US010423743B2

a2 United States Patent (10) Patent No.: US 10,423,743 B2

Walston 45) Date of Patent: Sep. 24, 2019
(54) CONTEXT-DEPENDENT USEFUL SKEW (56) References Cited
ESTIMATION FOR OPTIMIZATION, |
PLACEMENT, AND CLOCK TREE U.S. PATENT DOCUMENTS
SYNTHESIS
6,609,241 B2* 8/2003 Yonemorl GO6F 1/10
: : : : 716/114
(71) Appllcant' (Sglsl;)psysﬁ Inc'ﬂ Mountaln Vlew? CA 6,9103202 R?2 % 6/2005 Mlﬂ&ﬂll “““““““““ GO6F 17/505
716/104
7,075,336 B2* 7/2006 Kojmmaccceeeone. GO6F 1/10
(72) Inventor: Joseph R. Walston, Durham, NC (US) S 196/03
_ _ _ 7,346,873 B2* 3/2008 Mandry GO6F 17/5045
(73) Assignee: Synopsys, Inc., Mountain View, CA 716/114
(US) 7,571,406 B2* §/2009 Johnston GO6F 17/505
327/158
(*) Notice: Subject to any disclaimer, the term ot this 7,739,642 B2* 6/2010 Albrecht GOGE 17/505
patent 1s extended or adjusted under 35 7,017,882 B2* 3/2011 Panigrahi GOGF 1775031
U.S.C. 154(b) by 39 days. 716/118
9,571,074 B2* 2/2017 Chowdhury HO3K 5/05
(21) Appl. No.: 15/797,548 9,779,201 B2* 10/2017 Millar GOGF 17/5081
2016/0118966 Al* 4/2016 Chowdhury HO3K 5/05
(22) Filed: Oct. 30, 2017 327/161
(65) Prior Publication Data * cited by examiner
US 2018/0137217 Al May 17, 2018 Primary Examiner — Naum Levin
Related U.S. Application Data (74) Attorney, Agent, or Firm — Park, Vaughan, Fleming
& Dowler LLP; Laxman Sahasrabuddhe
(60) Provisional application No. 62/422,231, filed on Nov.
15, 2016. (57) ABSTRACT
(51) Int. Cl. A method for optimizing a circuit design includes computing
GO6F 17/50 (2006.01) clock latency estimates for a set of sequential circuit ele-
GO6lF 1/10 (2006.01) ments, modifying the clock latency estimates based on
(52) U.S. CL. relative optimizability of (1) a set of input data paths that are
CPC GO6F 17/5031 (2013.01); GO6F 1/10 clectrically coupled to one or more mputs of the sequential

(2013.01); GO6F 17/505 (2013.01); GO6F circuit element and (2) a set of output data paths that are
2217/84 (2013.01) clectrically coupled to one or more outputs of the sequential

(58) Field of Classification Search circuit element, and optimizing the circuit design based on
CPC GO6F 17/5031; GO6F 17/505; GO6F 1/10; the modified clock latencies.
GO6F 2217/84

See application file for complete search history. 21 Claims, 5 Drawing Sheets

(2

b RAM
SECOND DATA PATH 212

| Eﬁf:.
: / \ /

D
‘ {3 ¥ 3
CK L NO LUGIC
STAGES
RAM WRITE R " o s
A, CIRCT DATA PATH 2
FLOP FRST DATA PATH 210
HAM READ

FLGF

U.S. Patent Sep. 24, 2019 Sheet 1 of 5

OF HIMIZA THUN
OFrSETS

BALANCED
UFFSETS

************** ed OPTIMIZATION
N OFFSETS

EALANCED
OFFSETS

1S
LUNG TRAINT S

BeiGNRIL 102

i COMPILE -INCR 10

HC-GRAPHICAL 104

COMPILE 108

[T = S

i COMPILER (13106

PLALL_OPT I

Fy e

CLOCK_COPT 114

ROUTE_OPT 15

i, 1

US 10,423,743 B2

{f“' 19@

A3

US 10,423,743 B2

\f
Sy
&
)
,_w SINE
= (%48 Wyd
T e v d]
. ¢ Hivd ViY0 LS4 R

04— . TEIMM WYY
- SIDYLS }
= J1907 ON W}
) ¥ 4 VAW
A_..,, :
S [SIovis Yy
: _ \\\ . y L A A G
3 - N .
2 A7

200

U.S. Patent

U.S. Patent Sep. 24, 2019 Sheet 3 of 5 US 10,423,743 B2

(18

COMPUTE CLOCK LATENCY
302 ~r™ ESTIMATES FORASET OF
SEQUENTIAL CIRCUIT ELEMENTS

WMODIFY THE CLOCK LATENCY

e FSTIMATES

OPTIMIZING THE CIRCHIT DESIGN
305 SASED ON THE MODIFIED CLOCK
LATENCIES

i, 3

U.S. Patent

Sep. 24, 2019 Sheet 4 of 5

COMPUTE A DIFFERENCE
BETWEEN LOGIC DEFTHS ON AN

OF A SEQUENTIAL ELEMENT

MULTIPLY THE DIFFERENCE BY A
SCALING FACTOR TO OBTAIN 2

CLOCKLATENCY AUJUSTMENT

* 44
- 1
-
L]

APFLY THE CLOCK LATERCY

ABJUSTMENT 1O Tht CLOCK
LATENCY ESTIMATE

FiG. 4

INPUT 5IDE AND AN QUTPUT SIDE{

402

444

e A

US 10,423,743 B2

/ 400

U.S. Patent Sep. 24, 2019 Sheet 5 of 5 US 10,423,743 B2

MONITOR UK
GRAPHICAL USER
INTERFACE 500 o

= 2%
& SEL
H
{
¥
§
’
§
3
3

OISk DRIVE OR

 PROCESSORE) RANDOM ACCESS A
z 504 - NONVOLATILE
COMM i VEMORY 51

H E TW’ 0 R i’: ----------------------------

L]
LI

-
LK

L

LI LI ok ¥
-+ + & L] F &
- - - -
- L]
L] Ll LY
]
L] L] []
[o W -
L] - LY
LI 4 & LI]
+ -
[
*
-
L] -
-
-
-
-
-

COMM NPUT QuTRUT
INTERFACE NEVICELS) DEVICEES)

O g il

L o o]

o}

FiG. S

US 10,423,743 B2

1

CONTEXT-DEPENDENT USEFUL SKEW
ESTIMATION FOR OPTIMIZATION,
PLACEMENT, AND CLOCK TREE
SYNTHESIS

RELATED APPLICATION

This application claims benefit of U.S. Provisional Appli-
cation Ser. No. 62/422,231, filed on 15 Nov. 2016, by the
same 1nventor, having the contents of which are herein
incorporated by reference in their entirety for all purposes.

BACKGROUND

Techmical Field

This disclosure relates to imtegrated circuits (ICs). More
specifically, this disclosure relates to optimizing circuit
design based on context-dependent useful skew estimation.

Related Art

Complex high-frequency circuits, for example, central
processing units (CPUs), rely on accurately controlling
clock delays to the critical path sequential elements 1n the
circuit. Processors running at GHz frequencies utilize this
technique to help balance effects from non-standard logic,
like memory elements, and from logic paths with multiple
stages. A custom-designed logic may be dithicult to optimize
and may require more skewing to achieve the highest
frequency, whereas standard logic (utilizing commonly
available reusable component) may often be optimized more
aggressively for higher frequencies. High-frequency designs
have a mixture of different types of data paths, often directly
connected by a clocked sequential cell.

Conventional optimization of these designs to run at
high-frequency has been a manual, custom procedure requir-
ing deep knowledge of the architecture of the design.
Existing electronic design automation (EDA) solutions do
not utilize the inherent characteristics of the design (such as
non-standard logic and asymmetric logic path depth) and
provide minimal clock skewing, thus not achieving the
highest frequencies possibly obtainable for the design archi-
tecture.

SUMMARY

Some embodiments described herein provide techniques
and systems for relates to optimizing circuit design based on
context-dependent useful skew estimation. During opera-
tion, an IC design system can compute clock-latency-esti-
mates for a set of sequential-circuit-elements. Next, the IC
design system can modily the clock-latency-estimate for
cach sequential-circuit-element based on relative optimiz-
ability of (1) a set of mput data paths that are electrically
coupled to one or more inputs of the sequential-circuit-
clement, and (2) a set of output data paths that are electri-
cally coupled to one or more outputs of the sequential-
circuit-clement.

In some embodiments, at least one clock-latency-estimate
comprises: (1) computing a diflerence between logic depths
on an mput side and an output side of a sequential element;
(2) multiplying the difference by a scaling factor to obtain a
clock-latency-adjustment, and (3) applying the clock-la-
tency-adjustment to the clock-latency-estimate.

In some embodiments, prior to optimizing the circuit
design based on the modified clock-latency-estimates, the
method comprises setting timing-endpoint margins for data
paths by an amount corresponding to the modifications to
the clock-latency-estimates.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the IC design system can create a
set of clock tree constraints based on the modified clock-
latency-estimates. Next, the IC design system can remove
the timing-endpoint margins for the data paths, and perform
clock tree synthesis for the circuit design based on the set of
clock tree constraints.

In some embodiments, the optimizability of a data path
increases with the logic depth of the data path. In some
embodiments, the optimizability of un-optimizable logic 1s
zero. In some embodiments, the optimizability of non-
standard logic elements 1s low.

BRIEF DESCRIPTION OF THE FIGURES

To easily identify the discussion of any particular element
or act, the most significant digit or digits in a reference
number refer to the figure number 1n which that element 1s
first 1ntroduced.

FIG. 1 illustrates an embodiment of an implementation
process 100.

FIG. 2 1illustrates an embodiment of a RAM timing path
200.

FIG. 3 illustrates an embodiment of a circuit optimization
method 118.

FIG. 4 1llustrates an embodiment of a modification sub-

routine 400.

FIG. 5 15 an example block diagram of a computer system
500 that may incorporate embodiments of the present inven-
tion.

DETAILED DESCRIPTION

The following description 1s presented to enable any
person skilled in the art to make and use the invention, and
1s provided in the context of a particular application and 1ts
requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled 1n the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present invention. Thus, the
present mnvention 1s not limited to the embodiments shown,
but 1s to be accorded the widest scope consistent with the
principles and features disclosed herein.

“Critical path” 1n this context refers to the path between
an mput and an output with the maximum delay.

Latency and clock skew constraints may be determined
betore clock tree synthesis (CTS), which may drive datapath
optimization to increase skew eflectiveness. Latencies may
be calculated early 1n the implementation flow to help drive
datapath optimization to produce a higher-ifrequency design
after CTS. These latencies may not require user input, may
be refined later in the flow, and may be converted to CTS
constraints. There may be three modes: one for analysis; one
for optimization; and one for CTS. The implementation tlow
may switch between these modes.

A high-frequency design may be able to achieve a higher
maximum frequency (FMAX) without additional user inputs
by reducing critical path timing violations through more
clock skewing. Additionally, as this methodology may apply
to all paths, the total timing violations may be reduced, and
the implementation tool may execute faster and may allocate
more resources to reduce design power. Thus the process
results 1 a greater FMAX, a lower design power, and a
faster turn-around-time.

The analysis mode provides latency offsets that balance
the slack across a given sequential element (register, macro,

US 10,423,743 B2

3

etc.). This mode 1s the equivalent of pre-CTS useful skew
estimates and 1s provided for analysis only, as 1t may not
drive enhanced optimization.

The optimization mode may generate latency oflsets equal
to the analysis-mode oflsets modified by local conditions
present 1n a netlist. These conditions may be relative logic
depth on either side of the sequential element, the presence
of un-optimizable logic (e.g., memory elements), non-stan-
dard logic elements (e.g., level shifters, delay elements) that
may have limited optimization potential relative to their
delay, and other special features of a given datapath that may
limit datapath optimization asymmetrically across the
sequential element.

The clock latency offset may be modified 1 a specific
manner for each of the conditions. For example, for different
logic depths on either side of a sequential element, the
latency offset may be modified by the difference between the
two depth counts times a delay scaling factor (i.e., a factor
determined by the expected drive strength deltas of the
library for a given cell). Thus, the optimization mode may
modily the latencies generated by the analysis mode based
on the relative optimizability of the datapaths on either side
of the sequential element.

If a given register has more logic depth on the output side,
then the clock latency 1s increased to that register to increase
optimization on the longer datapath. In addition to the clock
latency modifications, an endpoint margin may be applied to
the other side of the sequential element to prevent any path
in the design from being made optimistic. The optimization
mode drives certain timing paths to be optimized more, but
none to be optimized less, than analysis mode.

The CTS mode converts the existing clock latency oflsets
to clock tree constraints; therefore, the clock tree may be
built with the expected clock delays. Additionally, the
applied endpoint margins are removed at this point to avoid
additional pessimism in the design. After this step, CTS may
be performed on the design, including utilizing automated
CCD usetul skew technology.

A gate-level netlist and timing graph may be generated
after the first compile stage 1n synthesis to help with laten-
cies generation. A floorplan-based synthesis (DC Graphical)
may enhance performance. The latencies are refined prior to
the place_opt step 1n ICC and ICC-II, which may modify the
latencies based on any design changes up to that point.

Referring to FIG. 1, an implementation process 100
comprises a design register-transfer level 102, a design
compiler (graphical) 104, an integrated circuit compiler 106,
and a circuit optimization method 118. The design compiler
(graphical) 104 further comprises a compiling component
108 and an incremental compiling component 110. The
integrated circuit compiler 106 further comprises a place-
ment optimization component 112, a clock optimization
component 114, and a route optimization component 116.

The circuit optimization method 118 may generate opti-
mization oflsets, balanced offsets, and CTS constraints. The
optimization oifsets may be implemented by the design
compiler (graphical) 104 and the integrated circuit compiler
106; the balanced oflsets may be implemented by the design
compiler (graphical) 104 and the integrated circuit compiler
106; and the CTS constraints may be implemented by the
integrated circuit compiler 106.

The latencies generated may utilize the standard set-
_clock_latency constraint command. Any endpoint margins
are applied with the set_path_margin command, and may be
removed 1n the CTS mode. Once the CTS mode 1s enabled,
the latencies are converted to clock balance_point con-
straints which may guide the implementation of the clock

10

15

20

25

30

35

40

45

50

55

60

65

4

tree to realize the nsertion delays to the sequential elements
as specified by the latencies. When the clock tree 1s con-
structed with these latency offsets, the CCD useful skew
functionality may have a better starting point for both clock
latency and datapath delays, and, thus, CCD may enhance
clock tree optimization and may produce better worst nega-
tive slack (WNS) on paths sensitive to useful skew.

Referring to FIG. 2, a RAM timing path 200 comprises a
first register 202, a clocked memory element 204, a second
register 206, logic stages 208, a first data path 210, and a
second data path 212.

The first data path 210 may connect the first register 202
to the clocked memory element 204, and may comprise the
logic stages 208. The second data path 212 may connect the
clocked memory element 204 to the second register 206. The
first data path 210 and the second data path 212 may be the
critical path; however, the first data path 210 comprises the
logic stages 208 and, thus, may be optimized.

The clocked memory element 204 may be a muddle
sequential element. As shown 1n FIG. 2, the clocked memory
clement 204 has a large read cycle delay and has no logic
between the output of the clocked memory element 204 and
the second register 206. Thus, resources to perform data path
optimization may be focused on the first data path 210 to
increase the skew of the clocked memory element 204.

A conventional data path optimization technique does not
perform this function, resulting 1n a degraded FMAX. The
first data path 210 has minimal positive slack to allow skew
of the clocked memory element 204, and the second data
path 212 benefits little from a small skew adjustment of the
clocked memory element 204. Additionally, a concurrent
clock and data (CCD) process may either shorten the latency

of the clocked memory element 204 or delay the first register
202 and/or the second register 206 at the CTS stage.

The circuit optimization method 118 allocates more
resources to optimize the first data path 210, which com-
prises the logic stages 208, due to the shorter latency to the
clocked memory element 204 from the latency generated by
the optimization mode. This may allow more CCD process-
ing. Then, during the CTS process, the latency to the clocked
memory element 204 may be constrained to be shorter,
which may produce better slack on the second data path 212.
A CCD process may then be utilized to balance the slack 1n
both the first data path 210 and the second data path 212.
Additionally, an endpoint margin on the second data path
212 may be added to control the optimism of any path 1n the
design.

Referring to FIG. 3, a circuit optimization method 118
computes clock latency estimates for a set of sequential
circuit elements (block 302). The clock latency estimates are
modified (block 304). The clock latency estimates may be
modified based on relative optimizability of (1) a set of input
data paths that are electrically coupled to one or more inputs
of the sequential circuit element, and (2) a set of output data
paths that are electrically coupled to one or more outputs of
the sequential circuit element. The circuit design 1s opti-
mized based on the modified clock latencies (block 306).

The optimizability of a data path may increase with the
logic depth of the data path. The optimizability of un-
optimizable logic may be zero. The optimizability of non-
standard logic elements may be low.

In some embodiments, prior to optimizing the circuit
design based on the modified clock latencies, the circuit
optimization method 118 sets timing-endpoint margins for
data paths by an amount corresponding to the modifications
to the clock latency estimates.

US 10,423,743 B2

S

In some embodiments, the circuit optimization method
118 further creates a set of clock tree constraints based on
the modified clock latency estimates, removes the timing-
endpoint margins for the data paths; and performs clock tree
synthesis for the circuit design based on the set of clock tree
constraints.

Referring to FIG. 4, a modification subroutine 400 com-
putes a diflerence between logic depths on an 1nput side and
an output side of a sequential element (block 402). The
difference 1s multiplied by a scaling factor to obtain a clock
latency adjustment (block 404). The clock latency adjust-
ment 1s applied to the clock latency estimate (block 406).

FIG. 5 1s an example block diagram of a computer system
500 that may incorporate embodiments of the present inven-
tion. FIG. 5 1s merely illustrative of a machine system to
carry out aspects of the technical processes described herein,
and does not limit the scope of the claims. One of ordinary
skill 1n the art would recognize other variations, modifica-
tions, and alternatives. In one embodiment, the computer
system 500 typically includes a monitor or graphical user
interface 502, a computer 520, a communication network
interface 512, mput device(s) 508, output device(s) 506, and
the like.

As depicted 1n FIG. 5, the computer 520 may include one
or more processor(s) 504 that communicate with a number
of peripheral devices via a bus subsystem 3518. These
peripheral devices may include mput device(s) 508, output
device(s) 506, communication network interface 512, and a
storage subsystem, such as a random access memory 510
and a disk drive or non-volatile memory 514.

The random access memory 510 and/or the disk drive or
non-volatile memory 514 may store computer-executable
instructions and thus forming logic 522 that when applied to
and executed by the processor(s) 504 implement embodi-
ments ol the processes disclosed herein.

The mput device(s) 508 include devices and mechanisms
for inputting information to the computer 520. These may
include a keyboard, a keypad, a touch screen incorporated
into the monitor or graphical user iterface 502, audio 1input
devices such as voice recognition systems, microphones,
and other types of mput devices. In various embodiments,
the input device(s) 508 are typically embodied as a computer
mouse, a trackball, a track pad, a joystick, wireless remote,
drawing tablet, voice command system, eye tracking system,
and the like. The mput device(s) 508 typically allow a user
to select objects, 1cons, text and the like that appear on the
monitor or graphical user interface 502 via a command such
as a click of a button or the like.

The output device(s) 506 include all possible types of
devices and mechanisms for outputting information from the
computer 520. These may include a display (e.g., monitor or
graphical user interface 302), non-visual displays such as
audio output devices, etc.

The communication network interface 512 provides an
interface to communication networks (e.g., communication
network 516) and devices external to the computer 520. The
communication network interface 512 may serve as an
interface for recerving data from and transmitting data to
other systems. Embodiments of the communication network
interface 512 typically include an Ethernet card, a modem
(telephone, satellite, cable, ISDN), (asynchronous) digital
subscriber line (DSL) unit, FireWire interface, USB 1nter-
tace, and the like. For example, the communication network
interface 312 may be coupled to the communication network
516 via a FireWire bus, or the like. In other embodiments,
the communication network interface 512 may be physically

10

15

20

25

30

35

40

45

50

55

60

65

6

integrated on the motherboard of the computer 520, and may
be a software program, such as soft DSL, or the like.

In various embodiments, the computer system 500 may
also include software that enables communications over a
network such as the HI'TP, TCP/IP, RTP/RTSP protocols,
and the like. In alternative embodiments, other communi-
cations software and transier protocols may also be used, for
example IPX, UDP or the like. In some embodiments, the
computer 520 in the processor(s) 304 may include one or
more microprocessors from Intel®. Further, one embodi-
ment, the computer 520 includes a UNIX-based operating
system.

The random access memory 510 and the disk drive or
non-volatile memory 514 are examples of tangible media
configured to store data and instructions to 1mplement
vartous embodiments of the processes described herein,
including executable computer code, human readable code,
or the like. Other types of tangible media include floppy
disks, removable hard disks, optical storage media such as
CD-ROMS, DVDs and bar codes, semiconductor memories
such as tlash memories, non-transitory read-only-memories
(ROMS), battery-backed volatile memories, networked stor-
age devices, and the like. The random access memory 510
and the disk drive or non-volatile memory 514 may be
configured to store the basic programming and data con-
structs that provide the functionality of the disclosed pro-
cesses and other embodiments thereof that fall within the
scope of the present invention.

Software code modules and instructions that implement
embodiments of the present invention may be stored in the
random access memory 510 and/or the disk drive or non-
volatile memory 514. These soltware modules may be
executed by the processor(s) 504. The random access
memory 510 and the disk drive or non-volatile memory 514
may also provide a repository for storing data used by the
soltware modules.

The random access memory 510 and the disk drive or
non-volatile memory 514 may include a number of memo-
ries including a main random access memory (RAM) for
storage of 1nstructions and data during program execution
and a read only memory (ROM) in which fixed non-
transitory 1nstructions are stored. The random access
memory 310 and the disk drive or non-volatile memory 514
may include a file storage subsystem providing persistent
(non-volatile) storage for program and data files. The ran-
dom access memory 510 and the disk drive or non-volatile
memory 514 may include removable storage systems, such
as removable tlash memory.

The bus subsystem 518 provides a mechanism for letting,
the various components and subsystems of computer 520
communicate with each other as intended. Although the
communication network interface 512 1s depicted schemati-
cally as a single bus, alternative embodiments of the bus
subsystem 518 may utilize multiple busses.

It will be readily apparent to one of ordinary skill in the
art that many other hardware and software configurations are
suitable for use with embodiments of the present invention.
For example, the computer system 500 may be a desktop,
portable, rack-mounted or tablet configuration. Additionally,
the computer may be a series of networked computers.
Further, the use of other microprocessors are contemplated,
such as Pentium™ or Itamium™ microprocessors;
Opteron™ or AthlonXP™ microprocessors from Advanced
Micro Devices, Inc.; and the like. Further, other types of
operating systems are contemplated, such as Windows®,
WindowsXP®, WindowsNT®, or the like from Microsoit

Corporation, Solarts from Sun Microsystems, LINUX,

US 10,423,743 B2

7

UNIX, and the like. In still other embodiments, the tech-
niques described above may be implemented upon a chip or
an auxiliary processing board.

Various embodiments of the present mvention may be
implemented in the form of logic 1n software or hardware or
a combination of both. The logic may be stored in a
computer readable or machine-readable non-transitory stor-
age medium as a set of instructions adapted to direct a
processor of a computer system to perform a set of steps
disclosed in embodiments of the present invention. The logic
may form part of a computer program product adapted to
direct an mformation-processing device to perform a set of
steps disclosed in embodiments of the present nvention.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the present invention.

The data structures and code described herein may be
partially or fully stored on a computer-readable storage
medium and/or a hardware module and/or hardware appa-
ratus. A computer-readable storage medium includes, but 1s
not limited to, volatile memory, non-volatile memory, mag-
netic and optical storage devices such as disk drives, mag-
netic tape, CDs (compact discs), DVDs (digital versatile
discs or digital video discs), or other media, now known or
later developed, that are capable of storing code and/or data.
Hardware modules or apparatuses described herein include,
but are not limited to, application-specific integrated circuits
(ASICs), field-programmable gate arrays (FPGAs), dedi-
cated or shared processors, and/or other hardware modules
or apparatuses now known or later developed.

The methods and processes described herein may be
partially or fully embodied as code and/or data stored 1n a
computer-readable storage medium or device, so that when
a computer system reads and executes the code and/or data,
the computer system performs the associated methods and
processes. The methods and processes may also be partially
or fully embodied 1 hardware modules or apparatuses, so
that when the hardware modules or apparatuses are acti-
vated, they perform the associated methods and processes.
The methods and processes disclosed herein may be embod-
ied using a combination of code, data, and hardware mod-
ules or apparatuses.

The above descriptions of embodiments of the present
invention are illustrative and not limitative. They are not
intended to be exhaustive or to limit the present invention to
the forms disclosed. In addition, similar principles as
described corresponding to latches and/or flops can be
applied to other sequential logic circuit elements. Accord-
ingly, many modifications and variations will be apparent to
practitioners skilled 1n the art. Additionally, the above dis-
closure 1s not intended to limit the present mnvention. The
scope of the present mvention i1s defined by the appended
claims.

What 1s claimed 1s:

1. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a computer,
cause the computer to perform a method for optimizing a
circuit design, the method comprising;:

computing clock-latency-estimates for a set of sequential-

circuit-elements:

modilying the clock-latency-estimate for each sequential-

circuit-clement based on relative optimizability of (1) a
set of mput data paths that are electrically coupled to
one or more mputs of the sequential-circuit- element,
and (2) a set of output data paths that are electrically
coupled to one or more outputs of the sequential-
circuit-element; and

5

10

15

20

25

30

35

40

45

50

55

60

65

8

optimizing the circuit design based on the modified clock-

latency- estimates.

2. The non-transitory computer-readable storage medium
of claim 1, wherein optimizability of a data path increases
with the logic depth of the data path.

3. The non-transitory computer-readable storage medium
of claim 1, wherein optimizability of un-optimizable logic 1s
ZErO.

4. The non-transitory computer-readable storage medium
of claam 1, wherein optimizability of non-standard logic
clements 1s low.

5. The non-transitory computer-readable storage medium
of claam 1, wherein modifying at least one clock-latency-
estimate comprises:

(1) computing a difference between logic depths on an

input side and an output side of a sequential element,

(2) multiplying the difference by a scaling factor to obtain

a clock-latency-adjustment, and

(3) applying the clock-latency-adjustment to the clock-

latency-estimate.

6. The non-transitory computer-readable storage medium
of claam 1, wherein prior to optimizing the circuit design
based on the modified clock-latency-estimates, the method
comprises setting timing-endpoint margins for data paths by
an amount corresponding to the modifications to the clock-
latency-estimates.

7. The non-transitory computer-readable storage medium
of claim 6, wherein the method further comprises:

creating a set of clock tree constraints based on the

modified clock- latency-estimates;

removing the timing-endpoint margins for the data paths;

and

performing clock tree synthesis for the circuit design

based on the set of clock tree constraints.

8. An apparatus, comprising:

a processor; and

a non-transitory computer-readable storage medium stor-

ing instructions that, when executed by the processor,

cause the apparatus to perform a method for optimizing

a circuit design, the method comprising:

computing clock-latency-estimates for a set of sequen-
tial-circuit-elements;

modifying the clock-latency-estimate for each sequen-
tial-circuit-element based on relative optimizability
of (1) a set of mput data paths that are electrically
coupled to one or more iputs of the sequential-
circuit-clement, and (2) a set of output data paths that
are electrically coupled to one or more outputs of the
sequential-circuit-element; and

optimizing the circuit design based on the modified clock-

latency-estimates.

9. The apparatus of claim 8, wherein optimizability of a
data path increases with the logic depth of the data path.

10. The apparatus of claim 8, wherein optimizability of
un-optimizable logic 1s zero.

11. The apparatus of claam 8, wherein optimizability of
non-standard logic elements 1s low.

12. The apparatus of claim 8, wherein moditying at least
one clock-latency-estimate comprises:

(1) computing a difference between logic depths on an

input side and an output side of a sequential element,

(2) multiplying the difference by a scaling factor to obtain

a clock-latency-adjustment, and

(3) applying the clock-latency-adjustment to the clock-

latency-estimate.

13. The apparatus of claim 8, wherein prior to optimizing
the circuit design based on the modified clock-latency-

US 10,423,743 B2

9

estimates, the method comprises setting timing-endpoint
margins for data paths by an amount corresponding to the
modifications to the clock-latency-estimates.

14. The apparatus of claim 13, wherein the method further
COmMprises:

creating a set of clock tree constraints based on the

modified clock-latency-estimates;
removing the timing-endpoint margins for the data paths;

and

performing clock tree synthesis for the circuit design
based on the set of clock tree constraints.

15. A method for optimizing a circuit design, comprising:

computing clock-latency-estimates for a set of sequential-
circult-elements;

modilying the clock-latency-estimate for each sequential-
circuit-clement based on relative optimizability of (1) a
set of mput data paths that are electrically coupled to
one or more mputs of the sequential-circuit- element,
and (2) a set of output data paths that are electrically
coupled to one or more outputs of the sequential-
circuit-element; and

optimizing the circuit design based on the modified clock-
latency-estimates.

16. The method of claim 15, wherein optimizability of a

data path increases with the logic depth of the data path.

10

15

20

10

17. The method of claam 15, wherein optimizability of
un-optimizable logic 1s zero.

18. The method of claim 15, wherein optimizability of
non-standard logic elements 1s low.

19. The method of claim 15, wherein modifying at least
one clock-latency-estimate comprises:

(1) computing a difference between logic depths on an

input side and an output side of a sequential element,

(2) multiplying the difference by a scaling factor to obtain

a clock-latency-adjustment, and

(3) applying the clock-latency-adjustment to the clock-

latency-estimate.

20. The method of claim 15, wherein prior to optimizing,
the circuit design based on the modified clock-latency-
estimates, the method comprises setting timing-endpoint
margins for data paths by an amount corresponding to the
modifications to the clock-latency-estimates.

21. The method of claim 20, wherein the method further
COmMprises:

creating a set of clock tree constraints based on the

modified clock-latency-estimates;

removing the timing-endpoint margins for the data paths;

and performing clock tree synthesis for the circuit
design based on the set of clock tree constraints.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

