the
sequence up to the position. The second conditional prob-
ability being a conditional probability of the symbol given
the sub-sequence.

Another aspect 1s an apparatus for entropy coding a
quantized transform block including a memory and a pro-
cessor. The memory includes 1nstructions executable by the
processor to select probability distributions comprising a
first probability distribution and a second probability distri-
bution for coding a token indicative of a quantized transform
coellicient of the quantized transform block, determine a
mixed probability for coding the token using the first prob-
ability distribution and the second probability distribution,
and code the token using the mixed probability. The token 1s
selected from an alphabet of tokens. The first probability
distribution includes first probabaility values for the tokens of

10

15

20

25

30

35

40

45

50

55

60

65

2

the alphabet of tokens. The second probability distribution
includes second probability values for the tokens of the
alphabet of tokens.

Yet another aspect 1s an apparatus for entropy decoding a
sequence of symbols including a memory and a processor.
The memory includes mstructions executable by the pro-
cessor to select models mcluding a first model and a second
model, determine, for a symbol at a position of the symbols,
a mixed probability using the first model and the second
model, and decode, from a compressed bitstream, the sym-
bol using the mixed probability.

These and other aspects of the present disclosure are
disclosed 1n the following detailled description of the
embodiments, the appended claims, and the accompanying
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The description herein refers to the accompanying draw-
ings wherein like reference numerals refer to like parts
throughout the several views.

FIG. 1 1s a schematic of a video encoding and decoding
system.

FIG. 2 1s a block diagram of an example of a computing,
device that can implement a transmitting station or a receiv-
ing station.

FIG. 3 1s a diagram of a video stream to be encoded and
subsequently decoded.

FIG. 4 1s a block diagram of an encoder according to
implementations of this disclosure.

FIG. 5§ 1s a block diagram of a decoder according to
implementations of this disclosure.

FIG. 6 1s a diagram 1illustrating quantized transiform
coellicients according to implementations of this disclosure.

FIG. 7 1s a diagram of a coeflicient token tree that can be
used to entropy code blocks 1nto a video bitstream according
to implementations of this disclosure.

FIG. 8 1s a diagram of an example of a tree for binarzing
a quantized transform coellicient according to implementa-
tions of this disclosure.

FIG. 9 15 a flowchart diagram of a process for encoding a
sequence ol symbols according to an implementation of this
disclosure.

FIG. 10 1s a flowchart diagram of a process for decoding
a sequence ol symbols according to an implementation of
this disclosure.

FIG. 11 1s a diagram of an example of a binary tree of
conditional probabilities according to an implementation of
this disclosure.

FIG. 12 1s a flowchart diagram of a process for entropy
coding according to an implementation of this disclosure.

FIG. 13 1s a flowchart diagram of a process for estimating,
a cost of coding a symbol 1n a non-binary alphabet according
to an implementation of this disclosure.

FIG. 14 1s a flowchart diagram of a process for entropy
coding a quantized transform block according to an 1mple-
mentation of this disclosure.

DETAILED DESCRIPTION

As mentioned above, compression schemes related to
coding video streams may 1include breaking images into
blocks and generating a digital video output bitstream using
one or more techniques to limit the information included 1n
the output. A recerved encoded bitstream can be decoded to
re-create the blocks and the source images from the limited
information. Encoding a video stream, or a portion thereof,

US 10,448,019 B2

3

such as a frame or a block, can include using temporal or
spatial similarities 1n the video stream to improve coding
ciliciency. For example, a current block of a video stream
may be encoded based on 1dentifying a difference (residual)
between the previously coded pixel values and those 1n the
current block. In this way, only the residual and parameters
used to generate the residual need be added to the encoded
bitstream. The residual may be encoded using a lossy
quantization step.

As further described below, the residual block can be in
the pixel domain. The residual block can be transformed 1nto
the frequency domain resulting in a transform block of
transform coetlicients. The transform coeflicients can be
quantized resulting into a quantized transform block of
quantized transform coeflicients. The quantized coeflicients
can be entropy encoded and added to an encoded bitstream.
A decoder can recerve the encoded bitstream, entropy
decode the quantized transform coeflicients to reconstruct
the original video frame.

Entropy coding 1s a technique for “lossless” coding that
relies upon probability models that model the distribution of
values occurring 1n an encoded video bitstream. By using
probability models based on a measured or estimated dis-
tribution of values, entropy coding can reduce the number of
bits required to represent video data close to a theoretical
mimmum. In practice, the actual reduction i the number of
bits required to represent video data can be a tunction of the
accuracy of the probability model, the number of bits over
which the coding i1s performed, and the computational
accuracy of fixed-point arithmetic used to perform the
coding.

In an encoded video bitstream, many of the bits are used
for one of two things: either content prediction (e.g., inter
mode/motion vector coding, intra prediction mode coding,
etc.) or residual coding (e.g., transform coetlicients). Encod-
ers may use techniques to decrease the amount of bits spent
on coellicient coding. For example, a coeflicient token tree
(which may also be referred to as a binary token tree)
specifies the scope of the value, with forward-adaptive
probabilities for each branch in this token tree. The token
base value 1s subtracted from the value to be coded to form
a residual then the block 1s coded with fixed probabilities. A
similar scheme with minor variations including backward-
adaptivity 1s also possible. Adaptive techniques can alter the
probability models as the video stream 1s being encoded to
adapt to changing characteristics of the data. In any event, a
decoder 1s informed of (or has available) the probability
model used to encode an entropy-coded video bitstream in
order to decode the video bitstream.

As described above, entropy coding a sequence of sym-
bols 1s typically achieved by using a probability model to
determine a probability p for the sequence and then using
binary arithmetic coding to map the sequence to a binary
codeword at the encoder and to decode that sequence from
the binary codeword at the decoder. The length (1.e., number
of bits) of the codeword 1s given by —log,(p). The efliciency
of entropy coding can be directly related to the probability
model.

(Given a probability p(x”) of a sequence of symbols x”, a
good entropy coding engine, such as a well-designed binary
arithmetic coding engine, can produce from the probability
p(x”) a binary string of length -log,(p(x”)). As the length of
the string 1s an integer number, “a binary string of
length -log,(p(x”))” means a binary string having a length
that 1s the smallest integer that 1s greater than —log,(p(x™)).
Herein, when referring to a sequence of symbols, a super-
script of 1 refers to a sequence having a length of 1 symbols,

10

15

20

25

30

35

40

45

50

55

60

65

4

and a subscript of 1 refers to the symbol at position 1 1n the
sequence. For example, x> refers to a sequence of five (5)
symbols, such as 11010; whereas x. refers to the symbol 1n
the 5 position, such as the last 0 in the sequence 11010. As
such the sequence x, can be expressed as x"=x,x, . . . X .

In some 1mplementations, a symbol can refer to a token
that 1s selected from a non-binary token alphabet that
includes N tokens. As such, the symbol (1.¢., token) can have
one of N values. The token can be a token that 1s used to
code, and 1s indicative of, a transform coeflicient. In such
cases, “a sequence of symbols x*” refers to the list of tokens
X, X5, . . ., X Used to code the transtform coeflicients at scan
positions 1, 2, . . ., n, respectively, 1n a scan order.

As used herein, probability values, such as the probability
p(x’) of the sub-sequence x’, can have either floating-point or
fixed-point representations. Accordingly, operations applied
to these values may use eirther floating-point arithmetic or
fixed-point arithmetic.

Given two probabilities p,(x”) and p.(x") such that
p, (X")<p,(X"), the probability p,(x”) results 1n a codeword
that 1s no shorter than the probability p,(x”). That 1s, a
smaller probability typically produces a longer codeword
than a larger probabaility.

The underlying probability model from which symbols
are emitted 1n video coding 1s typically unknown and/or 1s
likely too complex to be fully described. As such, designing
a good model for use in entropy coding can be a challenging
problem 1n video coding. For example, a model that works
well for one sequence may perform poorly for another
sequence. That 1s, given a first model and a second model,
some sequences might compress better using the first model
while other sequences might compress better using the
second model.

In some video systems, 1t 15 possible to code (i.e., signal
in an encoded bitstream) an optimal model for encoding a
sequence. For example, given a sequence to be encoded, a
video system may encode the sequence according to all or a
subset of available models and then select the model that
results 1n the best compression result. That 1s, 1t 1s possible
to code the selection of a particular model among a set of
more than one models for the sequence. In such a system, a
two-pass process may be, implicitly or explicitly, performed:
a first pass to determine the optimal model and a second to
encode using the optimal model. A two-pass process may not
be feasible 1n, e.g., real-time applications and other delay-
sensitive applications.

As mentioned above, multiple models (1.e., models
1, . .., M) may be available for entropy coding. For a
sequence of symbols to be compressed without loss of
information, mixing a {inite number of models for arithmetic
coding can be as good selecting the best one model, asymp-
totically. This follows from the fact that the log (1.e.,
logarithm) function 1s a concave function and that the -log
function 1s a convex function.

From the foregoing, and for a finite sequence X'=
X,X, . .. X of length n, inequality (1) follows:

_ng(Ek:Ikapk(xn))Egﬁc:lek(_IDg Pi{x")) (1)

In the mequality (1), w, denotes a weighting factor of the
k” model and p,(x”) denotes the joint probability of x” given
by model k. As described above, given a probability p, (x”)
(1.e., the probability given by model k of the sequence x")
and x” as the input, an entropy coding engine can map x” into
a binary codeword of length that 1s approximately equal to
~log pi(x").

From the inequality (1), 1t follows that taking the linear
(i.e., weighted) sum of the probabilities (i.e., X,_, "W, p.(X"))

US 10,448,019 B2

S

tor the available models and then taking the logarithm of the
linear sum 1s always less than or equal to taking the
logarithms of the probabilities (log p,(x*)) of the models
1, ..., M and then performing a linear sum using the same
weighting factors {w,}. That is, the left-hand-side of the
inequality (1) 1s always less than or equal to the right-hand-
side of the inequality.

It also follows from the inequality (1) that, given M
models, 1t 1s more advantageous to mix the probabilities of
the models 1, . . ., M before entropy coding a symbol. That
1s, 1t may be more advantageous to mix the probabilities of
multiple models before entropy coding than to choose
models according to probabilities and using each model to
individually code a sequence of bits. Mixing distinct models
1s likely to improve compression performance (1.e. reduces
compression rate) and 1s no worse than selecting and coding
the best model and then to code a sequence using the
selected model.

The probability p.(x”) 1s a joint probability of the
sequence X", That 1s, given the sequence x"=x,X, . .. X, , the
joint probability p,(x”) 1s the probability that the first symbol
is X,, the second symbol is X, . . . , and the n” symbol is x, .
As coding x” jointly can incur significant delay 1n processing,
and can 1ncur a high computational complexity, mixing has
found limited use, 1f at all, 1n video coding.

A model, as used herein, can be, or can be a parameter 1n,
a lossless (entropy) coding. A model can be any parameter
or method that atlects probability estimation for the purpose
of entropy coding. For example, a model can define the
probability to be used to encode and decode the decision at
an internal node in a token tree (such as described with
respect to FIG. 7 below). In such a case, the two-pass
process to learn the probabilities for a current frame may be
simplified to a single-pass process by mixing multiple
models as described herein. In another example, a model
may deflne a certain context derivation method. In such a
case, implementations according to this disclosure can be
used to mix coding probabilities generated by a multitude of
such methods. In yet another example, a model may define
a completely new lossless coding algorithm.

Implementations according to this disclosure can efli-
ciently mix multiple models for entropy coding in real-time
or delay sensitive applications, including video coding, to
reduce the number of bits required to represent video data.
Mixing models can be used for encoding any value that 1s
coded using entropy coding. For example, two or more
probability models can be mixed in order to entropy code
quantized transform coeflicients. The benefits of implemen-
tations according to this disclosure include 1) improved
compression performance and 2) the mixing of probabilities
from multiple models 1n a single-pass coding process that
does not sacrifice compression performance or icur a high
computational cost.

Mixing for entropy coding in video compression 1s
described herein first with reference to a system in which the
teachings may be incorporated.

FIG. 1 1s a schematic of a video encoding and decoding
system 100. A transmitting station 102 can be, for example,
a computer having an internal configuration of hardware
such as that described in FIG. 2. However, other suitable
implementations of the transmitting station 102 are possible.
For example, the processing of the transmitting station 102
can be distributed among multiple devices.

A network 104 can connect the transmitting station 102
and a receiving station 106 for encoding and decoding of the
video stream. Specifically, the video stream can be encoded
in the transmitting station 102 and the encoded video stream

10

15

20

25

30

35

40

45

50

55

60

65

6

can be decoded 1n the receiving station 106. The network
104 can be, for example, the Internet. The network 104 can
also be a local area network (LAN), wide area network
(WAN), virtual private network (VPN), cellular telephone
network, or any other means of transferring the video stream
from the transmitting station 102 to, 1in this example, the
receiving station 106.

The receiving station 106, in one example, can be a
computer having an internal configuration of hardware such
as that described 1n FIG. 2. However, other suitable imple-
mentations of the receiving station 106 are possible. For
example, the processing of the recerving station 106 can be
distributed among multiple devices.

Other implementations of the video encoding and decod-
ing system 100 are possible. For example, an implementa-
tion can omit the network 104. In another implementation,
a video stream can be encoded and then stored for trans-
mission, at a later time, to the receiving station 106 or any
other device having memory. In one implementation, the
receiving station 106 receives (e.g., via the network 104, a
computer bus, and/or some communication pathway) the
encoded video stream and stores the video stream for later
decoding. In an example implementation, a real-time trans-
port protocol (RTP) 1s used for transmission of the encoded
video over the network 104. In another implementation, a
transport protocol other than RTP may be used, e.g., an
HTTP-based video streaming protocol.

When used 1n a video conferencing system, for example,
the transmitting station 102 and/or the receiving station 106
may 1nclude the ability to both encode and decode a video
stream as described below. For example, the receiving
station 106 could be a video conference participant who
receives an encoded video bitstream from a video confer-
ence server (e.g., the transmitting station 102) to decode and
view and further encodes and transmits its own video
bitstream to the video conierence server for decoding and
viewing by other participants.

FIG. 2 1s a block diagram of an example of a computing,
device 200 that can implement a transmitting station or a
receiving station. For example, the computing device 200
can implement one or both of the transmitting station 102
and the receiving station 106 of FIG. 1. The computing
device 200 can be in the form of a computing system
including multiple computing devices, or in the form of a
single computing device, for example, a mobile phone, a
tablet computer, a laptop computer, a notebook computer, a
desktop computer, and the like.

A CPU 202 in the computing device 200 can be a central
processing unit. Alternatively, the CPU 202 can be any other
type of device, or multiple devices, capable of manipulating
or processing information now existing or hereaiter devel-
oped. Although the disclosed implementations can be prac-
ticed with a single processor as shown, e.g., the CPU 202,
advantages 1n speed and efliciency can be achieved using
more than one processor.

A memory 204 1n the computing device 200 can be a
read-only memory (ROM) device or a random access
memory (RAM) device in an implementation. Any other
suitable type of storage device can be used as the memory
204. The memory 204 can include code and data 206 that is
accessed by the CPU 202 using a bus 212. The memory 204
can further include an operating system 208 and application
programs 210, the application programs 210 including at
least one program that permits the CPU 202 to perform the
methods described here. For example, the application pro-
grams 210 can include applications 1 through N, which
turther include a video coding application that performs the

US 10,448,019 B2

7

methods described here. The computing device 200 can also
include a secondary storage 214, which can, for example, be
a memory card used with a computing device 200 that 1s
mobile. Because the video communication sessions may
contain a significant amount of information, they can be
stored 1n whole or 1n part 1n the secondary storage 214 and
loaded 1nto the memory 204 as needed for processing.

The computing device 200 can also include one or more
output devices, such as a display 218. The display 218 may
be, 1n one example, a touch sensitive display that combines
a display with a touch sensitive element that 1s operable to
sense touch inputs. The display 218 can be coupled to the
CPU 202 via the bus 212. Other output devices that permit
a user to program or otherwise use the computing device 200
can be provided in addition to or as an alternative to the
display 218. When the output device 1s or includes a display,
the display can be implemented 1n various ways, including
by a liquid crystal display (LCD), a cathode-ray tube (CRT)
display or light emitting diode (LED) display, such as an
organic LED (OLED) display.

The computing device 200 can also include or be in
communication with an image-sensing device 220, for
example, a camera or any other 1mage-sensing device 220
now existing or hereafter developed that can sense an 1image
such as the 1mage of a user operating the computing device
200. The image-sensing device 220 can be positioned such
that 1t 1s directed toward the user operating the computing,
device 200. In an example, the position and optical axis of
the 1mage- sensing device 220 can be Conﬁgured such that
the field of vision 1ncludes an area that 1s directly adjacent
to the display 218 and from which the display 218 1s visible.

The computing device 200 can also include or be in
communication with a sound-sensing device 222, {for
example, a microphone or any other sound-sensing device
now existing or herealter developed that can sense sounds
near the computing device 200. The sound-sensing device
222 can be positioned such that 1t 1s directed toward the user
operating the computing device 200 and can be configured
to receive sounds, for example, speech or other utterances,
made by the user while the user operates the computing
device 200.

Although FIG. 2 depicts the CPU 202 and the memory
204 of the computing device 200 as being integrated into a
single unit, other configurations can be utilized. The opera-
tions of the CPU 202 can be distributed across multiple
machines (each machine having one or more of processors)
that can be coupled directly or across a local area or other
network. The memory 204 can be distributed across multiple
machines such as a network-based memory or memory in
multiple machines performing the operations of the com-
puting device 200. Although depicted here as a single bus,
the bus 212 of the computing device 200 can be composed
of multiple buses. Further, the secondary storage 214 can be
directly coupled to the other components of the computing
device 200 or can be accessed via a network and can
comprise a single mtegrated unit such as a memory card or
multiple units such as multiple memory cards. The comput-
ing device 200 can thus be implemented 1n a wide variety of
configurations.

FIG. 3 1s a diagram of an example of a video stream 300
to be encoded and subsequently decoded. The video stream
300 includes a video sequence 302. At the next level, the
video sequence 302 includes a number of adjacent frames
304. While three frames are depicted as the adjacent frames
304, the video sequence 302 can include any number of
adjacent frames 304. The adjacent frames 304 can then be
turther subdivided into individual frames, e.g., a frame 306.

10

15

20

25

30

35

40

45

50

55

60

65

8

At the next level, the frame 306 can be divided into a series
of segments 308 or planes. The segments 308 can be subsets
of frames that permit parallel processing, for example. The
segments 308 can also be subsets of frames that can separate
the video data into separate colors. For example, the frame
306 of color video data can include a luminance plane and
two chrominance planes. The segments 308 may be sampled
at different resolutions.

Whether or not the frame 306 1s divided into the segments
308, the frame 306 may be further subdivided into blocks
310, which can contain data corresponding to, for example,
16x16 pixels 1n the frame 306. The blocks 310 can also be
arranged to include data from one or more segments 308 of
pixel data. The blocks 310 can also be of any other suitable
s1ze such as 4x4 pixels, 8x8 pixels, 16x8 pixels, 8x16 pixels,
16x16 pixels or larger.

FIG. 4 1s a block diagram of an encoder 400 1n accordance
with 1implementations of this disclosure. The encoder 400
can be implemented, as described above, 1n the transmitting
station 102 such as by providing a computer software
program stored 1n memory, for example, the memory 204.
The computer solftware program can include machine
instructions that, when executed by a processor such as the
CPU 202, cause the transmitting station 102 to encode video
data in the manner described herein. The encoder 400 can
also be implemented as specialized hardware included 1n, for
example, the transmitting station 102. The encoder 400 has
the following stages to perform the various functions 1n a
forward path (shown by the solid connection lines) to
produce an encoded or compressed bitstream 420 using the
video stream 300 as input: an intra/inter prediction stage
402, a transform stage 404, a quantization stage 406, and an
entropy encoding stage 408. The encoder 400 may also
include a reconstruction path (shown by the dotted connec-
tion lines) to reconstruct a frame for encoding of future
blocks. In FIG. 4, the encoder 400 has the following stages
to perform the various functions in the reconstruction path:
a dequantization stage 410, an inverse transform stage 412,
a reconstruction stage 414, and a loop filtering stage 416.
Other structural variations of the encoder 400 can be used to
encode the video stream 300.

When the video stream 300 1s presented for encoding, the
frame 306 can be processed in units of blocks. At the
intra/inter prediction stage 402, a block can be encoded
using intra-irame prediction (also called intra-prediction) or
inter-frame prediction (also called inter-prediction), or a
combination of both. In any case, a prediction block can be
formed. In the case of intra-prediction, all or a part of a
prediction block may be formed from samples 1n the current
frame that have been previously encoded and reconstructed.
In the case of inter-prediction, all or part of a prediction
block may be formed from samples 1n one or more previ-
ously constructed reference frames determined using motion
vectors.

Next, still referring to FIG. 4, the prediction block can be
subtracted from the current block at the intra/inter prediction
stage 402 to produce a residual block (also called a residual).
The transform stage 404 transforms the residual into trans-
form coeflicients 1n, for example, the frequency domain
using block-based transforms. Such block-based transiorms
include, for example, the Discrete Cosine Transform (DCT)
and the Asymmetric Discrete Sine Transform (ADST).
Other block-based transforms are possible. Further, combi-
nations of different transforms may be applied to a single
residual. In one example of application of a transform, the
DCT transforms the residual block into the frequency
domain where the transform coeflicient values are based on

US 10,448,019 B2

9

spatial frequency. The lowest frequency (DC) coeflicient at
the top-left of the matrix and the highest frequency coetli-
cient at the bottom-right of the matrix. It 1s worth noting that
the size of a prediction block, and hence the resulting
residual block, may be different from the size of the trans-
form block. For example, the prediction block may be split
into smaller blocks to which separate transforms are applied.

The quantization stage 406 converts the transiform coet-
ficients into discrete quantum values, which are referred to
as quantized transform coetlicients, using a quantizer value
or a quantization level. For example, the transform coetl-
cients may be divided by the quantizer value and truncated.
The quantized transform coeflicients are then entropy
encoded by the entropy encoding stage 408. Entropy coding
may be performed using any number of techniques, includ-
ing token and binary trees. The entropy-encoded coetl-
cients, together with other information used to decode the
block, which may include for example the type of prediction
used, transform type, motion vectors and quantizer value,
are then output to the compressed bitstream 420. The
information to decode the block may be entropy coded into
block, frame, slice and/or section headers within the com-
pressed bitstream 420. The compressed bitstream 420 can
also be referred to as an encoded video stream or an encoded
video bitstream, and the terms will be used interchangeably
herein.

The reconstruction path in FIG. 4 (shown by the dotted
connection lines) can be used to ensure that both the encoder
400 and a decoder 500 (described below) use the same
reference frames and blocks to decode the compressed
bitstream 420. The reconstruction path performs functions
that are similar to functions that take place during the
decoding process that are discussed in more detail below,
including dequantizing the quantized transform coeflicients
at the dequantization stage 410 and 1inverse transtforming the
dequantized transform coeflicients at the mverse transform
stage 412 to produce a derivative residual block (also called
a derivative residual). At the reconstruction stage 414, the
prediction block that was predicted at the intra/inter predic-
tion stage 402 can be added to the derivative residual to
create a reconstructed block. The loop filtering stage 416 can
be applied to the reconstructed block to reduce distortion
such as blocking artifacts.

Other vanations of the encoder 400 can be used to encode
the compressed bitstream 420. For example, a non-transform
based encoder 400 can quantize the residual signal directly
without the transform stage 404 for certain blocks or frames.
In another implementation, an encoder 400 can have the
quantization stage 406 and the dequantization stage 410
combined 1nto a single stage.

FIG. 5 1s a block diagram of a decoder 500 1n accordance
with implementations of this disclosure. The decoder 500
can be implemented in the receiving station 106, for
example, by providing a computer software program stored
in the memory 204. The computer soitware program can
include machine instructions that, when executed by a
processor such as the CPU 202, cause the receiving station
106 to decode video data 1n the manner described 1n FIGS.
8 and 9 below. The decoder 500 can also be implemented 1n
hardware included 1n, for example, the transmitting station
102 or the receiving station 106. The decoder 500, similar to
the reconstruction path of the encoder 400 discussed above,
includes in one example the following stages to perform
various functions to produce an output video stream 516
from the compressed bitstream 420: an entropy decoding
stage 502, a dequantization stage 504, an inverse transform
stage 506, an intra/inter-prediction stage 508, a reconstruc-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion stage 510, a loop filtering stage 512 and an optional post
filtering stage 514. Other structural variations of the decoder
500 can be used to decode the compressed bitstream 420.
The loop filtering stage 512 can include a deblocking
filtering stage.

When the compressed bitstream 420 i1s presented for
decoding, the data elements within the compressed bitstream
420 can be decoded by the entropy decoding stage 502 to
produce a set of quantized transform coeflicients. The
dequantization stage 304 dequantizes the quantized trans-
form coetlicients (e.g., by multiplying the quantized trans-
form coeflicients by the quantizer value), and the inverse
transform stage 506 inverse transforms the dequantized
transform coellicients using the selected transform type to
produce a derivative residual that can be i1dentical to that
created by the inverse transform stage 412 in the encoder
400. Using header information decoded from the com-
pressed bitstream 420, the decoder 500 can use the intra/
inter-prediction stage 3508 to create the same prediction
block as was created in the encoder 400, e.g., at the
intra/inter prediction stage 402. At the reconstruction stage
510, the prediction block can be added to the dernivative
residual to create a reconstructed block. The loop filtering
stage 512 can be applied to the reconstructed block to reduce
blocking artifacts. As such, the loop filtering stage 512 can
apply deblocking filtering. Other filtering can be applied to
the reconstructed block. In an example, the post filtering
stage 514 1s applied to the reconstructed block to reduce
blocking distortion, and the result 1s output as an output
video stream 516. The output video stream 516 can also be
referred to as a decoded video stream, and the terms will be
used interchangeably herein.

Other variations of the decoder 500 can be used to decode
the compressed bitstream 420. For example, the decoder 500
can produce the output video stream 516 without the post
filtering stage 514. In some implementations of the decoder
500, the post filtering stage 514 1s applied belfore the loop
filtering stage 512. Additionally, or alternatively, the encoder
400 includes a deblocking filtering stage 1n addition to the
loop filtering stage 416.

FIG. 6 1s a diagram 600 1llustrating quantized transform
coellicients according to implementations of this disclosure.
The diagram 600 depicts a current block 620, a scan order
602, a quantized transform block 604, a non-zero map 606,
an end-of-block map 622, and a sign map 626. The current
block 620 1s 1llustrated as a 4x4 block. However, any block
s1ze 15 possible. For example, the current block can have a
s1ze (1.e., dimensions) of 4x4, 8x8, 16x16, 32x32, or any
other square or rectangular block size. The current block 620
can be a block of a current frame. In another example, the
current frame may be partitioned into segments (such as the
segments 308 of FIG. 3), tiles, or the like, each including a
collection of blocks, where the current block 1s a block of the
partition.

The quantized transform block 604 can be a block of size
similar to the size of the current block 620. The quantized
transform block 604 includes non-zero coellicients (e.g., a
coellicient 608) and zero coellicients (e.g., a coetlicient 610).
As described above, the quantized transform block 604
contains quantized transform coeflicients for the residual
block corresponding to the current block 620. Also as
described above, the quantized transform coetlicients are
entropy coded by an entropy-coding phase, such as the
entropy coding stage 408 of FIG. 4.

Entropy coding a quantized transform coeflicient can
involve the selection of a context model (also referred to as
probability context model, probability model, model, and

US 10,448,019 B2

11

context) which provides estimates of conditional probabili-
ties for coding the binary symbols of a binarized transform
coellicient as described below with respect to FIG. 7. When
entropy coding a quantized transform coetlicient, additional
information may be used as the context for selecting a
context model. For example, the magnitudes of the previ-
ously coded transform coeflicients can be used, at least
partially, for determining a probability model.

To encode a transtorm block, a video coding system may
traverse the transform block 1n a scan order and encode (e.g.,
entropy encode) the quantized transform coeflicients as the
quantized transform coellicients are respectively traversed
(1.e., visited). In a zigzag scan order, such as the scan order
602, the top left comer of the transtorm block (also known
as the DC coellicient) 1s first traversed and encoded, the next
coellicient 1n the scan order (i.e., the transform coetflicient
corresponding to the location labeled *“17°) 1s traversed and
encoded, and so on. In the zigzag scan order (1.e., scan order
602), some quantized transiform coeflicients above and to the
left of a current quantized transform coell

icient (e.g., a
to-be-encoded transform coeflicient) are traversed {first.
Other scan orders are possible. A one-dimensional structure
(e.g., an array) ol quantized transform coetlicients can result
from the traversal of the two-dimensional quantized trans-
form block using the scan order.

In some examples, encoding the quantized transform
block 604 can include determining the non-zero map 606,
which indicates which quantized transform coeflicients of
the quantized transform block 604 are zero and which are
non-zero. A non-zero coeflicient and a zero coelh

icient can
be indicated with values one (1) and zero (0), respectively,
in the non-zero map. For example, the non-zero map 606
includes a non-zero 607 at Cartesian location (0, 0) corre-
sponding to the coeflicient 608 and a zero 608 at Cartesian
location (2, 0) corresponding to the coeflicient 610.

In some examples, encoding the quantized transform
block 604 can include generating and encoding the end-oi-
block map 622. The end-of-block map indicates whether a
non-zero quantized transform coeflicient of the quantized
transform block 604 1s the last non-zero coellicient with
respect to a given scan order. If a non-zero coellicient 1s not
the last non-zero coell

icient 1n the transform block, then 1t
can be indicated with the binary bit zero (0) in the end-oi-

block map. If, on the other hand, a non-zero coetlicient 1s the
last non-zero coeth

icient 1n the transform block, then it can
be indicated with the binary value one (1) 1n the end-of-
block map. For example, as the quantized transform coet-
ficient corresponding to the scan location 11 (i.e., the last
non-zero quantized transform coeflicient 628) 1s the last
non-zero coethicient of the quantized transform block 604, it
1s mndicated with the end-of-block value 624 of one (1); all
other non-zero transform coeflicients are indicated with a
Zero.

In some examples, encoding the quantized transform
block 604 can include generating and encoding the sign map
626. The sign map 626 indicates which non-zero quantized
transform coetlicients of the quantized transform block 604
have positive values and which quantized transform coetli-
cients have negative values. Transform coefhicients that are
zero need not be indicated 1n the sign map. The sign map 626
illustrates the sign map for the quantized transiform block
604. In the sign map, negative quantized transform coefli-
cients can be indicated with a —1 and positive quantized
transform coeflicients can be indicated with a one (1).

FI1G. 7 1s a diagram of a coetlicient token tree 700 that can
be used to entropy code blocks into a video bitstream
according to implementations of this disclosure. The coet-

10

15

20

25

30

35

40

45

50

55

60

65

12

ficient token tree 700 1s referred to as a binary tree because,
at each node of the tree, one of two branches must be taken
(1.e., traversed). The coetlicient token tree 700 includes a
root node 701 and a node 703 corresponding, respectively,
to the nodes labeled A and B.

As described above with respect to FIG. 6, when an
end-of-block (EOB) token 1s detected for a block, coding of
coellicients 1 the current block can terminate and the
remaining coeflicients 1n the block can be inferred to be zero.
As such, the coding of EOB positions can be an essential
part of coeflicient 1n a video coding system.

In some video coding systems, a binary decision deter-
mining whether (or not) a current token 1s equal to the EOB
token of the current block 1s coded immediately after an
nonzero coeflicient 1s decoded or at the first scan position
(DC). In an example, for a transform block of size MxN,
where M denotes the number of columns and N denotes the
number of rows 1n the transform block, the maximum

number of times of coding whether a current token 1s equal
to the EOB token 1s equal to MxN. M and N can take values,
such as the values 2, 4, 8, 16, 32, and 64. As described below,
the binary decision corresponds to the coding of a *“1” bit
corresponding to the decision to move from the root node
701 to the node 703 1n the coeflicient token tree 700. Herein,
“coding a bit” can mean the outputting or generating of a bit
in the codeword representing a transform coell

icient being,
encoded. Similarly, “decoding a bit” can mean the reading
(such as from an encoded bitstream) of a bit of the codeword
corresponding to a quantized transform coetl

icient being
decoded such that the bit corresponds to a branch being
traversed 1n the coetlicient token tree.

Using the coethicient token tree 700, a string of binary
digits 1s generated for a quantized coeflicient (e.g., the
coellicients 608, 610 of FIG. 6) of the quantized transform
block (such as the quantized transform block 604 of FIG. 6).

In an example, the quantized coeflicients 1n an NxN block
(e.g., quantized transform block 604) are organized into a
1D (one-dimensional) array (herein, an array u) following a
prescribed scan order (e.g., the scan order 602 of FIG. 6). N
can be 4, 8, 16, 32, or any other value. The quantized
coeficient at the 1’ position of the 1D array can be referred
as u[1], where 1=0, . . . , N*N-1. The starting position of the
last run of zeroes 1n uf1], u[N*N-1] can be denoted as eob.
In the case where when u[N*N-1] 1s not zero, the eob can
be set to the value N*N. That 1s, 1f the last coeflicient of the
1D array u 1s not zero, then eob can be set to the value N*N.
Using the examples of FIG. 6, the 1D array u can have the
entries [][60—102410010—10000]
The values at each of the u[i]s 1s a quantized transform
coellicient. The quantized transform coetlicients of the 1D
array u may also be referred herein simply as “coeflicients™

r “transform coeth T

icients.” The coetlicient at position 1=0
(1.e., u[0]=-6) corresponds to the DC coelilicient. In this
example, the eob 1s equal to 12 because there are no
non-zero coetlicients after the zero coellicient at position 12
of the 1D array u.

To encode and decode the coeflicients uf1], . . ., y/N*N-
1], for 1=0 to N*N-1, a token t[1] 1s generated at each
position 1<=eob. The token t[1], for 1<eob, can be indicative
of the size and/or size range of the corresponding quantized
transform coeflicient at ufi1]. The token for the quantized
transform coetlicient at eob can be an EOB_TOKEN, which
1s a token that indicates that the 1D array u contains no

non-zero coellicients following the eob position (inclusive).
That 1s, t[eob]

=EOB_TOKEN indicates the EOB position of
the current block. Table I provides a listing of an example of

US 10,448,019 B2

13

token values, excluding the EOB_TOKEN, and their corre-
sponding names according to an implementation of this
disclosure.

TABLE 1 D

Token Name of Token

ZERO TOKEN
ONE_TOKEN

TWO _TOKEN 10
THREE_TOKEN
FOUR_TOKEN

DCT VAL CAT1 (5, 6)
DCT_VAL CAT? (7-10)
DCT VAL CAT3 (11-18)
DCT_VAL CAT4 (19-34)
DCT_ VAL CATS5 (35-66)
DCT_VAIL_CAT6 (67-2048)

15

O ND 20 -1 Oyt B D~ D

 —

In an example, quantized coeflicient values are taken to be
signed 12-bit integers. To represent a quantized coethicient ,,
value, the range of 12-bit signed values can be divided 1nto
11 tokens (the tokens 0-10 in Table I) plus the end of block
token (EOB_TOKEN). To generate a token to represent a
quantized coetlicient value, the coetlicient token tree 700
can be traversed. The result (1.e., the bit string) of traversing 25
the tree can then be encoded into a bitstream (such as the
bitstream 420 of FIG. 4) by an encoder as described with
respect to the entropy encoding stage 408 of FIG. 4.

The coetlicient token tree 700 includes the tokens

EOB_TOKEN (token 702), ZERO_TOKEN (token 704), "
ONE TOK EN (token 706), TWO_TOKEN (token 708),

THREE_TOKEN (token 710), FOUR_TOKEN (token 712),

CATI (token 714 that1s DCT_VAL_CAT1 in Table I), CAT2
(token 716 that 1s DCT_VAL_CAIT2 in Table I), CAT3
(token 718 that 1s DCT_VAL_CAT3 1n Table 1), CAT4
(token 720 that 1s DCT_VAL_CAT4 1 Table I), CATS
(token 722 that 1s DCT_VAL_CATS 1n Table I) and CAT6
(token 724 that 1s DCT_VAL_CAT6 1n Table I). As can be
seen, the coeflicient token tree maps a single quantized 4,
coellicient value into a single token, such as one of the

tokens 704, 706, 708, 710 and 712. Other tokens, such as the
tokens 714, 716, 718, 720, 722 and 724, represent ranges of
quantized coeflicient values. For example, a quantized trans-
form coeflicient with a value of 37 can be represented by the 45
token DCT VAL CATS5 the token 722 1n FIG. 7.

The base value for a token 1s defined as the smallest
number 1n 1ts range. For example, the base value for the
token 720 1s 19. Entropy coding identifies a token for each
quantized coefficient and, if the token represents a range, can "
form a residual by subtracting the base value from the
quantized coethicient. For example, a quantized transform
coellicient with a value of 20 can be represented by includ-
ing the token 720 and a residual value of 1 (1.e., 20 minus
19) 1n the encoded video bitstream to permit a decoder to
reconstruct the original quantized transform coethicient. The
end of block token (1.e., the token 702) signals that no further
non-zero quantized coeflicients remain 1n the transformed
block data.

To encode or decode a token t [1] by using a binary
arithmetic coding engine (such as by the entropy encoding
stage 408 of FIG. 4), the coellicient token tree 700 can be
used. The coethlicient token tree 700 1s traversed starting at
the root node 701 (i.e., the node labeled A). Traversing the 65

coellicient token tree generates a bit string (a codeword) that
will be encoded into the bitstream using, for example, binary

Lu I

35

55

60

14

arithmetic coding. The bit string 1s a representation of the
current coellicient (1.e., the quantized transform coetflicient
being encoded).

If a current coeflicient 1s zero, and there are no more
non-zero values for the remaining transform coeflicients, the
token 702 (1.e., the EFOB_TOKEN) 1s added into the bit-
stream. This 1s the case, for example, for the transform
coellicient at scan order location 12 of FIG. 6. On the other
hand, 1f the current coetlicient 1s non-zero, or if there are
non-zero values among any remaining coeflicients of the
current block, a “1” bit 1s added to the codeword and
traversal passes to the node 703 (1.e., the node labeled B). At
node B, the current coeflicient 1s tested to see 1t it 1s equal
to zero. If so, the left-hand branch 1s taken such that token
704 representing the value ZERO_TOKEN and a bit “0” 1s
added to the codeword. If not, a bit “1” 1s added to the
codeword and traversal passes to node C. At node C, the
current coethicient 1s tested to see 11 it 1s greater than 1. It the
current coeflicient 1s equal to one (1), the left-hand branch 1s
taken and token 706 representing the value ONE_TOKEN 1s
added to the bitstream (1.e., a “0” bit 1s added to the
codeword). It the current coeflicient 1s greater than one (1),
traversal passes to node D to check the value of the current
coellicient as compared to the value 4. If the current coet-
ficient 1s less than or equal to 4, traversal passes to node E
and a “0” bit 1s added to the codeword. At node E, a test for
equality to the value “2” may be made. I true, token 706
representing the value “2” 1s added to the bitstream (1.e., a
bit “0” 1s added to the codeword). Otherwise, at node F, the
current coellicient 1s tested against either the value “3” or the
value “4” and either token 710 (1.e., bit “0” 1s added to the
codeword) or token 712 (1.e., bit “1” 1s added to the
codeword) to the bitstream as appropriate; and so on.

Essentially, a “0” bit 1s added to the codeword upon
traversal to a left child node and a *“1” bit 1s added to the
codeword upon traversal to a right child node. A similar
process 1s undertaken by a decoder when decoding a code-
word from a compressed bitstream. The decoder reads a bit
from bit stream. If the bit 1s a “1,” the coetlicient token tree
1s traversed to the right and if the bit 1s a *“0,” the tree 1s
traversed to the left. The decoder reads then a next bit and
repeats the process until traversal of the tree reaches a leaf
node (1.e., a token). As an example, to encode a token t
[1]=THREE_TOKEN, starting from the root node (1.e., the
root node 701), a binary string of 111010 1s encoded. As
another example, decoding the codeword 11100 results 1n
the token TWO TOKEN.

Note that the correspondence between “0” and “1” bits to
left and right child nodes 1s merely a convention used to
describe the encoding and decoding processes. In some
implementations, a different convention, for example, in one
where “1” corresponds to the left child node, and *“0”
corresponds to the right child node, can be used. As long as
both the encoder and the decoder adopt the same convention,
the processes described herein apply.

Since an EOB_TOKEN 1s only possible after a nonzero
coellicient, when u[1-1] 1s zero (that 1s, when the quantlzed
transform coeflicient at location 1-1 of the 1D array u 1s
equal to zero), a decoder can infer that the first bit must be
1. The first bit has to be 1 since, 1n traversing the tree, for a
transform coeflicient (e.g., transform coeflicient at the zig-
zag scan order location 2 of FIG. 6) following a zero
transiform coeflicient (e.g., transform coeflicient at the zig-
zag scan order location 1 of FIG. 6), the traversal necessarily
moves from the root node 701 to the node 703.

As such, a binary flag checkEob can be used to instruct the
encoder and the decoder to skip encoding and decoding the

US 10,448,019 B2

15

first bit leading from the root node 1n the coeflicient token
tree 700. In effect, when the binary flag checkEob 1s 0 (1.e.,
indicating that the root node should not be checked), the root
node 701 of the coeflicient token tree 700 1s skipped and the
node 703 becomes the first node of coellicient token tree 700
to be visited for traversal. That 1s, when the root node 701
1s skipped, the encoder can skip encoding and the decoder
can skip decoding and can infer a first bit (1.e., a binary bit
“1”) of the encoded string.

At the start of encoding or decoding a block, the binary
flag checkEob can be imtialized to 1 (i.e., indicating that the
root node should be checked). The following steps 1llustrate
an example process for decoding quantized transform coet-
ficients 1n an NxN block.

At step 1, the binary flag checkEob i1s set to zero (1.e.,
checkEob=0) and an index 1 1s also set to zero (1.e., 1=0).

At step 2, a token t[1] 1s decoded by using either

1) the full coeflicient token tree (i.e., starting at the root
node 701 of the coetlicient token tree 700) 1f the binary flag
checkEob 1s equal to 1 or

2) using the partial tree (e.g., starting at the node 703)
where the EOB_TOKEN 1s skipped, 11 checkEob 1s equal to
0.

At step 3, If the token t[1]=EOB_TOKEN, then the
quantized transform coeflicients uf1], . . ., u[N*N 1] are all
to zero and the decoding process terminates; otherwise, extra
bits can be decoded 1f necessary (1.e., when t[1] 1s not equal
to the ZERO_TOKEN) and reconstruct u[i].

At step 4, the binary flag checkFob 1s set to 1 11 u[1] 1s
equal to zero, otherwise checkEob 1s set to 0. That is,
checkEob can be set to the value (u[1]!=0).

At step 5, the index 1 1s mncremented (1.e., 1=1+1).

At step 6, the steps 2-5 are repeated until all quantized
transform coeflicients have been decoded (1.e., until the
index 1=N*N) or until the EOB_TOKEN 1s decoded.

At step 2 above, decoding a token t[1] can include the
steps of determiming a context ctx, determining a binary
probability distribution (i.e., a model) from the context ctx,
and using a boolean arithmetic code to decode a path from
the root node of the coellicient token tree 700 to a leaf node
by using the determined probability distributions. The con-
text ctx can be determined using a method of context
derivation. The method of context derivation can use one or
more of the block size, plane type (1.e., luminance or
chrominance), the position 1, and previously decoded tokens
t[0], ..., tJ1-1] to determine the context ctx. Other criteria
can be used to determine the context ctx. The binary
probability distribution can be determined for any internal
node of the coellicient token tree 700 starting from the root
node 701 when checkEOB=1 or from the node 703 when
checkEOB=0.

In some coding systems, the probability used to encode or
decode a token t[1] given a context ctx may be fixed and does
not adapt 1in a picture (1.e., a frame). For example, the
probability may be either a default value that 1s defined for
the given context ctx or the probability may be coded (1.e.,
signaled) as part of the frame header for that frame. Coding
the probability for every context in coding a frame can be
costly. As such, an encoder may analyze, for each context,
whether 1t 1s beneficial to code the context’s associated
probability 1n the frame header and signal its decision to the
decoder by using a binary flag. Furthermore, coding the
probability for a context may use prediction to reduce cost
(e.g., 1n bit rate) where the prediction may be derived from
the probability of the same context 1n a previously decoded
frame.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some coding systems, instead of traversing a coeflicient
token tree, such as the coeflicient token tree 700, to code a
transform coeflicient, each token can be associated with a
value that 1s coded. As such, instead of a coding binary
symbols (1.¢., selected from an alphabet comprised of the
symbols {0, 1}), an alphabet of symbols that includes more
than two symbols 1s used for coding transform coeflicients.
In an example, the alphabet includes 12 symbols, namely
{EOB_TOKEN, ZERO_TOKEN, ONE_TOKEN,
TWO_TOKEN, THREE_TOKEN, FOUR_TOKEN,
DCT_VAL_CATI1, DCT_VAL_CAT2, DCT_VAL_CAT3,
DCT_VAL_CAT4, DCT_VAL_CATS, DCT_VAL_CATG6}.
As such, the alphabet for coding transform coeflicients
includes 12 symbols, which are also referred to as tokens.
Other token alphabets that include more, less, or other
tokens are possible. An alphabet that includes only the
symbols { 0, 1} is referred to herein as a binary alphabet. An
alphabet that includes symbols other than and/or 1n addition
to the symbols { 0, 1} is referred to herein as a non-binary

alphabet. Each of the tokens can be associated with a value.
In an example, the EOB_TOKEN can have a value of 255.

Each of the other tokens can each be associated with a
different value.

FIG. 8 1s a diagram of an example of a tree 800 for
binarizing a quantized transform coeflicient according to
implementations of this disclosure. The tree 800 1s a binary
tree that can be used for binarnizing quantized transform
coellicients 1n some video coding systems. The tree 800 can
be used by a video coding system that uses the steps of
binarization, context modelling, and binary arithmetic cod-
ing for encoding and decoding of quantized transform
coellicients. The process may be referred to as context-
adaptive binary arithmetic coding (CABAC). For example,
to code a quantized transform coeflicient x, the coding
system may perform the following steps. The quantized
transiform coeflicient x can be any of the coetlicients (e.g.,
the coellicient 608) of the quantized transiform block 604 of
FIG. 6.

In the binarization step, a coethlicient x 1s first binarized
into a binary string by using the tree 800. The binarization
process may binarize the unsigned value of the coeflicient x.
For example, binarizing the coeflicient 628 (1.¢., the value
—1), binarizes the value 1. This results 1n traversing the tree
800 and generating the binary string 10. Each of the bits of
the binary string 10 1s referred to as a bin.

In the context derivation step, for each bin to be coded, a
context 1s derived. A context can be derived from informa-
tion such as one or more of the block size, plane type (.¢.,
luminance or chrominance), block position of the coetlicient
X, and previously decoded coeflicients (e.g., a left and/or
above neighboring coeflicients, 1f available). Other informa-
tion can be used to derive the context.

In the binary arithmetic coding step, given a context, a bin
1s coded by using, e.g., a binary arithmetic coding engine
into a binary codeword together with a probability value
associated with the context.

The steps of coding a transform coefllicient can 1include a
step that 1s referred as context update. In the context update
step, alter a bin 1s coded, the probability associated with the
context 1s updated to reflect the value of the bin.

Mixing of probability models 1s now described for coding
(1.e., encoding or decoding) a sequence x” of length n. For
simplicity, two (2) models are used. However, this disclo-
sure 1s not so limited and any number of models can be
mixed.

For any sub-sequence of length 1 of the sequence x” where
1=<i=n, probability p,(x’) denotes the probability of the

US 10,448,019 B2

17

subsequence X' estimated by using the model k, where k=1,
2. Using a corresponding weighting factor w, for each
model, the two models can be mixed using equation (2):

(2)

In equation (2), p(x’) is the mixed probability of the
sub-sequence x'. As such, the mixing can produce partial (or
1ntermed1ate) results for each sub-sequence x’. The sub-
sequence X' 1S X'=X,X,X; . . . X,. The first model (i.e., k=1)
produces the sub-sequence probability p,(x’); and the second
model (1.e., k=2) produces the sub-sequence probability
Po(X).

In an example, and as it may not be known a prior1 which
model should have the priority, a simple mixture can be
used. For example, uniform weighting can be used. That 1s,
the weight factors w, can be chosen such that w,=15. As
such, the equation (2) can be re-written as:

ﬁ(xi)zzk 12Wkp;f(xi), for each i

1 | (3)
p(x') = EZ pi(x"), for each i

The mixed probability p(x’) is the probability of a sub-
sequence. However, arithmetic coding i1s performed on a
symbol-by-symbol basis (1.e., not on sequences of symbols).
As such, the mixed probability p(x’) cannot directly be used
for entropy coding. This can be addressed by converting the
mixed probability p(x’) into a product of conditional prob-
abilities as described below. Let p(x/x~') denote the con-
ditional probability of a symbol at position 1 having a certain
value given that the previous symbols result in the sub-
sequence x'~'. That is, the mixed probability $(x’) can be
given by equation (4):

POy=P eV plxlxy* L. *p (4)

Using the elementary conditional probability formula
P(AIB)=P(AMB)/P(B), where P(AMB) 1s the probability of
both events A and B occurring, the equation (4) can be
rewritten as equation (5):

Pl =p M)~ =p () plai) (5)

It is noted that the mixed probability of both x, and x"~*
occurring is the same as the mixed probability of x* alone
because the sub-sequence x° includes the sub-sequence x"*
and has the symbol x..

The equation (5) can be rewritten using the equation (3).
That 1s, each of the sub-sequence mixed probabilities (i.e.,
the numerator and denominator) of equation (5) can be
rewritten 1n terms of the model probabilities. The equation
(5) can be rewritten as equation (6):

4

(6)

plx; | 271 =

ZP&.(I)/ ZPR(XI = 2P1(X) + =

> pr(xh) El pr(x1)

k=1

pa(x)

Multiplying the first quantity and the second quantity of
the equation (6) each by a factor equaling one (1) (1.e.,

pa(x' — 1)
palx—1)

pr(x' —1)
prx—1)

and

10

15

20

25

30

35

40

45

50

55

60

65

18

respectively), equation (7) 1s obtained:

p2(x') (7)

p2(x'—)

pi(x~h pr(x) p2(x1)

23 : +
2 i—1 2
3 ey P Z e

k=1

plx; | 271 =

Equation (7) can be written as equation (8):

(8)

It 1s noteworthy that the conditional probabilities of
p,(x,1x") and p,(x,Ix*"") are available as a result of the
encodmg (and, sumlarly, decoding) of a sequence up to the

" symbol by using model 1 and model 2, respectively. That
1s, starting from respective mitial states, each model k can
maintain and keep track of the conditional probabilities
p.(x,/x’~") throughout the coding process. For example, after
a symbol x. 1s coded (e.g., encoded or decoded), the prob-
ability p,(x,1x"™") can be updated to obtain p,(x,, ,Ix’) for the
next symbol X, ,. The probabilities can be updated using a
same prescribed process by an encoder and a decoder. The
encoder and the decoder can follow the same prescribed
process for maintaining and updating the probabilities for a
model k. In some implementations, the maintaining and
updating of the probabilities 1s not performed each time a
symbol x, is coded. As such, the probability p,(x,1x"~") can
have a form p,(x,Ic,,) where ¢, ; can be referred to as the
context used to code x,. Each model k can have a respective
method to derive the respective context ¢, ; from X" and
other information available for the model k. The probabili-
ties py(X;/c; ;) can be stored and maintained in a memory
where the context ¢, , can be used as an index to access the
memory. In implementations according to this disclosure,
the conditional probabilities are mixed and the sequence 1s
then encoded (or decoded) using the mixed probability (1.e.,
P(x,1x)).

In equation (8), w, ; and w, , are weights that are respec-
tively equal to

~ 1N — 1 — 1
plx; I’)_Wi?l$pl(xi|xl)"‘Waziipz(xﬂf)

pa(x 1)

2 o
> oprxh)
k=1

p ()
2

> pr(x1)

k=1

and

and p,(x,1x"") and p, (x,/x"") are respectively equal to

pa(x’)
pa(x—1)

p1(x')
pi(x—1)

and

As such, the mixed probability p(x,/x"~") is now expressed as
a linear combination of the conditional probability of the
first model (i.e., p,(x,/x ")) and the conditional probability
of the second model (i.e., p,(X,/x"™")) where each of the
conditional probabilities 1s multiplied by a respective
welghting factor. It 1s worth pointing out that even 11 both
model 1 and model 2 are memoryless (i.e., p(x")=IL_,'p,
(X;)), the mixed probability

o1& .
px') = 5; pi (2,

US 10,448,019 B2

19

in general, does not have a simple product form, such as
I1_,'p)x,). Furthermore, the weights w, , and w, , can have
different values for different symbols. That 1s, the weights
w, , and w, , can vary at different values of 1.

When the joint distributions are mixed using the equation
(3), uniform weighting factors (1.e., ¥2) were used. However,

when conditional probabilities are mixed (as 1n the equation
(8)), the weighting (1.e., w, ; for the first model and w, , tfor
the second model) may no longer be uniform. The weight
w, , Tor the conditional probability of the first model 1s equal
to the joint probability of x™' given by the first model
divided by the sum of the joint probability of x’~" given by
the first model and the joint probability of X'~ given by the
second model. Slmllarly tor weight w, ,. In equation (8), for
the sub-sequence x" ', the first model prowdes a first prob-
ability and the second model provides a second probability
and the weighting factor for the conditional probability of x,
given X! is equal to the probability given by each of the first
model and the second model divided by the sum of the joint
probabilities given by both models. That 1s, 1n the mixing of
the conditional probabilities, if, for example, the first model
provides a higher probability for the sub-sequence then the
first model ends up having a higher weighting factor (i.e.,
weight w, ;) than that of the second model.

The joint probabilities are real numbers and the calculat-
ing of the weights w, ; and w, , involves the division of real
numbers. As such, the computing of the weights w, ; and w, ,
may be complex and expensive. It 1s desirable to approxi-
mate the weights w; ; and w, , with fixed-point representa-
tions such that, for example, the exact number of bits to
represent each of the weights can be known and such that
division operations can be avoided.

As described above, there 1s a correlation and/or relation-
shjp between the probability of a codeword and the length,
in bits, of the codeword generated using the probability of
the codeword. Namely, the length (1.e., number of bits) of
the codeword 1s given by -log,(p). The lengths of the
codewords generated by each model can be used to approxi-
mate the weights w, , and w, ,. That 1s, —log(pk(:ﬁ{I ")) can be
apprommated by the codeword length 1.(x*") in bits result-
ing from using model k, for k=1, 2, to encode x’". As such,
the weight w, ; (and, Similarly,, the weight w,,) can be
approximated using equation (9):

pe(x 1) 2-h) l (9)
W‘g’l = 5 o =

2 1 4+ 20 G

(il — (1)
ng pj() Z 7

=1

When 1,(1-1) 1s equal to 1,(1-1), then 1t follows that
W, =W, ,=0.5. Assuming, without losing generality, that
1,(1-1) 1s smaller than 1,(1-1), then the equation (9) can
result by expanding the denominator and then eliminating
21D from the denominator and numerator.

To determine a length 1,(x") according to a model k of a
sub-sequence of length 1, a hypothetical encoding process
can be used. A hypothetical encoding process 1s a process
that carries out the coding steps but does not generate actual
codewords or output bits into an encoded bitstream. Since
the purpose is to estimate 1,(x’), which are interpreted in
some applications as a bitrate (or a simply rate), a hypo-
thetical encoding process may be regarded or called a rate
estimation process. The hypothetical encoding process,
using a probability model, computes or estimates the code-
word length for a sequence. The codeword length may be

5

10

15

20

25

30

35

40

45

50

55

60

65

20

determined (1.e., measured) with or without generating a
codeword. For example, at time stance 1, coding the
sequence X using a first model generates a codeword of
length 1,(1-1) and using a second model generates a code-
word of length 1,(1-1). In an example, multiple hypothetical
encoders can be available and executing in parallel. For
example, a standard rate estimator for an arithmetic encoder
can be available for each model. Each rate estimator can
provide (or, can be used to provide) an estimate of the length
of the codeword that may be produced by the encoder for a
sub-sequence given a model.

Given two competing models at a time instance 1, if the
first model provides less bits than the second model, then the
weight assigned (using equation 9) to the first model will be
greater than the weight assigned to the second model for the
sequence up to the symbol at position x,_,. Eventually (1.e.,
when encoding the sequence xX” 1s completed using the
mixed probability), the winning model (1.¢., the model with
higher weight) 1s the model that produces less bits, which 1s
a desired result of compression.

The weight w, | 1s approximated (in equation (9)) using a
power ol 2 and, as such, can be efliciently computed.

The weight w, | can be further simplified. The right-hand-
side of the equatlon (9) 15 of the form 1/(1-r) where

=i e). This can be recognized as a geometric series
given by 1+r+r’+ . . . with a common ratio r==21¢" D-bE

As such, The Welght W, , can be approximated using equa-
tion (10):
W, lmzjzﬂm(_zfl(xf_l)—fz(x

Ty (10

be

As such, wf!l*pl(xile‘l) of the equation (8) can
rewritten as 1n equation (ll)

W, 1Pl(x1|x1_)_ =0 (23](}5) fzfxl))} g

P1(e =R o (- 1y e 7R Dlp, () (11)

In equation (11), G H-iG")]pl(xilxl ") can be efli-
ciently computed using shifts in cases where p,(x,/x’~") has
a fixed-point representation. Moreover, when p,(X,/x"™") has
a fixed-point representation, then the infinite sum 1n equa-
tion (11) can be truncated into a sum of a finite number of
terms. For example, when p,(X,/x"") has an 8-bit represen-
tation, then the Sum can be truncated to keep only the first
eight (8) terms %, —1)727[31(”‘“ =D] p,(x.Ix*~") since for
any]=8, PG b Mo, (x,1x)= O when 1,(xX7)-
1,(x"")=-1 (that is, when they differ by at least one bit).
When, 1,(x1)-1,(x"" l)-<I—1 (that 1s, when they differ by
more than one bit), 211 Db)]pl(x X")=0 for any j=j*
where 1%<8. As such, only the first 1* terms are needed to
compute w, |p l(xfle"l).

The weight w, , can be computed using equation (12):

(12)

(61 1) s |
- = 2l (¢ (—20 (T By
=()

1 + 251 (Ii_l)—iz(xi_l) J

The quantity Wi!2$p2(xi|xi_l) of equation (8) can be com-
puted using equation (13)

w2p2(x1|x1 l) 23](}:)fz(x)2

g ngp:x D10 >yp
())=E,_ (- 1y20+ DI

—D(x’)]p (1™ h

(13)

As 1n equation (11), the right hand side of equation (13)
can be simplified by truncating the infinite sum 1into a finite
sum when p, (x,/x"~") has a fixed-point representation.

US 10,448,019 B2

21

As described above, mixing of joint probabilities of
models can use simple uniform mixing as 1t may not be
known a prior1 which model provides better compression.
The uniform mixing of the joint probabilities uses condi-
tional probabilities and results in the selection of a winning,
model (i1.e., a model with higher weighting).

Some video data can be non-stationary within a frame/
picture. That 1s, the statistics of one transform block may be
substantially different from, e.g., the immediately subse-
quent transform block. As such, mixing of probability mod-
¢ls can be used to adapt the probability distributions to the
local statistics of a current transform block being coded.
Using mixing of probabilities to adapt to the local statistics
of a current block is referred to herein as local mixing for a
transform block.

Since, as mentioned above, the statistics of a current block
may be significantly different from those of a previous
transform block, 1n the case of local mixing for a transform
block, the coding history of previous transform blocks 1s not
used for the current block. As such, the mixing of probability
models can start at the boundaries of the current transform

block.

In local mixing for a transform block, the sub-sequence x’
of equation (2) (i.e., p(X)==,_, W, p.(x’), for each 1) can
represent the quantized transform coeltlicients of the quan-
tized transform block being coded and k can represent
models for coding the transform coeflicients (1.e., the sub-
sequence) x'. Examples of the models include a context
model, a speed or method (e.g. Laplace, Good-Turing, the
Krichevsky-Trofimov estimator, or other method) of adapt-
ing probabilities, an 1mitial distribution, other model, or a
combination thereof. As such, the sequence x* can represent
all the coded coeflicients (i.e., coded quantized transform
coellicients) of a transform block (1.e., a quantized transform
block) up to and including a current quantized transform
coeflicient. As indicated above, the coeflicients of a trans-
form block are coded 1n a scan order. As such, the sub-
sequence X' includes all the transform coefficients that pre-
cede the current coethicient x;, (1.e., the sequence of
coefficients x*~') in the scan order and includes the current
coetlicient X,. The index 1 can, in the case of local mixing,
represent, or be indicative of, the scan position i a scan
order.

FIG. 9 1s a flowchart diagram of a process 900 for
encoding a sequence of symbols according to an implemen-
tation of this disclosure. The process 900 can receive a
sequence ol symbols of size n. The sequence can be denoted
by x”. Receive, can mean generate, determine, or 1n any way
receive. In an example, the sequence of symbols can repre-
sent a quantized transform coeflicient such as one received
at the entropy encoding stage 408 from the quantization
stage 406 of FIG. 4. In an example, the sequence of symbols
can be a token such as a token described with respect to FIG.
7. In an example, the sequence of symbols can be a binarized
value such as a binarized value described with respect to
FIG. 8. The sequence of symbols can be any sequence of
symbols that 1s encoded based on a probability model.

The process 900 can be implemented 1n an encoder such
as the encoder 400 of FIG. 4. The process 900 can be
implemented, for example, as a soltware program that can
be executed by computing devices such as transmitting
station 102. The software program can include machine-
readable 1nstructions that can be stored 1n a memory such as
the memory 204 or the secondary storage 214, and that can
be executed by a processor, such as CPU 202, to cause the
computing device to perform the process 900. In at least

10

15

20

25

30

35

40

45

50

55

60

65

22

some 1implementations, the process 900 can be performed 1n
whole or 1n part by the entropy encoding stage 408 of the
encoder 400 of FIG. 4.

The process 900 uses at least two probability models to
encode the sequence of symbols x”. The process 900 can use
any number of probability models. However, for simplicity
only two (2) models (1.e., a first model and a second model)
are used to illustrate the process 900. The process 900
encodes each of the symbols of the sequence the symbols by
mixing the probabilities of the first model and the second
model.

At 902, the process 900 mitializes a counter 1 to zero (0),
a first sub-sequence length (i.e., first length 1,) to 0, and a
second sub-sequence length (1.e., second length 1,) to zero
(0). The counter 1 1s used for each symbol of the sequence
x”. The first length 1, and the second length 1, are as
described above. That 1s, the first length 1, and the second
length 1, can correspond, respectively, to the lengths of
codewords generated by arithmetic coding engines using,
respectively, the first model and the second model.

At 904, the process 900 computes the conditional prob-
abilities p,(x,Ix™") and p,(x,Ix*~") as described above. The
conditional probability p,(x,Ix*~") is the conditional prob-
ability of the symbol at position 1 of the sequence of symbols
given the probability of the subsequence x' (i.e., the
sub-sequence up to and excluding the symbol x). Stmilarly
for p,(x,Ix"™").

At 906, the process 900 computes the mixed probability
p(x,Ix") for the symbol x,. The process 900 computes the
mixed probability described in equation (4) above. The
process 900 can compute the mixed probability using the
equations 8, 11, and 13. At 908, the process 900 encodes the
symbol x. using the computed mixed conditional probability.

At 910, the process 900 updates the first length 1, and the
second length 1,. As described above, hypothetical arithme-
tic encoders can be used at 910. The first length 1, 1s updated
to include the additional codeword length (i.e., bits) added
to the hypothetical codeword added by the first model when
encoding the symbol x.. The second length 1, 1s updated to
include the additional codeword length (1.e., bits) added to
the hypothetical codeword added by the second model when
encoding the symbol x.. The process 900, updates the first
length 1, and the second length 1, using, respectively, 1,=1, -
log (p,(x,1x*™")) and 1,=1,-log (p,(x,/x’~")). In an implemen-
tation, the values -log(p,(x,1x"™")) and -log(p,(X,Ix’™")) can
be computed and/or approximated by using a lookup table
(1.e., looked up 1n a lookup table). Note that the probabailities
p,(x,I1x"") and p,(x,1x") are probabilities between zero (0)
and one (1). The conditional probabilities p,(x/x"") and
p,(x/x~") can each be represented and/or approximated
using fixed-point representations (e.g., 8-bit integer fixed-
point representation). As such, both —log(p,(x,/x™')) and
—log(p,(x,/x™")) can be estimated by using a lookup table.
The 8-bit integers (i.e., which represent the probability
values p,(x,/x"™") or p,(X,/x’")) can be used as inputs (i.e.,
indexes) into the lookup table. In general, the size of the
lookup table depends upon the width of the fixed point
representation of p,(x,/x") and p,(x,/x""). That is, the
larger the width, the higher the precision in estimating
~log(p, (x,1x™")) and -log(p,(x,51 x")).

At 912, the counter 1 1s incremented so that the next
symbol x., , 15 processed. At 914, i all the symbols have
been processed (1.e. 1=n+1), then the process terminates at
916. Otherwise, the process returns to 904 to process the
next symbol.

FIG. 10 1s a flowchart diagram of a process 1000 for
decoding a sequence of symbols according to an implemen-

US 10,448,019 B2

23

tation of this disclosure. The process 1000 can be imple-
mented 1n a decoder such as the decoder 500. The process
1000 can be implemented by a receiving station. The process
900 can be implemented, for example, as a soltware pro-
gram that can be executed by computing devices. The
soltware program can include machine-readable instructions
that can be stored 1n a memory such as the memory 204 or
the secondary storage 214, and that can be executed by a
processor, such as CPU 202, to cause the computing device
to perform the process 900. The process 900 can be 1mple-
mented using specialized hardware or firmware. Some com-
puting devices can have multiple memories, multiple pro-
cessors, or both. The steps or operations of the process 1000
can be distributed using different processors, memories, or
both. Use of the terms “processor” or “memory” 1n the
singular encompasses computing devices that have one
processor or one memory as well as devices that have
multiple processors or multiple memories that can be used in
the performance of some or all of the recited steps.

The process 1000 can be used to decode a sequence of
symbols from an encoded bitstream. For example, the pro-
cess 1000 can receive an encoded bitstream, such as the
compressed bitstream 420 of FIG. 5. The process 1000 can
include blocks similar to the blocks 902-906 and 910-916 as
the process 900. Descriptions of the similar blocks are
omitted. Instead of the block 908, the process 1000 includes
the block 1002. At 1002, the process 1000 decodes, from the
encoded bitstream, the symbol x; using the computed mixed
conditional probability (i.e. P(x,Ix' ™).

In some 1mplementations of the processes 900 or 1000,
the block 906 may be performed every number of steps (e.g.,
S>1) to further save (e.g., reduce) computational complexity
or to improve throughput. Throughput can be measured 1n
the number symbols processed (coded or decoded) in one
clock cycle. For example, when the number of steps S=2,
block 906 may be performed only when 11s odd or even, but
not both. In another implementation of the processes 900 or
1000, block 906 may be performed at a predefined subset of
all possible 1indices of 1.

The foregoing described the use of uniform weighting of
the models. However, implementations according to this
disclosure can use non-uniform prior weights. In non-uni-
form weighting using M number of models, at least some of
the weights w, can be set to values that are not equal to 1/M
(1.e., w =1/M).

For simplicity, the foregoing (e.g., the processes 900 and
1000) describes the use of two models: a first model and a
second model. However, implementations according to this
disclosure can be extended to any number of models. For
example, for a number of model M=2, and assuming uni-
form weighting factors w, (1.e., w,=1/M), then the weights
W, can be approximated using formula (14):

wy 2t (1) (14)

ko~ Y B
—f i
=1

W,_'?

In formula 14, L(x™") denotes the codeword length, in
bits, resulting from using model k, 1=k=M, to encode the
sub-sequence X' .

In the descriptions of FIGS. 9-10, and 1n the case of a
codec that uses a binary tree for coding transform coetl-
cients or a codec that codes an alphabet of binary symbols,
the symbol at position 1 (1.e., X,) refers to a symbol from a

10

15

20

25

30

35

40

45

50

55

60

65

24

binary alphabet {0, 1}. In the case of a codec that uses an
alphabet of tokens (1.e., a non-binary alphabet) for coding
transform coeflicients, the symbol at position1 (i.e., X,) refers
to a symbol from the non-binary alphabet.

At 910 of FIGS. 9-10, a lookup table can be used 1n
calculating the first length 1, and the second length 1,. In the
general case, where k models are used, the length 1, (x*™") can
be determined using the lookup table. In the case of non-
binary alphabets, additional steps are required 1n order to use
a lookup table. In the case of binary alphabets, the prob-
ability distribution for coding the symbols {0, 1} can be
represented as a single value. This 1s so because having, for
example, the probability p of coding the binary symbol O, the
probability of coding the binary symbol 1 can be determined
as (1-p). As such, one probability value (or its fixed-point
representation) can be used as iput for looking up a value
in the lookup table.

In the case of non-binary alphabets, the lookup table can
be a multi-dimensional lookup table. For example, given a
non-binary alphabet of 12 symbols, 11 mnputs are required
for the lookup 1n the lookup table.

In some 1mplementations, such a complex (1.e., multi-
dimensional) lookup table can be avoided by converting the
probability distributions associated with the non-binary
alphabet symbols into binary distributions. The binary dis-
tributions can be represented as a binary tree. The converting
of the probability distributions of the non-binary alphabet
into binary trees can be implicit or explicit. For example,
assuming that the non-binary alphabet 1s a ternary alphabet
(a, b, ¢) and that the non-binary probability distribution 1s
given by a three-tuple (p_a, p_b, p_c), where p_a, p_b, and
p_c are positive real numbers, where p_a+p_b+p_c=1, and
where p_a, p_b, and p_c correspond respectively to the
probability of symbol a, symbol b, and symbol ¢. In an
example of converting the probability distribution (p_a, p_b,
p_c) into binary distributions, the symbols b and ¢ can be
combined 1nto as a single symbol bc. As such, a first binary
distribution (p_a, p_b+p_c) for (a, bc) 1s obtained. To further
determine the symbol b or the symbol ¢ from the combined
symbol bc, a second bmary distribution (p_b/(p_b+p_c),
p_c/(p_b+p_c)) can be obtamned. For any distribution
defined on a non-binary alphabet, the above conversion can
be applied repeatedly (or recursively) to obtain an equivalent
sequence of binary distributions.

Any binary tree can be used. Using FIG. 7 as an example,
assuming that the probability distribution of coding the
tokens 702-704, given a context, 1s known, a binary tree,
such as the coeflicient token tree 700, can be derived such
that each internal node of the tree corresponds to a binary
decision (i.e., each internal node corresponds to a binary
probability distribution).

The binary distributions of the internal nodes of the
derived tree can be used as inputs to the lookup table to
determine a codeword length. For example, to estimate the
cost of coding a token of the non-binary alphabet, the tree
can be traversed up from the token to the root. The prob-
abilities encountered 1n the traversal (1.e., the probabailities of
the internal nodes) can be summed (1.e., added) and the sum
can be used as the mput into the lookup table.

In some 1mplementations, the lookup table can be com-
puted oflline and can be available to the codec when
encoding and/or decoding. In some implementation, the
lookup table can be computed online. That 1s, the lookup
table can be computed by a codec while coding. In some
implementations, the lookup table can be periodically com-
puted (e.g., updated, recomputed, etc.). In some 1mplemen-
tations, the lookup table 1s recomputed 1f the alphabet size

US 10,448,019 B2

25

(1.e., the number of symbols in the alphabet) does not exceed
a threshold number of symbols. The threshold number of
symbols can be 12, 16, or any other threshold number.

Periodically computing the lookup table can mean com-
puting the lookup table at the beginning of a coding unit, a
super block, a transform block, or some other unit of a frame
of video, that estimates the cost of coding each symbol in the
alphabet.

In equations 9-13, only differences in codeword lengths
are used. For example, the different 1,(x’~")-1,(x") is used
in equation 10. As such, it may not be necessary to maintain
(e.g., keep track of) the set of codeword lengths values {1, }
for all models k. As such, in some implementations of 910
of FIGS. 9-10, storage requirements can be reduced by
maintaining only codeword lengths differences. If K models
are used, then differences associated with K-1 models are
maintained. For example, in cases where two models, k&1 1,
2}, are used, only 1,/1, are used (e.g., required) for the
purpose of mixing. Additionally, if probabilities have fixed-
point representations, then the length differences 1,/1, can be
stored 1n finite-precision to reduce storage complexity.

In an example, where K (>2) models are used, storage
complexity associated with codeword lengths {1,} can be
reduced using the following steps:

1. Select a model 1mndex 1 to be an arbitrary model index,
fixed number between 1 and K, where K 1s the number
of models to be mixed (i.e., 1=1=K).

2. Compute and store length difterences 1. -1 for all
1=k=K excluding j.

In another implementation, in the first step, 1 can be
selected such that 1,2l for all 1<k<K. That 1s, only non-
negative differences are stored (1.e., 1,-1.20). The mdex j,
which is the index within {1, } that holds the minimum value,
may be maintained and/or updated since the index that holds
the minimum value in {l,} may change. By storing only
positive length differences, additional storage for storing
sign bits (1.e., associated with negative values) can be saved
(1.e., not used).

FIG. 13 1s a flowchart diagram of a process 1300 for
estimating a cost of coding a symbol in a non-binary
alphabet according to an implementation of this disclosure.

At 1302, the process 1300 converts a probability distri-
bution associated with the alphabet (i.e., the probability
values associated with each symbol of the non-binary alpha-
bet) into binary distributions. In an example, the probability
mass function (PMF) can be converted into the binary
distributions. In another example, the cumulative distribu-
tion function (CDF) of the probability distribution can be
converted into the binary distributions. As mentioned above,
the binary distributions are generated either implicitly or
explicitly by using a full binary tree.

At 1304, the process 1300 uses the binary distributions to
estimate (1.e., look up) the codeword length 1n bits (or their
scaled version). The block 1304 can be used by the process
900 at 906. The block 1304 can be used by the process 1000
at 906.

In the case where more than two (2) models are mixed, a
binary tree can be used to compute (i.e., determine, generate,
etc.) the conditional probabilities. That 1s, the factors w, .p,
(x,/x~") of equation (8) can be recursively computed using
the above-described processes. Recursively computing
means combining the probabilities of two (2) models at a
time to produce mtermediate conditional probabilities. The
intermediate conditional probabilities are then combined,
two at a time. In the case where the number of models M 1s
a power of 2 (i.e., M=2"), the factors w, p,(x,x~") of
equation (8) can be recursively computed by applying the

10

15

20

25

30

35

40

45

50

55

60

65

26

above described processes on a full bimary tree such as
described with respect to FIG. 11.

FIG. 11 1s a diagram of an example of a binary tree 1100
ol conditional probabilities according to an implementation
of this disclosure. In the binary tree 1100, eight (8) models
are mixed. The probabilities of the eight models are p_1 to
p_8. BEvery two probabilities are first mixed. For example,
the probabilities 1102 and 1104 are mixed as described
above to generate mtermediate conditional probability 1106,
which 1s then combined with the intermediate conditional
probability 1108 to produce intermediate conditional prob-
ability 1110, and so on until a final conditional probability
1112 1s computed. The final conditional probability 1112 can
be used for encoding and/or decoding. For example, the final
conditional probability 1112 can be used at 908 of the
process 900 and/or at 1002 of the process 1000.

The process described with respect to FIG. 11 can be used
in situations where, for example, some models are known to
be more useful than other models. In the case where some
models are known to be more useful than others, uniform
welghting may be undesirable. In order to assign more
weight to one model, the model can be replicated in the tree.

Referring to FIG. 11 as an example, the models p_1,
p_2,...,p_6and p_8 may be distinct and p_6 1s known to
be more usetul than the other models. As p_6 1s more useful,
p_6 can be replicated 1n the tree: p_7 1s a duplicate of p_6.
As such, the model with probability p_6 1s assigned twice
the weight 1n the mixing for entropy encoding.

As another example, suppose, for example, there are two
models, model A and model B, and the prior weights for the
two models are (Y4, 3). Implementations according to this
disclosure, can expand the model set to a set of 4 models,
where the first model corresponds to the model A, the
remaining three models correspond to the model B, and the
prior for the four models i1s (Va, Va4, Va, Va).

In the foregoing, stationary sources are described. A
stationary source means that the mixing for the symbol x,
uses all the history of the sub-sequence X' to determine
W, . As such, the statistics do not change over the source of
the coding process. However, 1n the cases where the sources
may be non-stationary, implementations according this this
disclosure can adapt to the local statistics for better com-
pression performance using a sliding window. The sliding
window as length L of bits indicating the number of previous
bits (1.e., the probabilities of the number of the previous bits)
to be used in the mixing process. That 1s, the sliding window
represents how far back into the sequence to remember: only
symbols inside the sliding window are used to estimate the
welghting factors. More specifically, only the probabilities
of those symbols inside the sliding window are used to
estimate the weighting factors.

As such, instead of using P(x,Ix') to code x,
P(X.Ix_; ... X,_,) where the length L=1 1s the length of the
sliding window and where x._, . . . X._, 1s the sub-sequence
starting at bit 1-L and ending at bit 1—-1. When the length L
1s known, a process according to this disclosure can perform
the following steps for two models:

At step 1, imitialize 1=1, 1,=0, 1,=0. The step 1 can be as
described with respect to 902 of FIG. 9. At step 1, the
process also mmtializes 1, _,=0, and 1, _;=0.

At step 2, the process computes p,(x,Ix,_, . .. X,_,) and
p-(X,IX,_; . .. X, ;) according to the first model and the
second model.

At step 3, the process computes the mixed probability
P(X;IX,_; . ..X,_ ;) according to the equations 15 and 16:

US 10,448,019 B2

27

(15)

Xi—1) =

wig pLX | Xieg - Xim) +wiapalxi [xiop ...

plxi | xir. ...

Xi—1)

H—l () 1 (16)

R k=12
2 =
Z Q—JJ-(x*)_l_gj_(xj_i,_l)
=1

Wf,

At step 4, the process encodes (when implemented by an
encoder) or decodes (when implemented by a decoder) x, by

using p(x,1x,_; . .. X, ;).

At step 35, the process updates 1, to 1,=l,-log
p,(X.Ix,_, X._,) and wupdates 1, to 1,=l,-log
p-(XIX._, . .. X_,). If the process 1s encoding/decoding

outside the window (i1.e., 1zL), then the process updates
11,-1,:11,—1,_10% P (X;_z X5z - - - X_z_y) and 12,-1,:12,-}:_10%

Po(X;_r X2z - - - XKip1)-
At step 6, 11s 1ncreased by 1 (1.e., 1=1+1).

At step 7, the process repeats the steps 2-6 until all the bits
of the sequence x” are processed (1.e., 1=n+1).

In the sliding window described above, 1,(x'")-
L,(x)=l -1, _, and L(x™) L(x™"")=l,1, ;. As such,
1,(x")-1,(x**"") can be regarded as the codeword length
produced by using the first model to code x,_, . .. x,_; and
L (x1)-1,(x""*"') can be regarded as the codeword length
produced by using the second model to code x._, . .. X._;.

In the case of local mixing for a transform block,
described above, when a new transform block starts (i.e.,
when the coding of a transform block starts), the codeword
lengths {1 r can be reset for all models k so that all models
can be equally considered at the beginning of coding the new
(1.e., current) transform block. As such, when the coding of
a current transform block 1s completed, the lengths 1, are
reset to zero for the coding of the next transform block.

In some 1mplementations, local mixing can be applied to
other coding units. For example, the lengths 1, can be reset
at the start of a coding unit other than the transform block.
For example, the coding umit can be a super block (e.g., a
block of size 64x64). As such, lengths 1, can be reset at the
start of a super block. The lengths 1, can be reset at the start
coding units of other sizes (e.g., 128x128).

In the case of a shiding window described above, the
memory step (1.e., the length L) 1s fixed. In the case of local
mixing, the memory step 1s adapted to the transform block
size. For example, a first transform block may be a 4x4
transform block, a second transform block may be 16x16,
and so on. As such, the lengths 1, are reset after different
number of coeflicients are coded, depending on the block
s1ze and/or the location of the last non-zero coethlicient 1n the
quantized transform block.

FIG. 12 1s a flowchart diagram of a process 1200 for
entropy coding a sequence of symbols according to an
implementation of this disclosure. The sequence can be as
described above for sequences xX”. The process 1200 can be
implemented by an encoder or a decoder. When imple-
mented by an encoder, “coding” means encoding in an
encoded bitstream, such as the compressed bitstream 420 of
FIG. 4. When implemented by a decoder, “coding” means
decoding from an encoded bitstream, such as the com-
pressed bitstream 420 of FIG. 3.

When implemented by an encoder, the process 1200 can
receive the sequence of symbols from a quantization step,
such as the quantization stage 406 of FIG. 4. In another
example, the process 1200 can receive a value to be encoded
(e.g., a quantized transform coetlicient) and generates the
sequence of symbols from the received value. When imple-

5

10

15

20

25

30

35

40

45

50

55

60

65

28

mented by a decoder, the decoder can receive the sequence
of symbols 1n an encoded bitstream, such as the compressed

bitstream 420 of FIG. S.

At 1202, the process 1200 selects models to be mixed.
The models can include a first model and a second model.

As used 1n this disclosure, “select” means to 1dentily,
construct, determine, specily or other select 1n any manner
whatsoever.

For at least a symbol (e.g., x,), at a position (e.g., 1) of the
symbols, the process 1200 performs blocks including the
blocks 1204-1208 to determine a mixed probability using
the first model and the second model. The blocks 1204-1208

can be performed for all symbols of the sequence of sym-
bols.

At 1204, the process 1200 determines, using the first
model, a first conditional probability for coding the symbol.
The first conditional probability 1s the conditional probabil-
ity of the symbol given a sub-sequence of the sequence. In
an example, the sub-sequence of the sequence can mean the
sub-sequence x"~'. In another example, wherein a sliding
window 1s being used, the sub-sequence of the sequence
consists of a predetermined number of symbols of the
sequence before the position. The predetermined number of
symbols can be as described with respect to the sliding
window length L. As such the sub-sequence of the sequence
can be the sub-sequence x._; ... X,_,. At 1206, the process
1200 determines, using the second model, a second condi-
tional probability for coding the symbol. The second con-
ditional probability 1s a conditional probability of the sym-
bol given the sub-sequence as described with respect to the
block 1204.

At 1208, the process 1200 determines, using the first
conditional probability and the second conditional probabil-
ity, a mixed probability for coding the symbol. The mixed
probability can be as described with respect to 906 of FIG.
9. The first conditional probability and the second condi-
tional probability can be combined using a linear combina-
tion that uses a first weight and a second weight. In an
implementation, at least the first weight can be determined
(1.e., approximated) using a hypothetical arithmetic coding
to determine a length for coding a sub-sequence of the
sequence up to the symbol. The first weight can be deter-
mined using the length. In an example, determining a weight
(e.g., the first weight and/or the second weight) can include
determining a rate resulting from coding a sub-sequence of
the sequence up to the symbol and determining the first
weight using the determined rate. In an example, the rate can
be determined using a rate estimator. In an example, the rate
estimator can be a hypothetical arthmetic encoder. In an
example, determining the rate can include looking up a table
(e.g., a lookup table) with inputs as probability values. That
1s, the probability values are used as mputs nto the lookup
table.

At 1210, the process 1200 codes the symbol using the
mixed probability as described, for example, with respect to
the 908 (when implemented by an encoder) and 1002 (when
implemented by a decoder).

In an implementation of the process 1200, the models can
include a third model and a fourth model and determining
the mixed probability using the first model and the second
model can include mixing the first model and the second
model to generate a first intermediate conditional probabil-
ity, mixing the third model and the fourth model to generate
a second imtermediate conditional probability, and mixing
the first intermediate conditional probability and the second
intermediate conditional probability to generate a condi-

US 10,448,019 B2

29

tional probability to be used for coding the symbol. In an
implementation, the first model and the fourth model are a
same model.

FIG. 14 1s a flowchart diagram of a process 1400 for
entropy coding a quantized transform block according to an
implementation of this disclosure. The process 1400 codes
tokens indicative of the quantized transform coethlicients of
the quantized transform block. The tokens can be selected
from a non-binary alphabet of tokens as described above.
The process 1400 codes a transform coeflicient as described
above with respect to local mixing for a transform block. In
an 1mplementation, the process 1400 can be repeated for
tokens corresponding of the quantized transform block up to
the end-of-block token.

The process 1400 can be implemented by an encoder or
a decoder. When implemented by an encoder, “coding”
means encoding 1 an encoded bitstream, such as the com-
pressed bitstream 420 of FIG. 4. When implemented by a
decoder, “coding” means decoding from an encoded bait-
stream, such as the compressed bitstream 420 of FIG. 5.

When implemented by an encoder, the process 1400 can
receive the quantized transform block from a quantization
step, such as the quantization stage 406 of FIG. 4, and can
be implemented, 1n part or in whole, by an entropy coding
step, such as the entropy encoding stage 408. When imple-
mented by a decoder, the decoder can receive quantized
transform block 1n an encoded bitstream, such as the com-
pressed bitstream 420 of FIG. 5, and can be implemented, in
part or in whole, by an entropy decoding step, such as the
entropy decoding stage 502.

At 1402, the process 1400 selects probability distributions
for coding a token indicative of a quantized transform
coellicient of the quantized transform block. Two or more
probability distributions can be selected. In an example, the
probability distributions include a first probability distribu-
tion and a second probability distribution. Each of the
probability distributions provides probability values (e.g.,
first probability values and second probability values) cor-
responding to the tokens of the alphabet. For example, if the
non-binary alphabet includes N (e.g., 16) symbols, then the
probability distribution can include N probability values.

At 1404, the process 1400 determines a mixed probability
for coding the token using the first probability distribution
and the second probability distribution. The mixed probabil-
ity can be determined as described above with respect to
FIGS. 9-10. Determining the mixed probability can 1nclude
determining, using the first probability distribution, a first
conditional probability for coding the token, determining,
using the second probability distribution, a second condi-
tional probability for coding the token, and determining the
mixed probability using the first conditional probability and
the second conditional probability. The first conditional
probability can be a conditional probability of the token
given previously coded tokens for the quantized transiorm
block. The second conditional probability can be a condi-
tional probability of the token given previously coded tokens
for the quantized transiform block.

In an implementation, determining the mixed probability
can also include combining the first conditional probability
and the second conditional probability using a linear com-
bination that uses a first weight and a second weight. The
first weight can be based on a first length of a first codeword
for coding tokens corresponding to the previously coded
tokens using the first conditional probability. The second
weight can be based on a second length of a second
codeword for coding tokens corresponding to the previously
coded tokens using the second conditional probability.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

In an implementation, the first weight and the second
weight can be determined by converting the first probability
distribution to a first binary distribution, converting the
second probability distribution to a second binary distribu-
tion, determining the first length using the first binary
distribution, and determining the second length using the
second binary distribution.

In an implementation, the first probability distribution can
be an 1nmitial probability distribution for coding the quantized
transiorm coeflicients of the quantized transform block. That
1s, the first probability distribution can be a probability
distribution that 1s selected based on a context for coding the
quantized transform coeflicient. In an implementation, and
when 1implemented by a decoder, the initial probability can
be decoded from the encoded bitstream.

The second probability distribution can be based on
statistics of a coding unit. As such, the second probability
distribution can be modified (e.g., updated) as quantized
coellicients are coded to reflect the actual statistics of the
coding unit. The coding unit can be the quantized transform
block. The coding unit can be a super block that includes the
quantized transform block.

At 1406, the process 1400 codes the token using the
mixed probability.

For simplicity of explanation, the processes 900, 1000,
1200, 1300, and 1400 are each depicted and described as a
series ol blocks, steps, or operations. However, the blocks,
steps, or operations in accordance with this disclosure can
occur 1n various orders and/or concurrently. Additionally,
other steps or operations not presented and described herein
may be used. Furthermore, not all illustrated steps or opera-
tions may be required to implement a technique 1n accor-
dance with the disclosed subject matter.

A technique known as context-tree weighting (CI'W) 1s a
lossless data compression algorithm that uses mixing. To
code a binary sequence X" of length n, CTW estimates a
probability function p(x”) as a linear mixture of 2* prob-
ability functions p,(x”), each of which 1s estimated by
assuming a finite memory binary tree source and has the
same welghting factor. Contrastingly, implementations
according to this disclosure can work with any models.
Furthermore, the symbol-by-symbol weighting factor com-
putation described herein can use length functions to
approximate probabilities of sub-sequences, which 1s much
simplified in comparison to existing solutions that maintain
and compute joint probabilities.

The aspects of encoding and decoding described above
illustrate some encoding and decoding techniques. However,
it 1s to be understood that encoding and decoding, as those
terms are used in the claims, could mean compression,
decompression, transiformation, or any other processing or
change of data.

The words “example” or “implementation” are used
herein to mean serving as an example, istance, or 1llustra-
tion. Any aspect or design described herein as “example” or
“implementation” 1s not necessarily to be construed as
preferred or advantageous over other aspects or designs.
Rather, use of the words “example” or “implementation™ 1s
intended to present concepts 1n a concrete fashion. As used
in this application, the term “or” 1s mtended to mean an
inclusive “or” rather than an exclusive “or.” That 1s, unless
specified otherwise, or clear from context, “X ncludes A or
B” 1s intended to mean any of the natural inclusive permu-
tations. That 1s, 1if X includes A; X includes B; or X includes
both A and B, then “X 1ncludes A or B” 1s satisfied under any
of the foregoing instances. In addition, the articles “a” and
“an” as used 1n this application and the appended claims

US 10,448,019 B2

31

should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form. Moreover, use of the term “an implementa-
tion” or “one implementation” throughout 1s not intended to
mean the same embodiment or implementation unless
described as such.

Implementations of transmitting station 102 and/or
receiving station 106 (and the algorithms, methods, mnstruc-
tions, etc., stored thereon and/or executed thereby, including,
by encoder 400 and decoder 500) can be realized 1n hard-
ware, software, or any combination thereof. The hardware
can include, for example, computers, intellectual property
(IP) cores, application-specific integrated circuits (ASICs),
programmable logic arrays, optical processors, program-
mable logic controllers, microcode, microcontrollers, serv-
ers, microprocessors, digital signal processors or any other
suitable circuit. In the claims, the term “processor” should
be understood as encompassing any of the foregoing hard-
ware, either singly or in combination. The terms “signal”™
and “data” are used interchangeably. Further, portions of
transmitting station 102 and receiving station 106 do not
necessarily have to be implemented 1n the same manner.

Further, 1n one aspect, for example, transmitting station
102 or receiving station 106 can be implemented using a
general purpose computer or general purpose processor with
a computer program that, when executed, carries out any of
the respective methods, algorithms and/or instructions
described herein. In addition, or alternatively, for example,
a special purpose computer/processor can be utilized which
can contain other hardware for carrying out any of the
methods, algorithms, or instructions described herein.

Transmitting station 102 and receiving station 106 can,
for example, be implemented on computers 1 a video
conferencing system. Alternatively, transmitting station 102
can be implemented on a server and receiving station 106
can be implemented on a device separate from the server,
such as a hand-held communications device. In this instance,
transmitting station 102 can encode content using an
encoder 400 1nto an encoded video signal and transmit the
encoded video signal to the communications device. In turn,
the communications device can then decode the encoded
video signal using a decoder 500. Alternatively, the com-
munications device can decode content stored locally on the
communications device, for example, content that was not
transmitted by transmitting station 102. Other transmitting
station 102 and receiving station 106 1mplementation
schemes are available. For example, receiving station 106
can be a generally stationary personal computer rather than
a portable communications device and/or a device including
an encoder 400 may also include a decoder 500.

Further, all or a portion of implementations of the present
disclosure can take the form of a computer program product
accessible from, for example, a tangible computer-usable or
computer-readable medium. A computer-usable or com-
puter-readable medium can be any device that can, for
example, tangibly contain, store, communicate, or transport
the program for use by or 1in connection with any processor.
The medium can be, for example, an electronic, magnetic,
optical, electromagnetic, or a semiconductor device. Other
suitable mediums are also available.

The above-described embodiments, implementations and
aspects have been described in order to allow easy under-
standing of the present disclosure and do not limit the
present disclosure. On the contrary, the disclosure 1s
intended to cover various modifications and equivalent
arrangements included within the scope of the appended
claims, which scope 1s to be accorded the broadest interpre-

5

10

15

20

25

30

35

40

45

50

55

60

65

32

tation so as to encompass all such modifications and equiva-
lent structure as 1s permitted under the law.

What 1s claimed 1s:

1. A method for entropy coding a sequence of quantized
transform coeflicients of a transform block, comprising:

selecting, for a quantized transform coeflicient at a posi-

tion 1 1n a scan order of the transform block, probability
distribution models comprising a first probability
model and a second probability model, the first prob-
ability model 1s selected based on a first context and the
second probability model 1s selecting based on a second
context that 1s different from the first context;
determiming, for coding the quantized transform coefli-
cient at the position 1, a mixed probability using the first
probability model and the second probability model, by

steps including steps (a)-(c):

(a) determining, using the first probability model, a first
conditional probability for coding the quantized
transiorm coethicient, the first conditional probabaility
being a conditional probability of the quantized
transform coeflicient at the position 1 having a certain
value x, given that previous quantized transiorm
coellicients at positions], where 1<1 1n the scan order
having respective values x; in the transform block;

(b) determining, using the second probability model, a
second conditional probability for coding the quan-
tized transform coellicient, the second conditional
probability being a conditional probability of the
quantized transform coetlicient at the position 1 hav-
ing the certain value x, given that the previous
quantized transform coellicients at the positions j
having the respective values x; m the transform
block; and

(¢) determining, using the first conditional probability
and the second conditional probability, the mixed
probability for coding the quantized transform coet-
ficient at the position 1; and

coding the quantized transform coeflicient at the position

1 using the mixed probability.

2. The method of claim 1, wherein determining, using the
first conditional probability and the second conditional prob-
ability, the mixed probability for coding the quantized
transform coeflicient at the position 1 comprises:

combining the first conditional probability and the second

conditional probability using a linear combination that
uses a first weight and a second weight.

3. The method of claim 2, wherein determining, using the
first conditional probability and the second conditional prob-
ability, the mixed probability for coding the quantized
transform coellicient at the position 1 further comprises:

determining the first weight using a hypothetical arithme-

tic coding to determine a length of a codeword for
coding a sub-sequence of the sequence of quantized
transform coeflicients up to the quantized transform
coellicient at the position 1; and

determiming the first weight using the length.

4. The method of claim 2, further comprising;:

determiming a rate resulting from coding a subset of the

quantized transform coeflicients of the quantized trans-
form coeflicients, the subset of the quantized transform
coellicients including quantized transform coeflicients
at scan order positions that are before the position 1; and
determining the first weight using the determined rate.

5. The method of claim 4, wherein determining the rate
comprises using a rate estimator.

6. The method of claim 5, wherein the rate estimator 1s a
hypothetical arithmetic encoder.

e

US 10,448,019 B2

33

7. The method of claim 4, wherein determining the rate
COmMprises:

looking up the rate in a lookup table using probability

values as inputs.

8. The method of claim 1, wherein the probability distri-
bution models comprise a third probability model and a
fourth probability model, and wherein determining the
mixed probability using the first probability model and the
second probability model comprises:

mixing the first probability model and the second prob-

ability model to generate a first intermediate condi-
tional probability;

mixing the third probability model and the fourth prob-

ability model to generate a second intermediate condi-
tional probability; and

mixing the first intermediate conditional probability and

the second intermediate conditional probability to gen-
erate a conditional probability to be used for coding the
quantized transform coeflicient at the position 1.

9. The method of claim 8, wherein the first probability
model and the fourth probability model are a same prob-
ability model.

10. The method of claim 1, wherein the previous quan-
tized transform coethicients includes all the quantized trans-
form coeflicients up to the position 1.

11. The method of claim 1, wherein the previous quan-
tized transform coeflicients consists of a predetermined
number of quantized transform coeflicients.

12. An apparatus for entropy coding a quantized trans-
form block, the apparatus comprising:

a memory; and

a processor, wherein the memory includes instructions

executable by the processor to:
select, for a quantized transform coetlicient at a posi-
tion 1 1n a scan order of the quantized transform
block, probability distributions comprising a first
probability distribution and a second probability
distribution for coding a token indicative of the
quantized transform coeflicient at the position 1 of
the quantized transform block, wherein
the first probability distribution being di
the second probability distribution,
the token 1s selected from an alphabet of tokens,
the first probability distribution comprises first prob-
ability values for the tokens of the alphabet of
tokens and the first probability distribution
selected based on a first context, and
the second probability distribution comprises second
probability values for the tokens of the alphabet of
tokens and the second probability distribution
selected based on a second context that 1s different
from the first context;
determine a mixed probability for coding the token
using the first probability distribution and the second
probability distribution by instructions to:
determine, using the first probability distribution, a
first conditional probability for coding the token,
the first conditional probability being a condi-
tional probability of the token having a certain
value X, given that previous quantized transform
coellicients at positions j, where <1 in the scan
order have respective indicative token x; and
determine, using the second probability distribution,
a second conditional probability for coding the
token, the second conditional probability being a
conditional probability of the token having the
certain value X, given that the previous quantized

terent from

10

15

20

25

30

35

40

45

50

55

60

34

transform coetflicients at the positions j, where 1<i
in the scan order have the respective indicative
token Xx;; and

code the token using the mixed probability.

13. The apparatus of claim 12, wherein to determine the
mixed probability using the first conditional probability and
the second conditional probability comprises to:

combine the first conditional probability and the second

conditional probability using a linear combination that

uses a first weight and a second weight, wherein

the first weight 1s based on a first length of a first
codeword for coding tokens corresponding to previ-

ously coded tokens using the first conditional prob-
ability, and
the second weight 1s based on a second length of a
second codeword for coding tokens corresponding to
the previously coded tokens using the second con-
ditional probability.
14. The apparatus of claim 13, wherein the instructions
further 1include 1instructions to:
determine the first length and the second length by
instructions to:
convert the first probability distribution to a first binary
distribution;
convert the second probability distribution to a second
binary distribution;
determine the first length using the first binary distri-
bution; and
determine the second length using the second binary
distribution.
15. The apparatus of claim 12, wherein
the first probability distribution i1s an i1nitial probabaility
distribution for coding the quantized transform coeth-
cients of the quantized transform block, and
the second probabaility distribution 1s based on statistics of
a coding unit.
16. The apparatus of claim 15, wherein the coding unit 1s
the quantized transiform block.
17. The apparatus of claim 15, wherein the coding unit 1s
a super block that includes the quantized transform block.
18. An apparatus for entropy decoding a sequence of
symbols, the apparatus comprising:
a memory; and
a processor, wherein the memory includes instructions
executable by the processor to:
select models comprising a first model and a second
model, the first model being different from the
model;
determine, for a symbol at a position of the symbols, a
mixed probability using the first model and the
second model by instructions to:
determine, using the first model, a first conditional
probability for coding the symbol, the first condi-
tional probability being a conditional probability
of the symbol having a certain value x, given that
previous symbols 1n the sequence of symbols at
positions j, where j<i, have respective values X,
and
determine, using the second model, a second condi-
tional probability for coding the symbol, the sec-
ond conditional probability being a conditional
probability of the symbol having the certain value
X, given that the previous symbols in the sequence
of symbols at the positions], where <1, have the
respective values x;; and
decode, from a compressed bitstream, the symbol using
the mixed probability.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

