US010394586B2

a2y United States Patent (10) Patent No.: US 10,394,586 B2

Tsirkin 45) Date of Patent: Aug. 27, 2019
9
(54) USING CAPABILITY INDICATORS TO 8.412,860 B2 4/2013 Kishore et al.
INDICATE SUPPORT FOR GUEST DRIVEN 8,429,322 B2~ 4/2013 Isirkin
SURPRISE REMOVAL OF VIRTUAL PCI 8,554,957 B1* 10/2013 Wieland GOGF 9/44}/ 1
710/8
DEVICES 8,856,788 B2 10/2014 Tsirkin et al.
_ 9,043,789 B2 5/2015 Tsirkin et al.
(71) Applicant: Red Hat Israel, Ltd., Raanana (IL) 2003/0069961 Al* 4/2003 Kaushik GOG6F 13/4027
709/224
(72) Inventor: Michael Tsirkin, Yokneam Illit (IL) 2005/0132366 Al™* 6/2005 Weast HO4L 12/2803
718/1
(73) Assignee: Red Hat Israel, Ltd., Raanana (IL) 2007/0011500 AT* 1/2007 Dasart GOOF 11/0745
’ ” 714/100
2007/0156942 Al 7/2007 Gough

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 94 days.

(Continued)

OTHER PUBLICATTIONS

(21) Appl. No.: 14/826,037
[Xen-Devel] [Patch 4/4] xen: Fix PV-on-HVM, http:lists.xen.org/

(22) Filed: Aug. 13, 2015 archives/html/xen-devl/2012-05/msg01131.html, UNIX Founda-
tion Collaborative Projects, Xen project Mailing List, 2 pages,
(65) Prior Publication Data published on May 16, 2012.
US 2017/0046187 A1 Feb. 16, 2017 (Continued)
(51) Int. CI. Primary Examiner — Meng A1 T An
GO6F 9/455 (2018.01) Assistant Examiner — Michael W Ayers
(52) U.S. CL. (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
CPC ... GO6F 9/45558 (2013.01); GO6F 9/45554
(2013.01); GOGF 2009/45562 (2013.01); Go6F (07 ABSTRACT
2009/45579 (2013.01) A hypervisor receives a notification from a guest operating
(58) Field of Classification Search system of a virtual machine that includes a capability
CPC GO6F 9/45558:; GO6F 9/45554; GO6F indicator of support provided by a virtual device driver for
2009/45562; GO6F 2009/45579 recovering from a surprise removal of a corresponding
See application file for complete search history. virtual device from the virtual machine. The hypervisor,
upon receiving a request to remove the virtual device from
(56) References Cited the virtual machine, uses the capability indicator received

from the guest operating system to identily one or more
actions to be performed to remove the virtual device from
the virtual machine. The hypervisor then removes the virtual

U.S. PATENT DOCUMENTS

7,836,238 B2 11/2010 Freimuth et al.

8,069,228 B2 11/2011 Bramley et al. device from the virtual machine using the 1dentified actions.
8,225,334 B2 7/2012 Green et al.
8,301,818 B2 10/2012 Zou et al. 20 Claims, 9 Drawing Sheets
GUEST 05 135 HYPERVISOR 125
SURPRISE REMOVAL CAPABILITY SURPRISE REMOVAL
— —- MODULE
128
REMOVAL NOTIFICATION _ MEMORY 250
ACKNOWLEDGEMENT MAPPING TABLE DEVICE DATA STRUCTURE
DEVICEDRVER | F—————————— > 12f 230
136 I
I I———————————————————

I
I
I CONTROL DEVICE ASSIGNMENT/EMULATION
l
™ 190

US 10,394,586 B2
Page 2

(56)

2007/0180493
2008/0294825
2009/0113422

2010/0250824
2012/0072633

2014/0068607
2015/0149677

2016/0170816

References Cited

U.S. PATENT DOCUMENTS
Al 8/2007 Croft et al.
Al 11/2008 Mahalingam et al.
AlL* 4/2000 Kanicovvvnivenn,
Al 9/2010 Belay
Al* 3/2012 Elboim
Al 3/2014 Tsirkin et al.
Al* 5/2015 Zhang
Al* 6/2016 Warkentin

tttttttttttttt

OTHER PUBLICATIONS

GOo6F 9/5077

718/1

GO6F 13/4081

710/302

GO6F 13/4081

710/302

GOOF 9/544

719/320

Bug 956290—[netkvim] Race Condition on Surprise Removal 1n
XP/2003 Driver, http://bugzilla.redhat.com/show_bug.cgi1?1d=
956290, 4 pages, Apr. 24, 2013,

* cited by examiner

US 10,394,586 B2

Sheet 1 of 9

Aug. 27, 2019

U.S. Patent

061
AO0IAA0

gcl

=hi
TVAOWZR

QOW
ASTEdENS

L Ol

GL MHOMLIN

08t | 0Z1

40IAJG ALOWLIN
AOVHOLS NIVIA

GOl JOSIAGAdA

021 SO LSOH

g€t
HAATHA JOIAGC

£l SO LS3No

091
fidd

4>
A18V.L ONIddViN

00L WALSAS d4LNdNOD

US 10,394,586 B2

Sheet 2 of 9

Aug. 27, 2019

U.S. Patent

¢ Ol

NOLLYTNNZ/ANIANDISSY

0ce . Vi)

FANLONE LS ViV J0IA40 418V.L ONIddVIN

0GZ AHOWAN

143

A 1NTON
IVAONZY A5idadnS

¢i HOSINGddAH

NOILYOIZILON TVAOWI

ALIIBYAYD TYAOWTY JSIdEns |

9¢t
d3A0 J0IA30

£l SO 154N9

U.S. Patent Aug. 27,2019 Sheet 3 of 9 US 10,394,586 B2

300
't

START
301
Store A Plurality of Capability Indicator Vaiues Associated With Actions To Be
Performed For Viral Device Removal
302
Receive Notification From Guest OS5 With Capability Indicator Value
303

~ Store Capability indicator Value In Mapping Table In Association With The VM and
Virtual Device

END

FIG. 3

U.S. Patent Aug. 27, 2019 Sheet 4 of 9 US 10,394,586 B2

400
¥

START
401
Receive a Request {0 Remove A Virtual Device From A VM
402

Access A Mapping Table To Obtain Capability Indicator of Surprise Removal Support
Provided By Virtual Device Driver

403

NO YES

Capability indicator Found

405

identity One Or More Actions To Be
404 Performed To Remove The Virtual Device

‘ From The VM
Deny Request To Remove Virtual
_ Deviee @ 406

Remove The Virtual Device From The VM
Using The One Or More Actions

END

FIG. 4

U.S. Patent Aug. 27,2019 Sheet 5 of 9 US 10,394,586 B2

500
'

START
501
Determine that the Surprise Removal Of Virtual Device is "Safeg”
502
Unmap Virtual Device From Guest OS
503
Send Notification to Guest OS that Virtual Device Has Been Removed By Hypervisor
504

Heceive Acknowledgement of Notification from Guest OS

END

FIG. 5

U.S. Patent Aug. 27,2019 Sheet 6 of 9 US 10,394,586 B2

600
r'd

START
601
Determine That Surprise Removal Of The Virtual Device is “Supported’
- 602
Send Nolification to Guest OS that Device Needs {0 be Removed
603
Start Timer
604
Detect Timer bExpiration Prior t0o Receiving Acknowledgment of Notification
605
Unmap Virtual Device From Guest OS
600
Send Notification To Guest OS5 That Virtual Device Has Been Removed By Hypervisor
607
Receive Acknowledgement Of Notification From Guest OS5
608

Free Hypervisor Resources Associated with Virtual Device

END

FIG. 6

U.S. Patent Aug. 27,2019 Sheet 7 of 9 US 10,394,586 B2

700
e

START
701
Determine That Surprise Removal Of The Virtual Device |s "Not Safe”
702
Send Notification To Guest OS That Virtual Device Needs To Be Removed
703
Receive Acknowledgement Of Notification from Guesi OS5
704

Unmap Virtual Device From Guest OS And Free Hypervisor Resources Associated
with Virtual Device

END

FIG. 7

U.S. Patent Aug. 27,2019 Sheet 8 of 9 US 10,394,586 B2

800
e

START
801
Detect Assignment of Virtual Device To VM
807
Load Device Driver for Virtual Device into Memory
803
Determine Capability indicator Vaiue That Identifies Support Provided By Virtual
Device Driver For Surprise Removal Recover
804

Send Notification 1o Hypervisor That Includes The Capability indicator Value

END

FIG. 8

U.S. Patent Aug. 27,2019 Sheet 9 of 9 US 10,394,586 B2

900
¥

90?2
910
PROCESSING DEVICE
NN
SURPRISE REMOVAL VIDEO DISPLAY
MODULE 926
904 912
MAIN MEMORY
— _ ALPHA-NUMERIC INPUT
SURPRISE REMOVAL 906 DEVICE
MODULE
906 914
STATIC MEMORY - CURSOR CONTROL DEVICE
BUS
_ — 608 _ _
16
922)
DATA STORAGE DEVICE
NETWORK INTERFACE
DEVICE COMPUTER-READABLE 104
MEDIUM
NN
SURPRISE 926
REMOVAL MODULE
920

SIGNAL GENERATION

DEVICE

FIG. 9

US 10,394,586 B2

1

USING CAPABILITY INDICATORS TO
INDICATE SUPPORT FOR GUEST DRIVEN
SURPRISE REMOVAL OF VIRTUAL PC1
DEVICES

TECHNICAL FIELD

The present disclosure 1s generally related to computer
systems, and more particularly, to managing surprise
removal of devices 1n virtualized computer systems.

BACKGROUND

A virtual machine (VM) 1s a portion of software that,
when executed on appropriate hardware, creates an envi-
ronment allowing the virtualization of an actual physical
computer system (e.g., a server, a mainframe computer,
etc.). The actual physical computer system 1s typically
referred to as a “host machine,” and the operating system
(OS) of the host machine 1s typically referred to as the “host
operating system.” Typically, software on the host machine
known as a “hypervisor” (or a “virtual machine monitor”)
manages the execution of one or more virtual machines or
“ouests”, providing a variety of functions such as virtualiz-
ing and allocating resources, context switching among vir-
tual machines, etc. The operating system (OS) of the virtual
machine 1s typically referred to as the “guest operating

system.”

In a virtualized environment, physical devices, such as
network devices or video cards, can be made available to
guests by the hypervisor by a process known as device
assignment. The hypervisor can create a virtual device
within the guest that 1s associated with the physical device
so that any access of the virtual device can be forwarded to
the physical device by the hypervisor with little or no
modification. Removal of a device from an assigned guest
OS without warning (e.g., by simply unplugging 1t without
using a device manager or removal utility), 1s referred to as
“surprise removal.”

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example,
and not by way of limitation, and can be more fully
understood with reference to the following detailed descrip-
tion when considered in connection with the figures in
which:

FIG. 1 depicts a high-level component diagram of an
example computer system architecture, in accordance with
one or more aspects of the present disclosure.

FIG. 2 depicts example of an interaction between a
hypervisor and guest OS, from which a device i1s to be
removed, 1n accordance with one or more aspects of the
present disclosure.

FIG. 3 depicts a tlow diagram of a method for managing,
surprise removal actions for virtual devices, 1n accordance
with one or more aspects of the present disclosure.

FIG. 4 depicts a tlow diagram of a method for guest-
driven surprise removal for virtual devices, 1 accordance
with one or more aspects of the present disclosure

FIG. 5 depicts a tlow diagram of a method for device
removal where surprise removal 1s “safe”, 1n accordance
with one or more aspects of the present disclosure.

FIG. 6 depicts a tlow diagram of a method for device
removal where surprise removal 1s “supported”, in accor-
dance with one or more aspects of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 depicts a tlow diagram of a method for device
removal where surprise removal 1s “not safe”, in accordance

with one or more aspects of the present disclosure.

FIG. 8 depicts a flow diagram of a method for determining,
surprise removal recovery capability of a device by a guest
OS, 1n accordance with one or more aspects of the present
disclosure.

FIG. 9 depicts a block diagram of an illustrative computer
system operating 1n accordance with examples of the mnven-
tion.

DETAILED DESCRIPTION

Described herein are methods and systems for guest-
driven surprise removal for virtual devices. In a virtualized
environment, removal of a virtual device from a host com-
puter system can sometimes occur for reasons of reliability
(due to guest OS or host OS 1nstability) or resource over-
commit (e.g., a host OS 1s short on resources consumed by
the guest OS) to free resources for use by diflerent virtual
machines or hosts. Typically, removal of a virtual device
(such as a Peripheral Component Interconnect (PCI) device)
from a VM 1nvolves sending a removal notification from the
hypervisor to the guest OS of the VM and receiving an
explicit acknowledgment from the guest OS that indicates
that the guest OS has entered a state 1n which 1t 1s safe to
remove the device. The acknowledgment from the guest OS
1s needed to avoid guest OS errors as a result of the device
removal prior to the guest OS (also referred to herein as
“ouest”) flushing any associated cache to avoid losing data.
For example, the removal of a disk could result in the loss
of critical data, or the removal of a network interface
controller could result in the loss of networking communi-
cation packet information. However, this removal process
may be time consuming, particularly i1 the guest 1s slow, the
guest 1s not operating properly, or 1t the guest lacks the
ability to recover from a surprise removal of a device.

Aspects of the present disclosure address the above noted
and other deficiencies by implementing guest-driven sur-
prise removal for virtual devices. The guest OS can pre-
emptively notily the hypervisor during guest boot or device
assignment whether surprise removal 1s supported for a
virtual device, eflectively sending the removal acknowledg-
ment prior to device removal. Doing so can inform the
hypervisor that the guest OS can recover from a surprise
removal, allowing the hypervisor to unmap a virtual device
from a guest OS without an acknowledgment from the guest
OS. This can significantly reduce the time required to
complete a device removal, providing the ability to quickly
move devices between VMs.

In an illustrative example, a hypervisor can receive a
notification from a guest operating system (OS) of a virtual
machine that indicates the support provided by a virtual
device driver for recovering from a surprise removal (e.g.,
removal of a virtual device from the guest OS without
warning) ol a corresponding virtual device from the virtual
machine. In some implementations, the notification from the
guest OS may include a capability indicator value that
corresponds to the level of support for surprise removal of
a virtual device provided by the corresponding virtual device
driver. The capability indicator value may be numeric (e.g.,
“17, <27, %37, etc.), alphanumeric (e.g., “A”, “B”, “C”, efc.),
a string value (e.g., “safe”, “supported”, “not sate”, etc.), or
the like. In some implementations, each of the possible
capability indicator values may be stored 1n association with
a corresponding set of one or more actions to be performed
for virtual device removal. The capability indicator values

US 10,394,586 B2

3

may be stored in hypervisor accessible memory, a shared
memory space, stored in a storage device, incorporated into
executable code, or in any similar manner.

The hypervisor can associate a physical device with a
guest operating system by creating a virtual device that 1s
accessible by the guest, where the virtual device 1s associ-
ated with the physical device (e.g., device assignment). Any
access of the virtual device by the guest operating system of
the virtual machine can be forwarded to the physical device
by the hypervisor with little or no modification. In certain
implementations, the physical device may be a Peripheral
Component Interconnect (PCI) device (e.g., a network inter-
tace controller (NIC), an Integrated Graphics Device (1GD),
etc.).

The guest operating system may determine the capability
indicator value that identifies the support provided by the
virtual device driver for recovering from surprise removal of
the virtual device from the VM when the guest detects the
assignment of the virtual device to the VM. For example, the
guest may determine the capability indicator value at guest
boot time (e.g., when the guest begins execution). Alterna-
tively, the guest may determine the capability indicator value
when a new device 1s detected by the guest during guest
execution. In some 1implementations, the guest may deter-
mine the capability indicator value using the virtual device
river for the device. For example, upon detecting a virtual
evice, the guest may locate the virtual device driver for the
evice and examine a property of the virtual device driver to
etermine whether the device supports surprise removal
recovery. The guest may complete this determination on a
device-by-device basis, or alternatively, may make a single
determination for all assigned devices.

In some i1mplementations, the guest may determine
whether or not surprise removal 1s supported by the virtual
device driver. Alternatively, the guest may conduct a more
advanced determination to accommodate different levels of
support. In 1n 1llustrative example, support levels can
include “sate,” “supported,” and “not safe.” Surprise
removal may be deemed ““sate” when the guest can com-
pletely recover from surprise removal of the virtual device.
Surprise removal may be deemed “supported” when the
surprise removal of a virtual device may not result 1in an
abnormal termination (crash) of the guest, but graceful
removal (e.g., the hypervisor should wait for acknowledg-
ment from the guest before removal of the device) 1s
preferred. Surprise removal may be deemed “not saie” when
surprise removal of the virtual device will result in an
abnormal termination (crash) of the guest, so the hypervisor
should wait for acknowledgment from the guest prior to
removal of the device (graceful removal). It should be noted
that although, for simplicity, only three surprise removal
recovery capability levels have been described above, in
some other implementations more or fewer levels may be
included.

Once the guest has determined the level of surprise
removal recovery supported by the virtual device driver, the
guest may set the capability indicator value that corresponds
with the level of support. In some implementations, the
guest may store and maintain this information 1 a data
structure accessible to the guest. The data structure may be
maintained 1n guest accessible memory, a shared memory
space, stored 1n a storage device, or 1n any similar manner.
The guest may subsequently send the notification to the
hypervisor that includes the capability indicator value. The
guest may send the notification via an interrupt request, a
message written to a data structure 1 a shared memory
location, or 1n any similar manner. The guest may send a

C
C
C
C

10

15

20

25

30

35

40

45

50

55

60

65

4

separate notification for each individual device, a single
notification for all devices that are of a similar device type
(e.g., one notification for all PCI devices, one notification for
all USB devices, one notification for all NICs, etc.), a single
global notification for all devices assigned to the guest, or 1n
any other manner.

The hypervisor, upon receipt of the notification, may store
the capability indicator value received from the guest OS to
a mapping table 1n association with the virtual machine and
virtual device. The mapping table may contain the capability
indicator value, an i1dentifier for the virtual machine execut-
ing the guest operating system (e.g., the process 1dentifier for
the VM), a unique 1dentifier for the virtual device, the device
type, or any similar information. The mapping table may be
maintained in hypervisor accessible memory, a shared
memory space, stored 1n a storage device, or 1n any similar
mannet.

Subsequently, the hypervisor may receive a request to
remove the virtual device from the VM. In some implemen-
tations, the request may be received from a hypervisor
administrator via a management system interface for the
hypervisor. Alternatively, the request may be received from
another component of the system. The hypervisor, upon
receipt ol the request, may access the mapping table to
obtain the capability indicator of support provided by the
virtual device driver for recovering from a surprise removal
of the virtual device from the virtual machine. In an 1llus-
trative example, a hypervisor administrator may need to
quickly move a high performance network interface con-
troller from an executing source virtual machine to an
executing destination virtual machine, and may send the
request to the hypervisor via a management system interface
console. The hypervisor may then access the mapping table
using the identifier of the source virtual machine (e.g., the
process 1d) to determine the capability indicator value of the
virtual device driver associated with network interface con-
troller that was sent to the hypervisor by the source virtual
machine as noted above. If the hypervisor 1s unable to
determine the capability indicator value of the virtual device
driver (e.g., the capability indicator value 1s not present 1n
the mapping table), the hypervisor may deny the removal
request. In some implementations, the hypervisor may then
send a notification of the demial to the requestor. The
hypervisor may send the notification via an interrupt request,
a message written to a data structure in a shared memory
location, or in any similar manner.

The hypervisor may use the capability indicator value
from mapping table to 1dentity a list of one or more actions
to be performed to remove the virtual device from the VM.
The hypervisor may then remove the virtual device from the
VM using the one or more actions. I, according to the
contents of the mapping table, the capability indicator value
indicates that surprise removal of the virtual device 1s “sate”
(c.g., the guest can completely recover Ifrom surprise
removal of the device), the hypervisor may unmap the
virtual device from the guest immediately without waiting
for an acknowledgment. Unmapping a device from the guest
includes modifying hypervisor data structures (e.g., PCI
forwarding tables, CPU memory tables, etc.) such that future
accesses to one of the resources assigned to a virtual device
are no longer forwarded to the physical device. Unmapping
the device from the guest should be suflicient to allow the
hypervisor to reuse the device (e.g., assign the device to
another virtual machine). After unmapping the device from
the guest, the hypervisor may then send a notification to the
guest indicating that the device has been removed from the
guest by the hypervisor. The hypervisor may send the

US 10,394,586 B2

S

notification via an interrupt request, a message written to a
data structure 1n a shared memory location, or 1n any similar
manner. Responsive to receiving an acknowledgment from
the guest of the notification, the hypervisor may then free
resources associated with the virtual device for use (e.g.,
reusing the resources for a different virtual device of the
same virtual machine).

If, according to the contents of the mapping table, the
capability indicator value indicates that surprise removal of
the virtual device 1s “supported” (e.g., the surprise removal
of a device will not result in an abnormal termination (crash)
of the guest, but gracetul removal 1s preferred), the hyper-
visor may first attempt to remove the device gracefully
before attempting a surprise removal. The hypervisor may
send a notification to the guest to indicate that the device
needs to be removed from the guest. The hypervisor may
send this notification via an interrupt request, a message
written to a data structure in a shared memory location, or
in any similar manner. In some 1mplementations, a timer
may be used to determine whether to attempt a surprise
removal (e.g., 1f the guest 1s malfunctioning, overburdened
with requests, etc.). For example, upon sending the notifi-
cation, the hypervisor may then start a timer associated with
the notification. Any time before the timer expires, the guest
may return an acknowledgment of the notification to indi-
cate to the hypervisor that graceful removal of the device
may continue, at which point the hypervisor may unmap the
device and free the resources. However, 1f the hypervisor
detects that the timer has expired prior to receiving an
acknowledgment, the hypervisor may attempt a surprise
removal of the device ({ollowing similar steps described
above when the surprise removal capability 1s deemed
“safe”).

If the timer has expired, and the hypervisor attempts
surprise removal of the device, the hypervisor may first
unmap the virtual device from the guest, and send a second
notification to the guest indicating that the device has been
removed from the guest by the hypervisor. Responsive to
receiving an acknowledgment from the guest of this second
notification, the hypervisor may then free resources associ-
ated with the virtual device for use. In some 1mplementa-
tions, the hypervisor may send an alert to an administrator
(e.g., to a management system interface for the hypervisor)
to request confirmation to unmap the virtual device and
subsequently free the hypervisor resources. Upon receiving
confirmation from the admuinistrator, the hypervisor may
unmap the virtual device and free the resources for use.

If, according to the contents of the mapping table, the
capability indicator value indicates that surprise removal of
the virtual device 1s “not sate” (e.g., the surprise removal of
the device will result in an abnormal termination (crash) of
the guest), the hypervisor should wait for acknowledgment
from the guest prior to removal of the device (gracetul
removal). The hypervisor may first send a notification to the
guest to mdicate that the device needs to be removed from
the guest. The guest may then return an acknowledgment of
the notification to indicate to the hypervisor that gracetul
removal of the device may continue, at which point the
hypervisor may unmap the device and free the resources
associated with the virtual device.

In some 1mplementations, where the hypervisor receives
a removal request for a virtual device but has not received
a nofification from the guest that indicates the support
provided by the corresponding virtual device driver for
recovering from the surprise removal of the virtual device
(e.g., there 1s no information 1n the mapping table for that
virtual device/virtual machine association), the hypervisor

10

15

20

25

30

35

40

45

50

55

60

65

6

may default to the process used when surprise removal 1s
“not sate” as noted above. Alternatively, the hypervisor may
default to the process used when surprise removal 1s “sup-
ported” (e.g., start a timer). If the hypervisor does not
receive any surprise removal capability information from the
guest, the hypervisor may instead treat this as an indication
that the guest 1s undergoing the boot process and attempt a
surprise removal of the virtual device without requiring a
guest acknowledgement (e.g., the hypervisor may assume
that the guest has not yet discovered the device, so surprise
removal 1s sate). The hypervisor may also interpret this as an
indication that the guest has crashed. Thus, the hypervisor
may attempt to stop or reset the virtual machine and remove
the device.

Aspects of the present disclosure are thus capable of
facilitating guest-driven surprise removal for virtual devices.
More particularly, aspects of the present disclosure can
reduce the time required to remove a virtual device from a
guest OS by determining the level of surprise removal
recovery capability for a virtual device driver of a corre-
sponding virtual device assigned to the guest OS prior to
removal.

FIG. 1 depicts a high-level component diagram of an
illustrative example of a computer system 100, 1n accor-
dance with one or more aspects of the present disclosure.
One skilled 1n the art will appreciate that other architectures
for computer system 100 are possible, and that the imple-
mentation of a computer system utilizing examples of the
invention are not necessarily limited to the specific archi-
tecture depicted by FIG. 1.

As shown i FIG. 1, the computer system 100 1s con-
nected to a network 150 and comprises one or more central
processing units (CPU) 160, main memory 170, which may
include volatile memory devices (e.g., random access
memory (RAM)), non-volatile memory devices (e.g., flash
memory) and/or other types of memory devices, a storage
device 180 (e.g., one or more magnetic hard disk drives, a
Peripheral Component Interconnect [PCI] solid state drive,
a Redundant Array of Independent Disks [RAID] system, a
network attached storage [NAS] array, etc.), and one or more
devices 190 (e.g., a Peripheral Component Interconnect
|[PCI] device, network interface controller (NIC), a video
card, an I/O device, etc.). In certain implementations, main
memory 170 may be non-uniform access (NUMA), such
that memory access time depends on the memory location
relative to CPU 160. It should be noted that although, for
simplicity, a single CPU 160, storage device 180, and device
190 are depicted in FIG. 1, other embodiments of computer
system 100 may comprise a plurality of CPUs, storage
devices, and devices.

The computer system 100 may be a server, a mainirame,
a workstation, a personal computer (PC), a mobile phone, a
palm-sized computing device, etc. The network 150 may be
a private network (e.g., a local area network (LAN), a wide
arca network (WAN), intranet, etc.) or a public network
(c.g., the Internet).

Computer system 100 may additionally comprise one or
more virtual machine (VM) 130 and host operating system
(OS) 120. VM 130 1s a software implementation of a
machine that executes programs as though i1t was an actual
physical machine. Host OS 120 manages the hardware
resources of the computer system and provides functions
such as inter-process communication, scheduling, memory
management, and so forth.

VM 130 may comprise a guest operating system (OS) 135
that handles the execution of applications within the virtual
machine. Guest OS 135 may control a device 190 through

US 10,394,586 B2

7

device driver 136. Guest OS 135 may additionally determine
the surprise removal recovery capability of the device 190
using the device driver 136. Guest OS 135 may determine
the surprise removal recovery capability of device 190 when
the guest detects the assignment of the device 190 to the
guest. For example, guest OS 135 may determine the
surprise removal recovery capability of device 190 at guest
OS 135 boot time (e.g., when guest OS 135 begins execu-
tion). Alternatively, guest OS 135 may determine the sur-
prise removal recovery capability of a virtual device when
device 190 1s detected by guest OS 135 during execution.
For example, upon detecting the device 190, the guest OS
135 may locate the device driver 136 and examine a property
of the device driver 136 to determine whether device 190
supports surprise removal recovery. It should be noted that
although, for simplicity, a single VM 130 1s depicted 1n FIG.
1, computer system 100 may host a plurality VMs 130.

Host OS 120 may comprise a hypervisor 125, which
provides a virtual operating platform for VMs 130 and
manages their execution. Hypervisor 125 may comprise
mapping table 127 and surprise removal module 128. It
should be noted that in some alternative implementations,
hypervisor 125 may be external to host OS 120, rather than
embedded within host OS 120, or may replace host OS 120.

Surprise removal module 128 can facilitate guest driven
surprise removal for devices 190, as described in detail
below with respect to FIGS. 3-7. Surprise removal module
128 may save the capability indicator value associated with
the support provided by virtual device driver 136 for recov-
ering from surprise removal of the virtual device associated
with device 190 received from VM 130 1n mapping table
127. Mapping table 127 may contain an i1dentifier for VM
130 executing guest OS 1335, an identifier for device 190, the
device type, the capability indicator value, or any similar
information. Mapping table 127 can be an area of hypervisor
memory accessible to surprise removal module 128, a
shared memory space, a data structure saved in storage
device 180, or the like.

FI1G. 2 illustrates an example of an interaction between the
hypervisor 125 and the guest OS 135, from which the device
190 1s to be removed. The device 190 may be a physical
device assigned by the hypervisor 125 to the guest OS 135,
or a virtual device that 1s emulated by the hypervisor 125 for
the guest OS 135. The hypervisor 125 may maintain a device
data structure 230 in data storage (e.g., memory 2350) that 1s
allocated to the guest OS 135 for the use of the device 190.
The device data structure 230 i1s accessible to the surprise
removal module 128, and may be used for emulation of the
device 190, for mediating the guest’s access to the device
190, and/or for other device management purposes. The
guest OS 135 may control the device 190 through a device
driver 136.

In an 1llustrative example, guest OS 135 may determine
the level of surprise removal recovery supported by device
driver 136 when the guest detects assignment of device 190
(e.g., at boot time, during guest execution, etc.). Guest OS
135 may determine the capability indicator value that 1den-
tifies the support provided by the device driver 136 for
recovering from surprise removal of device 190 from the
VM using a property of device driver 136. Guest OS 135
may then send the capability indicator value to hypervisor
125. Surprise removal module 128 of hypervisor 125 can
receive this mformation from guest OS 135 and save 1t in
mapping table 127. Subsequently, surprise removal module
128 may receirve a request to remove device 190 from guest
OS 135 (e.g., from a hypervisor administrator via a man-
agement system interface for the hypervisor). Surprise

10

15

20

25

30

35

40

45

50

55

60

65

8

removal module 128 may then access mapping table 127 to
determine the capability indicator value from guest OS 135,
identify a list of one or more actions to perform to remove
device 190 from guest OS 135, and subsequently attempt to
remove device 190 from guest OS 135 using the one or more
actions.

If, according to the contents of mapping table 127,
surprise removal of the device 1s “safe” (e.g., the guest can
completely recover from surprise removal of the device), the
surprise removal module 128 may unmap device 190 from
guest OS 135 immediately without waiting for an acknowl-
edgment. After unmapping device 190 from guest OS 135,
surprise removal module 128 may then send a notification to
guest OS 135 indicating that device 190 has been removed.
Responsive to receiving an acknowledgment from guest OS
135 of the notification, surprise removal module 128 may
then free resources associated with device 190 for use. It
should be noted that in some alternative implementations,
surprise removal module 128 may support additional levels
ol surprise removal capability to those depicted in FI1G. 2, as
described in detail below with respect to FIGS. 3-6.

FIG. 3 depicts a flow diagram of an example method 300
for managing surprise removal actions for virtual devices.
The method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), sofit-
ware (such as 1s run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
illustrative example, method 300 may be performed by
surprise removal module 128 of hypervisor 125 in FIG. 1.
Alternatively, some or all of method 300 might be performed
by another module or machine. It should be noted that
blocks depicted 1in FIG. 3 could be performed simultane-
ously or 1n a different order than that depicted.

At block 301, processing logic can store a plurality of
capability indicator values, each associated with a corre-
sponding set of one or more actions to be performed for
virtual device removal. The capability indicator values may
be numeric (e.g., “17, 27, “3”, etc.), alphanumeric (e.g.,
“A” “B”, “C”, etc.), string values (e.g., “sate”, “supported”,
“not safe”, etc.), or the like. The capability indicator values
may be stored in hypervisor accessible memory, a shared
memory space, stored in a storage device, incorporated into
executable code, or 1n any similar manner. In some 1mple-
mentations, the actions to be performed for virtual device
removal may be those as described below with respect to
FIGS. §-7.

At block 302, processing logic can receive a notification
from a guest OS of a VM that includes a capability indicator
value associated with the support provided by a virtual
device driver for recovering from surprise removal of an
associated virtual device from the VM. In some implemen-
tations, the capability indicator value received in the noti-
fication may be one of the indicator values stored in block
301.

At block 303, processing logic can store the capability
indicator value 1n a mapping table in association with the
virtual machine and the virtual device. The mapping table
may contain the capability indicator value, an identifier for
the virtual machine executing the guest operating system
(e.g., the process 1dentifier for the VM), a unique identifier
for the wvirtual device, the device type, or any similar
information. The mapping table may be maintained 1n
hypervisor accessible memory, a shared memory space,
stored 1n a storage device, or 1n any similar manner. After
block 303, the method of FIG. 3 terminates.

FIG. 4 depicts a flow diagram of an example method 400
for guest-driven surprise removal for virtual devices. The

US 10,394,586 B2

9

method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), soit-
ware (such as 1s run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
illustrative example, method 400 may be performed by
surprise removal module 128 of hypervisor 125 1n FIG. 1.
Alternatively, some or all of method 400 might be performed
by another module or machine. It should be noted that
blocks depicted 1n FIG. 4 could be performed simultane-
ously or 1n a different order than that depicted.

At block 401, processing logic can receive a request to
remove a virtual device from a VM. In some implementa-
tions, the request may be received from a hypervisor admin-
1strator via a management system interface for the hypervi-
sor. Alternatively, the request may be received from another
component of the system. At block 402, processing logic can
access a mapping table to obtain a capability indicator of
surprise removal support provided by the virtual device
driver associated with the virtual device for recovering from
a surprise removal of the virtual device from the VM.

At block 403, processing logic can determine whether the
capability indicator 1s found in the mapping table. If not,
processing proceeds to block 404. At block 404, processing
logic can deny the request to remove the virtual device. In
some 1mplementations, processing logic may send a notifi-
cation to the requestor of the denial. The hypervisor may
send the notification via an interrupt request, a message
written to a data structure in a shared memory location, or
in any similar manner. After block 404, the method of FIG.
4 terminates.

If, at block 403, processing logic determines that the
capability indicator 1s found 1n the mapping table, process-
ing continues to block 405. At block 405, processing logic
can 1dentily one or more actions to be performed to remove
the virtual device from the VM. In some implementations,
the actions to be performed for virtual device removal may
be those stored i block 301 of FIG. 3. Additionally, or
alternatively, the actions to be performed may be those as
described below with respect to FIGS. 5-7. At block 406,
processing logic can remove the virtual device from the VM
using the one or more actions. After block 406, the method
of FIG. 4 terminates

FIG. 5 depicts a flow diagram of an example method 500
for device removal where surprise removal 1s “sate”. The
method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), soit-
ware (such as 1s run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
illustrative example, method 500 may be performed by
surprise removal module 128 of hypervisor 125 1 FIG. 1.
Alternatively, some or all of method 500 might be performed
by another module or machine. It should be noted that
blocks depicted 1n FIG. 5 could be performed simultane-
ously or in a different order than that depicted.

At block 501, processing logic can determine that surprise
removal of a virtual device 1s “safe” (e.g., the guest can
completely recover from surprise removal of the device). In
some 1mplementations, this determination can be made by
the processing logic at block 402 of FIG. 4, and blocks
502-504 below may be the actions identified by the pro-
cessing logic at block 403 of FIG. 4, and subsequently
performed by block 404 of FIG. 4.

At block 502, processing logic can unmap the device from
the guest OS. Since surprise removal was determined to be
“sate” at block 501, processing logic may unmap the virtual
device from the guest OS immediately without waiting for
an acknowledgment. Unmapping a device from the guest

10

15

20

25

30

35

40

45

50

55

60

65

10

can include modifying hypervisor data structures (e.g., PCI
forwarding tables, CPU memory tables, etc.) such that future
accesses to one of the resources assigned to a virtual device
are no longer forwarded to the physical device. Unmapping
the device from the guest should be suflicient to allow
processing logic to reuse the device (e.g., assign the device
to another virtual machine).

At block 503, processing logic can send a notification to
the guest OS indicating that the device has been removed
from the guest OS. Processing logic may send the notifica-
tion via an mterrupt request, a message written to a data
structure 1n a shared memory location, or 1n any similar
manner. At block 504, processing logic can receive an
acknowledgment of the notification from the guest OS. At
block 505, processing logic can free hypervisor resources
associated with the device responsive to recelvmg the
acknowledgment (e.g., reuse the resources for a different
virtual device of the same virtual machine). After block 505,
the method of FIG. 5 terminates.

FIG. 6 depicts a flow diagram of an example method 600
for device removal where surprise removal 1s “supported”.
The method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), sofit-
ware (such as 1s run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
illustrative example, method 600 may be performed by
surprise removal module 128 of hypervisor 125 in FIG. 1.
Alternatively, some or all of method 600 might be performed
by another module or machine. It should be noted that
blocks depicted 1n FIG. 6 could be performed simultane-
ously or 1n a different order than that depicted.

At block 601, processing logic can determine that the
surprise removal recovery capability of a device 1s “sup-
ported” (e.g., the surprise removal of a device will not result
in an abnormal termination (crash) of the guest, but graceful
removal 1s preferred). In some implementations, this deter-
mination can be made by the processing logic at block 402
of FIG. 4, and blocks 602-508 below may be the actions
identified by the processing logic at block 403 o1 FIG. 4, and
subsequently performed by block 404 of FIG. 4.

At block 602, processing logic can send a notification to
the guest OS that the device needs to be removed from the
guest OS (e.g., graceful removal). Processing logic may
send this notification via an interrupt request, a message
written to a data structure in a shared memory location, or
in any similar manner.

At block 603, processing logic can start a timer to
determine whether to attempt a surprise removal (e.g., 1f the
guest 1s malfunctioning, overburdened with requests, etc.).
For example, processing logic may then start a timer asso-
ciated with the notification sent at block 602. Any time
betore the timer expires, the guest OS may return an
acknowledgment of the notification sent at block 602 to
indicate that graceful removal of the device may continue, at
which point processing logic may unmap the device and free
the resources. At block 604, processing logic can detect
timer expiration prior to receiving an acknowledgment of
the notification from the guest OS.

At block 6035, processing logic can unmap the device from
the guest OS. Unmapping a device from the guest includes
moditying hypervisor data structures (e.g., PCI forwarding
tables, CPU memory tables, etc.) such that future accesses to
one of the resources assigned to a virtual device are no
longer forwarded to the physical device. Unmapping the
device from the guest should be suflicient to allow process-
ing logic to reuse the device (e.g., assign the device to
another virtual machine).

US 10,394,586 B2

11

At block 606, processing logic can send a noftification to
the guest OS that the device has been removed by the
hypervisor. Processing logic may send the notification via an
interrupt request, a message written to a data structure in a
shared memory location, or 1n any similar manner. At block
607, processing logic can receive an acknowledgment of the
notification from the guest OS. At block 608, processing,
logic can free hypervisor resources associated with the
device (e.g., reuse the resources for a diflerent virtual device
of the same virtual machine). After block 608, the method of
FIG. 6 terminates.

FI1G. 7 depicts a tlow diagram of an example method 700
for device removal where surprise removal 1s “not sate”. The
method may be performed by processing logic that may
comprise hardware (circuitry, dedicated logic, etc.), soit-
ware (such as 1s run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
illustrative example, method 700 may be performed by
surprise removal module 128 of hypervisor 125 1 FIG. 1.
Alternatively, some or all of method 700 might be performed
by another module or machine. It should be noted that
blocks depicted 1n FIG. 7 could be performed simultane-
ously or 1n a different order than that depicted.

At block 701, processing logic can determine that the
surprise removal recovery capability of a device 1s “not
sate” (e.g., the surprise removal of the device will result 1n
an abnormal termination (crash) of the guest). In some
implementations, this determination can be made by the
processing logic at block 402 of FIG. 4, and blocks 702-704
below may be the actions 1dentified by the processing logic
at block 403 of FIG. 4, and subsequently performed by block
404 of FIG. 4.

At block 702, processing logic can send a notification to
the guest OS that the device needs to be removed from the
guest OS (e.g., graceful removal). Processing logic may
send this notification via an interrupt request, a message
written to a data structure in a shared memory location, or
in any similar manner. At block 703, processing logic can
receive an acknowledgment of the notification from the
guest OS. At block 704, processing logic can unmap the
device from the guest OS and free hypervisor resources
associated with the device. Unmapping a device from the
guest includes modilying hypervisor data structures (e.g.,
PCI forwarding tables, CPU memory tables, etc.) such that
future accesses to one of the resources assigned to a virtual
device are no longer forwarded to the physical device.
Unmapping the device from the guest should be suflicient to
allow processing logic to reuse the device (e.g., assign the
device to another virtual machine). Freeing hypervisor
resources can permit reuse of the resources for a diflerent
virtual device of the same virtual machine. After block 704,
the method of FIG. 7 terminates.

FIG. 8 depicts a tlow diagram of an example method 800
for determining surprise removal recovery capability of a
device by a guest OS. The method may be performed by
processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), software (such as 1s run on a general
purpose computer system or a dedicated machine), or a
combination of both. In one illustrative example, method
800 may be performed by guest OS 135 of VM 130 in FIG.
1. Alternatively, some or all of method 800 might be
performed by another module or machine. It should be noted
that blocks depicted 1n FIG. 8 could be performed simulta-
neously or 1n a different order than that depicted.

At block 801, processing logic can detect assignment of
a device to a VM. Processing logic may detect device
assignment during the boot process of the guest OS. Alter-

10

15

20

25

30

35

40

45

50

55

60

65

12

natively, processing logic may detect device assignment
when a new device 1s detected during guest OS execution
(after the boot process has completed). At block 802, pro-
cessing logic can load a device driver for the virtual device
into memory.

At block 803, processing logic can determine a capability
indicator value that i1dentifies the support provided by the
virtual device driver loaded at block 802 for surprise
removal recovery of the associated virtual device. Process-
ing logic may examine a property of the device driver to
determine whether the device supports surprise removal
recovery. Processing logic may complete this determination
on a device-by-device basis, or alternatively, may make a
single determination for all assigned devices.

In some implementations, processing logic may deter-
mine whether or not surprise removal 1s supported by the
device. Alternatively, processing logic may conduct a more
advanced determination to accommodate different levels of
support. In 1n 1illustrative example, support levels can
include “safe,” “supported,” and “not safe.” Surprise
removal may be deemed ““safe” when the guest can com-
pletely recover from surprise removal of the device. Surprise
removal may be deemed “‘supported” when the surprise
removal of a device will not result in an abnormal termina-
tion (crash) of the guest, but gracetul removal (e.g., the
hypervisor should wait for acknowledgment from the guest
before removal of the device) 1s preferred. Surprise removal
may be deemed “not saie” when surprise removal of the
device will result 1n an abnormal termination (crash) of the
guest, so the hypervisor should wait for acknowledgment
from the guest prior to removal of the device (graceful
removal). It should be noted that although, for simplicity,
only three surprise removal recovery capability levels have
been described, 1n some other implementations more or
tewer levels may be included.

At block 804, processing logic can send a notification to
the hypervisor that includes the capability indicator value
determined at block 803. Processing logic may send this
notification via an interrupt request, a message written to a
data structure 1n a shared memory location, or 1n any similar
manner. After block 804, the method of FIG. 8 terminates.

FIG. 9 depicts an example computer system 900 which
can perform any one or more of the methods described
herein. In one example, computer system 900 may corre-
spond to computer system 100 of FIG. 1. The computer
system may be connected (e.g., networked) to other com-
puter systems 1 a LAN, an intranet, an extranet, or the
Internet. The computer system may operate in the capacity
of a server in a client-server network environment. The
computer system may be a personal computer (PC), a set-top
box (STB), a server, a network router, switch or bridge, or
any device capable of executing a set of instructions (se-
quential or otherwise) that specity actions to be taken by that
device. Further, while only a single computer system 1is
illustrated, the term “‘computer” shall also be taken to
include any collection of computers that individually or
jomtly execute a set (or multiple sets) of instructions to
perform any one or more of the methods discussed herein.

The exemplary computer system 900 includes a process-
ing device 902, a main memory 904 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM)), a static
memory 906 (e.g., tlash memory, static random access
memory (SRAM)), and a data storage device 916, which
communicate with each other via a bus 908.

Processing device 902 represents one or more general-
purpose processing devices such as a microprocessor, cen-

&G

US 10,394,586 B2

13

tral processing umt, or the like. More particularly, the
processing device 902 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing,
other 1struction sets or processors implementing a combi-
nation of instruction sets. The processing device 902 may
also be one or more special-purpose processing devices such
as an application specific itegrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
902 1s configured to surprise removal module 926 {for
performing the operations and steps discussed herein (e.g.,
corresponding to the methods of FIGS. 3-7, etc.).

The computer system 900 may further include a network
interface device 922. The computer system 900 also may
include a video display unit 910 (e.g., a liguid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 912 (e.g., a keyboard), a cursor control device 914
(e.g., a mouse), and a signal generation device 920 (e.g., a
speaker). In one illustrative example, the video display unit
910, the alphanumeric mput device 912, and the cursor
control device 914 may be combined into a single compo-
nent or device (e.g., an LCD touch screen).

The data storage device 916 may include a computer-
readable medium 924 on which 1s stored surprise removal
module 926 (e.g., corresponding to the methods of FIGS.
3-7, etc.) embodying any one or more of the methodologies
or functions described herein. Surprise removal module 926
may also reside, completely or at least partially, within the
main memory 904 and/or within the processing device 902
during execution thereof by the computer system 900, the
main memory 904 and the processing device 902 also
constituting computer-readable media. Surprise removal
module 926 may further be transmitted or received over a
network via the network interface device 922.

While the computer-readable storage medium 924 1s
shown 1n the 1llustrative examples to be a single medium, the
term “computer-readable storage medium” should be taken
to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of 1nstructions.
The term “computer-readable storage medium™ shall also be
taken to include any medium that 1s capable of storing,
encoding or carrying a set of istructions for execution by
the machine and that cause the machine to perform any one
or more ol the methodologies of the present mnvention. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media, and magnetic media.

Although the operations of the methods herein are shown
and described 1n a particular order, the order of the opera-
tions of each method may be altered so that certain opera-
tions may be performed in an mverse order or so that certain
operation may be performed, at least in part, concurrently
with other operations. In certain implementations, instruc-
tions or sub-operations of distinct operations may be 1n an
intermittent and/or alternating manner.

It 1s to be understood that the above description 1s
intended to be illustrative, and not restrictive. Many other
implementations will be apparent to those of skill in the art
upon reading and understanding the above description. The
scope of the invention should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled 1n the art, that the

10

15

20

25

30

35

40

45

50

55

60

65

14

present invention may be practiced without these specific
details. In some i1nstances, well-known structures and
devices are shown in block diagram form, rather than in
detail, 1n order to avoid obscuring the present invention.

Some portions of the detailed descriptions above are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
mampulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transierred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “receiving,” “accessing,” “identitying,” “‘removing,”
“storing,” “unmapping,” “sending,” “starting,” “detecting,”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transtorms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries 1nto other data similarly represented as physical quan-
tities within the computer system memories or registers or
other such information storage, transmission or display
devices.

The present mvention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic istructions, each coupled to
a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth 1n the
description below. In addition, the present invention 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the 1nvention as described herein.

The present invention may be provided as a computer
program product, or soitware, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to the
present invention. A machine-readable medium includes any

2?7 L e Y 4

US 10,394,586 B2

15

mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium (e.g., read only memory (“ROM”), random access
memory (“RAM”), magnetic disk storage media, optical
storage media, flash memory devices, etc.).

The words “example” or “exemplary” are used herein to
mean serving as an example, instance, or illustration. Any
aspect or design described herein as “example” or “exem-
plary” 1s not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of
the words “example” or “exemplary” 1s intended to present
concepts 1 a concrete fashion. As used 1n this application,
the term “or” 1s intended to mean an inclusive “or” rather
than an exclusive “or”. That 1s, unless specified otherwise, or
clear from context, “X includes A or B” 1s intended to mean
any ol the natural inclusive permutations. That 1s, 1f X
includes A; X includes B; or X includes both A and B, then

“X includes A or B” 1s satisfied under any of the foregoing
instances. In addition, the articles “a” and “an” as used in
this application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.
Moreover, use of the term “an embodiment” or ‘“one
embodiment” or “an implementation” or “one 1mplementa-
tion” throughout 1s not intended to mean the same embodi-
ment or implementation unless described as such. Further-
more, the terms “first,” “second,” “third,” “fourth,” etc. as
used herein are meant as labels to distinguish among dif-
ferent elements and may not necessarily have an ordinal
meaning according to their numerical designation.

What 1s claimed 1s:
1. A method for removing a virtual device from a virtual
machine having a guest operating system (OS), the virtual
machine managed by a hypervisor executing on a processing,
device, comprising:
receiving, by the hypervisor, a notification from the guest
OS, the notification comprising a capability indicator
value 1indicating a support level for surprise removal of
a virtual device of the guest OS, the surprise removal
of the virtual device comprising removal of the virtual
device from the virtual machine without first providing
a warning to the guest OS;

storing, by the hypervisor, the capability indicator value
corresponding to the virtual device in a mapping table;

subsequently receiving, by the processing device execut-
ing the hypervisor, a request to remove the virtual
device from the virtual machine;

responsive to recerving the request to remove the virtual

device, accessing, by the hypervisor, the mapping table
to obtain the capability indicator value corresponding
to the virtual device;

identifying, by the processing device executing the hyper-

visor, 1n view of the obtained capability indicator value,
a particular set of actions associated with the obtained
capability indicator value, the particular set of actions
to be performed to remove the virtual device from the
virtual machine, the particular set of actions including
at least removing the virtual device from the virtual
machine without first providing the warning to the
guest OS when the capability indicator indicates a safe
support level, or at least first providing the warning to
the guest OS before removing the virtual device from
the virtual machine when the capability indicator 1ndi-
cates an unsaie support level; and

10

15

20

25

30

35

40

45

50

55

60

65

16

removing the virtual device from the virtual machine

using the particular set of actions.

2. The method of claim 1, wherein the capability indicator
value 1s one of a plurality of capability indicator values that
are each associated with a plurality of support levels,
wherein each of the plurality of support levels corresponds
to a set of one or more actions to be performed for virtual
device removal 1n the mapping table.

3. The method of claim 1, wherein the obtained capability
indicator value corresponds to the safe support level and
wherein removing the virtual device comprises:

unmapping the virtual device from the guest operating

system of the virtual machine;
sending a removal notification to the guest operating
system that the virtual device has been removed from
the virtual machine by the hypervisor; and

responsive to receiving an acknowledgment from the
guest operating system of the removal noftification,
freeing hypervisor resources associated with the virtual
device.

4. The method of claim 1, wherein the obtained capability
indicator value corresponds to a supported support level and
wherein removing the virtual device comprises:

sending a removal notification to the guest operating

system that the virtual device 1s to be removed;
starting a timer upon sending the removal notification;

detecting an expiration of the timer prior to receiving a

first acknowledgment of the removal notification;
unmapping the virtual device from the guest operating
system;

sending a removal acknowledgement notification to the

guest operating system that the virtual device has been
removed from the virtual machine by the hypervisor;
and

responsive to receiving a second acknowledgment from

the guest operating system of the removal acknowl-
edgement notification, freeing hypervisor resources
associated with the virtual device.

5. The method of claim 4, further comprising:

sending an alert to an administrator to request confirma-

tion to unmap the virtual device from the guest oper-
ating system.

6. The method of claim 1, wherein the obtained capability
indicator value corresponds to the unsate support level and
wherein removing the virtual device comprises:

sending a removal notification to the guest operating

system of the virtual machine that the virtual device 1s
to be removed; and

responsive to receiving an acknowledgment from the

guest operating system of the removal noftification,
unmapping the virtual device from the guest operating
system of the virtual machine and freeing hypervisor
resources associated with the virtual device.

7. The method of claam 1, wherein a guest operating
system of the virtual machine 1s to:

detect an assignment of the virtual device to the virtual

machine;
load a virtual device driver for the virtual device into
memory accessible to the guest operating system;

determine the capability indicator value that identifies the
support provided by the virtual device driver for recov-
ering from the surprise removal of the virtual device
from the virtual machine; and

send the notification to the hypervisor, the notification

comprising the capability indicator value.

8. A computing apparatus for removing a virtual device
from a virtual machine having a guest operating system

US 10,394,586 B2

17

(OS), the virtual machine managed by a hypervisor execut-
ing on a processing device, the computing apparatus com-
prising:

a memory; and

a processing device, operatively coupled to the memory,

to execute the hypervisor to:

receive a noftification from the guest OS, the notifica-
tion comprising a capability indicator value indicat-
ing a support level for surprise removal of a virtual
device of the guest OS, the surprise removal of the
virtual device from the virtual machine without first
providing a warning to the guest OS;

store the capability indicator value corresponding to the
virtual device 1n a mapping table;

subsequently receive a request to remove the virtual
device from the virtual machine;

responsive to receiving the request to remove the
virtual device, access the mapping table to obtain the
capability indicator value corresponding to the vir-
tual device;

identily, 1n view of the obtained capability indicator
value, a particular set of actions associated with the
obtained capability indicator value, the particular set
of actions to be performed to remove the virtual
device from the virtual machine, the particular set of
actions including at least removing the virtual device
from the virtual machine without first providing the
warning to the guest OS when the capability indica-
tor indicates a safe support level, or at least first
providing the warning to the guest OS before remov-
ing the virtual device from the virtual machine when
the capability indicator indicates an unsafe support
level; and

remove the virtual device from the virtual machine
using the particular set of actions.

9. The computing apparatus of claim 8, wherein the
capability indicator value 1s one of a plurality of capabaility
indicator values that are each associated with a plurality of
support levels, wherein each of the plurality of support
levels corresponds to a set of one or more actions to be
performed for virtual device removal 1n the mapping table.

10. The computing apparatus of claim 8, wherein the
obtained capability indicator value corresponds to the safe
support level and wherein to remove the virtual device, the
processing device 1s to:

unmap the virtual device from the guest operating system

of the virtual machine;

send a removal notification to the guest operating system

that the virtual device has been removed from the
virtual machine by the hypervisor; and

responsive to receiving an acknowledgment from the

guest operating system of the removal notification, free
hypervisor resources associated with the virtual device.

11. The computing apparatus of claim 8, wherein the
obtained capability indicator value corresponds to a sup-
ported support level and wherein to remove the virtual
device, the processing device 1s to:

send a removal notification to the guest operating system

that the virtual device 1s to be removed;

start a timer upon sending the removal notification;

detect an expiration of the timer prior to receiving a first

acknowledgment of the removal notification;

unmap the virtual device from the guest operating system:;

send a removal acknowledgement notification to the guest

operating system that the wvirtual device has been
removed from the virtual machine by the hypervisor;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

responsive to recerving a second acknowledgment from
the guest operating system of the removal acknowl-
edgement noftification, free hypervisor resources asso-
ciated with the virtual device.

12. The computing apparatus of claim 8, wherein the
obtained capability indicator value corresponds to the unsafe
support level and wherein to remove the virtual device, the
processing device 1s to:

send a removal notification to the guest operating system

of the virtual machine that the virtual device 1s to be
removed; and

responsive to receiving an acknowledgment from the

guest operating system of the removal notification,
unmap the virtual device from the guest operating
system of the virtual machine and freeing hypervisor
resources associated with the virtual device.

13. The computing apparatus of claim 8, wherein the
virtual machine 1s to:

detect an assignment of the virtual device to the virtual

machine;

load the virtual device driver for the virtual device into

memory accessible to the guest operating system of the
virtual machine;:

determine the capability indicator value that identifies the

support provided by the virtual device driver for recov-
ering from the surprise removal of the virtual device
from the virtual machine; and

send the noftification to the hypervisor, the notification

comprising the capability indicator value.

14. A non-transitory computer readable storage medium
for removing a virtual device from a virtual machine having
a guest operating system (OS), the virtual machine managed

by a hypervisor, the non-transitory computer-readable stor-
age medium having instructions stored therein, which when
executed by a processing device of a computer system, cause
the processing device to:
receive, by the hypervisor, a notification from the guest
OS, the notification comprising a capability indicator
value 1indicating a support level for surprise removal of
a virtual device of the guest OS, the surprise removal
of the virtual device comprising removal of the virtual
device from the virtual machine without first providing
a warning to the guest OS;
store, by the hypervisor, the capability indicator value
corresponding to the virtual device 1n a mapping table;
subsequently receive, by the hypervisor, a request to
remove the virtual device from the virtual machine;
responsive to receiving the request to remove the virtual
device, access, by the hypervisor, the mapping table to
obtain the capability indicator value corresponding to
the virtual device;
identity, by the hypervisor, in view of the obtained
capability indicator value, a particular set of actions
associated with the obtained capability indicator value,
the particular set of actions to be performed to remove
the virtual device from the virtual machine, the par-
ticular set of actions including at least removing the
virtual device from the virtual machine without first
providing the warning to the guest OS when the capa-
bility indicator indicates a sate support level, or at least

first providing the warning to the guest OS belore
removing the virtual device from the virtual machine
when the capability indicator indicates an unsafe sup-
port level; and

remove the virtual device from the virtual machine using
the particular set of actions.

US 10,394,586 B2

19

15. The computing apparatus of claim 11, wherein the
processing device 1s further to send an alert to an adminis-
trator to request confirmation to unmap the virtual device
from the guest operating system.

16. The non-transitory computer readable storage medium
of claim 14, wherein the obtained capability indicator value
corresponds to the safe support level and wherein to remove
the virtual device, the processing device 1s to:

unmap the virtual device from the guest operating system

of the virtual machine;

send a removal notification to the guest operating system

that the virtual device has been removed from the
virtual machine by the hypervisor; and

responsive to recerving an acknowledgment from the

guest operating system of the removal notification, free
hypervisor resources associated with the virtual device.

17. The non-transitory computer readable storage medium
of claim 14, wherein the obtained capabaility indicator value
corresponds to a supported support level and wherein to
remove the virtual device, the processing device 1s to:

send a removal notification to the guest operating system

that the virtual device 1s to be removed:;

start a timer upon sending the removal notification;

detect an expiration of the timer prior to receiving a first

acknowledgment of the removal notification;

unmap the virtual device from the guest operating system:;

send a removal acknowledgement notification to the guest

operating system that the wvirtual device has been
removed from the virtual machine by the hypervisor;
and

responsive to recerving a second acknowledgment from

the guest operating system of the removal acknowl-
edgement notification, iree hypervisor resources asso-
ciated with the virtual device.

5

10

15

20

25

30

20

18. The non-transitory computer readable storage medium
of claim 14, wherein the obtained capabaility indicator value
corresponds to the unsafe support level and wherein to
remove the virtual device, the processing device 1s to:

send a removal notification to the guest operating system

of the virtual machine that the virtual device 1s to be
removed; and

responsive to receiving an acknowledgment from the

guest operating system of the removal noftification,
unmap the virtual device from the guest operating
system of the virtual machine and freeing hypervisor
resources associated with the virtual device.

19. The non-transitory computer readable storage medium
of claim 14 wherein the guest operating system of the virtual
machine 1s to:

detect an assignment of the virtual device to the virtual

machine;
load the virtual device driver for the virtual device nto
memory accessible to the guest operating system;

determine the capability indicator value that identifies the
support provided by the virtual device driver for recov-
ering from the surprise removal of the virtual device
from the virtual machine; and

send the notification to the hypervisor, the notification

comprising the capability indicator value.

20. The non-transitory computer readable storage medium
of claim 14, wherein the capability indicator value 1s one of
a plurality of capability indicator values that are each
associated with a plurality of support levels, wherein each of
the plurality of support levels corresponds to a set of one or
more actions to be performed for virtual device removal 1n
the mapping table.

	Front Page
	Drawings
	Specification
	Claims

