US010417729B2

a2 United States Patent (10) Patent No.: US 10,417,729 B2

Taylor et al. 45) Date of Patent: Sep. 17, 2019
(54) GRAPHICS HARDWARE BOTTLENECK (56) References Cited
IDENTIFICATION AND EVENT
PRIORITIZATION U.S. PATENT DOCUMENTS
(71) Applicant: INTEL CORPORATION, Santa Clara, 8,402,449 B1® 32013 Biswasooeoe. GOﬁ;Fl%lgé
CA (US) 9,256,971 B1* 2/2016 Nehring GO6T 11/206
. 90,788,018 B2* 10/2017 WU ovvcvereeerennn, HO4N 19/895
(72) Inventors: Robert B. Taylor, Hillsboro, OR (US); 2006/0274070 Al* 12/2006 Herman A63F 13/10
Pankaj Sharma, Santa Clara, CA (US); 345/474
Daniel H. Walsh, Portland, OR (US); 2007/0018980 Al* 1/2007 Berteigcccoovn...... GO6T 15/80
Matthew B. Callaway, Shingle 345/426
Springs, CA (US) 2009/0164812 Al* 6/2009 Capps, Jr. oo G06F7i/3?;§gg
(73) Assignee: INTEL CORPORATION, Santa Clara, 20110321051 AL* 1272011 Rastogl w.oovvvvervee.. oL B!
CA (US) 2013/0063472 AL* 3/2013 Marison GO6T 15/005
345/591

ofice: ubject to any disclaimer, the term oI this
*) Noti Subj y disclai h f thi | |
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 134(b) by 385 days.
Primary Examiner — Maurice L. McDowell, Ir.

(21) Appl. No.: 15/043,018 Assistant Examiner — Donna J. Ricks
(22) Filed: Feb. 12, 2016 (57) ARSTRACT
(65) Prior Publication Data Techniques to sort events of a graphics workload executed
S 2017/0236241 Al Aug. 17, 2017 by a graphics processing unit to provide i1dentification of
events, that 1f addressed, may result in an 1mprovement 1n
(51) Int. CL performance are disclosed. The techniques can include:
GO6T 1/20 (2006.01) generating a signature and a weight for each event of a
GO6F 9/54 (2006.01) graphics workload; generating an event priority tree by
(52) U.S. CL organizing the events into parent and leal nodes, where
cpC GO6T 1/20 (2013.01); GOGF 9/542 parent nodes comprise leal nodes having a shared hash; and
(2013.01) sorting frames based on a global weight of events corre-
(58) Field of Classification Search sponding to the frames.
CPC e, GO6T 1/20; GO6F 9/452
See application file for complete search history. 23 Claims, 20 Drawing Sheets

SIGNATURE TABLE - 1500

[Event 1510-1] [Signature 1520-1] [Hashes 1530-1 | VS HASH | HS HASH | DS HASH | PS HASH | CS HASH] [Weight 1540-1]
1 0x186521000000 Ox4142F6C8 0x3223EF42 6.34

[Event 1510-2] [Signature 1520-2] [Hashes 1530-2 | VS HASH | HS HASH | DS HASH | PS HASH | CS HASH] [Weight 1540-2)
2 0x1822101C000 0x9210FB1B 0x12186BA8 17.99

[Event 1510-3] [Signature 1520-3] [Hashes 1530-3 | VS HASH | HS HASH | DS HASH | PS HASH | Cs HASH] [Weight 1540-3]
3 0x623000600 0x4152BA67 0x3223EF42 1.56

[Event 1510-4] [Signature 1520-4] [Hashes 1530-4 | VS HASH | HS HASH | DS HASH | PS HASH | CS HASH] [Weight 1540-4]
4 0x2100020000 OxABB86CBEG 0x13292C54 5.72

[Event 1510-5] [Signature 1520-5] [Hashes 1530-5 | VS HASH | HS HASH | DS HASH | PS HASH | CS HASH] [Weight 1540-5]
d 0x1822105C000 0x4142F6C8 0x3223EF47 0.51

U.S. Patent Sep. 17, 2019 Sheet 1 of 20 US 10,417,729 B2

CRAPHICS ReGisTER || PROCESSOR CORE(S) -
PROCESSOR(S) FILE INSTRUCTION SET
108 106 109
PROCESSOR(S)
102

PROCESSOR BUS - 110

MEMORY DEVICE - 120
1

. EXTERNAL
| GRAPHICS MEMORY | | INSTRUCTIONS - 121
| PROCESSOR CONTROLLER "
: 112 , HUB DATA - 122
""""""""" 116
DATA STORAGE LEGACY 1/0
DEVICE CONTROLLER
124 140

USB CONTROLLER(S)
WIRELESS 110
TRANSCEIVER CONTROLLER KEYBOARD
126 HUB L MOUSE - 144
130
FIRMWARE
NTEREACE AUDIO C?QITROLLER
18 146
NETWORK FlG 1 A

CONTROLLER
134

100

U.S. Patent Sep. 17, 2019 Sheet 2 of 20 US 10,417,729 B2

MEMORY DEVICE - 120

INSTRUCTIONS — 121

CONTROL ROUTINE - 12

GRAPHICS WORKLOAD
DATA-122

100

FIG. 1B

LOGIC - 1300

METRIC COLLECTOR - 1

Qo

10

SIGNATURE GENERATOR - 1

o

20

EVENT PRIORITY TREE GENERATOR - 1330

I

EVENT PRIORITY TREE
125

US 10,417,729 B2

Sheet 3 of 20

Sep. 17, 2019

U.S. Patent

144

MITIONINOD

AV 1dSId

ol¢
(S)LINN

HITIONLINOD

SNd

V1
d4T10HLINOD
AHONDN

0l¢
4400
INJOV WALSAS

¢ Ol

80¢
d0SS34008d SOIHAVHD

vY¥0¢
(S)LINN

AHOVO
v¢0¢ 4400

¥/
Ofl

8¢
AJOWSN

Q4dd4diNd

00¢ d055300dd

US 10,417,729 B2

Sheet 4 of 20

Sep. 17, 2019

U.S. Patent

0t

ANIONS

24009
O4dIA

PLE - dOVAd4INI AJONWAN

23 23 23
ANI1ddid NALSAS-8MNS ANl 1ddlg
VIOdN VIA3aW/ae ae

b0t

ANIONS
1118

TN o

3d9)

43

30IA3d
AV 1dSIC

0t

d41104.1NOD
AV 1dSI1d

00¢
d0SS34008d SOIHAYHO

US 10,417,729 B2

Sheet 5 of 20

Sep. 17, 2019

U.S. Patent

b - 140d Y1va

9ty 1%
Y31 714/3TY0S JOVII A
7y q AVNYY
NOLLYINILST NOILOW | LINN NOLLNO3X3
| ey
1 | 3ovTIy3LINEa/ASIONTA
||
| T
| 3NIONT ONIdIYS
_ |
0Ly

ANIOND ONISS300dd SOIHAVHD

A

ANIiddld
VIAdN

¢l

“NI14dld At

AOWIBI\]
Wo.

cov

d4NVIHELS
ONVININOD

Ol

| NO8G — 3H0O SOIHdYYD Y08G - 340D SOIHAYNO

US 10,417,729 B2

=== r==7 —
1w) W e
__ sy31divs ! sn3 SYTTINYS
= _“ NOGS - 3¥00-anNS | V005 - 3400-6NS
3 _ o :
w “_ _ INN3dId =z
.mn...w __ NOIS vO7S AH1INOID N
Z _ " SIOUNOSIH-ATUVHS | S304N0STY AFUYHS T
. m
2\ |- — == = — m
= 1 l__ T — 9
Q AW ! R 7SS
= 1 su31dinvs __. N3 | SYTTANYS | %S
s | alteba ot —— — | ON3 LNOY-
k> | _NO% 3¥008ns Y055 3402-ANS | oaon
— — _.. aq
HOSSI00Nd XN oA]| ANVINOD | A
SOIHAVYEO 7€5 - INIONT VIa3IN

04

U.S. Patent

US 10,417,729 B2

Sheet 7 of 20

Sep. 17, 2019

U.S. Patent

719
140d V1v(Q

4%)

JHOVO V1V(Q

019
d31dANVS

9 Ol

a809 d809
= 1B
-
-
0809 V809
= 1B

909

JHOVO NOILONALSNI

709
HOLVASIA | d3dAVHS
dvddHl

US 10,417,729 B2

Sheet 8 of 20

Sep. 17, 2019

U.S. Patent

09 - UIB[\ 103097
8/ - Ule jellesed

¥ - SNOSUR||9ISIA

. - [0U0D MOj4
21 - 91607/9n0N

gxxxxﬂm.wo —apoodo L O_n_

o_xxvo&o E apoodo
gxxxx; L00=92p02do

R T

o_xxxx.o LO0=8poodo
mxxx&xooo apoodo

1)7
100040 300040

¢¢L | 0L | 8V | WIL elL | ¢V
1OYS | 004S | 1S3A | TO¥INOD | X3ANI |3A02d0

0t
ZO_HODm_hmZ_
1OVdWOO 118-¥9

_ - - T T o T =T — T — T =
| 071 || || | m 4y
“ 300 $$34AAV/SSIOV | z0yS | 10YS | 0088 | 1530 [3215-03X3[1041NOD |3000d0

01z
NOILONYLSNI 118-8¢ 1.

00Z
SLYIWYOS
NOILONYLSNI FY0I SIIHAVYD

U.S. Patent Sep. 17, 2019 Sheet 9 of 20 US 10,417,729 B2

GRAPHICS PROCESSOR
800 MEDIA PIPELINE
830 DISPLAY
ENGINE
COMMAND 540
ooy | STREAMER | cmmpmmmmmmmmmmf oo
8U3 i { VIDEO MEDIA) |
807 1] FRONT-END ENGINE | } 177777 TTTT I TTTTN T T !
Y S — 1\ 834 837 J i | 2DENGINE DISPLAY 1t
i ¥
i VERTEX | ! “~<m=p==-==mmmemmmea- o 841 CONT;(;LLER :
i i
| FETCHER - 3510 S N W S—
| 800
i
| VERTEX EXECUTION ||
i
| SHADER UNITS s;argg:[—:? }
: — cacwe | | =22 o
; v | “se4 | |[EXECUTION ||| DATA
| . - UNITS PORT
- | — 826
O | o
= S L
S ; 2 I
e q . -
(1] | o . [RENDER
= a = CACHE
= ; SHADER T BERTH |
- ; g1/ S GackE
i
| | 879
. {(GEOMETRY —
| SHADER ,
| 819 }
| 1
] —rCRICRCE .)
i SIREAM RENDER ENGINE
1 QUT | 870
| 823 !
| I
| CLIPT)
| SETUP | B
| i
| '

U.S. Patent Sep. 17, 2019 Sheet 10 of 20 US 10,417,729 B2

FIG. 9A GRAPHICS PROCESSOR COMMAND FORMAT
900
cLENT | opcooe |sus-opcope| Dpata | commanp size |
902 904 905 906 908 |
——— — e — —
!
FIG. 9B GRAPHICS PROCESSOR COMMAND SEQUENCE
910
_________ -
| PIPELINE FLUSH I
| 912)
R
| PIPELINE SELECT ,
| 913 ;
PIPELINE CONTROL
914
RETURN BUFFER STATE
916
922 920 i 924

3D Media
Pipeﬁne?
3D PIPELINE STATE MEDIA PIPELINE STATE
930 940

3D PRIMITIVE MEDIA OBJECT
932 942

EXECUTE EXECUTE
934 944

U.S. Patent Sep. 17, 2019 Sheet 11 of 20 US 10,417,729 B2

DATA PROCESSING SYSTEM 1000

3D GRAPHICS APPLICATION
1010

EXECUTABLE INSTRUCTIONS
1014

SHADER INSTRUCTIONS
1012

GRAPHICS
OBJECTS
1016

OPERATING SYSTEM (OS)
1020

SHADER GRAPHICS API
COMPILER (e.g. Direct3D/Open(Gl.)
1024 1022

MEMORY
1090

USER MODE GRAPHICS DRIVER
1026

SHADER COMPILER
1027

0S KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS {008

DRIVER
1029

GRAPHICS GENERAL
PROCESSOR PRO%%SOSOR PURPOSE CORE(s)
1032 1030 1034

US 10,417,729 B2

Sheet 12 of 20

Sep. 17, 2019

U.S. Patent

GoLl

ALITIOVA
NOILVOladv4

L Ol

0Ll ALNIOV4 NOISIA

(V1v¥a NOISTA STIL

TWOISAHd 4O 1aH) NOISIJ 11N
13a0W IHYMAYYH

0L1 - INJWdO 1dA4d F400 dl

0Ll
NOILY 1NNIS
JdVMLA0S

U.S. Patent Sep. 17, 2019 Sheet 13 of 20 US 10,417,729 B2

APPLICATION
PROCESSOR(s)

GRAPHICS
PROCESSOR 1200

1210 /

1205

II | l |
| |

| IMAGE | | VIDEO |

I PROCESSOR | I PROCESSOR |

} 1215 | } 1220 |

i l ' l

o L o _

USB UART SPI/SDIO 128/12C DISPLAY

1225 1230 1235 1240 1245
“““““ |
[SEronty || MEMORY | | FLASH | | MPI 1| HDM
4970 1265 1260 | 1255 | 1250
L . I

FIG. 12

U.S. Patent

Sep. 17, 2019

1400

Sheet 14 of 20

READY STALL
Interface - 1420-1

Architectural Block

1410-1

READY STALL
Interface - 1420-2

Architectural Block
1410-2

READY | | STALL

Interface - 1420-3

Architectural Block

1410-3

READY STALL
Interface - 1420-4

FIG. 14

US 10,417,729 B2

US 10,417,729 B2

Sheet 15 of 20

Sep. 17, 2019

U.S. Patent

Gl Ol

1G0 A AR 8094y L ¥X0 00005012¢81X0 q
[G-0¥S T Wb [HSYH SO | HSYH Sd | HSYH S | HSYH SH | HSYH SA | G-0€6T sauseH] [G-02G1 aunjeubis] [G-01GT uaad]

Z2L'S #SOZ62E L X0 0390989VYX0 0000200012X0 b
[7-0%G T Wbop] [HSYH SO | HSYH Sd | HSYH Sa | HSYH SH | HSYH SA | 7-0€GT seuseH] [7-02G T einjeubis] [7-015T uand]

0G| ABE AR /9v9ZS 1LyX0 009000£29%0 ¢
[€-0%G T Wbl [HSYH SO | HSYH Sd | HSYH SA | HSYH SH | HSYH SA | £-0€GT seuseH] [€-0¢GT aunjeubis] [€-016T uang]

6611 8v8981¢1x0 41.940126X0 00001012281X0 l
[2-0¥S T Wbl [HSYH SO | HSYH Sd | HSYH Sa | HSYH SH | HSYH SA | Z-0€GT seuseH] [Z-02G T ainjeubis] [Z-01GT uand]

€9 AEE AR 80942y L ¥X0 000000125981X0 |
[1-0¥ST WbeM] [HSYH SO | HSYH Sd | HSYH Sa | HSYH SH | HSYH SA | T-0€GT sauseH] [1-02ST aunjeubis] [T-01671 uaAd]

0051 - F189VL JHNLYNDIS

US 10,417,729 B2

Sheet 16 of 20

Sep. 17, 2019

U.S. Patent

iiplyhiy

00002000120
(aneubis)
(226 Wbep)
70181 uan3
G-¥191 - 3AON

91 ©Oid
009000£C9X0 0000401 2¢8LX0 000000125981 X0
(2.n)eubig) (auneubi|) (aInjeulIs)
(95| Wb (1LG°0 Wbpn) (7€ Wb
£-01G1 JUsh-] G-01G1 JUDAS 1-01G1] U3/
1191 - JAON ¢-7191 - JAON ¢191 - AGON

¢LG
LL-0¢91 = LHDIAM A=ANIGNOO

| 9460984VX0

(MSYH SA) Z-¢197 - 3aON

05°1
£-0¢91 — LHOIAM dINIGNQD

LOVHCS LX)

(HSYH SA) 97191 - JAON

689
¢-0691 — 1HOIHM dINIGINOO

0€91L L

|9A9T SPON

809421 ¥X0
(HSYH SA) §2191) - 3AON

0000101281 %0
(sinjeubig)

(66721 Wb
2-01G1 usAg

L-¥191 - 4UON

66 L1
p-0691 — LHOIEM G3NIBNOD

g1840126X0
(HSYH SN 72191 - 300N

¢L'G

PGOC6CE LX)

£-0691 ~ LHOIIM QaNIENOD

(HSYH Sd) €191 - 3AON

78
¢-0991 — LHOIIM daNIGNOD

Z43£22EX0
(HSYH Sd) Z-¢ 19} - JAON

0c91

66 L1

1-0691 — LHOIEM JaNIGINQD
|9A8T SPON 889811 X0

(HSYH Sd) 72191 - 3AON

o iyl By 1 ey e e

1091

100d

091 - d34 1 ALIJOIHd INJA

Lﬂ#ﬂbmmmmmmmmmmmd

L

US 10,417,729 B2

Sheet 17 of 20

Sep. 17, 2019

U.S. Patent

€-Z191 3AON
22191 3AON
(S3AON 13A3TdOL

elyl
¢-0¢L) = LHOIIM 1vd0 10

¢-0LL1L - JNVYS

Ll Ol

¢-¢19] JAON
1-¢191 JAON
(S3IAON 13A31 4oL

LL'eC
£-0¢L1 = LHOIIM Va0 19

£-0L41 - dJNVH4

00} - S3NVHEL A31d0S 40 L3S

¢-¢191 AdON
1-¢191 3AON

(S3IAON 13ATT1dOL)

0¥ 9¢
L-0¢L1 — LHOIFIM 1VEO0 19
L-01L1 - JINVHS

U.S. Patent Sep. 17, 2019 Sheet 18 of 20 US 10,417,729 B2

SIGNATURE
GENERATION LOGIC

Determine whether a graphics processor, in Yes
executing an event of a graphics workload, is

operating above a threshold operational rate.
1810

No
Determine the signature based on the graphics

Processor.
1820

Determine whether a first architectural block of a graphics
processor, in executing an event of a graphics workload, 1s

operating above a threshold operational rate.
1830

Yes

No
Determine the signature based on the first
architectural block.

1840

Determine whether a first architectural block of a graphics
processor, in executing an event of a graphics workload, 1s
operating above a threshold operational rate.

1850
Determine the signature based on the first
architectural block.
1860
Eﬁd R

U.S. Patent Sep. 17, 2019 Sheet 19 of 20 US 10,417,729 B2

Recelve an information element to include

EVENT PRIORITY TREE indications of events of a graphics workload,
GENEQR&TDN each of the events including an associated

signature, weight, and one or more hashes.
1910

Generate one or more parent nodes, each of the
one or more parent nodes corresponding to a one

of the one or more hashes.
1920

Group the events 1nto leat nodes under at least
one of the one or more parent nodes based on the
one or more hashes.

1930

Determine, for each parent node, a combined
weight of the parent node based on the weight of

ecach node below the parent node.
1940

Sort the parent nodes based on combined

weights.
1950

FIG. 19

U.S. Patent Sep. 17, 2019 Sheet 20 of 20 US 10,417,729 B2

STORAGE MEDIUM - 2000

COMPUTER EXECUTABLE

INSTRUCTIONS FOR
1300/1900

FIG. 20

US 10,417,729 B2

1

GRAPHICS HARDWARE BOTTLENECK
IDENTIFICATION AND EVENT
PRIORITIZATION

BACKGROUND

Modern graphic processors perform a number of events in
parallel. For example, a graphics processors can perform
combinations of diflerent events, such as, clear, copy, draw,
dispatch, or the like 1n parallel. The order of event process-
ing 1s constrained based on various dependencies between
the events and/or between the various frames to which the
events correspond. Due to the highly parallel nature and due
to the constraints of events processing, i1dentifying areas
where inefliciencies are introduced can be a challenge.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a block diagram of a processing
system, according to an embodiment.

FIG. 1B 1illustrates a block diagram of a portion of the
processing system of FIG. 1A, according to an embodiment.

FIG. 2 1llustrates a block diagram of a processor, accord-
ing to an embodiment.

FIG. 3 1llustrates a block diagram of a graphics processor,
according to an embodiment.

FI1G. 4 1llustrates a block diagram of a graphics processing
engine, according to an embodiment.

FI1G. 5 illustrates a block diagram of a graphics processor,
according to another embodiment.

FIG. 6 illustrates thread execution logic, according to an
embodiment.

FI1G. 7 illustrates a block diagram of graphics processor
instruction formats, according to an embodiment.

FI1G. 8 illustrates a block diagram of a graphics processor,
according to another embodiment.

FIG. 9A 1llustrates a graphics processor command format,
according to an embodiment.

FIG. 9B illustrates a graphics processor command
sequence, according to an embodiment.

FIG. 10 1llustrates a block diagram of graphics software
architecture, according to an embodiment.

FIG. 11 1llustrates a block diagram of an IP core devel-
opment system, according to an embodiment.

FI1G. 12 illustrates a block diagram of a system-on-a-chip
(SoC) mtegrated circuit, according to an embodiment.

FIG. 13 1illustrates a block diagram of hardware logic to
generate an event priority tree, according to an embodiment.

FIG. 14 1llustrates a block diagram of a portion of a
graphics processor, according to an embodiment.

FIG. 15 1illustrates a block diagram of an event table,
according to an embodiment.

FIG. 16 illustrates a block diagram of an event priority
tree, according to an embodiment.

FIG. 17 1llustrates a block diagram of a set of ordered
frames, according to an embodiment.

FIG. 18 illustrates a block diagram of a logic tlow,
according to an embodiment.

FIG. 19 illustrates a block diagram of a logic tlow,
according to an embodiment.

FIG. 20 illustrates a storage medium, according to an
embodiment.

DETAILED DESCRIPTION

Various embodiments are generally directed to 1dentifying
performance bottlenecks in modern graphics workloads.

10

15

20

25

30

35

40

45

50

55

60

65

2

More particularly, the present disclosure provides i1dentifi-
cation of events, that 1f addressed, may result in an 1mprove-
ment 1n performance.

In some examples, the present disclosure provides to
generate a signature and a weight for each event of a
graphics workload. An event priority tree 1s generated by
organizing the events into parent and leal nodes, where
parent nodes comprise leal nodes having a shared hash (e.g.,
shader, or the like). Additionally, frames can be sorted based
on a combined weight of events corresponding to the frames.

Reference 1s now made to the drawings, wherein like
reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth 1in order
to provide a thorough understanding thereof. It may be
evident, however, that the novel embodiments can be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown 1n block diagram
form 1n order to facilitate a description thereof. The intention
1s to cover all modifications, equivalents, and alternatives
within the scope of the claims.

FIGS. 1A-1B are block diagrams of a processing system
100 to 1dentily performance bottlenecks 1n a graphics work-
load, according to an embodiment. In various embodiments
the system 100 includes one or more processors 102 and one
or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 102 or processor cores 107. In one embodiment, the
system 100 1s a processing platform 1ncorporated within a
system-on-a-chip (SoC) integrated circuit for use 1n mobile,
handheld, or embedded devices.

An embodiment of system 100 can include (or be 1ncor-
porated within) a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 1s a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, system 100 1s a television or
set top box device having one or more processors 102 and
a graphical interface generated by one or more graphics
processors 108.

In some embodiments, the one or more processors 102
cach include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 1s configured to process a
specific mstruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a ditfierent
instruction set 109, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

In some embodiments, the processor 102 includes cache
memory 104. Depending on the architecture, the processor
102 can have a single iternal cache or multiple levels of
internal cache. In some embodiments, the cache memory 1s
shared among various components of the processor 102. In
some embodiments, the processor 102 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache

US 10,417,729 B2

3

(LLC)) (not shown), which may be shared among processor
cores 107 using known cache coherency techniques. A
register file 106 1s additionally included 1n processor 102
which may include different types ol registers for storing
different types of data (e.g., integer registers, floating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
102. The different registers in the register file 106 are
identified by a register address. For example, the register file
106 1s depicted including register addresses 141-1, 141-2,
141-3, to 141-N.

In some embodiments, processor 102 1s coupled to a
processor bus 110 to transmit communication signals such as
address, data, or control signals between processor 102 and
other components in system 100. In one embodiment the
system 100 uses exemplary ‘hub’ system architecture,
including a memory controller hub 116 and an Input Output
(I/0) controller hub 130. Memory controller hub 116 may
facilitate communication between a memory device and
other components of system 100, while I/O Controller Hub
(ICH) 130 may provide connections to I/O devices via a
local I/O bus. In one embodiment, the logic of the memory
controller hub 116 1s integrated within the processor.

Memory device 120 can be a dynamic random access
memory (DRAM) device, a static random access memory
(SRAM) device, flash memory device, phase-change
memory device, or some other memory device having
suitable performance to serve as process memory. In one
embodiment the memory device 120 can operate as system
memory for the system 100, to store graphics workload data
122 and 1instructions 121 for use when the one or more
processors 102 executes an application or process. Memory
controller hub 116 also couples with an optional external
graphics processor 112, which may communicate with the
one or more graphics processors 108 in processors 102 to
perform graphics and media operations.

In some embodiments, ICH 130 enables peripherals to
connect to memory device 120 and processor 102 via a
high-speed 1/0 bus. The I/O peripherals include, but are not
limited to, an audio controller 146, a firmware interface 128,
a wireless transcerver 126 (e.g., Wi-F1, Bluetooth), a data
storage device 124 (e.g., hard disk drive, flash memory, etc.),
and a legacy I/O controller 140 for coupling legacy (e.g.,
Personal System 2 (PS/2)) devices to the system. One or
more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple to ICH 130.
In some embodiments, a high-performance network control-
ler (not shown) couples to processor bus 110. It will be
appreciated that the system 100 shown 1s exemplary and not
limiting, as other types of data processing systems that are
differently configured may also be used. For example, the
ICH 130 may be integrated within the one or more processor
102, or the memory controller hub 116 and ICH 130 may be
integrated 1nto a discreet external graphics processor, such
as the external graphics processor 112.

During operation, the processor cores 107 may execute
instructions to identily performance bottlenecks 1n execu-
tion of a graphics workload (e.g., refer to 3D graphics
application 1010 and/or graphics objects 1016 of FI1G. 10, or
the like) by the graphics processor(s) 108 and/or external
graphics processor 112. In particular, processor cores 107
may execute instructions 121 including control routine 123
to generate an event priority tree 125 based on a number of
events. Each of the events can include a signature and a
welght. In some examples, the signature includes an 1ndi-

10

15

20

25

30

35

40

45

50

55

60

65

4

cation of a behavior of the event during execution on the
graphics processor(s) 108 and/or the external graphics pro-
cessor 112. For example, the signatures can include an
indication of area, or architectural blocks (e.g., refer to FIG.
8 and/or FIG. 14, or the like) in which bottlenecks are
occurring. In some examples, the event priornty tree 125
(refer to FIG. 16) comprises parent nodes and leal nodes,
where the parent nodes correspond to leal nodes of events
sharing a particular architectural element (e.g., shader, or the
like). Parent and leal nodes can be sorted based on weight
(or combined weight) of the events.

Additionally, the present disclosure can be implemented
to 1dentily performance bottlenecks across frames of a video
to be rendered. In particular, the events discussed above may
correspond to multiple frames. The frames can be sorted
based on a combined weight of the events corresponding to
cach frame.

Accordingly, performance bottlenecks can be identified
and analysis of such bottlenecks can be increased based on
the event priority tree and/or sorted frames. As the present
disclosure 1s applicable to graphics workloads and graphics
processors, FIGS. 2-12 are given to provide clarity and
breadth to the disclosure. FIGS. 13-20 provide exemplary
implementations to prioritize events to increase performance
of a graphics workload as described herein.

FIG. 2 1s a block diagram of an embodiment of a
processor 200 to suppress redundant source operand reads
and replicate read data for operands where the read requests
were suppressed. In some examples, the processor 200 may
have one or more processor cores 202A-202N, an integrated
memory controller 214, and an 1integrated graphics processor
208. Those elements of FIG. 2 having the same reference
numbers (or names) as the elements of any other figure
herein can operate or function 1n any manner similar to that
described elsewhere herein, but are not limited to such.
Processor 200 can include additional cores up to and includ-
ing additional core 202N represented by the dashed lined
boxes. Each of processor cores 202A-202N 1ncludes one or
more internal cache units 204A-204N. In some embodi-
ments each processor core also has access to one or more
shared cached units 206.

The internal cache units 204A-204N and shared cache
umts 206 represent a cache memory hierarchy within the
processor 200. The cache memory hierarchy may include at
least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (L2), Level 3 (LL3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory 1s classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.

In some embodiments, processor 200 may also include a
set of one or more bus controller units 216 and a system
agent core 210. The one or more bus controller units 216
manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

In some embodiments, one or more of the processor cores
202A-202N 1include support for simultaneous multi-thread-
ing. In such embodiment, the system agent core 210 includes
components for coordinating and operating cores 202A-
202N during multi-threaded processing. System agent core
210 may additionally include a power control unit (PCU),

US 10,417,729 B2

S

which includes logic and components to regulate the power
state of processor cores 202A-202N and graphics processor
208.

In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 1s coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.

In some embodiments, a ring based interconnect unit 212
(ring 1interconnect) 1s used to couple the internal components
of the processor 200. However, an alternative interconnect
unit may be used, such as a point-to-point 1nterconnect, a
switched interconnect, or other techniques, icluding tech-
niques well known 1n the art. In some embodiments, graph-
ics processor 208 couples with the ring interconnect 212 via
an I/O link 213.

The exemplary I/O link 213 represents at least one of
multiple varieties of I/O interconnects, icluding an on
package I/O interconnect that facilitates communication
between various processor components and a high-perfor-
mance embedded memory 218, such as an eDRAM module.
In some embodiments, each of the processor cores 202-
202N and graphics processor 208 use embedded memory
218 as a shared Last Level Cache.

In some embodiments, processor cores 202A-202N are
homogenous cores executing the same 1nstruction set archi-
tecture. In another embodiment, processor cores 202A-202N
are heterogeneous in terms ol instruction set architecture
(ISA), where one or more of processor cores 202A-N
execute a first mstruction set and at least one of the other
cores executes a subset of the first instruction set or a
different istruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having relatively higher
power consumption coupled with one or more power cores
having lower power consumption. Additionally, processor
200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, 1n addi-
tion to other components.

FIG. 3 1s a block diagram of a graphics processor 300 to
suppress redundant source operand reads and replicate read
operands. In some examples, the processor 300 may be a
discrete graphics processing unit, or may be a graphics
processor ntegrated with a plurality of processing cores. In
some embodiments, the graphics processor communicates
via a memory mapped I/O interface to registers on the
graphics processor and with commands placed into the
processor memory. In some embodiments, graphics proces-
sor 300 includes a memory interface 314 to access memory.
Memory interface 314 can be an interface to local memory,
one or more internal caches, one or more shared external
caches, and/or to system memory.

In some embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
clements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or
transcode media to, from, or between one or more media

10

15

20

25

30

35

40

45

50

55

60

65

6

encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

In some embodiments, graphics processor 300 includes a
block 1mage transfer (BLIT) engine 304 to perform two-
dimensional (2D) rasterizer operations including, {for
example, bit-boundary block transfers. However, in one
embodiment, 2D graphics operations are performed using
one or more components ol graphics processing engine
(GPE) 310. In some embodiments, GPE engine 310 1s a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

In some embodiments, GPE 310 includes a 3D pipeline
312 for performing 3D operations, such as rendering three-
dimensional 1images and scenes using processing functions
that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 312 includes programmable and fixed
function elements that perform various tasks within the
clement and/or spawn execution threads to a 3D/Media
sub-system 3135. While 3D pipeline 312 can be used to
perform media operations, an embodiment of GPE 310 also
includes a media pipeline 316 that 1s specifically used to
perform media operations, such as video post-processing
and 1mage enhancement.

In some embodiments, media pipeline 316 includes fixed
function or programmable logic units to perform one or
more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution umts included m 3D/Media sub-
system 315.

In some embodiments, 3D/Media subsystem 315 includes
logic for executing threads spawned by 3D pipeline 312 and
media pipeline 316. In one embodiment, the pipelines send
thread execution requests to 3D/Media subsystem 315,
which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources mclude an array of
graphics execution umts to process the 3D and media
threads. In some embodiments, 3DD/Media subsystem 313
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

FIG. 4 1s a block diagram of a graphics processing engine
410 of a graphics processor 1n accordance with some
embodiments. In one embodiment, the GPE 410 1s a version
of the GPE 610 shown 1n FIG. 3. Elements of FIG. 4 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function 1 any
manner similar to that described elsewhere herein, but are
not limited to such.

In some embodiments, GPE 410 couples with a command
streamer 403, which provides a command stream to the GPE
3D and media pipelines 412, 416. In some embodiments,
command streamer 403 1s coupled to memory, which can be
system memory, or one or more of mnternal cache memory

US 10,417,729 B2

7

and shared cache memory. In some embodiments, command
streamer 403 recerves commands from the memory and
sends the commands to 3D pipeline 412 and/or media
pipeline 416. The commands are directives fetched from a
ring bufler, which stores commands for the 3D and media
pipelines 412, 416. In one embodiment, the ring buller can
additionally include batch command buflers storing batches
of multiple commands. The 3D and media pipelines 412,
416 process the commands by performing operations via
logic within the respective pipelines or by dispatching one or
more execution threads to an execution unit array 414. In
some embodiments, execution unit array 414 1s scalable,
such that the array includes a variable number of execution
units based on the target power and performance level of
GPE 410.

In some embodiments, a sampling engine 430 couples
with memory (e.g., cache memory or system memory) and
execution unit array 414. In some embodiments, sampling
engine 430 provides a memory access mechanism for execu-
tion unit array 414 that allows execution array 414 to read
graphics and media data from memory. In some embodi-
ments, sampling engine 430 1ncludes logic to perform spe-
cialized image sampling operations for media.

In some embodiments, the specialized media sampling
logic 1n sampling engine 430 includes a de-noise/de-nter-
lace module 432, a motion estimation module 434, and an
image scaling and filtering module 436. In some embodi-
ments, de-noise/de-interlace module 432 includes logic to
perform one or more of a de-noise or a de-interlace algo-
rithm on decoded video data. The de-interlace logic com-
bines alternating fields of interlaced video content into a
single frame of video. The de-noise logic reduces or
removes data noise from video and image data. In some
embodiments, the de-noise logic and de-interlace logic are
motion adaptive and use spatial or temporal {filtering based
on the amount of motion detected in the video data. In some
embodiments, the de-noise/de-interlace module 432
includes dedicated motion detection logic (e.g., within the
motion estimation engine 434).

In some embodiments, motion estimation engine 434
provides hardware acceleration for video operations by
performing video acceleration functions such as motion
vector estimation and prediction on video data. The motion
estimation engine determines motion vectors that describe
the transformation of 1image data between successive video
frames. In some embodiments, a graphics processor media
codec uses video motion estimation engine 434 to perform
operations on video at the macro-block level that may
otherwise be too computationally intensive to perform with
a general-purpose processor. In some embodiments, motion
estimation engine 434 1s generally available to graphics
processor components to assist with video decode and
processing functions that are sensitive or adaptive to the
direction or magnitude of the motion within video data.

In some embodiments, image scaling and filtering module
436 performs 1mage-processing operations to enhance the
visual quality of generated images and video. In some
embodiments, scaling and filtering module 436 processes
image and video data during the sampling operation before
providing the data to execution unit array 414.

In some embodiments, the GPE 410 includes a data port
444, which provides an additional mechanism for graphics
subsystems to access memory. In some embodiments, data
port 444 facilitates memory access for operations including,
render target writes, constant builer reads, scratch memory
space reads/writes, and media surface accesses. In some
embodiments, data port 444 includes cache memory space to

10

15

20

25

30

35

40

45

50

55

60

65

8

cache accesses to memory. The cache memory can be a
single data cache or separated into multiple caches for the
multiple subsystems that access memory via the data port
(e.g., a render butler cache, a constant buliler cache, etc.). In
some embodiments, threads executing on an execution unit
in execution umt array 414 communicate with the data port
by exchanging messages via a data distribution interconnect
that couples each of the sub-systems of GPE 410.

FIG. 5 1s a block diagram of another embodiment of a
graphics processor 300 to suppress redundant source oper-
and reads and replicate read data. Elements of FIG. 5 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

In some embodiments, graphics processor 500 includes a
ring interconnect 502, a pipeline front-end 504, a media
engine 537, and graphics cores 380A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
Processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor 1s one of many
processors mntegrated within a multi-core processing system.

In some embodiments, graphics processor 300 receives
batches of commands via ring interconnect 502. A command
streamer 303 i1n pipeline front-end 504 may interpret the
incoming commands. In some embodiments, graphics pro-
cessor 500 1ncludes scalable execution logic to perform 3D
geometry processing and media processing via the graphics
core(s) S580A-580N. For 3D geometry processing coms-
mands, command streamer 3503 supplies commands to
geometry pipeline 536. For at least some media processing
commands, command streamer 503 supplies the commands
to a video front end 534, which couples with a media engine
537. In some embodiments, media engine 337 includes a
Video Quality Engine (VQE) 330 for video and image
post-processing and a multi-format encode/decode (MFX)
533 engine to provide hardware-accelerated media data
encode and decode. In some embodiments, geometry pipe-
line 536 and media engine 537 each generate execution
threads for the thread execution resources provided by at
least one graphics core S80A.

In some embodiments, graphics processor 500 includes
scalable thread execution resources featuring modular cores
580A-580N (sometimes referred to as core slices), each
having multiple sub-cores 550A-550N, 560A-560N (some-
times referred to as core sub-slices). In some embodiments,
graphics processor 300 can have any number of graphics
cores 380A through 580N. In some embodiments, graphics
processor 300 includes a graphics core 580A having at least
a first sub-core 550A and a second core sub-core 560A. In
other embodiments, the graphics processor 1s a low power
processor with a single sub-core (e.g., 350A). In some
embodiments, graphics processor 500 includes multiple

graphics cores S80A-580N, each including a set of first
sub-cores 550A-550N and a set of second sub-cores S60.A -

560N. Each sub-core 1n the set of first sub-cores S50A-550N
includes at least a first set of execution units 552 A-552N and
media/texture samplers 554 A-554N. Each sub-core in the
set of second sub-cores 560A-560N includes at least a
second set of execution units 562A-562N and samplers
564A-564N. In some embodiments, each sub-core 550A-
550N, 560A-560N shares a set of shared resources S70A-
570N. In some embodiments, the shared resources include
shared cache memory and pixel operation logic. Other
shared resources may also be included in the wvarious
embodiments of the graphics processor.

US 10,417,729 B2

9

FIG. 6 illustrates thread execution logic 600 including an
array ol processing elements employed in some embodi-
ments of a GPE. Elements of FIG. 6 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1 any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, thread execution logic 600
includes a pixel shader 602, a thread dispatcher 604, instruc-
tion cache 606, a scalable execution unit array including a
plurality of execution units 608A-608N, a sampler 610, a
data cache 612, and a data port 614. In one embodiment the
included components are interconnected via an interconnect
tabric that links to each of the components. In some embodi-
ments, thread execution logic 600 includes one or more
connections to memory, such as system memory or cache
memory, through one or more of instruction cache 606, data
port 614, sampler 610, and execution unit array 608A-608N.
In some embodiments, each execution unit (e.g. 608A) 15 an
individual vector processor capable of executing multiple
simultaneous threads and processing multiple data elements
in parallel for each thread. In some embodiments, execution
unit array 608A-608N includes any number individual
execution units.

In some embodiments, execution unit array 608 A-608N 1s
primarily used to execute “‘shader” programs. In some
embodiments, the execution units i1n array 608A-608N
execute an instruction set that includes native support for
many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with minimal translation. The execu-
tion units may support vertex and geometry processing (e.g.,
vertex programs, geometry programs, vertex shaders), pixel
processing (e.g., pixel shaders, fragment shaders) and gen-
eral-purpose processing (e.g., compute, media, hull, and/or
domain shaders).

Each execution unit in execution unit array 608A-608N
operates on arrays ol data elements. The number of data
elements 1s the “execution size,” or the number of channels
for the mstruction. An execution channel 1s a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
608A-608N support integer and floating-point data types.

The execution umt mstruction set icludes single mnstruc-
tion multiple data (SIMD) instructions. The various data
clements can be stored as a packed data type in a register and
the execution unit will process the various elements based
on the data size of the elements. For example, when oper-
ating on a 256-bit wide vector, the 256 bits of the vector are
stored 1n a register and the execution unit operates on the
vector as four separate 64-bit packed data elements (Quad-
Word (QW) si1ze data elements), eight separate 32-bit packed
data elements (Double Word (DW) size data elements),
sixteen separate 16-bit packed data elements (Word (W) size
data elements), or thirty-two separate 8-bit data elements
(byte (B) size data elements). However, diflerent vector
widths and register sizes are possible.

One or more internal instruction caches (e.g., 606) are
included 1n the thread execution logic 600 to cache thread
instructions for the execution units. In some embodiments,
one or more data caches (e.g., 612) are included to cache
thread data during thread execution. In some embodiments,
sampler 610 1s included to provide texture sampling for 3D
operations and media sampling for media operations. In

10

15

20

25

30

35

40

45

50

55

60

65

10

some embodiments, sampler 610 includes specialized tex-
ture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

During execution, the graphics and media pipelines send
thread 1mitiation requests to thread execution logic 600 via
thread spawning and dispatch logic. In some embodiments,
thread execution logic 600 includes a local thread dispatcher
604 that arbitrates thread initiation requests from the graph-
ics and media pipelines and instantiates the requested
threads on one or more execution units 608A-608N. For
example, the geometry pipeline (e.g., 336 of FIG. §) dis-
patches vertex processing, tessellation, or geometry process-
ing threads to thread execution logic 600 (FIG. 6). In some
embodiments, thread dispatcher 604 can also process run-
time thread spawning requests from the executing shader
programs.

Once a group of geometric objects has been processed and
rasterized into pixel data, pixel shader 602 1s invoked to
further compute output information and cause results to be
written to output surfaces (e.g., color buflers, depth buflers,
stencil buflers, etc.). In some embodiments, pixel shader 602
calculates the values of the various vertex attributes that are
to be interpolated across the rasterized object. In some
embodiments, pixel shader 602 then executes an application
programming 1interface (API)-supplied pixel shader pro-
gram. To execute the pixel shader program, pixel shader 602
dispatches threads to an execution umt (e.g., 608A) via
thread dispatcher 604. In some embodiments, pixel shader
602 uses texture sampling logic in sampler 610 to access
texture data 1n texture maps stored 1n memory. Arithmetic
operations on the texture data and the mput geometry data
compute pixel color data for each geometric fragment, or
discards one or more pixels from further processing.

In some embodiments, the data port 614 provides a
memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

FIG. 7 1s a block diagram 1illustrating a graphics processor
instruction formats 700 according to some embodiments. In
one or more embodiment, the graphics processor execution
units support an struction set having instructions 1 mul-
tiple formats. The solid lined boxes illustrate the compo-
nents that are generally included i an execution umit
instruction, while the dashed lines include components that
are optional or that are only included 1n a sub-set of the
instructions. In some embodiments, instruction format 700
described and illustrated are macro-instructions, in that they
are instructions supplied to the execution unit, as opposed to
micro-operations resulting from instruction decode once the
instruction 1s processed.

In some embodiments, the graphics processor execution
units natively support instructions i a 128-bit format 710.
A 64-bit compacted instruction format 730 1s available for
some 1nstructions based on the selected instruction, instruc-
tion options, and number of operands. The native 128-bit
format 710 provides access to all instruction options, while
some options and operations are restricted 1 the 64-bit
format 730. The native instructions available 1n the 64-bit
format 730 vary by embodiment. In some embodiments, the
instruction 1s compacted in part using a set of index values
in an index field 713. The execution unit hardware refer-
ences a set of compaction tables based on the index values

US 10,417,729 B2

11

and uses the compaction table outputs to reconstruct a native
instruction 1n the 128-bit format 710.

For each format, instruction opcode 712 defines the
operation that the execution unit 1s to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution umt performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For 128-bit instructions
710 an exec-size field 716 limits the number of data channels
that will be executed in parallel. In some embodiments,
exec-size field 716 1s not available for use 1n the 64-bit
compact instruction format 730.

Some execution umt mstructions have up to three oper-
ands mcluding two source operands, SRC0 722, SRC1 722,
and one destination 718. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations 1s 1implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 724), where the
istruction opcode 712 determines the number of source
operands. An istruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the mstruc-
tion.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode information 726 specity-
ing, for example, whether direct register addressing mode or
indirect register addressing mode 1s used. When direct
register addressing mode 1s used, bits 1n the mstruction 710
directly provide the register address of one or more oper-
ands.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode field 726, which specifies
an address mode and/or an access mode for the instruction.
In one embodiment the access mode to define a data access
alignment for the instruction. Some embodiments support
access modes including a 16-byte aligned access mode and
a 1-byte aligned access mode, where the byte alignment of
the access mode determines the access alignment of the
instruction operands. For example, when 1n a first mode, the
instruction 710 may use byte-aligned addressing for source
and destination operands and when 1n a second mode, the
istruction 710 may use 16-byte-aligned addressing for all
source and destination operands.

In one embodiment, the address mode portion of the
access/address mode field 726 determines whether the
instruction 1s to use direct or indirect addressing. When
direct register addressing mode 1s used bits 1n the instruction
710 directly provide the register address of one or more
operands. When indirect register addressing mode 1s used,
the register address of one or more operands may be
computed based on an address register value and an address
immediate field in the instruction.

In some embodiments instructions are grouped based on
opcode 712 bit-fields to simplity Opcode decode 740. For an
8-bit opcode, bits 4, 5, and 6 allow the execution unit to
determine the type of opcode. The precise opcode grouping
shown 1s merely an example. In some embodiments, a move
and logic opcode group 742 includes data movement and
logic instructions (e.g., move (mov), compare (cmp)). In
some embodiments, move and logic group 742 shares the
five most significant bits (MSB), where move (mov) mstruc-
tions are 1n the form of 0000xxxxb and logic instructions are

10

15

20

25

30

35

40

45

50

55

60

65

12

in the form of 0001xxxxb. A tlow control nstruction group
744 (e.g., call, jump (ymp)) includes 1nstructions 1n the form
of 0010xxxxb (e.g., 0x20). A miscellaneous instruction
group 746 1includes a mix of instructions, including synchro-
nization instructions (e.g., wait, send) in the form of
0011xxxxb (e.g., 0x30). A parallel math instruction group
748 includes component-wise arithmetic instructions (e.g.,
add, multiply (mul)) 1n the form of 0100xxxxb (e.g., 0x40).
The parallel math group 748 performs the arithmetic opera-
tions 1n parallel across data channels. The vector math group
750 1ncludes arithmetic mstructions (e.g., dp4) in the form
of 0101xxxxb (e.g., 0x50). The vector math group periforms
arithmetic such as dot product calculations on vector oper-
ands.

FIG. 8 1s a block diagram of another embodiment of a
graphics processor 800. Elements of FIG. 8 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1n any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, graphics processor 800 includes a
graphics pipeline 820, a media pipeline 830, a display
engine 840, thread execution logic 850, and a render output
pipeline 870. In some embodiments, graphics processor 800
1s a graphics processor within a multi-core processing sys-
tem that includes one or more general purpose processing
cores. The graphics processor 1s controlled by register writes
to one or more control registers (not shown) or via com-
mands 1ssued to graphics processor 800 via a ring intercon-
nect 802. In some embodiments, ring interconnect 802
couples graphics processor 800 to other processing compo-
nents, such as other graphics processors or general-purpose
processors. Commands from ring interconnect 802 are inter-
preted by a command streamer 803, which supplies nstruc-
tions to individual components of graphics pipeline 820 or
media pipeline 830.

In some embodiments, command streamer 803 directs the
operation of a vertex fetcher 805 that reads vertex data from
memory and executes vertex-processing commands pro-
vided by command streamer 803. In some embodiments,
vertex fetcher 805 provides vertex data to a vertex shader
807, which performs coordinate space transformation and
lighting operations to each vertex. In some embodiments,
vertex fetcher 805 and vertex shader 807 execute vertex-
processing instructions by dispatching execution threads to
execution units 852A, 8528 via a thread dispatcher 831.

In some embodiments, execution units 852A, 852B are an
array ol vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A, 852B have an attached L1
cache 851 that 1s specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that 1s partitioned to
contain data and instructions in different partitions.

In some embodiments, graphics pipeline 820 includes
tessellation components to perform hardware-accelerated
tessellation of 3D objects. In some embodiments, a pro-
grammable hull shader 811 configures the tessellation opera-
tions. A programmable domain shader 817 provides back-
end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that 1s provided
as mput to graphics pipeline 820. In some embodiments, 1f
tessellation 1s not used, tessellation components 811, 813,
817 can be bypassed.

US 10,417,729 B2

13

In some embodiments, complete geometric objects can be
processed by a geometry shader 819 via one or more threads
dispatched to execution units 852A, 8528, or can proceed
directly to the clipper 829. In some embodiments, the
geometry shader operates on entire geometric objects, rather
than vertices or patches of vertices as 1n previous stages of
the graphics pipeline. If the tessellation 1s disabled the
geometry shader 819 receives mput from the vertex shader
807. In some embodiments, geometry shader 819 is pro-
grammable by a geometry shader program to perform geom-
etry tessellation if the tessellation umts are disabled.

Before rasterization, a clipper 829 processes vertex data.
The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 1n the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects 1into their per
pixel representations. In some embodiments, pixel shader
logic 1s included in thread execution logic 850. In some
embodiments, an application can bypass the rasterizer and
depth test component 873 and access un-rasterized vertex
data via a stream out unit 823.

The graphics processor 800 has an interconnect bus,
interconnect fabric, or some other interconnect mechanism
that allows data and message passing amongst the major
components of the processor. In some embodiments, execu-
tion units 8352A, 852B and associated cache(s) 851, texture
and media sampler 854, and texture/sampler cache 858
interconnect via a data port 856 to perform memory access
and communicate with render output pipeline components of
the processor. In some embodiments, sampler 854, caches
851, 858 and execution units 852A, 8528 cach have separate
memory access paths.

In some embodiments, render output pipeline 870 con-
tains a rasterizer and depth test component 873 that converts
vertex-based objects mnto an associated pixel-based repre-
sentation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available 1n some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though 1n some 1nstances, pixel
operations associated with 2D operations (e.g. bit block
image transiers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 i1s available to all
graphics components, allowing the sharing of data without
the use of main system memory.

In some embodiments, graphics processor media pipeline
830 includes a media engine 837 and a video front end 834.
In some embodiments, video front end 834 receives pipeline
commands from the command streamer 803. In some
embodiments, media pipeline 830 includes a separate com-
mand streamer. In some embodiments, video front-end 834
processes media commands before sending the command to
the media engine 837. In some embodiments, media engine
337 includes thread spawning functionality to spawn threads
for dispatch to thread execution logic 850 via thread dis-
patcher 831.

In some embodiments, graphics processor 800 includes a
display engine 840. In some embodiments, display engine
840 1s external to processor 800 and couples with the
graphics processor via the ring interconnect 802, or some
other interconnect bus or fabric. In some embodiments,
display engine 840 includes a 2D engine 841 and a display
controller 843. In some embodiments, display engine 840

5

10

15

20

25

30

35

40

45

50

55

60

65

14

contains special purpose logic capable of operating inde-
pendently of the 3D pipeline. In some embodiments, display
controller 843 couples with a display device (not shown),
which may be a system integrated display device, as 1n a
laptop computer, or an external display device attached via
a display device connector.

In some embodiments, graphics pipeline 820 and media
pipeline 830 are configurable to perform operations based on
multiple graphics and media programming interfaces and are
not specific to any one application programming interface
(API). In some embodiments, driver software for the graph-
ics processor translates API calls that are specific to a
particular graphics or media library into commands that can
be processed by the graphics processor. In some embodi-
ments, support 1s provided for the Open Graphics Library
(OpenGL) and Open Computing Language (OpenCL) from
the Khronos Group, the Direct3D library from the Microsoit
Corporation, or support may be provided to both OpenGL

and D3D. Support may also be provided for the Open Source
Computer Vision Library (OpenCV). A future API with a

compatible 3D pipeline would also be supported 11 a map-
ping can be made from the pipeline of the future API to the
pipeline of the graphics processor.

FIG. 9A 1s a block diagram illustrating a graphics pro-
cessor command format 900 according to some embodi-
ments. FIG. 9B 1s a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes 1n FIG. 9A 1llustrate the com-
ponents that are generally included 1n a graphics command
while the dashed lines include components that are optional
or that are only included 1 a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 9A includes data fields to 1dentify a target
client 902 of the command, a command operation code
(opcode) 904, and the relevant data 906 for the command. A
sub-opcode 905 and a command size 908 are also included
in some commands.

In some embodiments, client 902 specifies the client unit
of the graphics device that processes the command data. In
some embodiments, a graphics processor command parser
examines the client field of each command to condition the
turther processing of the command and route the command
data to the appropriate client unit. In some embodiments, the
graphics processor client units include a memory interface
unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that
processes the commands. Once the command 1s received by
the client unit, the client unit reads the opcode 904 and, i
present, sub-opcode 905 to determine the operation to per-
form. The client unit performs the command using informa-
tion 1 data field 906. For some commands an explicit
command size 908 1s expected to specily the size of the
command. In some embodiments, the command parser auto-
matically determines the size of at least some of the com-
mands based on the command opcode. In some embodi-
ments commands are aligned via multiples of a double word.

The flow diagram 1n FIG. 9B shows an exemplary graph-
ics processor command sequence 910. In some embodi-
ments, software or firmware of a data processing system that
features an embodiment of a graphics processor uses a
version ol the command sequence shown to set up, execute,
and terminate a set of graphics operations. A sample com-
mand sequence 1s shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be 1ssued as batch of commands 1n a

US 10,417,729 B2

15

command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

In some embodiments, the graphics processor command
sequence 910 may begin with a pipeline flush command 912
to cause any active graphics pipeline to complete the cur-
rently pending commands for the pipeline. In some embodi-
ments, the 3D pipeline 922 and the media pipeline 924 do
not operate concurrently. The pipeline flush 1s performed to
cause the active graphics pipeline to complete any pending
commands. In response to a pipeline tlush, the command
parser for the graphics processor will pause command
processing until the active drawing engines complete pend-
ing operations and the relevant read caches are invalidated.
Optionally, any data in the render cache that 1s marked
‘dirty’ can be flushed to memory. In some embodiments,
pipeline flush command 912 can be used for pipeline syn-
chronization or before placing the graphics processor into a
low power state.

In some embodiments, a pipeline select command 913 1s
used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 1s required
only once within an execution context before 1ssuing pipe-
line commands unless the context 1s to 1ssue commands for
both pipelines. In some embodiments, a pipeline flush
command 1s 912 1s required immediately before a pipeline
switch via the pipeline select command 913.

In some embodiments, a pipeline control command 914
configures a graphics pipeline for operation and i1s used to
program the 3D pipeline 922 and the media pipeline 924. In
some embodiments, pipeline control command 914 config-
ures the pipeline state for the active pipeline. In one embodi-
ment, the pipeline control command 914 i1s used for pipeline
synchronization and to clear data from one or more cache
memories within the active pipeline before processing a
batch of commands.

In some embodiments, return buffer state commands 916
are used to configure a set of return butlers for the respective
pipelines to write data. Some pipeline operations require the
allocation, selection, or configuration of one or more return
buflers into which the operations write intermediate data
during processing. In some embodiments, the graphics pro-
cessor also uses one or more return butlers to store output
data and to perform cross thread communication. In some
embodiments, the return bufler state 916 includes selecting
the size and number of return bullers to use for a set of
pipeline operations.

The remaining commands i1n the command sequence
differ based on the active pipeline for operations. Based on
a pipeline determination 920, the command sequence 1is
tallored to the 3D pipeline 922 beginning with the 3D
pipeline state 930, or the media pipeline 924 beginning at the
media pipeline state 940.

The commands for the 3D pipeline state 930 include 3D
state setting commands for vertex butler state, vertex ele-
ment state, constant color state, depth builer state, and other
state variables that are to be configured before 3D primitive
commands are processed. The values of these commands are
determined at least i part based the particular 3D API 1n
use. In some embodiments, 3D pipeline state 930 commands
are also able to selectively disable or bypass certain pipeline
clements 1f those elements will not be used.

In some embodiments, 3D primitive 932 command 1s
used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932

10

15

20

25

30

35

40

45

50

55

60

65

16

command are forwarded to the vertex fetch function 1n the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buflers. In some embodiments, 3D primitive 932
command 1s used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

In some embodiments, 3D pipeline 922 1s triggered via an
execute 934 command or event. In some embodiments, a
register write triggers command execution. In some embodi-
ments execution 1s triggered via a ‘go’ or ‘kick’ command in
the command sequence. In one embodiment command
execution 1s triggered using a pipeline synchronization com-
mand to flush the command sequence through the graphics
pipeline. The 3D pipeline will perform geometry processing
for the 3D primitives. Once operations are complete, the
resulting geometric objects are rasterized and the pixel
engine colors the resulting pixels. Additional commands to
control pixel shading and pixel back end operations may
also be included for those operations.

In some embodiments, the graphics processor command
sequence 910 follows the media pipeline 924 path when
performing media operations. In general, the specific use
and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or 1n part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor 1s used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

In some embodiments, media pipeline 924 1s configured
in a similar manner as the 3D pipeline 922. A set of media
pipeline state commands 940 are dispatched or placed mto
in a command queue before the media object commands
942. In some embodiments, media pipeline state commands
940 include data to configure the media pipeline elements
that will be used to process the media objects. This includes
data to configure the video decode and video encode logic
within the media pipeline, such as encode or decode format.
In some embodiments, media pipeline state commands 940
also support the use one or more pointers to “indirect” state
clements that contain a batch of state settings.

In some embodiments, media object commands 942 sup-
ply pointers to media objects for processing by the media
pipeline. The media objects imnclude memory bullers con-
taining video data to be processed. In some embodiments, all
media pipeline states must be valid before 1ssuing a media
object command 942. Once the pipeline state 1s configured
and media object commands 942 are queued, the media
pipeline 924 is triggered via an execute command 944 or an
equivalent execute event (e.g., register write). Output from
media pipeline 924 may then be post processed by opera-
tions provided by the 3D pipeline 922 or the media pipeline
924. In some embodiments, GPGPU operations are config-
ured and executed 1n a similar manner as media operations.

FIG. 10 illustrates exemplary graphics software architec-
ture for a data processing system 1000 according to some
embodiments. In some embodiments, software architecture
includes a 3D graphics application 1010, an operating sys-

US 10,417,729 B2

17

tem 1020, and at least one processor 1030. In some embodi-
ments, processor 1030 includes a graphics processor 1032
and one or more general-purpose processor core(s) 1034.
The graphics application 1010 and operating system 1020
cach execute 1n the system memory 1050 of the data
processing system.

In some embodiments, 3D graphics application 1010
contains one or more shader programs including shader
instructions 1612. The shader language instructions may be
in a high-level shader language, such as the High Level
Shader Language (HLSL) or the OpenGL Shader Language
(GLSL). The application also includes executable instruc-
tions 1614 1n a machine language suitable for execution by
the general-purpose processor core 1034. The application
also mcludes graphics objects 1616 defined by vertex data.

In some embodiments, operating system 1020 1s a Micro-
solt® Windows® operating system Ifrom the Microsoit
Corporation, a proprictary UNIX-like operating system, or
an open source UNIX-like operating system using a variant
of the Linux kernel. When the Direct3D API 1s 1n use, the
operating system 1020 uses a front-end shader compiler
1024 to compile any shader mstructions 1612 1n HLSL into
a lower-level shader language. The compilation may be a
just-mn-time (JI'T) compilation or the application can perform
shader pre-compilation. In some embodiments, high-level
shaders are compiled into low-level shaders during the
compilation of the 3D graphics application 1010.

In some embodiments, user mode graphics driver 1026
contains a back-end shader compiler 1027 to convert the
shader istructions 1612 into a hardware specific represen-
tation. When the OpenGL API 1s in use, shader instructions
1612 1n the GLSL high-level language are passed to a user
mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

One or more aspects of at least one embodiment may be
implemented by representative code stored on a machine-
readable medium, which represents and/or defines logic
within an integrated circuit such as a processor. For
example, the machine-readable medium may 1nclude
istructions, which represent logic within the processor.
When read by a machine, the instructions may cause the
machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described 1n asso-
ciation with any of the embodiments described herein.

FIG. 11 1s a block diagram 1llustrating an IP core devel-
opment system 1100 that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated mnto a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC integrated circuit). A
design facility 1730 can generate a software simulation 1710
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 1710 can be used to

10

15

20

25

30

35

40

45

50

55

60

65

18

design, test, and verily the behavior of the IP core. A register
transter level (RTL) design can then be created or synthe-
s1zed from the simulation model 1100. The RTL design 1115
1s an abstraction of the behavior of the integrated circuit that
models the flow of digital signals between hardware regis-
ters, including the associated logic performed using the
modeled digital signals. In addition to an RTL design 1115,
lower-level designs at the logic level or transistor level may
also be created, designed, or synthesized. Thus, the particu-
lar details of the initial design and simulation may vary.

The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be 1n a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to vernity the IP
core design. The IP core design can be stored for delivery to
a 3™ party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit
that 1s based at least in part on the IP core design. The
tabricated integrated circuit can be configured to perform
operations 1n accordance with at least one embodiment
described herein.

FIG. 12 1s a block diagram illustrating an exemplary
system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. The exemplary integrated circuit includes one
or more application processors 1205 (e.g., CPUs), at least
one graphics processor 1210, and may additionally include
an 1mage processor 12135 and/or a video processor 1220, any
of which may be a modular IP core from the same or
multiple different design facilities. The integrated circuit
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an I°S/I°C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia intertace (HDMI)
controller 1250 and a mobile industry processor interface
(MIPI) display interface 1255. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 12635 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

Additionally, other logic and circuits may be included 1n
the processor of integrated circuit 1200, including additional
graphics processors/cores, peripheral interface controllers,
or general purpose processor cores.

FIG. 13 1s a block diagram illustrating an exemplary
hardware logic 1300 to generate an event priority tree to
identily performance bottlenecks 1n a graphics workload.
The logic 1300 comprises a metric collector 1310, a signa-
ture generator 1320, and an event priority tree generator
1330. In general, the logic 1300 may be operably coupled to
a graphics processor (e.g., the graphics processor(s) 108
and/or the external graphics processor 112) and particularly
to 1nterfaces between EUs of the graphics processor (e.g.,
refer to FIG. 14).

The metric collector 1310 comprises logic to receive an
indication of at least one metric for each of the plurality of
events. In particular, the metric collector 1310 can repeat-
edly collect (e.g., 1dentily, determine, sense, or the like) a
number of different metrics. In some examples, the metrics
can 1mclude a number of clock cycles needed to execute the

US 10,417,729 B2

19

event or a number of clock cycles between event changes. In
some examples, the metrics can be values based on a time
in clocks during execution of the workload. In some
examples, the metrics can be values based on a target (e.g.,
render target, shader change, or the like) during execution of
the workload. In some examples, the metrics can be values
based on given instructions (e.g., clear, copy, update, dis-
patch, draw, dispatch, execute, or the like).

The signature generator can generate, for each event, a
signature (e.g., refer to FIG. 15 and FIG. 18) indicative of a
region of the graphics hardware or an architectural block of
the graphics hardware limiting performance of the event.
These regions are sometimes referred to as hotspots. In some
examples, a hotspot can be determined based on perfor-
mance 1indications for interfaces (e.g., refer to FIG. 14)
between architectural blocks of the graphics hardware. In
some examples, the performance 1indication includes a num-
ber of clock cycles data 1s ready over the interface, a number
of clock cycles data 1s refused over the interface, or a ratio
of the number of clock cycles data 1s ready over a first
interface over the number of clock cycles data 1s ready over
a second interface.

In general, the event priority tree generator 1330 gener-
ates a prioritized list of events to be resolved to increase
performance of the graphics workload. In particular, the
event priority tree generator 1330 can generate the event
priority tree 125 (e.g., refer to FIG. 16) including a priori-
tized listing of events.

The event prionty tree generator 1330 can also generate
a prioritized list of frames of events to resolve to increase
performance of the graphics workload. In particular, the
event priority tree generator 1330 can sort a number of
frames based on a combined weight of events corresponding
to the frame (e.g., refer to FIG. 17).

FIG. 14 1s a block diagram illustrating an exemplary
portion of a graphics processor 1400. The graphics processor
1400 1ncludes architectural blocks 1410 and interfaces 1420
between the architectural blocks. For example, architectural
blocks 1410-1, 1410-2, and 1410-3 are depicted with inter-
tace 1420-1 operably coupled to architectural block 1410-1,
interface 1420-2 operably coupling architectural block

1410-1 and 1410-2, interface 1420-3 operably coupling
architectural block 1410-2 and 1410-3, and intertace 1420-4
operably coupled to architectural block 1410-3. During
operation, graphic workload data (e.g., primitives, mstruc-

tions, or the like) may flow between architectural blocks
1410 via interfaces 1420.

The interfaces 1420 can be embodied as hardware metrics
to be evaluated per event, per tuple (e.g., set ol events
sharing a similar state), and/or per pipeline state (e.g., render
target, pipeline state object, or the like). The data flow
through the intertaces 1420 can be quantified based on the
state of the interface. In some examples, the state of the
interfaces 1420 can be quantified based on a time over a
threshold 1n which data 1s ready on the interface (e.g., clock
cycles over threshold, or the like). In some examples, the
state of the interfaces 1420 can be quantified based on a drop
in time over a threshold i which data i1s ready on the
interface (e.g., clock cycles below a threshold, or the like).
In some examples, the state of the interfaces 1420 can be
quantified based on throughput (e.g., a ratio of time data 1s
ready on one interface (e.g., 1420-2) over time data 1s ready
on an adjacent interface (e.g., 1420-3), or the like). In some
examples, the state of the iterfaces 1420 can be quantified
based on a number of pixels per clock cycle written to the

5

10

15

20

25

30

35

40

45

50

55

60

65

20

interface. In some examples, the state of the interfaces 1420
can be quantified based on i1dentifying a known bad data
pattern, or the like.

FIG. 15 15 a block diagram 1llustrating an exemplary event
description table 1500. In some examples, the signature
generator 1320 can generate an event description table
including indications of events for a graphics workload and
signatures and weights corresponding to the events. For
example, the signature generator 1320 may i1dentity events
1510 as described herein. The events 1510 can be indicated
in the event description table 1500, or an information
clement including indications of signatures 1520, hashes
1530, and a weight 1540.

In general, the signatures 1520 indicate portions of the
graphics hardware in which a bottleneck occurs or 1n which
optimization of the graphics workload may increase efli-
ciency. Example generation ol signatures 1520 i1s given
below with respect to FIG. 18. In general however, for each
event 1510, architectural blocks 1410 are evaluated from
downstream to upstream. Hotspots or bottlenecks down-
stream of the architectural blocks will stall upstream blocks.

The hashes 1530 can correspond to a variety of different
shaders, for example, vertex shaders, geometry shaders,
pixel shaders, fragment shaders, depth shaders, or the like.
In some examples, the weight 1540 can be the cycle count
(e.g., clock cycle count, or the like) of the event over a
frame, over all frames, over a subset of frames, or the like.

For example, the event description table 1500 includes
five events 1510-1, 1510-2, 1510-2, 1510-4, and 1510-5. It
1s to be appreciated that the number of events 1s depicted at
a quantity to facilitate understanding and provide clarity.
However, during practice many hundreds, thousands, hun-
dreds of thousands, or the like events may be represented
and sorted as described herein. Examples are not limited 1n
this context.

The event 1510-1 1s depicted having signature 1520-1,
hashes 1530-1, and weight 1540-1. The event 1510-2 1s
depicted having signature 1520-2, hashes 1530-2, and
weight 1540-2. The event 1510-3 15 depicted having signa-
ture 1520-3, hashes 1530-3, and weight 1540-3. The event
1510-4 1s depicted having signature 1520-4, hashes 15304,
and weight 1540-4. The event 1510-5 1s depicted having
signature 1520-5, hashes 1530-5, and weight 1540-5.

The event priority tree generator 1330 can generate the
event priority tree 125 from the events 1510 of the event
description table 1500. FIG. 16 1s a block diagram illustrat-
ing an exemplary event priority tree 1600. The event priority
tree 1600 can be generated from events, such as, events
1510. The event priority tree 1600 1s described with refer-
ence to the events 1510 of FIG. 15. However, 1t 1s worthy to
note this 1s done for purposes of convenience and clarity and
not to be limiting.

The event priority tree 1600 includes nodes organized
under a root 1601. The nodes may be either parent nodes
1612 or leal nodes 1614. Each of the leaf nodes 1614 may
correspond to a one of the events 1510. For example, leal
nodes 1614-1 to 1614-5 correspond to events 1510-1 to
1510-5. In particular, leal node 1614-1 may correspond to
event 1510-2; leal node 1614-2 may correspond to event
1510-1; leaf node 1614-3 may correspond to event 1510-5;
leal node 1614-4 may correspond to event 1510-3; and leaf
node 1614-5 may correspond to event 1510-4.

In general, the event prionty tree generator 1330 can
organize the leal nodes 1614 under any combination of
parent nodes 1612 by forming parent nodes for various
characteristics (e.g. hashes 1530, or the like) of the events
1510. Furthermore, multiple levels of parent nodes 1612 can

US 10,417,729 B2

21

be formed. For example, the event priority tree 1600
includes a parent node level 1620 and a parent node level
1630. Where the first parent node level 1620 1s under the
root 1601 and the second parent node level 1630 1s under the
first parent node level 1620.

Each level of parent nodes can include a parent node 1612
corresponding to group or “bucket” of similarly character-
1zed events 1510. For example, the parent node level 1620
include parent nodes 1612-1, 1612-2, and 1612-3, with each
parent node 1612-1 to 1612-3 corresponding to a particular
pixel hash. For example, the parent node 1610-1 can corre-
spond to events having a first pixel hash (e.g., 0Ox12186BAS,
or the like) while the parent node 1610-2 can correspond to
events having a second pixel hash (e.g., 0x3223EF42, or the
like) and the parent node 1610-3 can correspond to events
having a third pixel hash (e.g., 0x13292C54, or the like).

The parent node level 1630 include parent nodes 1612-4,
1612-5,1612-6 and 1612-7, with each parent node 1612-4 to
1612-7 corresponding to a particular vertex hash. For
example, the parent node 1610-4 can correspond to events
having a first vertex hash (e.g., 0x9210FB1B, or the like);
the parent node 1610-35 can correspond to events having a
second vertex hash (e.g., 0x4142F6C8, or the like); the
parent node 1610-6 can correspond to events having a third
vertex hash (e.g., 0x4152BA67, or the like); and the parent
node 1610-7 can correspond to events having a fourth vertex
hash (e.g., OxAB86CBES, or the like).

The leal nodes 1614 are then organized under parent
nodes 1n the lower level of parent nodes (e.g., the parent
nodes 1n level 1630, or the like) based on the particular
characteristic (e.g., vertex hash and pixel hash, or the like)
of the respective events. For example, the leal node 1614-1
corresponding to event 1510-2 1s organized under the parent
nodes 1612-4 and 1612-1 as the event 1510-2 has the same
vertex hash and pixel hash to which these respective parent
nodes correspond. Likewise for the other leaf nodes 1n the
event priority tree.

Each leaf node may have a weight 1540, corresponding to
the weight 1540 of the event 1510 to which the leaf node
1614 corresponds. For example, the leal node 1614-1 may
have weight 1540-2, corresponding to the event 1510-2.

Each parent node may have a combined weight 1650,
corresponding to a weight of all nodes under that parent
node. For example, the parent node 1612-4 may have a
combined weight 1650-4 corresponding to the weight
1510-2 of the leal node 1612-1. As another example, the
parent node 1612-5 may have a combined weight 1650-5
corresponding to a sum of the weights of the leal nodes
1614-2 and 1614-3. Additionally, the parent node 1612-2
may have a combined weight 1650-2 corresponding to the
combined weights 1650-5 and 16350-6 of the parent nodes
1612-5 and 1612-6, which are under the parent node 1612-2.

The parent nodes 1612 and leaf nodes 1614 can be sorted
based on the weight and combined weights to indicate
events 1510 (and corresponding signatures 1520) that 1f
resolved may have the largest impact of performance of the
graphics workload and graphics hardware.

It 1s worthy to note, that the event priority tree 1600 1s
grven as an example only and not to be limiting. In particu-
lar, the parent nodes can be organized based on any of a
variety of different hashes or characteristics of the events.
Furthermore, 1n some examples, the event priority tree can
be based on global events, or more particularly, events over
a number of frames of a graphics workload. Frames can be
sorted based on a global weight of each frame. For example,
FIG. 17 1s a block diagram illustrating an exemplary set of
sorted frames 1700. The sorted frames 1700 can be sorted

10

15

20

25

30

35

40

45

50

55

60

65

22

based on a global weight of all top level parent nodes (e.g.,
1612-1 to 1612-3, or the like) 1n each respective frame. The
set of sorted frames 1700 1s described with reference to the
parent nodes 1612 and events 1510 of FIG. 16. However, 1t
1s worthy to note this 1s done for purposes ol convenience

and clarity and not to be limiting.

The set of sorted frames 1700 1ncludes frames 1710. In
particular, the frames 1710-1, 1710-2, and 1710-3 are
depicted. It 1s worthy to note, that the number of frames are
depicted at a quantity to facilitate understanding and not to
be limiting. In particular, during practice, the set of sorted
frames 1700 may include a number of frames greater than
depicted here. Additionally, the frames 1710 are discussed
with respect to the nodes 1612 of FIG. 16. However this 1s
done for convenience and to to be limiting.

The set of sorted frames 1710-1 include a global weight
1720, representative of the sum of the weights of each node
associated with a particular frame. For example, the frame
1710-1 1s depicted associated with nodes 1612-1 and 1612-
2; the frame 1710-2 1s depicted associated with nodes
1612-2 and 1612-3; and the frame 1710-3 1s depicted
associated with the nodes 1612-1 and 1612-2. It 1s worthy to
note, that the frames 1710 can be sorted based on any of the
nodes 1612 and/or 1614. In particular, with some examples
(e.g., refer to FIG. 17) the frames 1710 can be sorted based
on the top level (e.g., the node level 1620) nodes while 1n
other examples the frames 1710 can be sorted based on
lower level (e.g., the node level 1630, or the like) or even
leat nodes (e.g., nodes 1614, or the like). Examples are not
limited in this context.

A global weight can be determined for each of the frames
based on the combined weight of each node associated with
the frames. For example, the frame 1710-1 has a global
weight 1720-1 of 26.40 (e.g., the sum of the combined
weilghts 1650-1 and 1650-2); the frame 1710-2 has a global
weight 1720-2 of 14.13 (e.g., the sum of the combined
weights 1650-2 and 1650-3); and the frame 1710-3 has a
global weight 1720-3 of 23.71 (e.g., the sum of the com-
bined weights 1650-1 and 1650-3). The frames 1710 can be
sorted based on their global weights 1750. For example, the
set of sorted frames 1700 can be sorted as frame 1710-1,
1710-3, and 1710-2 (e.g., corresponding to a numeric sorting,
based on global weights 1750-1, 1750-3, and 1750-2).

FIG. 18 1llustrates a block diagram of a logic flow 1800,
according to an embodiment. The logic flow 1800 may be
representative of logic and/or features implemented by a
processing unit, such as, the processor core(s) 107 1n pri-
oritizing events of a graphics workload as described herein.
The logic flow 1800 may begin at block 1810. At block 1810
“determine whether a graphics processor, 1n executing an
event of a graphics workload, 1s operating above a threshold
operational rate,” the metric collector 1310 may determine
whether a graphics processor (e.g., the graphics processor(s)
108 and/or the external graphics processor 112, or the like),
in executing a graphics workload (e.g., graphics workload
data 122, or the like) 1s operating above a threshold opera-
tion rate.

From block 1810, the logic flow 1800 may continue to
either block 1820 or block 1830. In particular, the logic tlow
1800 may continue from block 1810 to block 1820 based on
a determination that the graphics processor, 1n executing an
event of a graphics workload, 1s operating above a threshold
operational rate. Alternatively, logic tflow 1800 may continue
from block 1810 to block 1830 based on a determination that
the graphics processor, 1n executing an event of a graphics
workload, 1s not operating above a threshold operational
rate.

US 10,417,729 B2

23

At block 1820 “determine the signature based on the
graphics processor” the signature generation umt 1320 can
determine a signature (e.g., the signature 1520 of the event
1510, or the like) based on the graphics processor.

At block 1830 “determine whether a first architectural 5
block of a graphics processor, 1n executing an event of a
graphics workload, 1s operating above a threshold opera-
tional rate,” the metric collection unit 1310 can determine
whether a first architectural block i1s operating above or
below an operational threshold. For example, the metric 10
collection umit 1310 can determine whether memory band-
width (e.g., based on memory interface 314, or the like) 1s
constrained or causing latency based on the memory inter-
face operating above a threshold level.

From block 1830, the logic flow 1800 may continue to 15
either block 1840 or block 1850. In particular, the logic tlow
1800 may continue from block 1830 to block 1840 based on
a determination that the first architectural block of a graphics
processor, 1n executing an event ol a graphics workload, 1s
operating above a threshold operational rate. Alternatively, 20
logic tlow 1800 may continue from block 1830 to block
1850 based on a determination that the first architectural
block of a graphics processor, 1n executing an event of a
graphics workload, 1s not operating above a threshold opera-
tional rate. 25

At block 1840 “determine the signature based on the first
architectural block™ the signature generation umt 1320 can
determine a signature (e.g., the signature 1520 of the event
1510, or the like) based on the first architectural block.

At block 1850 “determine whether a second architectural 30
block of a graphics processor, 1n executing an event of a
graphics workload, 1s operating above a threshold opera-
tional rate,” the metric collection unit 1310 can determine
whether a second architectural block 1s operating above or
below an operational threshold. For example, the metric 35
collection unit 1310 can determine whether a color pipeline
(e.g., 3D media sub-system 315, or the like) 1s saturated
causing latency based on the color pipeline operating above
a threshold level.

Continuing to block 1860 “determine the signature based 40
on the first architectural block™ the signature generation unit
1320 can determine a signature (e.g., the signature 1520 of
the event 1510, or the like) based on the second architectural
block.

It 1s worthy to note, that the logic flow 1800 may 45
determine whether additional architectural blocks are oper-
ating above a threshold level and may determine a signature
based on such determination. For example, the signature can
be based on determining a bottleneck in a graphics hard-
ware, 1n executing an event of a graphics workload by 50
identifying the bottleneck from the end of the graphics
pipeline to the beginning of the graphics pipeline. For
example, a first architectural block could be a memory
bandwidth (e.g., memory interface 314 at capacity); a sec-
ond architectural block could be a color pipeline (e.g., 3D 55
media engine 315); a third architectural block could be EU
usage (e.g., all threads loaded into EUs 552, or the like); a
fourth architectural block could be a memory subsystem
(e.g., data cache 612 stalling, or the like); a fifth architectural
block could be sampler streaming (e.g., samplers 5354 60
streaming at capacity, or the like.

FIG. 19 illustrates a block diagram of a logic flow 1900,
according to an embodiment. The logic flow 1900 may be
representative of logic and/or features implemented by a
processing unit, such as, the processor core(s) 107 1n gen- 65
crating an event priority tree of a graphics workload as
described herein. The logic flow 1900 may begin at block

24

1910. At block 1910 “recerve an information element to
include 1ndications of events of a graphics workload, each of
the events including an associated signature, weight, and one
or more hashes,” the event priority tree generator 1330 can
receive an information element (e.g., the event table 1500, or
the like) to mclude indications of events 1510. Each of the
events 1510 including an associated signature 1520, hashes
1530, and a weight 1540.

Continuing to block 1920 “generate one or more parent
nodes, each of the one or more parent nodes corresponding
to a one of the one or more hashes,” the event priority tree
generator 1330 can generate one or more parent nodes 1612
corresponding to ones of the hashes 1530.

Continuing to block 1930 “group the events into leaf
nodes under at least one of the one or more parent nodes
based on the one or more hashes™ the event priority tree
generator 1330 can group the events 1510 into leal nodes
1614 organized under the parent nodes 1612 based on the
hashes 1530.

Continuing to block 1940 “determine, for each parent
node, a combined weight of the parent node based on the
weight of each node below the parent node” the event
priority tree generator 1330 can determine, for each parent
node 1612, a combined weight 1620 of the parent node 1612
based on the weights of all nodes (e.g., parent nodes 1612,
leat nodes 1614, etc.) under the parent node 1612.

Continuing to block 1950 “sort the parent nodes based on
combined weights,” the event priority tree generator can sort
the nodes based on weight. For example, the parent nodes
1612 and leaf nodes 1614 can be sorted based on weight to
form a tree (e.g., the tree 1600, or the like).

FIG. 20 1llustrates a block diagram of a storage medium
2000, according to an embodiment. The storage medium
2000 may comprise an article of manufacture. In some
examples, the storage medium 2000 may include any non-
transitory computer readable medium or machine readable
medium, such as an optical, magnetic or semiconductor
storage. The storage medium 2000 may store various types
of computer executable instructions, such as instructions to
implement logic flow 1800 and/or logic flow 1900. Addi-
tionally, the storage medium 2000 may store an information
clement to include indications of the events (e.g., events
represented 1n event table 1500, event priority tree 1600,
and/or set of sorted frames 1700, or the like). Examples of
a computer readable or machine readable storage medium
may include any tangible media capable of storing electronic
data, including volatile memory or non-volatile memory,
removable or non-removable memory, erasable or non-
crasable memory, writeable or re-writeable memory, and so
forth. Examples of computer executable instructions may
include any suitable type of code, such as source code,
compiled code, mterpreted code, executable code, static
code, dynamic code, object-oriented code, visual code, and
the like. The examples are not limited in this context.

To the extent wvarious operations or functions are
described herein, they can be described or defined as hard-
ware circulitry, software code, 1nstructions, configuration,
and/or data. The content can be embodied i hardware logic,
or as directly executable software (“object” or “executable”
form), source code, high level shader code designed for
execution on a graphics engine, or low level assembly
language code 1n an instruction set for a specific processor
or graphics core. The soiftware content of the embodiments
described herein can be provided via an article of manufac-
ture with the content stored thereon, or via a method of
operating a communication interface to send data via the
communication interface.

US 10,417,729 B2

25

A non-transitory machine readable storage medium can
cause a machine to perform the functions or operations
described, and includes any mechanism that stores informa-
tion 1n a form accessible by a machine (e.g., computing
device, electronic system, etc.), such as recordable/non-
recordable media (e.g., read only memory (ROM), random
access memory (RAM), magnetic disk storage media, opti-
cal storage media, tlash memory devices, etc.). A commu-
nication interface includes any mechanism that interfaces to
any ol a hardwired, wireless, optical, etc., medium to
communicate to another device, such as a memory bus
interface, a processor bus interface, an Internet connection,
a disk controller, etc. The communication interface 1s con-
figured by providing configuration parameters or sending
signals to prepare the communication interface to provide a
data signal describing the software content. The communi-
cation interface can be accessed via one or more commands
or signals sent to the communication interface.

Some embodiments may be described using the expres-
sion “one embodiment” or “an embodiment” along with
their dertvatives. These terms mean that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment. The
appearances of the phrase “in one embodiment™ in various
places 1n the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their dernivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are
in direct physical or electrical contact with each other. The
term “coupled,” however, may also mean that two or more
clements are not in direct contact with each other, but yet
still co-operate or interact with each other. Furthermore,
aspects or elements from different embodiments may be
combined.

It 1s emphasized that the Abstract of the Disclosure 1s
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It 1s submitted with the understand-
ing that 1t will not be used to interpret or limit the scope or
meaning of the claims. In addition, 1in the foregoing Detailed
Description, it can be seen that various features are grouped
together 1n a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure 1s not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly
recited in each claim. Rather, as the following claims retlect,
inventive subject matter lies 1 less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated 1nto the Detailed Description, with each
claim standing on 1ts own as a separate embodiment. In the
appended claims, the terms “including” and “in which™ are
used as the plain-English equivalents of the respective terms
“comprising” and “wherein,” respectively. Moreover, the
terms ““first,” “‘second,” “third,” and so forth, are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

What has been described above includes examples of the
disclosed architecture. It 1s, of course, not possible to
describe every concelvable combination of components and/
or methodologies, but one of ordinary skill 1in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture 1s intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.
The detailed disclosure now turns to providing examples

10

15

20

25

30

35

40

45

50

55

60

65

26

that pertain to further embodiments. The examples provided
below are not intended to be limiting.

Example 1

An apparatus to prioritize graphics processing unit (GPU)
events comprising: logic, at least a portion of which 1is
implemented in hardware, the logic to: recerve an informa-
tion element to include indications of a plurality of events
executed by a graphics processing unit (GPU) comprising a
plurality of architectural blocks, each of the plurality of
events comprising a weight and a signature; determine, for
cach of the plurality of events, the signature based in part on
at least one of the plurality of architectural blocks; and
generate an event prioritization tree based on the plurality of
events, the event prioritization tree comprising a plurality of
leat nodes and one or more parent nodes, each one of the leaf
nodes corresponding to a respective one of the plurality of
events, each of the one or more parent nodes comprising a
cumulative weight based at least 1n part on the weight of the
events associated with each leal node descending from the
parent node.

Example 2

The apparatus of example 1, the logic to receive an
indication of at least one metric for each of the plurality of
events.

Example 3

The apparatus of example 2, the at least one metric
comprising one or more of a number of clock cycles to
execute the event or a number of clock cycles between event
changes.

Example 4

The apparatus of example 3, each of the plurality of
events comprising a draw call, a clear call, a copy call, an
update call, or a dispatch call.

Example 5

The apparatus of example 4, the logic to: identily a
plurality of interfaces operably coupling the architectural
blocks; determine, for each of the plurality of events, a
performance indication for the plurality of interfaces; deter-
mine at least one architectural block limiting execution of
the event based 1n part on the performance indication for the
plurality of interfaces; and determine, for each of the plu-
rality ol events, the signature based on the determined
architectural blocks.

Example 6

The apparatus of example 5, the performance indication
comprising at least one of a number of clock cycles data 1s
ready over the interface, a number of clock cycles data 1s
refused over the interface, or a ratio of the number of clock
cycles data 1s ready over a first interface over the number of
clock cycles data 1s ready over a second interface, the second
interface.

Example 7

The apparatus of example 1, each of the plurality of
events corresponding to a one of a plurality of shaders, each

US 10,417,729 B2

27

parent node corresponding to a particular one of the plurality
of shaders, wherein each leal node of a particular parent
node corresponds to the particular one of the plurality of
shaders of the particular parent node.

Example 8

The apparatus of example 7, wherein the shaders com-
prise pixel shaders, vertex shaders, depth shaders, fragment
shaders, domain shaders, hull shaders, computer shader, or
geometry shaders.

Example 9

The apparatus of example 1, wherein the events comprise
events for a single frame of a video to be rendered.

Example 10

The apparatus of example 1, wherein the plurality of
events comprise events for a plurality of frames of a video
to be rendered, each of the frames corresponding to at least
one of the events.

Example 11

The apparatus of example 10, the logic to: determine a
global weight of each frame based 1n part on a weight of
ones of the events corresponding to the frame; and sort the
frames based 1n part on the global weight.

Example 12

The apparatus of any one of examples 1 to 11, further
comprising a display and a display interface operably
coupled to the logic, the display interface to receive the
event prioritization tree and to display an image to include
indications of the event prioritization tree.

Example 13

A computing-implemented method comprising: receiving
an mformation element to include an indication of a plurality
of events of a graphics workload executed on a graphics
processor, each of the plurality of events including an
associated signature, weight, and one or more hashes; gen-
erating one or more parent nodes, each of the one or more
parent nodes corresponding to a one of the one or more
hashes; grouping the events into leal nodes under at least one
of the one or more parent nodes based on the one or more
hashes; determining, for each parent node, a combined
weight of the parent node based on the weight of each node
below the parent node; and sorting the parent nodes based on
combined weights.

Example 14

The computing-implemented method of example 13,
comprising determining, for each of the events, the signature
associated with the events.

Example 15

The computing-implemented method of example 14,
comprising receiving an indication of at least one metric for
cach of the plurality of events.

10

15

20

25

30

35

40

45

50

55

60

65

28

Example 16

The computing-implemented method of example 15, the
at least one metric comprising one or more of a number of
clock cycles to execute the event or a number of clock cycles
between event changes.

Example 17

The computing-implemented method of example 16, the
plurality of events comprising a draw call, a clear call, a
copy call, an update call, or a dispatch call.

Example 18

The computing-implemented method of example 17,
comprising: identifying a plurality of interfaces operably
coupling a plurality of architectural blocks; determiming, for
cach of the plurality of events, a performance indication for
the plurality of interfaces; determining at least one archi-
tectural block limiting execution of the event based 1n part
on the performance indication for the plurality of interfaces;
and determining, for each of the plurality of events, the

signature based on the determined architectural blocks.

Example 19

The computing-implemented method of example 18, the
performance 1ndication comprising at least one of a number
of clock cycles data 1s ready over the interface, a number of
clock cycles data 1s refused over the interface, or a ratio of
the number of clock cycles data 1s ready over a first interface
over the number of clock cycles data 1s ready over a second
interface, the second interface.

Example 20

The computing-implemented method of example 13, the
one or more hashes correspond to one or more shaders.

Example 21

The computing-implemented method of example 20, the
one or more shaders a pixel shader, a vertex shader, a depth
shader, a fragment shader, or a geometry shader.

Example 22

The computing-implemented method of example 13,
wherein the events comprise events for a single frame of a
video to be rendered.

Example 23

The computing-implemented method of 13, wherein the
events comprise events for a plurality of frames of a video
to be rendered, each of the frames corresponding to at least
one of the events.

Example 24

The computing-implemented method of example 23,
comprising: determining a global weight of each frame
based 1n part on a weight of ones of the events corresponding
to the frame; and sorting the frames based in part on the
global weight.

US 10,417,729 B2

29

Example 25

An apparatus comprising means lor performing the
method of any of examples 13 to 24.

Example 26

At least one machine-readable storage medium compris-
ing instructions that when executed by a computing device,
cause the computing device to: receive an information
clement to include an indication of events of a graphics
workload executed on a graphics processor, each of the
events including an associated signature, weight, and one or
more hashes; generate one or more parent nodes, each of the
one or more parent nodes corresponding to a one of the one
or more hashes; group the events into leal nodes under at
least one of the one or more parent nodes based on the one
or more hashes; determine, for each parent node, a combined
weight of the parent node based on the weight of each node
below the parent node; and sort the parent nodes based on
combined weights.

Example 27

The at least one machine-readable storage medium of
example 26, comprising nstructions that when executed by
the computing device, cause the computing device to deter-
mine, for each of the events, the signature associated with
the events.

Example 28

The at least one machine-readable storage medium of
example 27, comprising instructions that when executed by
the computing device, cause the computing device to receive
an 1ndication of at least one metric for each of the plurality
of events.

Example 29

The computing-implemented method of example 28, the
at least one metric comprising one or more ol a number of
clock cycles to execute the event or a number of clock cycles
between event changes.

Example 30

The computing-implemented method of example 29, the
at least one event comprising a draw call, a clear call, a copy
call, an update call, or a dispatch call.

Example 31

The at least one machine-readable storage medium of
example 30, comprising instructions that when executed by
the computing device, cause the computing device to: 1den-
tify a plurality of interfaces operably coupling the architec-
tural blocks; determine, for each of the plurality of events,
a performance indication for the plurality of interfaces;
determine at least one architectural block limiting execution
of the event based 1n part on the performance indication for
the plurality of interfaces; and determine, for each of the
plurality of events, the plurality of signatures based on the
determined architectural blocks.

Example 32

The at least one machine-readable storage medium of
example 31, the performance indication comprising at least

10

15

20

25

30

35

40

45

50

55

60

65

30

one of a number of clock cycles data 1s ready over the
interface, a number of clock cycles data 1s refused over the
interface, or a ratio of the number of clock cycles data 1s
ready over a first interface over the number of clock cycles
data 1s ready over a second interface, the second interface.

Example 33

The at least one machine-readable storage medium of
example 26, the one or more hashes correspond to one or
more shaders.

Example 34

The at least one machine-readable storage medium of
example 33, the one or more shaders at least one of a pixel
shader, a vertex shader, a depth shader, a fragment shader, or
a geometry shader.

Example 35

The at least one machine-readable storage medium of
example 26, wherein the events comprise events for a single
frame of a video to be rendered.

Example 36

The at least one machine-readable storage medium of
example 26, wherein the events comprise events for a
plurality of frames of a video to be rendered, each of the
frames corresponding to at least one of the events.

Example 37

The at least one machine-readable storage medium of
example 36, comprising instructions that when executed by
the computing device, cause the computing device to: deter-
mine a global weight of each frame based 1n part on a weight
of ones of the events corresponding to the frame; and sort the
frames based 1n part on the global weight.

What 1s claimed 1s:
1. An apparatus to prioritize graphics processing unit
(GPU) events comprising;:
logic, at least a portion of which 1s implemented 1n
hardware, the logic to:
receive an information element to include indications
of a plurality of events executed by a graphics
processing unit (GPU) comprising a plurality of
architectural blocks, each of the plurality of events to
comprise a weight and a signature, wherein a respec-
tive weight ol a respective event of the plurality of
events 1s based on a cycle count for the respective
event;
determine, for each of the plurality of events, the
signature based in part on at least one of the plurality
of architectural blocks:; and
generate an event prioritization tree based on the plu-
rality of events, the event prioritization tree to com-
prise a plurality of leal nodes and one or more parent
nodes, each one of the leal nodes to correspond to a
respective one of the plurality of events, each of the
one or more parent nodes to comprise a cumulative
weight based at least 1n part on the weight of the
events associated with each leal node descending
from the parent node, an event of the plurality of
events to correspond to one or more shaders, a leaf
node of the plurality of leaf nodes to correspond to

US 10,417,729 B2

31

the event and to one of the one or more shaders, and
a parent node of the one or more parent nodes to
correspond to the leal node and to one of the one or
more shaders.

2. The apparatus of claim 1, the logic to receive an
indication of at least one metric for each of the plurality of
events.

3. The apparatus of claim 2, the at least one metric
comprising one or more of a number of clock cycles to
execute at least one of the plurality of events or a number of
clock cycles between event changes.

4. The apparatus of claim 3, each of the plurality of events
comprising a draw call, a clear call, a copy call, an update
call, or a dispatch call.

5. The apparatus of claim 1, the logic to:

identify a plurality of interfaces of the architectural

blocks, an architectural block to embody a use of a
portion of hardware of the GPU, an interface of the
architectural block to comprise a metric of the event
related to the use and the signature of the event to
identify the portion of the hardware;

determine, for each of the plurality of events, a perfor-

mance indication for the plurality of interfaces;
determine at least one architectural block limiting execu-
tion of the event based in part on the performance
indication for the plurality of interfaces; and
determine, for each of the plurality of events, the signa-
ture based on the determined architectural blocks.

6. The apparatus of claim 5, the performance indication
comprising at least one of a number of clock cycles data 1s
ready over the interface, a number of clock cycles data 1s
refused over the interface, or a ratio of the number of clock
cycles data 1s ready over a first interface over the number of
clock cycles data 1s ready over a second 1nterface, the second
interface.

7. The apparatus of claim 1, each of the plurality of events
corresponding to a one of a plurality of shaders, each parent
node corresponding to a particular one of the plurality of
shaders, wherein each leaf node of a particular parent node
corresponds to the particular one of the plurality of shaders
of the particular parent node.

8. The apparatus of claim 7, wherein the shaders comprise
pixel shaders, vertex shaders, depth shaders, fragment shad-
ers, domain shaders, hull shaders, computer shader, or
geometry shaders.

9. The apparatus of claim 1, wherein at least one event of
the plurality of events comprises an event for a single frame
ol a video to be rendered.

10. The apparatus of claim 1, wherein the plurality of
events comprise events for a plurality of frames of a video
to be rendered, each of the frames corresponding to at least
one of the events.

11. The apparatus of claim 10, the logic to:

determine a global weight of each frame based in part on

a weight of ones of the events corresponding to the
frame; and

sort the frames based in part on the global weight.

12. The apparatus of claim 1, further comprising a display
and a display interface operably coupled to the logic, the
display interface to receive the event prioritization tree and
to display an image to include indications of the event
prioritization tree.

13. A method to prioritize graphics processing unit (GPU)
events comprising;:

receiving, via logic, at least a portion of which 1s imple-

mented 1n hardware, an information element to include
indications of a plurality of events executed by a

5

10

15

20

25

30

35

40

45

50

55

60

65

32

graphics processing unit (GPU) comprising a plurality
of architectural blocks, each of the plurality of events
to comprise a weight and a signature, wherein a respec-
tive weight of a respective event of the plurality of
events 1s based on a cycle count for the respective
event,

determining, via the logic, for each of the plurality of

events, the signature based 1n part on at least one of the
plurality of architectural blocks; and

generating, via the logic, an event prioritization tree based

on the plurality of events, the event prioritization tree
to comprise a plurality of leaf nodes and one or more
parent nodes, each one of the leal nodes to correspond
to a respective one of the plurality of events, each of the
one or more parent nodes to comprise a cumulative
weilght based at least 1n part on the weight of the events
associated with each leal node descending from the
parent node, an event of the plurality of events to
correspond to one or more shaders, a leal node of the
plurality of leaf nodes to correspond to the event and to
one of the one or more shaders, and a parent node of the
one or more parent nodes to correspond to the leaf node
and to one of the one or more shaders.

14. The method of claim 13, wherein receiving the
information element comprises recerving an indication of at
least one metric for each of the plurality of events.

15. The method of claim 14, the at least one metric
comprising one or more of a number of clock cycles to
execute at least one of the plurality of events or a number of
clock cycles between event changes.

16. The method of claim 15, each of the plurality of events
comprising a draw call, a clear call, a copy call, an update
call, or a dispatch call.

17. The method of claim 13, further comprising:

identifying, via the logic, a plurality of interfaces of the

architectural blocks, an architectural block to embody
a use of a portion of hardware of the GPU, an interface
of the architectural block to comprise a metric of the
event related to the use; and the signature of the event
to 1dentily the portion of the hardware;

determiming, via the logic, for each of the plurality of

events, a performance indication for the plurality of
interfaces;

determiming, via the logic, at least one architectural block

limiting execution of the event based in part on the
performance 1ndication for the plurality of interfaces;
and

determining, via the logic, for each of the plurality of

events, the signature based on the determined architec-
tural blocks.

18. The method of claim 17, the performance indication
comprising at least one of a number of clock cycles data 1s
ready over the interface, a number of clock cycles data 1s
refused over the interface, or a ratio of the number of clock
cycles data 1s ready over a first interface over the number of
clock cycles data 1s ready over a second interface, the second
interface.

19. At least one non-transitory machine-readable storage
medium comprising instructions to prioritize graphics pro-
cessing unit (GPU) events, the mstructions, when executed
by a computing device, cause the computing device perform
operations, the operations comprising:

recerving, via logic, at least a portion of logic being

implemented in hardware, an information element to
include indications of a plurality of events executed by
a graphics processing unit (GPU) comprising a plural-
ity of architectural blocks, each of the plurality of

US 10,417,729 B2

33

events to comprise a weight and a signature, wherein a
respective weight of a respective event of the plurality
of events 1s based on a cycle count for the respective
cvent,

determining, via the logic, for each of the plurality of 5

cvents, the signature based 1n part on at least one of the
plurality of architectural blocks; and
generating, via the logic, an event prioritization tree based
on the plurality of events, the event prioritization tree
to comprise a plurality of leaf nodes and one or more
parent nodes, each one of the leal nodes to correspond
to a respective one of the plurality of events, each of the
one or more parent nodes to comprise a cumulative
weight based at least 1n part on the weight of the events
associated with each leal node descending from the
parent node, an event of the plurality of events to
correspond to one or more shaders, a leal node of the
plurality of leaf nodes to correspond to the event and to
one of the one or more shaders, and a parent node of the
one or more parent nodes to correspond to the leaf node
and to one of the one or more shaders.
20. The at least one non-transitory machine-readable
storage medium of claim 19, each of the plurality of events
corresponding to a one of a plurality of the shaders, each

10

15

20

34

parent node corresponding to a particular one of the plurality
of shaders, wherein each leal node of a particular parent
node corresponds to the particular one of the plurality of
shaders of the particular parent node.

21. The at least one non-transitory machine-readable
storage medium of claim 19, wherein the shaders comprise
pixel shaders, vertex shaders, depth shaders, fragment shad-
ers, domain shaders, hull shaders, computer shader, or
geometry shaders.

22. The at least one non-transitory machine-readable
storage medium of claim 19, wherein the plurality of events
comprise events for a plurality of frames of a video to be
rendered, each of the frames corresponding to at least one of
the events.

23. The at least one non-transitory machine-readable
storage medium of claim 22, wherein the operations turther
comprise:

determiming, via the logic, a global weight of each frame

based in part on a weight of ones of the events
corresponding to the frame; and
sorting, via the logic, the frames based i part on the

global weight.

	Front Page
	Drawings
	Specification
	Claims

