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DISTRIBUTED AND LEARNING
MACHINE-BASED APPROACH TO
GATHERING LOCALIZED NETWORK
DYNAMICS

RELATED APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 61/923,910, filed Jan. 6, 2014, entitled: LEARN-
ING-MACHINE-BASED PREDICTIVE AND PROAC-
TIVE COMPUTER NETWORKING AND ASSOCIATED
MONITORING, by Vasseur, et al., the contents of which are

herein incorporated by reference.

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to the use of learming
machines within computer networks.

BACKGROUND

Low power and Lossy Networks (LLNs), e.g., Internet of
Things (IoT) networks, have a myriad of applications, such
as sensor networks, Smart Grids, and Smart Cities. Various
challenges are presented with LLNs, such as lossy links, low
bandwidth, low quality transceivers, battery operation, low
memory and/or processing capability, etc. The challenging
nature of these networks 1s exacerbated by the large number
of nodes (an 1s order of magnitude larger than a “classic” IP
network), thus making the routing, Quality of Service
(Qo0S), security, network management, and trailic engineer-
ing extremely challenging, to mention a few.

Machine learning (ML) 1s concerned with the design and
the development of algorithms that take as mput empirical
data (such as network statistics and performance indicators),
and recognize complex patterns in these data. In general,
these patterns are then used to make decisions automatically
(1.e., close-loop control) or to help make decisions. ML 1s a
very broad discipline used to tackle very diflerent problems
(e.g., computer vision, robotics, data mining, search engines,
etc.), but the most common tasks are the following: linear
and non-linear regression, classification, clustering, dimen-
sionality reduction, anomaly detection, optimization, asso-
ciation rule learning.

One very common pattern among ML algorithms 1s the
use ol an underlying model M, whose parameters are
optimized for minimizing the cost function associated to M,
given the mput data. For instance, in the context of classi-
fication, the model M may be a straight line that separates
the data into two classes such that M=a*x+b*y+c and the
cost function would be the number of misclassified points.
The ML algorithm then consists i adjusting the parameters
a,b,c such that the number of misclassified points 1s minimal.
After this optimization phase (or learning phase), the model
M can be used very easily to classily new data points. Often,
M 1s a statistical model, and the cost function 1s mversely
proportional to the likelithood of M, given the mput data.

Learning Machines (ILMs) are computational entities that
rely one or more ML algorithm for performing a task for
which they haven’t been explicitly programmed to perform.
In particular, LMs are capable of adjusting their behavior to
their environment. In the context of LLNs, and more gen-
crally 1n the context of the IoT (or Internet of Everything,
IoE), this ability will be very important, as the network will
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2

face changing conditions and requirements, and the network
will become too large for efliciently management by a
network operator.

Thus far, LMs have not generally been used in LLNs,
despite the overall level of complexity of LLNs, where
“classic” approaches (based on known algorithms) are inet-
ficient or when the amount of data cannot be processed by
a human to predict network behavior considering the num-
ber of parameters to be taken 1nto account.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIG. 1 illustrates an example communication network;

FIG. 2 illustrates an example network device/node;

FIG. 3 1illustrates an example directed acyclic graph
(DAG) 1n the communication network of FIG. 1;

FIG. 4 illustrates an example Bayesian network;

FIG. 5 illustrates an example Bayesian network for linear
regression; and

FIG. 6 illustrates an example simplified procedure for a
distributed and learning machine-based approach to gather-
ing localized network dynamics.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
one or more reporting nodes are selected by a Learning
Machine to report network metrics in a network. From a
monitoring node 1n the network, a trigger message 1s sent to
the one or more reporting nodes. The trigger message may
trigger the one or more reporting nodes to report one or more
network metrics local to the respective reporting node,
which may be used to report ephemeral phenomena. In
response to the trigger message, a report of the one or more
1s network metrics 1s received at the monitoring node from
one of the one or more reporting nodes.

Description

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available,
ranging from local area networks (LANs) to wide area
networks (WANs). LANs typically connect the nodes over
dedicated private communications links located 1n the same
general physical location, such as a building or campus.
WANSs, on the other hand, typically connect geographically
dispersed nodes over long-distance communications links,
such as common carrier telephone lines, optical lightpaths,
synchronous optical networks (SONET), synchronous digi-
tal hierarchy (SDH) links, or Powerline Communications

(PLC) such as IEEE 61334, IEEE P1901.2, and others. In
addition, a Mobile Ad-Hoc Network (MANET) 1s a kind of
wireless ad-hoc network, which 1s generally considered a
self-configuring network of mobile routers (and associated
hosts) connected by wireless links, the union of which forms
an arbitrary topology.
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Smart object networks, such as sensor networks, 1n par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects mclude actua-
tors, €.g., responsible for turning on/ofl an engine or perform
any other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less or PLC networks. That 1s, in addition to one or more
sensors, each sensor device (node) 1n a sensor network may
generally be equipped with a radio 1s transceiver or other
communication port such as PLLC, a microcontroller, and an
energy source, such as a battery. Often, smart object net-
works are considered field area networks (FANs), neighbor-
hood area networks (NANs), personal area networks
(PANSs), etc. Generally, size and cost constraints on smart
object nodes (e.g., sensors) result in corresponding con-
straints on resources such as energy, memory, computational
speed and bandwidth.

FIG. 1 1s a schematic block diagram of an example

computer network 100 1illustratively comprising nodes/de-
vices 110 (e.g., labeled as shown, “root,” “11,” “12.” . . .
“45,” and described i FIG. 2 below) interconnected by
various methods of communication. For instance, the links
105 may be wired links or shared media (e.g., wireless links,
PLC links, etc.) where certain nodes 110, such as, e.g.,
routers, sensors, computers, etc., may be in communication
with other nodes 110, e.g., based on distance, signal
strength, current operational status, location, etc. The 1llus-
trative root node, such as a field area router (FAR) of a FAN,
may interconnect the local network with a WAN 130, which
may house one or more other relevant devices such as
management devices or servers 150, e.g., a network man-
agement server (NMS), a dynamic host configuration pro-
tocol (DHCP) server, a constrained application protocol
(CoAP) server, etc. Those skilled 1n the art will understand
that any number of nodes, devices, links, etc. may be used
in the computer network, and that the view shown herein 1s
for simplicity. Also, those skilled in the art will further
understand that while the network 1s shown in a certain
orientation, particularly with a “root” node, the network 100
1s merely an example 1llustration that 1s not meant to limait
the disclosure.

Data packets 140 (e.g., traflic and/or messages) may be
exchanged among the nodes/devices of the computer net-
work 100 using predefined network communication proto-
cols such as certain known wired protocols, wireless proto-
cols (e.g., IEEE Std. 802.15.4, WiF1, Bluetooth®, etc.), PLC
protocols, or other shared-media protocols where appropri-
ate. In this context, a protocol consists of a set of rules
defining how the nodes interact with each other.

FIG. 2 1s a schematic block diagram of an example
node/device 200 that may be used with one or more embodi-
ments described herein, e.g., as any of the nodes or devices
1s shown 1n FIG. 1 above. The device may comprise one or
more network interfaces 210 (e.g., wired, wireless, PLC,
etc.), at least one processor 220, and a memory 240 1inter-
connected by a system bus 230, as well as a power supply
260 (e.g., battery, plug-in, etc.).

The network iterface(s) 210 contain the mechanical,
clectrical, and signaling circuitry for communicating data
over links 1035 coupled to the network 100. The network
interfaces may be configured to transmit and/or recerve data
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using a variety of different communication protocols. Note,
further, that the nodes may have two different types of
network connections 210, e.g., wireless and wired/physical
connections, and that the view herein 1s merely for illustra-
tion. Also, while the network interface 210 1s shown sepa-
rately from power supply 260, for PLC (where the PLC
signal may be coupled to the power line feeding into the
power supply) the network interface 210 may communicate
through the power supply 260, or may be an integral
component of the power supply.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor 220 and the
network interfaces 210 for storing software programs and
data structures associated with the embodiments described
herein. Note that certain devices may have limited memory
or no memory (e.g., no memory for storage other than for
programs/processes operating on the device and associated
caches). The processor 220 may comprise hardware ele-
ments or hardware logic adapted to execute the software
programs and manipulate the data structures 245. An oper-
ating system 242, portions of which are typically resident 1n
memory 240 and executed by the processor, functionally
organizes the device by, mter alia, invoking operations 1n
support of software processes and/or services executing on
the device. These soltware processes and/or services may
comprise a routing process/services 244 and an 1llustrative
“learning machine” process 248, which may be configured
depending upon the particular node/device within the net-
work 100 with functionality ranging from intelligent learn-
ing machine algorithms to merely communicating with
intelligent learning machines, as described herein. Note also
that while the learning machine process 248 1s shown in
centralized memory 240, alternative embodiments provide
for the process to be specifically operated within the 1s
network interfaces 210.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
istructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it 1s
expressly contemplated that various processes may be
embodied as modules configured to operate 1n accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while the processes have
been shown separately, those skilled 1 the art will appre-
ciate that processes may be routines or modules within other
Processes.

Routing process (services) 244 contains computer execut-
able 1nstructions executed by the processor 220 to perform
functions provided by one or more routing protocols, such as
proactive or reactive routing protocols as will be understood
by those skilled in the art. These functions may, on capable
devices, be configured to manage a routing/forwarding table
(a data structure 245) containing, e¢.g., data used to make
routing/forwarding decisions. In particular, 1n proactive
routing, connectivity 1s discovered and known prior to
computing routes to any destination in the network, e.g., link
state routing such as Open Shortest Path First (OSPF), or
Intermediate-System-to-Intermediate-System  (ISIS), or
Optimized Link State Routing (OLSR). Reactive routing, on
the other hand, discovers neighbors (1.¢., does not have an a
prior1 knowledge of network topology), and 1n response to
a needed route to a destination, sends a route request into the
network to determine which neighboring node may be used
to reach the desired destination. Example reactive routing
protocols may comprise Ad-hoc On-demand Distance Vec-

tor (AODYV), Dynamic Source Routing (DSR), DYnamic
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MANET On-demand Routing (DYMO), etc. Notably, on
devices not capable or configured to store routing entries,
routing process 244 may consist solely of providing mecha-
nisms necessary for source routing techniques. That 1s, for
source routing, other devices in the network can tell the less
capable devices exactly where to send the packets, and the
less capable devices simply forward the packets as directed.

Notably, mesh networks have become increasingly popu-
lar and practical 1n recent years. In particular, shared-media
mesh networks, such as wireless or PL.C networks, etc., are
often on what 1s referred to as Low-Power and Lossy
Networks (LLLLNs), which are a class of network 1in which
both the routers and their interconnect are constrained: LLN
routers typically operate with constraints, €.g., processing,
power, memory, and/or energy (battery), and their 1ntercon-
nects are characterized by, illustratively, high loss rates, low
data rates, and/or instability. LLNs are comprised of any-
thing from a few dozen and up to thousands or even millions
of LLN routers, and support point-to-point trathic (between
devices inside the LLN), point-to-multipoint trathic (from a
central control point such at the root node to a subset of
devices mnside the LLN) and multipoint-to-point trailic (from
devices mnside the LLN towards a central control point).

An example implementation of LLNs 1s an “Internet of
Things” network. Loosely, the term “Internet of Things” or
“lo’T” (or “Internet of Everything™ or “IoE”) may be used by
those 1 the art to refer to uniquely identifiable objects
(things) and their virtual representations 1n a network-based
architecture. In particular, the next frontier in the evolution
of the Internet 1s the ability to connect more than just
computers and communications devices, but rather the abil-
ity to connect “objects” 1n general, such as lights, appli-
ances, vehicles, HVAC (heating, ventilating, and air-condi-
tioming), windows and window shades and blinds, doors,
locks, etc. The “Internet of Things™ thus generally refers to
the interconnection of objects (e.g., smart objects), such as
sensors and actuators, over a computer network (e.g., IP),
which may be the Public Internet or a private network. Such
devices have been used in the mndustry for decades, usually
in the form of non-IP or proprietary protocols that are
connected to IP networks by way of protocol translation
gateways. With the emergence of a myriad of applications,
such as the smart grid, smart cities, and building and
industrial automation, and cars (e.g., that can interconnect
millions of objects for sensing things like power quality, tire
pressure, and temperature and that can actuate engines and
lights), it has been of the utmost importance to extend the IP
protocol suite for these networks.

An example protocol specified 1n an Internet Engineering

Task Force (IETF) Proposed Standard, Request for Com-
ment (RFC) 63550, entitled “RPL: IPv6 Routing Protocol for
Low Power and Lossy Networks™ by Winter, et al. (March
2012), provides a mechanism that supports multipoint-to-
point (MP2P) trailic from devices mside the LLN 1s towards
a central control point (e.g., LLN Border Routers (LBRs),
FARs, or “root nodes/devices” generally), as well as point-
to-multipoint (P2ZMP) tratlic from the central control point to
the devices inside the LLN (and also point-to-point, or
“P2P” traflic). RPL (pronounced “ripple”) may generally be
described as a distance vector routing protocol that builds a
Directed Acyclic Graph (DAG) for use 1n routing traflic/
packets 140, in addition to defining a set of features to bound
the control trailic, support repair, etc. Notably, as may be
appreciated by those skilled in the art, RPL also supports the
concept of Multi-Topology-Routing (MTR), whereby mul-
tiple DAGs can be built to carry traflic according to 1ndi-
vidual requirements.
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Also, a directed acyclic graph (DAG) 1s a directed graph
having the property that all edges are oriented 1n such a way
that no cycles (loops) are supposed to exist. All edges are
contained 1n paths oriented toward and terminating at one or
more root nodes (e.g., “clusterheads or “sinks”), often to
interconnect the devices of the DAG with a larger infra-
structure, such as the Internet, a wide area network, or other
domain. In addition, a Destination Oriented DAG (DODAG)
1s a DAG rooted at a single destination, 1.e., at a single DAG
root with no outgoing edges. A “parent” of a particular node
within a DAG 1s an immediate successor of the particular
node on a path towards the DAG root, such that the parent
has a lower “rank” than the particular node 1tself, where the
rank of a node 1dentifies the node’s position with respect to
a DAG root (e.g., the farther away a node 1s from a root, the
higher 1s the rank of that node). Note also that a tree 1s a kind
of DAG, where each device/node in the DAG generally has

one parent or one preferred parent. DAGs may generally be
bult (e.g., by a DAG process and/or routing process 244 )
based on an Objective Function (OF). The role of the
Objective Function 1s generally to specity rules on how to
build the DAG (e.g. number of parents, backup parents,
etc.).

FIG. 3 illustrates an example simplified DAG that may be
created, e.g., through the techniques described above, within
network 100 of FIG. 1. For instance, certain links 105 may
be selected for each node to communicate with a particular
parent (and thus, 1n the reverse, to communicate with a child,
i one exists). These selected links form the DAG 310
(shown as bolded lines), which extends from the root node
toward one or more 1s leal nodes (nodes without children).
Trathc/packets 140 (shown 1n FIG. 1) may then traverse the
DAG 310 1n etther the upward direction toward the root or
downward toward the leaf nodes, particularly as described
herein.

RPL supports two modes of operation for maintaining and
using Downward routes:

1) Storing Mode: RPL routers unicast DAO messages
directly to their DAG Parents. In turn, RPL routers maintain
reachable IPv6 addresses for each of their DAG Children in
their routing table. Because intermediate RPL routers store
Downward routing state, this mode 1s called Storing mode.

2) Non-Storing Mode: RPL routers unicast DAO mes-
sages directly to the DAG Root. The DAO message also
includes the IPv6 addresses for the source’s DAG Parents.
By receiving DAO messages from each RPL router in the
network, the DAG Root obtains information about the DAG
topology and can use source routing to deliver datagrams.
Unlike Storing mode, mtermediate RPL routers i Non-
Storing mode do not maintain any Downward routes.

Learning Machine Technique(s)

As noted above, machine learning (ML) 1s concerned with
the design and the development of algorithms that take as
input empirical data (such as network statistics and pertor-
mance indicators), and recognize complex patterns in these
data. One very common pattern among ML algorithms 1s the
use of an underlying model M, whose parameters are
optimized for minimizing the cost function associated to M,
given the mput data. For instance, 1n the context of classi-
fication, the model M may be a straight line that separates
the data into two classes such that M=a*x+b*y+c and the
cost function would be the number of misclassified points.
The ML algorithm then consists in adjusting the parameters
a,b,c such that the number of misclassified points 1s minimal.
After this optimization phase (or learning phase), the model
M can be used very easily to classily new data points. Often,
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M 1s a statistical model, and the cost function 1s 1nversely
proportional to the likelihood of M, given the input data.

As also noted above, learning machines (LMs) are com-
putational entities that rely 1s one or more ML algorithm for
performing a task for which they haven’t been explicitly
programmed to perform. In particular, LMs are capable of
adjusting their behavior to their environment. In the context
of LLNs, and more generally in the context of the IoT (or
Internet of Everything, IoE), this ability will be very impor-
tant, as the network will face changing conditions and
requirements, and the network will become too large for
ciliciently management by a network operator. Thus {ar,
LMs have not generally been used in LLNs, despite the
overall level of complexity of LLNs, where “classic”
approaches (based on known algorithms) are ineflicient or
when the amount of data cannot be processed by a human to
predict network behavior considering the number of param-
eters to be taken into account.

In particular, many LLMs can be expressed in the form of
a probabilistic graphical model also called Bayesian Net-
work (BN). A BN 1s a graph G=(V,E) where V 1s the set of
vertices and E 1s the set of edges. The vertices are random
variables, e.g., X, Y, and Z (see FIG. 4) whose joint
distribution P(X,Y,7Z) 1s given by a product of conditional
probabilities:

PX, Y Z)=P(ZIX, Y)P(YIX)P(X) (Eq. 1)

The conditional probabilities 1n Eq. 1 are given by the edges
of the graph 1n FIG. 4. In the context of LMs, BNs are used
to construct the model M as well as 1ts parameters.

To estimate the relationship between network properties
of a node I (or link), noted x, (e.g., hop count, rank,
firmware version, etc.) and a given networking metric M, a
linear regression may be performed. More specifically, given
the following equation:

M=F(x)=b'x+¢ (Eq. 2)

where X, 1s a d-dimensional vector of observed data (e.g.,
end-node properties such as the rank, the hop count, the
distance to the FAR, etc.) and M, 1s the target metric (e.g.,
the time to join the network), which 1s also noted v,
sometimes. Building such a model of a performance metric
knowing a set of observed features 1s critical to perform root
cause analysis, network monitoring, and configuration: for
example the path delay as a function of the node rank, link
quality, etc., can then be used to determine whether anoma-
lies appear 1n the network and thus take some appropriate
actions to 1ix the 1ssue. In the 1s equation (Eq. 2) above, the
term € 1s a Gaussian random variable used to model the
uncertainty and/or the noise on the estimate M.. The linear
regression consists in finding the weight vector b that fulfills
the maximum likelihood criterion (which coincides with the
least square criterion when € 1s Gaussian). In particular, the
optimal b must minimize the Mean Squared Error (MSE):

MSE=S2,(b'x~v,)*/N (Eq. 3)

where N 1s the total number of input data points, 1.e.,
=1, ..., N.

In other words, b 1s a set of weights for each observed
value x; used to compute the function F that provides the
value of F. The MSE 1s a metric used to compute the
“quality” of the model function F.

The usual approach to the solving of Eq. (2) 1s the
ordinary least square (OLS) equation, which involves a
“dxd” matrix inversion, where d 1s the number of dimen-
sions. Three main problems arise immediately: (1) the
dimensionality of x, may be large, thus making OLS pro-
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hibitively expensive 1 terms of computational cost (ap-
proximately O(d>)), (ii) in presence of co-linearity (i.e.,
when several node properties are strongly correlated, as 1t 1s
the case for the hop count and the ETX, for instance), OLS
becomes numerically unstable (1.¢., round-ofl and truncation
errors are magnified, causing the MSE to grow exponen-
tially), (111) OLS being essentially non-probabailistic (1.e., 1t
doesn’t account for the whole distribution of its constituent
variables, but 1t merely tracks averages), 1t cannot cope well
with noise and outliers, and 1t 1s simply not applicable when
¢ 15 not Gaussian.

To overcome these limitations, the problem can be for-
mulated as a BN (see FIG. 5). Now, all varniables are
considered as random variables, even though they are all
observed at this point: both input variable x, and the output
variable y, are experimental data, and b 1s a (non-probabi-
listic) parameter of the BN at this point. By pushing this
approach a little bit further, one may turn b into a random
variable as well, and attempt to 1nfer 1t from experimental
data (that 1s, the observations of x; and vy,). However, this
inference problem 1s non-trivial, especially as one desirable
feature of this learning 1s algorithm is that 1t 1s capable of
identifying non-relevant dimensionalities of x (that 1s, input
dimensions that are weakly correlated with the output x),
and automatically set the corresponding weights in b to a
zero (or a very small) value.

This problem 1s solved by one recently proposed algo-
rithm called Variational Bayes Least Square (VBLS) regres-
sion (Ting, D’Souza, Vijayakumar, & Schaal, 2010).
Namely, this algorithm allows for eflicient learning and
feature selection i high-dimensional regression problems,
while avoiding the use of expensive and numerically brittle
matrix version. VBLS adds a series of non-observed
random variables z;; that can be considered as noisy, fake
targets ot the factor b,x,, and whose sum 2, 7, 1s an estimate
of y;. In turn, the weights b, are modeled as random vari-
ables, thereby allowing for automated feature detection, 1.e.,
the mean of b, converges rapidly to zero 1f no correlation
exists between the various x;; and y;.

VBLS estimates the distribution of the non-observed
variables z, and b using a variant of the Expectation Maxi-
mization algorithm with a variational approximation for the
posterior distributions, which are not analytically tractable.
Because 1t 1s a fully Bayesian approach, VBLS does not
require any parameterization, except for the imtial (prior)
distributions of hidden parameters, which are set in an
uminformative way, 1.e., with very large variances that lead
to tlat distributions.

A Distributed and LM-Based Approach to Gather Tem-
porary Localized Network Dynamics

As noted above, Learming Machines (LMs) are an
extremely powertul tool to solve problems that involve data
of high dimensionality. Although LMs may be resource
intensive in terms ol memory and processing power, a
number of techniques have been specified 1n order to design
distributed architectures, lightweight and still powertul algo-
rithms hosted on constrained devices, and new approaches
specifically designed for LLNs, where bandwidth among
other resources are scarce. Among other challenges, LMs
require to be fed with data during the learning process.
Again, distributed approaches have been designed to opti-
mize the gathering of data (e.g., thanks to compression),
make use of distributed algorithms where LMs are them-
selves distributed thus not requiring to is have one LM fed
with all data, etc. Still, LLNs do not provide the ability to
gather all data. This leads to incomplete datasets, making the

task of learning more challenging, sometimes leading to
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approximations in the regression model, or noise because a
specific data (e.g., feature) that could explain a behavior 1s
lacking.

Typlcally in an LLN where a low-power link such as
IEEE 802.15.4 1s used, several thousands of nodes need to
share a bandwidth of several dozens of Kbits/s, despite a
number of optimizations such as load balancing among
diverse paths, global scheduling, link layer enhancements
such as dynamic rate adjustments, and frequency hopping.
This statement 1s even more relevant to PLC-based network
where the throughput 1s usually less than 10 Kbaits/s,
although poly-phase optimizations could help improving the
throughput slightly. As a matter of fact, it has been observed
in deployed networks that a number of statistics carried out
by the network management protocol CoAP had to be turned
ofl because of the extra-overhead on the network.

These ad-hoc adjustments unavoidably lead to less data
and less features available to the LMs hosted on a router
(e.g., Field Area Router (FAR)) or a network controller. The
techniques herein, therefore, specily a generic approach to
enable the triggered sending of statistical data from nodes 1n
the network to a remote LM. The LM 1tself can push such
triggers to the nodes, and use them to capture local and/or
temporary phenomena in the network, that could advanta-
geously be used by the LM to build 1ts predictive model.

Said differently, in contrast with existing approaches
relying on lightweight protocols such CoAP to carry metric
ol interest consumed by a NMS according to pre-configured
specified rules, the techniques herein adopt a radically
different approach whereby: 1) Requests are driven by a
Learning Machine; 2) The request may specily a list of
metrics of mterest or computed metrics of 1nterest that may
either be specified or non-specified and linked to a specific
cvent; 3) Reports may be sent according to a specific
schedule (periodicity), a given period of Time or until
explicitly cancelled by the LM.

Notably, networks have been previously configured to
retrieve statistical information. Various protocol such as
SNMP have been designed and deployed for decades in
order to capture various network behavior metrics using
GET, PUT and SNMP Traps; similarly other protocols such
as IPFIX have been used to get highly granular data in a
network. CoAP has been specifically designed for con-
strained networks such as LLNs. That being said, these
protocols are all NMS/User driven: instructions to retrieve a
statistical metrics are pre-determined by the user, always
static and based on policies. In LLNs, CoAP has been used
to report network parameters but once again, these metrics
are manually configured and systematic (not directed to a
specific (set of) nodes). In contrast, the techniques herein
specily a generic mechanism used to gather local and
temporal (ephemeral) network behavior metrics based on
LM requirement.

Operationally, the techniques herein establish triggers on
remote nodes in order to capture ephemeral network behav-
1or, thereby providing additional data to train a Learning
Machine (LM). For example, consider the ETX link metric,
which 1s used by routing protocols such as RPL (and other
similar routing protocols) in combination with an objective
function (OF) to find the shortest constrained path. Instan-
taneous E'TX computation by remote nodes would unavoid-
ably lead to routing oscillation 1 an LLN where links
characteristics do vary very quickly. Consequently, such
metrics are smoothed out using low-pass filters and capture
only partially the dynamic nature of the link behavior, that
1s, 1t filters away any brutal and ephemeral change. Another
example 1s when metrics reflect instantaneous network
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behavior, but they are kept local to the node, simply because
reporting their exact value at each change would overload
the network: this 1s the case when a backup next-hop 1s used
to route a packet, should the best next-hop be unreachable.
In some 1mplementation, such information, 1f temporary, 1s
kept local and not reported to the FAR, NMS, network
controller or the user.

Consequently, the techniques herein specily a mechanism
used by an LM to eflfectively request the reporting of metrics
characterizing temporary and/or localized network behavior
in order to make the process of learning more eflicient.

This type of information 1s critical to the accurate pre-
diction of link or node performance (e.g., delay). For
instance, both packet retransmissions, which result from
transmission collisions, and queuing, which result from
bursts 1n traflic, are causes for increased delays in LLNs.
Now, an LM whose role 1s to predict the delay of a given
node would need to have a very detailed picture of the trathic
profile on the particular path to this node in order to account
for these eflects on the delay. Unfortunately, detailed traflic
profiles are often not available, both because of the restricted
bandwidth and the very limited amount of memory on the
node. Instead, the LM may rely on specific traits of the trathic
profile, such as the channel availability (i.e., the proportion
of time there 1s no tratlic on the channel) or peaks of traflic.

Based on these extra data, the LM may now indirectly
infer the probability that a given packet encounters colli-
sions along the path. Using the mechanisms specified herein,
the LM may now request a node to start reporting channel
availability 11 1t drops below X % and traflic spikes of more
than Y % than the baseline (which can be expressed 1n form
of a threshold on the first derivative of the traflic).

The techmiques heremn specily a newly defined IPv6
message called the TNB( ) (Temporary Network Behavior)
message that 1s sent by an LM to a set of nodes 1n a network.
In contrast with existing approaches, the TNB( ) message
may be directed to a set of dynamically computed nodes in
the network, may or may not specily the set of metric of
interest, and allows for the specification of complex rules to
capture a set of metrics related to the specific events.
Furthermore, the periodicity of reports may not be specified
and computed by the remote nodes, which again contrasts
with existing approaches.

The TNB( ) message may either be unicast (sent to a set
of K nodes), multicast (sent to a set of nodes registered to a
multicast group ) or broadcasted (sent to all nodes 1n the
network); 1n the last two cases, in most low-power link layer,
the message 1s broadcasted to all-nodes. The TNB( ) mes-
sage 1s made of the following Flags and TLVs:

Flag: Relay;

Metric(s): Unknown, M1, M2, . . ., Mn;

Rule: Event, Threshold, First Derivative, Second Deriva-

tive;

Periodicity: P;

Period of Time: T; and

Scope (only present 1f the Relay flag 1s set to 1);

Relay Flag: when set, this indicates to the receiving nodes
that the TNB( ) message should be relayed 1n which case the
scope 1s specified in the Scope TLV. For example, the TSB
may be sent to a node N that would relay the message with
a link-local scope to 1t neighbor. This 1s an optimization 1n

order to avoid sending the message as unicast to a set of
remote nodes.

Metrics: the Metric TLV 1s made of sub-TLV {for each
metric of interest. Note that the term metric 1s used 1n a
generic way and 1s orthogonal to the metric used by the
routing protocol. The metric could be a routing metric but
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also any scalar or vector related to a network behavior. In 1ts
simplest form the metric 1s specified: for example the metric
could be the RSSI of a link, the local metric computed by the
node such as the second derivative of the instantaneous
ETX. An alternative approach consists 1n not specifying the
metric of interest, left to the decision of the remote node and
governed by the Rule as discussed below.

Rule: the Rule TLV 1s used to specity the condition that
will trigger the sending of a (un)specified computed metric
to the LM (which may be hosted on a FAR, network
controller, etc.). If the rule 1s a threshold, a report must be
sent back to the requester if the specified metrics crosses the
threshold (this 1s the existing mode of operation of SNMP).
On the other hand, the techniques herein specily new
behaviors: the rule may be the first/second derivative of a set
ol specified metrics, the dertvative being computed locally
by the node. If the rule specifies an event, then the event
itsell should be considered as the trigger for sending the
report back to the LM {for a set of (un)specified metrics.

Note that when no metric 1s specified, the node 1s
expected to apply the rule for any relevant metric that is
being monitored; this mechanism can be used by an LM to
capture ephemeral behaviors even 1t it does not know the
exact nature of the event 1t 1s 1s trying to capture. As an
illustration, the LM may use this mechanism to request a
remote node to send a report related to locally determined
metrics whose values have changed in the past X seconds.
In another case, the local nodes may simply reports a large
set of metrics (not knowing either which ones are relevant)
that could be analyzed by the LM for relevancy evaluation.

Periodicity and Period of Time are used to indicate the
requested periodicity to receive such report and the duration
tor which the request specified by the TNB( ) applies.

A second newly defined message 1s used to send reports
to the requesting LM using similar TLVs. As explained
below, 1f report fusion i1s enabled, a newly defined F flag of
the TNB( ) message 1s set.

For the sake of illustration, below are a few examples
illustrating the mode of operation:

The LM may request a report each time the second
derivative of an instantaneously computed metric such
as the ETX_Current crosses a specified threshold T1,
and keep sending reports every X seconds (periodicity),
potentially for a period of time T.

If the Event=Link failure, Metrics are next_hop,
ETX_Values, Percentage_ ACK then upon detecting a
link failure event the node will report the values of

these metrics (a condition may be added to only report
these values i and only 1f they cross a specified
threshold).

If the Event=New_next_hop selection, and the metrics are
unspecified, this allows the remote node for determin-
ing the list of metrics that might be of interest. For
example a local lightweight LM hosted on the node,
may then determine a sudden changes of metrics val-
ues, a specific new event using temporal lightweight
event correlation.

Cancellation of temporal metric gathering may be trig-
gered by the LM using a specified period T or explicitly by
re-1ssuing a TSB( ) with updated TLV values. Such an
explicit notification would be triggered by the LM 1n the
form of a control loop, should 1s the LM have suflicient data
to explain noise 1n 1ts predictive model.

In yet another embodiment, the LM may schedule TSB(
) messages so as to perform fusion of reports sent back to the
requesting LM (F flag set); 1n such as case, TSB( ) messages
are sent to a set S of node, for requests related to periodic
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report of specified metrics, taking into account the routing
topology. Indeed, the LM may advantageously select nodes
sharing common paths along the routing topology for gather
a set of metrics M1, . . . , Mn reported with a periodicity P
and for a period of time T, thus allowing capable nodes along
the path to fuse reports.

For example, 11 the metric of interest 1s related to sporadic
flows between a pair of nodes, an ancestor of a set of nodes
reporting local traflic flows may compress the data in the

form of a lightweight trailic matrix between nodes 1n 1ts
sub-DAG.

FIG. 6 1llustrates an example simplified procedure for a
distributed and learning machine-based approach to gather-
ing localized network dynamics. The procedure 600 may
start at step 603, continue to step 610, and so forth.

At step 610, one or more reporting nodes are selected to
report network metrics 1n a network. At step 615, from a
monitoring node in the network, a trigger message 1s sent to
the one or more reporting nodes. The trigger message may
trigger the one or more reporting nodes to report one or more
network metrics local to the respective reporting node. In
response to the trigger message, at step 620, a report of the
one or more network metrics 1s recerved at the monitoring
node from one of the one or more reporting nodes. The
procedure 600 may illustratively end at step 625. The
techniques by which the steps of procedure 600 may be
performed, as well as ancillary procedures and parameters,
are described 1n detail above.

It should be noted that the steps shown in FIG. 6 are
merely examples for illustration, and certain other steps may
be included or excluded as desired. Further, while a particu-
lar order of the steps 1s shown, this ordering 1s merely
illustrative, and any suitable arrangement of the steps may
be utilized without departing from the scope of the embodi-
ments herein.

The techniques described herein, therefore, provide for a
distributed and LM-based approach to gather temporary
localized network dynamics. In particular, the techniques
herein allow an LM to capture much more detailed data
about the network dynamics without unacceptable traflic
overheads. This ability alone 1s a key enabler of advanced
capabilities 1n learning networks where LMs are not co-
located with the node they collect data from. Even 1n
networks with large bandwidths, this type of mechanism 1s
beneficial, as the computation of relevant features for a LM
may require as much data as the network element 1s actually
handling.

Ilustratively, each of the techniques described herein may
be performed by hardware, software, and/or firmware, such
as 1 accordance with the learning machine process 248,
which may contain computer executable instructions
executed by the processor 220 (or independent processor of
interfaces 210) to perform functions relating to the tech-
niques described herein, e.g., optionally in conjunction with
other processes. For example, certain aspects of the tech-
niques herein may be treated as extensions to conventional
protocols, such as the various communication protocols
(e.g., routing process 244 ), and as such, may be processed by
similar components understood 1n the art that execute those
protocols, accordingly. Also, while certain aspects of the
techniques herein may be described from the perspective of
a single node/device, embodiments described herein may be
performed as distributed intelligence, also referred to as
edge/distributed computing, such as hosting intelligence
within nodes 110 of a Field Area Network in addition to or
as an alternative to hosting intelligence within servers 150.
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While there have been shown and described illustrative
embodiments that provide for learning-machine-based pre-
dictive and proactive computer networking and associated
monitoring, generally, 1t 1s to be understood that various
other adaptations and modifications may be made within the
spirit and scope of the embodiments herein. For example,
the embodiments have been shown and described herein
with relation to LLNs and related protocols. However, the
embodiments in their broader sense are not as limited, and
may, 1n fact, be used with other types of communication
networks and/or protocols. In addition, while the embodi-
ments have been shown and described with 1s relation to
learning machines 1n the specific context of communication
networks, certain techniques and/or certain aspects of the
techniques may apply to learming machines 1n general with-
out the need for relation to communication networks, as will
be understood by those skilled in the art.
The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, 1t 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program 1instructions execut-
ing on a computer, hardware, firmware, or a combination
thereot. Accordingly this description 1s to be taken only by
way ol example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.
What 1s claimed 1s:
1. A method, comprising:
generating, by a learning machine (LM), a list of one or
more network metrics needed at the LM, wherein the
list of one or more metrics are temporary localized
network dynamics that are required by the LM to build
a predictive model;

selecting, by the LM, one or more reporting nodes to
report the one or more network metrics required by the
LM;

generating, by the LM, a trigger message to be sent to the
selected one or more reporting nodes, wherein the
trigger message includes the list of one or more net-
work metrics and a rule indicating that when the local
condition 1s determined to have occurred locally at the
selected one or more reporting nodes, the one or more
network metrics are to be reported by the selected one
or more reporting nodes to the LM and wherein the
trigger message nstructs the selected one or more
reporting nodes to start reporting the list of one or more
network metrics when the local condition occurs;

sending, from the LM, the trigger message to the selected
one or more reporting nodes to establish the rule on the
selected one or more reporting nodes locally; and

once the local condition occurs on the selected one or
more reporting nodes, receiving, at the LM, a report
including the one or more network metrics from one of
the selected one or more reporting nodes, wherein
ephemeral network behaviors occurring locally on the
selected one or more reporting nodes are captured 1n
the report.

2. The method according to claim 1, further comprising:

including an indication of the one or more network

metrics 1n the trigger message, wherein
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the one or more reported network metrics correspond to

the one or more network metrics.

3. The method according to claim 1, wherein the one or
more network metrics are selected for reporting by the
selected one or more reporting nodes based on the trigger
message.

4. The method according to claim 1, further comprising:

defining a rule imndicating when the one or more network

metrics are to be reported by the selected one or more
reporting nodes; and

including an indication of the defined rule in the trigger

message, wherein

the one or more network metrics are reported by the

selected one or more reporting nodes in accordance
with the defined rule.

5. The method according to claim 4, wherein:

the rule specifies a condition of whether a network metric

local to a reporting node changes during a period of
time, and

when the network metric changes during the period of

time, the network metric 1s reported by the reporting
node.

6. The method according to claim 4, wherein the rule
specifies a threshold linked to the one or more network
metrics.

7. The method according to claim 4, wherein:

the rule specifies a first threshold associated with a first

condition and a second threshold associated with a
second condition.

8. The method according to claim 1, further comprising:

defining a frequency at which the selected one or more

reporting nodes are to report the one or more network
metrics; and

including an indication of the defined frequency in the

trigger message, wherein

reports of the one or more network metrics are received at

a Irequency corresponding to the defined frequency.

9. The method according to claim 1, further comprising:

defining a duration for which the trigger message 1s to

remain active; and

including an indication of the defined duration in the

trigger message, wherein

the report of the one or more network metrics 1s received

only while the trigger message 1s active.

10. The method according to claim 1, wherein the one or
more network metrics improve training efliciency of the LM.

11. An apparatus, comprising:

one or more network interfaces that communicate with a

network:

a processor coupled to the one or more network interfaces

and configured to execute a process; and

a memory configured to store program instructions which

contain the process executable by the processor, the
process comprising:
generating, as a learning machine, (LM), a list of one
or more network metrics needed at the LM, wherein
the list of one or more metrics are temporary local-
1zed network dynamics that are required by the LM
to build a predictive model;
selecting, as the LM, one or more reporting nodes to
report one or more network metrics in the network
required by the LM;
generating, as the LM, a trigger message to be sent to
the selected one or more reporting nodes, wherein
the trigger message 1ncludes the list of one or more
network metrics and a rule indicating that when the
local condition i1s determined to have occurred
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locally at the selected one or more reporting nodes,
the one or more network metrics are to be reported
by the selected one or more reporting nodes to the
LM and wherein the trigger message instructs the
selected one or more reporting nodes to start report- 5
ing the list of one or more network metrics when the
local condition occurs:

sending, as the LM 1n the network, the trigger message
to the selected one or more reporting nodes to
establish the rule on the one or more reporting nodes
locally; and

once the local condition occurs on the selected one or
more reporting nodes, receiving, at the LM, a report
includes the one or more network metrics from one
ol the selected one or more reporting nodes, wherein
ephemeral network behaviors occurring locally on
the selected one or more reporting nodes are cap-
tured 1n the report.

12. The apparatus according to claim 11, wherein the
process further comprises:

including an indication of the one or more network

metrics 1n the trigger message, wherein

the one or more reported network metrics correspond to

the one or more network metrics.

13. The apparatus according to claim 11, wherein the one
or more network metrics are selected for reporting by the
selected one or more reporting nodes based on the trigger
message.

14. The apparatus according to claim 11, wherein the
process further comprises:

defiming a rule indicating when the one or more network

metrics are to be reported by the selected one or more
reporting nodes; and

including an indication of the defined rule in the trigger

message, wherein

the one or more network metrics are reported by the

selected one or more reporting nodes 1n accordance
with the defined rule.

15. The apparatus according to claim 14, wherein:

the rule specifies a condition of whether a network metric

local to a reporting node changes during a period of
time, and

when the network metric changes during the period of

time, the network metric 1s reported by the reporting
node.

16. The apparatus according to claim 14, wherein the rule
specifies a threshold.

17. The apparatus according to claim 14, wherein:

the rule specifies a first threshold associated with a first

condition and a second threshold associated with a 50
second condition.

18. The apparatus according to claim 11, wherein the
process further comprises:
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defining a frequency at which the selected one or more
reporting nodes are to report the one or more network
metrics; and
including an indication of the defined frequency in the
trigger message, wherein
reports of the one or more network metrics are received at
a Irequency corresponding to the defined frequency.
19. The apparatus according to claim 11, wherein the
process further comprises:
defining a duration for which the trigger message is to
remain active; and
including an indication of the defined duration in the
trigger message, wherein
the report of the one or more network metrics 1s received
only while the trigger message 1s active.
20. The apparatus according to claim 11, wherein the one
or more network metrics improve training efliciency of the

LM.

21. A tangible non-transitory computer readable medium
storing program 1instructions that cause a computer to
execute a process, the process comprising:
generating, as a learning machine, (LM), a list of one or
more network metrics needed at the LM, wherein the
list of one or more metrics are temporary localized
network dynamics that are required by the LM to build
a predictive model;

selecting, as the LM, one or more reporting nodes to
report one or more network metrics required by the
LM;

generating, as the LM, a trigger message to be sent to the
selected one or more reporting nodes, wherein the
trigger message mcludes the list of one or more net-
work metrics and a rule indicating that when the local
condition 1s determined to have occurred locally at the
selected one or more reporting nodes, the one or more
network metrics are to be reported by the selected one
or more reporting nodes to the LM and wherein the
trigger message nstructs the selected one or more
reporting nodes to start reporting the list of one or more
network metrics when the local condition occurs;

sending, as the LM, the trigger message to the one or more
reporting nodes to establish the rule on the selected one
or more reporting nodes locally; and

once the local condition occurs on the selected one or

more reporting nodes, receiving, as the LM, a report
includes the one or more network metrics from one of
the selected one or more reporting nodes, wherein
ephemeral network behaviors occurring locally on the

selected one or more reporting nodes are captured in
the report.
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It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 1, Line 31, please amend as shown:
of nodes (an order of magnitude larger than a “classic” 1P

Column 2, Line 43, please amend as shown:
network metrics 1s recerved at the monitoring node from

Column 3, Line 15, please amend as shown:
generally be equipped with a radio transceiver or other

Column 3, Line 59, please amend as shown:
shown 1n FIG. 1 above. The device may comprise one or

Column 4, Line 34, please amend as shown:
for the process to be specifically operated within the

Column 5, Line 54, please amend as shown:
point (MP2P) tratfic from devices inside the LLN towards

Column 6, Line 32, please amend as shown:
toward one or more leaf nodes (nodes without children).

Column 7, Line 4, please amend as shown:
putational entities that rely one or more ML algorithm for

Column 7, Line 48, please amend as shown:
actions to fix the 1ssue. In the equation (Eq. 2) above, the
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Twenty-eighth Day of January, 2020

Andrei Iancu
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Column 7, Line 60, please amend as shown:
value x;, used to compute the function F that provides the

Column 8, Line 22, please amend as shown:
feature of this learning algorithm i1s that 1t 1s capable of

Column 8, Line 64, please amend as shown:
selves distributed thus not requiring to have one LM {fed

Column 11, Line 24, please amend as shown:
exact nature of the event 1t 1s trying to capture. As an

Column 11, Line 62, please amend as shown:
form of a control loop, should the LM have sufficient data

Column 13, Line 12, please amend as shown:
ments have been shown and described with relation to
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