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IMAGE-MATCHING NAVIGATION USING
THRESHOLDING OF LOCAL IMAGEL
DESCRIPTORS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The mvention described herein may be manufactured and

used by or for the government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

FIELD

Embodiments generally relate to the detection of similar
features 1n pixilated images.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s an exemplary system and its operational
components for image matching, in accordance with some
embodiments.

FIG. 1B i1s an exemplary flowchart depicting image
matching tasks, according to some embodiments.

FIG. 2 1s an exemplary flowchart depicting meaningiul
clamping tasks, according to some embodiments.

FIG. 3 1s a working example, according to some embodi-
ments, depicting feature matching of a scene depicting a
boat.

FI1G. 4 illustrates an exemplary operating environment for
a system, according to some embodiments.

It 1s to be understood that the foregoing general descrip-
tion and the following detailed description are exemplary
and explanatory only and are not to be viewed as being
restrictive of the embodiments, as claimed. Further advan-
tages will be apparent after a review of the following
detailed description of the disclosed embodiments, which
are illustrated schematically in the accompanying drawings
and 1n the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments are directed to image matching by perform-
ing automatic thresholding of scale invarnant feature trans-
form (SIFT) descriptors. The descriptors are local descrip-
tors, which are understood by a person having ordinary skall
in the art to be histograms built from small patches or small
regions of the images. Significant testing indicates that the
disclosed embodiments improve matching performance by
at least 15.9% on the Oxford image matching benchmark.
Embodiments employ a contrario methodology to determine
a unique bin magnitude threshold. This 1s accomplished by
building a generative uniform background model for
descriptors and determining when bin magnitudes have
reached a perceptible level. The perceptible level 1s under-
stood to be one that 1s high enough that 1t has deviated from
randomness. An example 1s that the deviation away from
uniform noise indicating that what 1s perceived could not
have happened by chance.

Embodiments introduce a novel method called meaning-
tul clamping (MC) to automatically threshold SIFT descrip-
tors and improve on the idea of clamping by providing a
rigorous process to compute the clamping threshold. The
disclosed embodiments contrast from the current SIFT
implementation, by efliciently computing a clamping thresh-
old that 1s unique for every descriptor. This leads to signifi-
cantly increased performance over existing clamping meth-
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2

ods on a wide variety of image matching problems. Thus, the
embodiments are noteworthy for at least two reasons. First,
embodiments allow a computer to operate more etfliciently.
Second, the embodiments represent a significant technologi-
cal advancement in the art of 1image matching. Instead of
relying on an arbitrary threshold parameter value of ¢=0.2,
which 1s the current practice 1n the art, embodiments deter-
mine a umque value which 1s applied to the image matching.
The result 1s an improvement in 1image matching technology,
especially with respect to illumination changes. The
embodiments ofler more robust and accurate determinations
of nonlinear contrast changes, such as what 1s experienced
when matching an infrared (IR) image to a visual spectrum
image. Finally, the embodiments are also a significant
improvement in the navigation field, especially for image-
based navigation in global positioning system denied envi-
ronments, abbreviated as GPS-denied environments.

Although embodiments are described in considerable
detail, including references to certain versions thereof, other
versions are possible. Examples of other versions include
performing the tasks in an alternate sequence or hosting a
program on a different platform. Therefore, the spirit and
scope of the appended claims should not be limited to the
description of versions 1mcluded herein.

In the accompanying drawings, like reference numbers
indicate like elements. FIG. 1A illustrates an exemplary
system and 1ts operational components according to the
disclosed embodiments. Reference character 10 depicts the
system, which may also be referred to as an apparatus,
method, or a combination of both apparatus and method for
shorthand purposes, without detracting from the merits or
generality of embodiments.

The 1mages are pixilated and sometimes referred to as
digital images. The pixilated images can be provided by a
common digital camera, mobile phone having a digital
camera, or more sophisticated systems such as, for example,
aerial sensor systems, video frames, and infrared (IR)
images ifrom long wave infrared cameras. Embodiments are
directed to analysis of pixilated images. A person having
ordinary skill in the art will recognize that a real 1image 1s an
image taken i a scene by an actual physical camera of an
actual physical object or location. Thus, embodiments are
not directed to virtual or simulated 1mages.

Embodiments generally relate to image matching systems
and methods using local image descriptors thresholding, and
include at least one electronic processor having a central
processing unit 12. Local image descriptors thresholding
compares two 1mages based on statistical analysis. At least
one database having a plurality of pixilated images of known
objects of nterest 14 1s associated with the electronic
processor 12. The database can be referred to as a database
library. At least one test image of a new point or object of
interest 16, 1s configured for input into the electronic pro-
cessor 12. The test image 16 1s also pixilated. The plurality
of pixilated images of known objects of interest 14 can be
referred to as a database 1image, at least one database 1mage,
and as a comparison 1mage without detracting from the
merits or generalities of the embodiments. The database
image 14 1s an 1mage taken from an earlier time, t,. The test
image 16 1s from an image taken at a later time, t..

An 1mage matching tool 18 1s associated with the elec-
tronic processor 18. Each image 14 & 16 has a collection of
descriptors. Embodiments build a descriptor for both the test
image 16 and the database image 14, mitially without
thresholding. The image matching tool 18 determines a
unique bin magnitude threshold for each descriptor 1n each
image 14 & 16. The image matching tool 18 provides a
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classification match of the test image 16 and the plurality of
images of known objects of interest 14. Every pixel 1n each

of the images 14 & 16 are sampled and the classification
match 1s determined based on the analysis described below
of sampled pixels 1n the 1images 14 & 16. The analysis 1s a
patch by patch analysis of each image (14 & 16) to deter-
mine a match. In general, the classification match can be
considered as a match 1n scene content between the database
image 14 and the test image 16. At least one device 20 1s
associated with the electronic processor 12 and 1s configured
to output the classification match 1n a tangible medium.

The embodiments disclosed can be used to determine a
match by at least two ways. First, a match can be determined
to exist 1n the scene content between two 1mages (14 & 16)
when the Euclidean distance 1s less than some threshold t.
Any descriptor match 1s considered a correct match when
the two detected features correspond. Using the ground truth
homography mapping supplied with the dataset, features are
considered to correspond when the area of intersection over
union 1s greater than 50 percent. A second way to determine
a match 1s by performing a pure nearest neighbor technique.
The nearest neighbor technique 1dentifies the closest features
in structural similarities to other descriptor histograms.

In embodiments, the tangible outputs may be shown
and/or represented as a visual display screen depiction
(reference character 20 1n FIG. 1A), hard copy printouts, as
well as other media using classification/matching informa-
tion such as, for example, a computer having computer-
readable instructions that 1s configured to use output from
the embodiments. Likewise, output can also be used for
other systems for purposes including, for example, geo-
referencing, image-based navigation in a GPS-denied envi-
ronment, intelligence, surveillance, and reconnaissance
activities. A person having ordinary skill in the art will
recognize that GPS 1s an acronym for global positionming
systems. Thus, the embodiments can be used to support
many different mission sets.

The wvisual display screen depiction 20 1s sometimes
referred to as a visual display monitor (screen) and 1s used
to display a visual depiction of the classification match. In
some applications, depending on the verification require-
ments, a visual verification by a user 1s important to provide
an additional layer of validation before acting on the pro-
cessing result. An example includes visual verification of a
georeferenced location match prior to dedicating resources
to a specific location based on the processing result.

Methods & Articles of Manufacture Embodiments

Both exemplary flowcharts in FIGS. 1B & 2 operate
together to accomplish the overall task of image matching as
disclosed herein and are equally applicable to both method
and article of manufacture embodiments without detracting
from the merits or generality of embodiments. Embodiments
are directed to non-transitory electronic processor readable
medium(s) having stored thereon electronic processor
executable instructions that, when executed by the
processor(s), cause the processor to perform the process(es)
described herein. The electronic processor can sometimes be
referred to as “processor,” “computer,” and other variations
known 1n the art, without detracting from the merits or
generalities of the embodiments.

The term non-transitory processor readable medium
include one or more non-transitory processor-readable
medium (devices, carriers, or media) having stored thereon
a plurality of istructions, that, when executed by the
clectronic processor (typically a central processing unit—an
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clectronic circuit which executes computer programs, con-
taining a processing unit and a control unit), cause the
processor to process/manipulate/act on data according to the
plurality of instructions (defined herein using the process/
function form). The non-transitory medium can be any
non-transitory processor readable medium (media), includ-
ing, for example, a magnetic storage media, “tloppy disk,”
CD-ROM, RAM, a PROM, an EPROM, a FLASH-EPROM,
NOVRAM, any other memory chip or cartridge, a file server
providing access to the programs via a network transmission
line, and a holographic umt. Of course, those skilled 1n the
art will recognize that many modifications may be made to
this configuration without departing from the scope.

In some system embodiments, the electronic processor 1s
co-located with the processor readable medium. In other
system embodiments, the electronic processor 1s remotely
located from the processor readable medium. It 1s noted that
the processes/tasks described herein including the figures
can be interpreted as representing data structures or sets of
istructions for causing the computer readable medium to
perform the process/task.

Certain embodiments may take the form of a computer
program product on a computer-usable storage medium
having computer-usable/readable program 1nstructions
embodied 1n the medium. Any suitable computer readable
medium may be utilized including either computer readable
storage media, such as, for example, hard disk drives,
CD-ROMs, optical storage devices, or magnetic storage
devices, or a transmission media, such as, for example, those
supporting the internet or intranet.

Computer-usable/readable program instructions for car-
rying out operations may be written 1n an object oriented
programming language such as, for example, Python, Visual
Basic, or C++. However, computer-usable/readable program
instructions for carrying out operations may also be written
in conventional procedural programming languages, such
as, Tor example, the C or C# programming languages or an
engineering prototyping language such as, for example,
MATLAB®. However, the concepts can be replicated for
many platforms provided that an appropriate compiler 1s
used.

These computer program instructions may also be stored
in a computer-readable memory, including RAM, that can
direct a computer or other programmable data processing
apparatus to function 1n a particular manner, such that the
instructions stored 1n the computer-readable memory pro-
duce an article of manufacture including instructions that
implement the function/act specified.

These computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational tasks to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions that execute on the computer or other program-
mable apparatus provide tasks for implementing the func-
tions/acts specified.

The method of image matching i1s depicted with reference
character 100 in FIG. 1B and includes inputting the pixilated
(digital) test and plurality of known subjects of interest (task
102). The image matching tool 18 from FIG. 1A 15 a
non-transitory electronic-processor-readable medium hav-
ing a plurality of stored electronic processor executable
instructions. The image matching tool 18, when executed by
the electronic processor 12, causes the electronic processor
to build a generative uniform background model of the test
image 16 and the plurality of images of known objects of
interest 14.
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The generative uniform background model 1s depicted in
tasks 104 & 106. The SIFT descriptor 1s a smoothed and
weighted 3D histogram of gradient orientations. For any
patch I, a gradient vector field VI 1s formed. The gnd A 1s
defined, which determines the bin centers x,, y,0, of the
histogram and has size n(x)xn(y)xn(0). In typical imple-
mentations, A 1s chosen to have 4x4 spatial bins and 8
angular bins. With x=(x,y) and 1=(1,;.k)EA, a single, pre-
normalized spatial bin of the SIFT descriptor can be written
as the mtegral expression:

AU =125 (X)0 (L VIX))w;(x)||[VI(x)|dx, (Equation 1)

\%{hf&f@ Wy(x):w(x'—xi)w'(y—yf). The weight function w, 1s a
bilinear interpolation with

7(z)
N 1zl |;
patch

w(z) = ma):{O, 1 -
and

) )

W (0) = max(O, 1 - —— 6 — 6 mod 21

1s an angular interpolation.
The parameter A, 1s the radius of J such that the patch
has dimensions of 2A . ;%2\ .. The histogram samples
are also weighted by a Gaussian density function g_(x), the
purpose of which 1s to discount the contribution of samples
at the edge of the patch with the goal to reduce boundary
ellects. SIFT descriptors are built using Equation 1.

In task 104, a feature detector produces a set of feature
frames. The feature detector 1s a scale 1nvariant feature
transform (SIFT) that can be detected across the test image
and the plurality of 1mages of known objects of interest,
which together are sometimes referred to as corresponding,
1mage pairs.

The 1mage matching problem can be separated into two
parts: Ieature detection and feature description. The goal of
a feature detector 1s to produce a set of stable feature frames
that can be detected reliably across corresponding image
pairs. The goal of the descriptor 1s to distinctly represent the
image content of the normalized patch 1n a compact way.

In an eflort to construct a descriptor to be robust to
non-linear contrast changes, current clamping methodology
thresholds the bin magnitudes of the descriptor, where the
threshold was defined as:

d (H)=min(d(l).cl/d|)),

with the threshold parameter, c, set to 0.2, which 1s a default
setting. Clamping also increases the general matching per-
formance of the descriptor, observed to be 14.4% compared
to the performance without clamping on the Oxford pub-
licly-available images dataset. This occurs even when there
exists consistent lighting conditions between i1mage pairs.
The threshold parameter of ¢=0.2 1s set rather arbitrarily and
1s fixed for every descriptor. However, embodiments apply
an automatic threshold that i1s allowed to vary for every
descriptor, which significantly improves the performance of
the SIFT descriptor for image matching problems.

A normalized patch, J(x,y), 1s sampled in every descriptor
built. This 1s done for each 1mage (the test images and the
database images, 1.e. the test and comparison 1mage). A
determination of how to sample a normalized patch, J(x,y)
1s performed. A construction of a local feature descriptor, d,

(Equation 2)
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bult for the normalized patch, J(x,y) 1s performed. The
descriptor, d, represents the image content of the normalized
patch, J(x,y) (task 106). The image content 1s based on the
gradient orientations and magnmitudes. The unique bin mag-
nitude threshold descriptor i1s an interest point defined by
position, scale, and orientation in the test image and the

plurality of known objects of interest. The SIFT features
from the test image and the plurality of known objects of
interest are extracted and task 108 is executed. In task 108,
a meaningiul clamping nstruction task 1s performed on the
normalized patch of both images (both the test image and the
database 1mage). The meaningiul clamping threshold can be
provided as output.

In FIG. 2, the meaningful clamping instruction task 108 1s
shown 1n greater detail. The bins of the SIFT descriptor
represent the underlying content of a local image patch. We
wish to detect when geometric structure i1s present in the
patch. This 1s indicated by the observation of large descriptor
bin values. This amounts to detecting significant bins by
computing a perception threshold for each descriptor and
using that as the clamping limit. The 1dea 1s that once bins
reach the perception threshold, little mnformation 1s gained
by exceeding this value. Embodiments use a contrario
methodology to compute descriptor perception thresholds.
The methodology 1s based on applying a mathematical
foundation to the concept of the Helmholtz principal, which
states “we immediately perceive whatever could not happen
by chance.” Thus, the term “large” with respect to descriptor
bin values 1s based on the expected number of occurrences
of that bin value that had been generated by a random
descriptor 1s less than and 1s unlikely to have occurred by
random chance. Therefore, some underlying structure i1s
driving the perceived event.

Instead of trying to define a priori the structure of the
underlying 1mage content, which 1s an 1impossible task for
general natural 1mages, embodiments 1nstead define what 1t
means to have a lack of structure. Using the Helmholtz
principal, lack of structure 1s modeled as uniform random-
ness, referred to as the uniform background model, or the
null hypothesis H,. It 1s assumed that the descriptor has been
generated from H,,. It 1s assumed that the descriptor has been
generated from H,, and claim a detection, 1.e. significant
geometric content 1s present, when there 1s a large deviation
from H,. The geometric content 1n the image 1s a physical
object, such as a corner of a physical object 1in the image. If
the observed event 1s extremely unlikely to have been
generated from this background model, the event 1s claimed
as meaningiul because 1t could not have occurred by random
chance.

Task 202 constructs a histogram grid, A, associated with
the descriptor d, which represents a set of connected bins L,
with L=n(x)n(y)n(0), such that every bin 1=(1,,k) E A,
contains a number of sample counts d(l), and a neighbor-
hood C,= A of bins, for which 1 1s connected. As used,
n(x)n(y)n(0) represents the number of bins 1n the x direction
times the number of bins in the y direction times the number
of bins 1n the theta direction. Stated another way, 1t 1s the
number of bins across X times the number of bins across y
times the number of bins across theta. Thus, as an example,
if there are 5 bins 1n the x direction, 4 bins in the y direction,
and 4 bins in the theta direction, then L=(5)(4)(4)=80
connected bins. The neighborhood set for each of said bin
yields a circular-connected angular histogram, with spatial
dimensions that are rectangular. The total number of samples

1s designated by M, with M=x.d (1) of the descriptor d. The
total number of samples, M, 1s the summation of the
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descriptor bin values from bin 1, and 1s not normalized,
sometimes referred to as un-normalized.

The probability that a random sample 1s drawn 1n bin 1, 1s
represented by p(l), which leads to the definition of the null
hypothesis for the descriptor d. Task 202 mputs the histo-
gram. Each bin of the histogram has a value representing the
number of counts in that bin. Thus, M represents the sum of
all bin values for the histogram, which 1s the sum of the
iterations 1n task 108.

Embodiments assign d as the SIFT descriptor built on the
orid A. The descriptor, d, 1s said to be drawn from the null
hypothesis, H,, if every sample 1s independent, 1dentically,
and uniformly distributed with p(1)=1/L, sometimes written
as

1

p(l) = T

for every bin IEA. It follows that the probability at least d(1)
samples are 1 bin 1 under the null hypothesis, with

J—l
P()_Za

1s given by the binomuial tail:

Plk = d(D| Hy] = (Equation 3)
M
M k M —k
BM, d(l), p(D) = Z( 0 ]P(J) (1= p)™ .
k=d(l)

When this probability becomes small, d(1) 1s unlikely to
have occurred under the uniform background model, the null
hypothesis 1s rejected and 1t 1s concluded that the bin 1 1s
meaningful. This results 1in detecting meaningtul bins by
thresholding the probability 1n Equation 3. Given the
assumption that the data was drawn from the uniform
background model, for any bin 1 the expected number of
false detections can be determined, denoted as NFA {for the
number of false alarms, by:

NFA(O=NBM.,d(1).p(l)), (Equation 4)

where N 1s the number of tests, and 1s typically defined as
the number of all possible connected subsets of the histo-
gram. N can be seen as a Bonferrom correction for the
expected value in Equation 4.

Equation 4 leads to the definition of the meaningiul bin.
A bin 1 E A of the SIFT descriptor d 1s an e-meaningful bin
when NFA(1)=NB (M.,d(l),p(1))<e. Setting =1, and includ-
ing the number of tests N, allows the threshold to scale
automatically with histogram size. The setting of e=1 can be
interpreted as setting the threshold so as to limit the expected
number of false detections under a uniform background
model to less than one. This has two important conse-
quences. First, for some applications, 1t 1s important for the
algorithm to correctly give zero detections when no object
exists. Second, this strategy gives detection thresholds that
are similar to that of human perception; and the dependence
on E 1s logarithmic and hence very weak. For simplicity,
embodiments hereafter refer to an e-meaningful bin as a
“meaningiul bin.”
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The clamping threshold for d 1s set as the minimum
descriptor bin value needed to be detected as a meaningiul

bin. For a given descriptor d, with corresponding properties
M and

J!_l
P()—Za

the cramping threshold 1s defined as:

t=min{k:NB(M.,k,p(1)<1} (Equation 5)

The new clamped descriptor 1s then defined as:

d (H)=min(z,d({)), (Equation 6)

for every bin 1EA.

Task 204 determines the number of all possible aligned,
connected, rectangular regions that can be assembled of a
three-dimensional (3-D) histogram with dimensions of
n,xn,Xng. The number of aligned rectangular regions, Ny
1s mathematically defined as:

eet?

1 (Equation 7)
NReot = EH(X)H(}J)H(Q)(H(X) + L)(n(y) + 1(n(8) + 1),

with N, representing a lower bound of N.

There may also be concern with respect to computing the
inverse binomial tail 1n Equation 5. While eflicient compu-
tational libraries exist to directly calculate the detection
threshold, this still requires an 1iterative method since no
closed form solution exits. The iterative method can be
undesirable for certain real-time applications. Embodiments,
instead create an approximation for Equation 5 by applying

the bound:

(r—p)* (Equation 8)

P(l—P)+

L 0Pl = M | ol < of ™M
—EH ()=rM | Hy] = (W]a

with

The bound 1 Equation 8 1s valid when either of conditions
(a) or (b) are satisfied. Condition (a) 1s

p<-and p<r.

4

Condition (b) 1s p=r=1-p. As M grows large, the

term becomes small and Equation 8 converges to the central

limit approximation. Using this, the detection threshold, &,
can be determined.

Task 207 determines the probability under the uniform
background model that any random sample would fall into
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any particular bin of the histogram. This 1s a uniform
distribution. The determination 1s mathematically described
by setting

g—l
P()—E-

Conversions are used with the calculations 1n task 210 and

the 1terative tasks depicted 1n tasks 212 through 220. The
conversions are mathematically represented as

|
(N prer) = \/ S ek

Task 210 determines the detection threshold, t;, which is
mathematically represented as:

Lg =Mp+a(N Rect)r\/ﬂp(l—p). (Equation 9)

When Equation 9 is used, the descriptor 1s ensured to be
appropriately clamped without having to determine the true
number of tests, N, or iterate to find the inverse of the
binomual tail. Conditions (a), (b), and the requirement that M
(the total number of histogram counts) 1s sutliciently large 1n
Equation 8 are very weak since for any practical implemen-
tation ol the SIFT descriptor, these conditions are met.
Generally, any pixilated real image has an M value that 1s
deemed to be large enough.

In task 212, the first iteration, 1, 1s set at zero for the first
bin. The iteration occurs over the bins of the histogram. Zero
indexing 1s used by setting the first bin that 1s being operated
on at 1=0.

Tasks 214 through 222 are directed to the iterative deci-
sions associated with the meaningful clamping task (task
108). Task 214 determines whether every bin on the histo-
gram has been processed. This 1s depicted mathematically
as, when 1<L., there are additional bins that have not been
processed yet. The 1terative tasks occur until all bins 1n the
histogram have been processed and there no remaining bins
(tasks 212 through 220).

When additional bins have not been processed, the yes
branch 1n task 214 1s followed and the decision 1n task 216
1s performed. Task 216 determines whether 1 1s greater than

the detection threshold, &, computed 1n task 210. When 1

is greater than the detection threshold, ¢, the yes branch in

task 214 1s followed and task 218 1s executed. Task 218 sets
the bin threshold value to the detection threshold value, 1=

t,, and then indexes to the next i (the next bin), mathemati-
cally described as 1=1+1 (task 220). When all the bins 1n the
histogram have been processed, the no branch in task 214 1s
followed and task 222 1s executed. In task 222, the descriptor
1s normalized to ensure that 1t has unit length after the
thresholding processing (task 222). The normalized descrip-
tor can also be referred to as a clamped normalized descrip-
tor and can be provided as output. The clamped normalized
descriptor lies 1n the set of [0, M], which can be something
other than 0.2.

FIG. 3 illustrates a working example of some embodi-
ments and 1s depicted by reference character 300. In par-
ticular, FIG. 3 shows feature matching of a scene depicting,
a boat. Reference character 302 1s used for an image of the
boat taken at time t, and reference character 304 1s used for
an 1image of the boat taken at a later time, t,. The 1image taken
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at time t; 302 1s a known object/point of interest from the
database 14, as described 1n relation to FIG. 1A. The image
taken at a later time, t,, 304 1s a test image 16, as described
in relation to FIG. 1A. Each image 302 & 304 i FIG. 3 1s
shown with exemplary features that are matched. In particu-
lar, the two 1mages 302 & 304 are obtained from the Ox{ford
dataset, a library of 1mages routinely used for image analy-
s1s. The two 1images 302 & 304 are generated from a camera
at different spatial positions. The image on the right (refer-
ence character 304) 1s scaled due to zoom and rotated
relative to the image on the leit (reference character 302).
While the images 302 & 304 difler because of the scaling
and rotation, they are of the same scene content. Employing
the embodiments disclosed herein, black circles represent
local features detected 1n each 1image. The center of the circle
1s the feature’s detected location. A black line within the
circle represents the relative onentation of the point. The
s1ize of the circle 1s the size of the detected scale. Features
between the two 1mages are matched when their descriptors
similar. Matches can be found as nearest neighbor distance
to another descriptor. The matches between feature points in
the two 1mages are shown by the white lines connecting
them.

FIG. 4 1llustrates an exemplary operating environment for
a system, according to some embodiments. The system 1s
depicted using reference character 400. The system 400 is
configured as discussed previously with the components and
methodology depicted and described in FIGS. 1A through 3.
Additionally, the system 400 1s configured for use in the
presence of radio frequency (RF) interference or jamming,
when GPS or other signals may not be available or reliable,
as well as during automatic interference monitoring and
reconiiguration control such as, for example, when switch-
ing to GPS-denied operation configuration. A person having
ordinary skill 1n the art will recognize that the term “GPS-
denied environment™ 1s used in an environment when GPS
signals or other signals are not available or reliable. The
system 400 1n FIG. 4 1s a GPS-denied environment.

FIG. 4 depicts at least one platform 402 that 1s configured
for image-based navigation in a GPS-denied environment.
Several types of platforms can be used without detracting
from the merits or generality of the embodiments. The
plattorm 402 can be air-based, sea-based, littoral zone-
based, and land-based. Likewise, the platform 402 can be
manned, unmanned, or a combination of both, such as when
more than one platform 1s used. When air-based, the plat-
form options include, but are not limited to, air vehicles,
aerostats, and precision guided munitions. Embodiments are
also applicable to rockets and space vehicles.

The platform 402 1s configured with a computer having a
non-transitory computer readable medium, a camera, and
communications equipment to communicate with an opera-
tions center 404. The double arrow 403 between the plat-
form 402 and the operations center 404 1s used to depict the
communication network between the platform and opera-
tions center. The operations center 404 can be air-based,
sea-based, littoral zone-based, and land-based, and can be
referred to as a processing station. The operations center 404
can also be referred to as a station, database or, 1n conjunc-
tion with FIG. 1A, the database having the plurality of
images of known points of interest 14. Likewise, the opera-
tions station 404 can also be referred to as a control,
monitoring, and processing station.

As shown 1n FIG. 4, the platform 402, in conjunction with
the operations center 404, can navigate to an object/point of
interest from an 1mage 406 displaying the object/point of
interest using the disclosed image-matching methodology
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by comparing the image displaying with object/point of
interest with a database 1mage 405 of a location of a known
object/point of interest. The database 1mage 405 can be
referred to as a first image. The 1image of the object/point of
interest 406 can be referred to as a second 1mage or later
image. The database image 405 1n FIG. 4 1s taken at time t,,
while the 1image 406 displaying the object/point of interest 1s
taken at a later time t,. Reference character 407 1s used to
depict the database 1mage 4035 (the first image) being taken
by a camera, and stored in/obtained from the operations
center/database 404. The later image 406, taken at time t,,
can be a real-time 1mage that 1s compared with the database
image 405. Relerence character 408 depicts the second
image 406 being taken by the camera in the platform 402.

The operations center 404 1ncludes a computer having a
non-transitory computer readable medium. The operations
center 404 can be used for a host of activities including
synthesizing data, controlling platforms 402, processing
information, and configured as a user-in-the-loop facility
having visual display screens.

The platform 402 1s configured with an on-board naviga-
tion system and dedicated on-board transmitter, and dedi-
cated on-board recerver. The dedicated on-board recerver 1s
typically considered to be part of the on-board navigation
system, whereas the dedicated on-board transmitter 1s typi-
cally not included as part of the on-board navigation system.
An 1nertial navigation system (INS) 1s integrated with the
dedicated on-board receiver in some embodiments. For ease
of illustration, the on-board navigation system, dedicated
on-board transmitter, and INS are not shown on the platform
402.

The object/point of interest can be a particular scene or
location, as well as a scene or location that 1s a georefer-
enced 1mage having coordinates that are based on an earth-
centered, earth-fixed position such as, for example, latitude,
longitude, and elevation. As shown 1n FIG. 4, the first image
405 from the database has a known latitude, longitude, and
clevation. Image-based navigation 1s based on matching
features 1n the second image 406 with the same features 1n
the first image 405. Features between the two images are
matched when their descriptors are similar. Image-based
navigation 1s then an iterative process of processing updated
second 1mages 406 for new locations until the second
image’s features match the features in the first image 405.
The operations center 404/database 14 a plurality of images
that will be tied to latitude, longitude, and elevations. The
comparison of the database images (first or earlier images)
405 have known latitude, longitude, and elevations allowing
tor the platform 402 to know where the later image 406 was
taken based on the known latitude, longitude, and elevation.
The platform 402 navigates until an 1mage obtained by 1its
camera (the later image 406) 1s determined to have matched
teatures with the earlier (database) image 405. When a
match between the two images 405 & 406 cxists, the
platform 402 i1s at the location of the earlier image having
known coordinates.

Results & Evaluation

Significant testing of the embodiments were performed
for several images. FIG. 3 depicts a comparison analysis of
an 1mage of a boat taken at two different times and at two
different angles. Tables I & II below depict analysis results
for several tested 1mages.

The embodiment results are compared with current meth-
ods (Lowe clamping) for the Oxford data set. For reference,
both the embodiments disclosed herein and the current
clamping methods (the Lowe clamping method) were com-
pared to descriptors with which no clamping was performed.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

To evaluate matching performance, the comparison 1s
performed using the Oxtord dataset, which 1s a well-known
dataset having 40 1image pairs of various scene types under-
going different camera poses and transformations. These
include viewpoint angle, zoom, rotation, blurring, compres-
sion, and illumination. The set contains eight categories,
cach of which consists of image pairs undergoing increasing
magnitudes of transformations. Included with each image
pair 15 a homography matrix, which represents the ground
truth mapping of points between the images. The transior-
mations applied to the images are real and not synthesized.
The viewpoint and zoom+rotation categories are generated
by focal length adjustments and physical movement of the
camera. Blur 1s generated by varying the focus of the camera

and 1llumination by varying the aperture. The compression
set was created by applying JPEG compression and adjust-
ing the image quality parameter. Table I below depicts the

mean average precision (mAP) for each category of the
Oxiord dataset. The SIFT detector parameter First Octave 1s
set to zero.

TABLE 1

Mean Average Precision with First Octave Set to Zero

NO LOWE MEANINGFUL
CATEGORY CLAMPING CLAMPING CLAMPING (MC)

Grafhiti 0.123 0.161 0.205
Wall 0.327 0.371 0.405
Boats 0.301 0.341 0.375
Bark 0.111 0.119 0.120
Trees 0.207 0.28% 0.366
Bikes 0.414 0.371 0.496
Leuven 0.387 0.53% 0.635
UBC 0.558 0.558% 0.615
All Images 0.303 0.347 0.402

Evaluating the performance of local descriptors with
respect to 1mage matching, given a pair ol i1mages, we
extract SIFT features from both images. A match between
two descriptors 1s determined when the Euclidean distance
1s less than some threshold t. Any descriptor match 1is
considered a correct match 1f the two detected features
correspond. Using the ground truth homography mapping
supplied with the dataset, features are considered to corre-
spond when the area of intersection over union 1s greater
than 50 percent. For some value of t, recall 1s computed as:

# of correct matches(z)
recall(z) =

# correspondences

Additionally, 1-precision 1s computed as:

# false matches(r)

[ ) — .
precisionr) # correct matches(r) + # false matches(z)

The pair (recall (t), 1-precision (1)) represents a point 1n
space. By varying t curves that demonstrate the matching
performance of the descriptor can be constructed. This 1s
called the precision recall curve. The area under the curve
can be computed, producing a value called the average
precision (AP). Larger AP indicates superior matching per-
formance. The average of APs, across individual categories
or the entire dataset, provides the mean average precision
(mAP) used to compare clamping methods.
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The AP for every image pair in the Oxiord dataset 1s
computed, each for two different parameter settings of the
SIFT detector. This parameter 1s called FirstOctave, and both
0 and -1 are tested. Setting First Octave to —1 upsamples the
image belore creating the scale space, generating a great
deal more features than with 0, resulting 1n more total
matches, but with lower overall AP. Testing for this setting,
allows for greater scale variations between 1mages, and 1s
the default setting for SIF'T 1n the Covariant Features tool-
box in VLFeat open-source library. It also shows how
clamping impacts performance in large sets of SIFT points,
and 1ndicates how well the method scales with large amounts
of data. For certain image pairs, the distortion between
images 1s great enough, that little or no feature correspon-
dences exist. Under these circumstances, no matches are
found, and precision recall curves cannot be computed.
When precision recall curves cannot be computed, AP 1s
defined as zero. Table 11 depicts the mean average precision
for each category of the Oxford dataset. The SIFT detector
parameter First Octave 1s set to -1.

TABL

L1

11

Mean Average Precision with First Octave Set to —1

NO LOWE CANINGERUL
CATEGORY CLAMPING CLAMPING CLAMPING (MC)

Graflits 0.016 0.035 0.110
Wall 0.230 0.2770 0.320
Boats 0.054 0.118 0.244
Bark 0.049 0.063 0.068
Trees 0.043 0.096 0.173
Bikes 0.141 0.112 0.185
Leuven 0.115 0.210 0.365
UBC 0.215 0.305 0.411
All Images 0.10% 0.152 0.234

TABLE I compares the mAP for each category in the
Oxiord dataset when the SIFT FirstOctave 1s set to 0. The
embodiments disclosed herein (MC) systematically outper-
forms Lowe clamping for every image transform type. It
also shows that clamping can improve matching perfor-
mance 1n general image pairs, not just 1n cases of significant
illumination differences. The leuven category of lighting
shows an 1mpressive 18.2 percent improvement, but does
not exhibit the greatest gain, which occurred 1 bikes (blur)
at 33.6 percent. The method shows remarkable performance
on blurred 1mages, with trees improving 27.0 percent. The
bark (zoom+rotation) had the least improvement at 1.4
percent. However, 1t should be noted that 1t could be an
artifact of the SIFT detector which extracted few correct
correspondences for this category. Boats, which also varied
zoom+rotation, had a 9.9 percent increase. The mean AP for
all 1mage pairs of the Oxiord dataset improved by 15.9
percent compared to Lowe clamping.

For large scale experiments with the First Octave param-
cter set to —1, as shown in TABLE 11, the performance jumps
dramatically. The improvement 1n matching increases as the
number of points increases. The category exhibiting the
most improvement was grathiti (view-point) with a remark-
able 213.2 percent increase. Again, bark had the least
improvement with 7.9 percent. Even with the First Octave
parameter set to —1, the SIFT detector performed poorly on
the bark category and generated few correspondences, 1ntlu-
encing the matching results as before. As a reference, boats
increased by 106.9 percent. The mean AP increased by 34.0
percent for all image pairs 1n the dataset.
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It 1s 1mportant to note that, while SIFT 1s used as the
detector for the testing demonstration associated with the
disclosed embodiments, the embodiments are applicable
with other detectors and can be used to obtain similar results.
Experiments point to the number of detected points gener-
ated as the single largest factor relating the amount of
improvement over Lowe clamping. The remarkable property
observed from the testing of the disclosed embodiments 1s
that with a larger amount of detected points to match, the
percentage improvement in AP increases.

While the embodiments have been described, disclosed,
illustrated and shown 1n various terms of certain embodi-
ments or modifications which it has presumed 1n practice,
the scope of the embodiments 1s not mntended to be, nor
should 1t be deemed to be, limited thereby and such other
modifications or embodiments as may be suggested by the
teachings herein are particularly reserved especially as they
fall within the breadth and scope of the claims here
appended.

What 1s claimed 1s:
1. An image-matching navigation system using local
image descriptors thresholding, comprising:

an air-based platform configured for image-based navi-
gation using 1mage matching, said air-based platiform
having an on-board navigation system including a
dedicated on-board transmitter, and a dedicated on-
board receiver, and a dedicated camera;

an operations center, wherein said operations center 1s a
control, monitoring, and processing station 1 commu-
nication with said air-based platform, said operations
center configured with at least one electronic processor
having a central processing unit and at least one data-
base having at least one georeferenced 1mage of a
known point of interest, wherein said at least one
georelerenced 1mage of a known point of interest has
an earth-centered, earth-fixed position, wherein said at
least one database 1s associated with said at least one
clectronic processor, wherein said at least one georet-
erenced 1mage of a known point of interest 1s pixilated;

wherein said air-based platform 1s configured to commu-
nicate with said operations center using said dedicated
on-board transmitter and said dedicated on-board
recelver;

at least one test image taken by said dedicated camera of
a new point ol interest, wherein said at least one test
image 1s at least one pixilated 1image, wherein said at
least one test 1mage 1s transmitted to said operations
center and configured for input into said at least one
clectronic processor;

an 1mage matching tool associated with said at least one
electronic processor, said 1image matching tool config-
ured to determine a unique bin magnitude threshold
descriptor for said at least one test image and said at
least one georeferenced image of a known point of
interest, wherein said 1mage matching tool 1s config-
ured to provide a classification match of said at least
one test 1mage to one of said at least one georeferenced
image ol a known point of interest;

wherein said classification match corresponding to said at
least one test image from said dedicated camera and
one of said at least one georeferenced image of a known
point of interest having matched features, wherein said
matched features indicating said at least one test image
has an 1dentical earth-centered, earth-fixed position as
said at least one georeferenced 1image of a known point
of interest:
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wherein said air-based platiorm 1s configured to navigate
to a location having said 1dentical earth-centered, earth-
fixed position corresponding to said classification
match; and

at least one device associated with said at least one °
clectronic processor, said at least one device configured

to output 1 a tangible medium said classification
match.

2. The system according to claim 1, wherein said image
matching tool builds a generative uniform background
model of said at least one test image and said at least one
georeferenced 1mage of a known point of interest, said
generative uniform background model, comprising:

10

a feature detector producing a set of feature trames, ;4
wherein said feature detector 1s a scale invariant feature
transform (SIFT) that can be detected across said at
least one test image and said at least one georeferenced
image of a known point of interest;

a sample of a normalized patch, J(X,y), in each of said at 20
least one test image and said at least one georeferenced
image of a known point of interest; and

a construction of a local feature descriptor, d, built for said
normalized patch, J(x,y), wherein a clamping threshold
1s defined as t ; and represents the image content of said
normalized patch, J(x,y).

25

3. The system according to claim 2, wherein said unique
bin magmtude threshold descriptor 1s an interest point
defined by position, scale, and orientation 1n said at least one
test image and said at least one georeferenced 1mage of a
known point of interest.

30

4. The system according to claim 2, wherein said image
matching tool 1s a non-transitory electronic-processor-read-
able medium having a plurality of electronic processor 35
executable instructions stored thereon, that when executed
by said at least one electronic processor, causes said at least
one electronic processor to:

input said at least one test image 1nto said at least one
electronic processor; 40

extract SIFT features from each image 1n said at least one
test image and said at least one georeferenced image of
a known point of interest;

perform a meaningful clamping instruction task on the 45
normalized patch 1n said at least one test image and the
normalized patch in said at least one georeferenced
image of a known point of interest; and

determine said meaningiul clamping threshold and output
said meaningful clamping threshold. 50

5. The system according to claim 4, wherein said mean-
ingful clamping instruction task, further comprising;:

constructing a histogram grid, /\, associated with said
descriptor d, representing a set of connected bins L,
wherein L=n(X)n(y)n(0), such that every bin 1=(1,1,k)
A, contains a number of sample counts d(l), and a
neighborhood set C, = A of bins, for which 1 1s con-
nected, wherein said neighborhood set for each of said
bin yields a circular-connected angular histogram hav-

ing spatial dimensions that are rectangular, where n(x)
1s the number of bins 1n the x direction, n(y) 1s the

number of bins 1 the y direction, and n(0) 1s the
number of bins 1n the 0 direction;

determining a total number of samples, M, wherein 65
M=2,d(1) of said descriptor d and setting p(l) as the
probability that a random sample 1s drawn 1n bin I;

16

determiming a number of aligned and connected rectan-
gular regions, N, _ . that can be assembled of a three-
dimensional (3-D) histogram with dimensions of

Ry X1y, X g,

wherein Ngee = %H(XJH(y)H(Q)(H(X) + D)(n(y) + 1)(n(6) + 1)

in said histogram grid, A;
determining the probability, p(l), that a random sample 1s
drawn 1n bin 1 by setting

D) = 1'
P()—E=

determining a detection threshold, t;, wherein said
detection threshold 1s mathematically determined by,

t; =Mp+a(N Rect)VMp(1-p), where

1
AN oer) = \/ —lr{ — RECI] ;

and

setting 1=0 on the {first determination of the first bin, 1, of
said meaningiul clamping instruction task.

6. The system according to claim 5, said meaningiul

instruction clamping task, further comprising:

determinming whether every bin on said 3-D histogram has
been processed;

wherein when additional bins exist that have not been
processed, determining whether 1 1s greater than said

detection threshold, £ :
wherein when 1 1s greater than said detection threshold,

ty, setting a bin value to said detection threshold

value, t;, and indexing to the next iteration, i, wherein
the next iteration 1s 1=1+1, and processing the next bin;
when 1 has a value greater than said detection threshold,

ty, setting the bin value to the threshold value, i=1tg,
and 1indexing to the next 1, wherein the next 1=1+1, and
processing the next bin;

when all bins 1n said 3-D histogram have been processed.,
normalizing the descriptor, d, to ensure that the descrip-
tor, d, has unit length.

7. An 1mage-matching navigation method using local

image descriptors thresholding, comprising:

providing an air-based platform configured for image-
based navigation using image matching, said air-based
platform having an on-board navigation system includ-
ing a dedicated on-board transmitter, and a dedicated
on-board receiver, and a dedicated camera;

providing an operations center, wherein said operations
center 1s a control, monitoring, and processing station
in commumnication with said air-based platform, said
operations center configured with at least one electronic
processor having a central processing unit and at least
one database having at least one georeferenced image
of a known point of interest, wherein said at least one
georeferenced 1mage of a known point of interest has
an earth-centered, earth-fixed position, wherein said at
least one database 1s associated with said at least one
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clectronic processor, wherein said at least one geored-
erenced 1mage of a known point of interest 1s pixilated;

wherein said air-based platform 1s configured to commu-
nicate with said operations center using said dedicated
on-board transmitter and said dedicated on-board
recelver;

transmitting at least one test image taken by said dedi-
cated camera of a new point of interest from said
air-based platform to said operations center, wherein
said at least one test image 1s at least one pixilated
1mage;

inputting said at least one test image into said at least one
electronic processor;

providing an image matching tool associated with said at
least one electronic processor, said image matching tool
configured to determine a unique bin magnitude thresh-
old descriptor for said at least one test image and said
at least one georeferenced 1mage of a known point of
interest, wherein said 1mage matching tool 1s config-
ured to provide a classification match of said at least
one test image to one of said at least one georeferenced
image of a known point of interest;

wherein said classification match corresponding to said at
least one test image from said dedicated camera and
one of said at least one georeferenced 1mage of a known
point of interest having matched features, wherein said
matched features indicating said at least one test image
has an 1dentical earth-centered, earth-fixed position as
said at least one georeferenced 1mage of a known point
of interest;

wherein said air-based platform 1s configured to navigate
to a location having said identical earth-centered, earth-
fixed position corresponding to said classification
match;

at least one device associated with said at least one
clectronic processor, said at least one device configured
to output 1 a tangible medium said classification
match:

navigating said air-based platform to said location having
said 1dentical earth-centered, earth-fixed position cor-
responding to said classification match; and

outputting said classification match 1n said tangible
medium.

8. The method according to claim 7, wherein said image
matching tool 1s a non-transitory electronic-processor-read-
able medium having a plurality of electronic processor
executable instructions stored thereon, that when executed
by said at least one electronic processor, causes said at least
one electronic processor to build a generative uniform
background model of said at least one test image and said at
least one georeferenced 1mage of a known point of interest,
said generative uniform background model, comprising:

a feature detector producing a set of feature frames,
wherein said feature detector 1s a scale invariant feature
transform (SIFT) that can be detected across said at
least one test image and said at least one georeferenced
image of a known point of interest;

a sample of a normalized patch, J(X,y), in each of said at
least one test image and said at least one georeferenced
image of a known point of interest; and

a construction of a local feature descriptor, d, built for said
normalized patch, J(x,y), wherein a clamping threshold
1s defined as t ; and represents the image content of said
normalized patch, J(x,y).

9. The method according to claim 8, wherein said unique

bin magnitude threshold descriptor is an interest point
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defined by position, scale, and orientation 1n said at least one
test image and said at least one georeferenced image of a
known point of interest.
10. The method according to claim 8, wherein said image
matching tool 1s a non-transitory electronic-processor-read-
able medium having a plurality of electronic processor
executable instructions stored thereon, that when executed
by said at least one electronic processor, causes said at least
one electronic processor to:
extract SIFT features from each image in said at least one
test image and said at least one georeferenced image of
a known point of interest;

perform a meaningiul clamping instruction task on the
normalized patch 1n said at least one test image and the
normalized patch 1n said at least one georeferenced
image ol a known point of interest; and

determine said meaningful clamping threshold and output

said meaningiul clamping threshold.

11. The method according to claim 10, said meaningiul
clamping instruction task, further comprising:

constructing a histogram grid, /\, associated with said

descriptor d, representing a set of connected bins L,
wherein L=n(X)n(yv)n(0), such that every bin 1=(1,1,k)
— A, contains a number of sample counts d(1), and a
neighborhood set C,= A of bins, for which 1 1s con-
nected, wherein said neighborhood set for each of said
bin yields a circular-connected angular histogram hav-
ing spatial dimensions that are rectangular, where n(x)
1s the number of bins 1n the x direction, n(y) 1s the

number of bins 1n the y direction, and n(0) 1s the
number of bins 1n the 0 direction;

determining a total number of samples, M, wherein
M=2.d(1) of said descriptor d and setting p(l) as the
probability that a random sample 1s drawn 1n bin I;

determinming a number of aligned and connected rectan-
gular regions, N, _ . that can be assembled of a three-
dimensional (3-D) histogram with dimensions of
n,Xxn xng, wherein

1
Niear = gr(0n(y)n(O)(n(x) + 1)(r(y) + 1)n@) + 1)

in said histogram grid, A;
determining the probability, p(l), that a random sample 1s
drawn 1n bin 1 by setting

1
pll) = —

e

determining a detection threshold, t;, wherein said
detection threshold 1s mathematically determined by,

{7 =Mp+a(N Rect)VMp(1-p), where

1
AN poer) = \/ —lr{ - Rm] ;

and
setting 1=0 on the first determination of the first bin, 1, of
said meaningiul clamping instruction task.
12. The method according to claim 11, said meaningiul
istruction clamping task, further comprising:
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determining whether every bin on said 3-D histogram has
been processed;

wherein when additional bins exist that have not been
processed, determining whether 1 1s greater than said

detection threshold, f;;;
wherein when 1 1s greater than said detection threshold,

t;, setting a bin value to said detection threshold

value, £y, and indexing to the next iteration, i, wherein
the next 1teration 1s 1=1+1, and processing the next bin;
when 1 has a value greater than said detection threshold,

t; . setting the bin value to the threshold value, i={,,
and 1indexing to the next 1, wherein the next 1=1+1, and
processing the next bin;

when all bins 1n said 3-D histogram have been processed,
normalizing the descriptor, d, to ensure that the descrip-
tor, d, has unit length.
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