12 United States Patent

Moerk et al.

US010387498B2

US 10,387,498 B2
Aug. 20, 2019

(10) Patent No.:
45) Date of Patent:

(54) POLYMORPHIC CONFIGURATION
MANAGEMENT FOR SHARED
AUTHORIZATION OR AUTHENTICATION
PROTOCOLS

(71)

(72)

Applicant: CA, Inc., Islandia, NY (US)

Inventors: Michael Moerk, Islandia, NY (US);
Joanne Pelkey, Islandia, NY (US);
Doreen Collins, Islandia, NY (US);
William Pollard, Islandia, NY (US);
Vinay Jha, Islandia, NY (US)

(73)

Assignee: CA, Inc., Islandia, NY (US)

(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 111 days.

(21) 15/433,275

(22)

Appl. No.:

Filed: Feb. 15, 2017

(65) Prior Publication Data

US 2018/0234416 Al Aug. 16, 2018

Int. CI.
HO4L 29/06
HO4L 12/24
GO6F 16/901

U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2019.01)

(52)
GO6F 16/9024 (2019.01); HO4L 63/08
(2013.01)

(58) Field of Classification Search

CPC HO4L 63/0876; HO4L 41/08; HO4L 63/08;
GO6F 17/30958; GO6F 16/9024

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,982,129 B1* 3/2015 Broekhuisen GO6F 17/30961
345/440
2016/0261727 Al1* 9/2016 Yang HO04I. 65/4084
2016/0337338 A1 11/2016 Burch et al.
2016/0337346 A1 11/2016 Momchilov et al.
2016/0337351 Al 11/2016 Spencer et al.
2016/0366121 Al* 12/2016 Rykowski HO4I., 63/0815
2017/0006021 Al 1/2017 Karaatanassov et al.
2017/0026374 Al 1/2017 Oberheide et al.
2017/0034172 Al 2/2017 Biggs et al.
2017/0041308 Al 2/2017 Kavantzas et al.

OTHER PUBLICATTONS

Configuring Single Sign-On using SAML 1n WebLogic Server 9.2,

http://www.oracle.com/technetwork/articles/idm/sso-with-saml-
099684 .html, Jan. 4, 2017, pp. 1 to 2.

(Continued)

Primary Examiner — Meng 11

(74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
Pittman LLP

(57) ABSTRACT

Provided 1s a process including: receirving, from a {irst
service-provider computer system, via a network, with an
identity-provider computer system, a request to authenticate
a user computing device; forming, with the identity-provider
computer system, a first reply-configuration specification
from a first plurality of configuration components; deter-
mining, with the identity-provider computer system,
whether to provide authentication; forming, with the 1den-
tity-provider computer system, based on the first reply-
configuration specification, a reply to the request, the reply
including a result of the authentication determination; and
sending, with the identity-provider computer system, the

reply.
20 Claims, 5 Drawing Sheets

- setvice-provider service-pravider
16 16 | / 16

14

user computing device §

user computing device : |
4 .

user computing device 14

M Server

authenticator &
assartion
dispatcher

26
identity provider

30

\Iﬁ

12

20

™

22 user credentials

e
U
configuration-component
repository

US 10,387,498 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Dynamic Dispatch, Wikipedia, https://en.wikipedia.org/wiki/Dynamic
dispatch, Jan. 12, 2017, pp. 1 to 4.

SAML 2.0 Web Browser Single-Sign-On, http://www.ibm.com/
support/knowledgecenter/SSEQTP_8.5.5/com.1ibm.websphere. wlp.
doc/ae/cwlp_saml web_sso.html, Dec. 15, 2016, pp. 1 to 3.

The Java Tutorials: Learning the Java Language, Interfaces and
Inheritance, http://web.archive.org/web/20170204075542/https://
docs.oracle.com/javase/tutorial/java/landl/subclasses.html, Jan. 21,
2017, pp. 1 to 4.

Late Binding, Wikipedia, https://en.wikipedia.orglwiki/Late
binding, Jan. 2, 2017, pp. 1 to 4.

OAuth, Wikipedia, https://en. wikipedia.org/wiki/OAuth, Jan. 9, 2017,
pp. 1 to 6.

OpenlD, Wikipedia, https://en.wikipedia.org/wiki/OpenlD, Jan. 6,
2017, pp. 1 to 11.

OpenlD Connect, Wikipedia, https://en.wikipedia.org/wiki/OpenlD
Connect, Dec. 2, 2016, pp. 1 to 2.

Polymorphism (computer science), Wikipedia, https://en.wikipedia.
org/wiki/Polymorphism_(computer_science), Jan. 5, 2017, pp. 1 to
5.

SAML 2.0, Wikipedia, https://en.wikipedia.org/wiki/SAML_2.0, Jan.
12, 2017, pp. 1 to 17.

SAML Configuration, https://web-beta.archive.org/web/
20161006234344/http://www.componentspace.com/Forums/37/
SAML-Configuration, Oct. 6, 2016, pp. 1 to 7.

Bindings for the OASIS Security Assertion Markup Language
(SAML) V2.0, http://docs.oasis-open.org/security/saml/v2.0/, Mar.
15, 2005, pp. 1 to 46.

Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0, http://docs.oasis-open.org/security/saml/
v2.0/, Mar. 15, 2005, pp. 1 to 86.

Using of private attributes (with double underscore) #137, https://
github.com/onelogin/python-saml/issues/137, May 17, 2016, pp. 1
to 3.

SAML 1.x Protocol Classes, https://docs.oracle.com/cd/E19575-01/
820-3739/com/sun/1dentity/saml/protocol/package-summary.html, Apr.
6, 2017, pp. 1 to 1.

* cited by examiner

U.S. Patent Aug. 20, 2019 Sheet 1 of 5 US 10,387,498 B2

service-provider service-provider service-provider
57 A

user compuling device __ '_ -
user computing device |

oy 6

™20

"‘
.................. authent!{:atﬂr .
user credentials

configuration-component
repository

assaertion

composer

\30 identily provider

FIG. 1

U.S. Patent Aug. 20, 2019 Sheet 2 of 5 US 10,387,498 B2

49 . . . |
\ 42/} base corfiguration comporent §
P . N
| SOverndes “_irtherits .
configuration component L configureation companent configuration component
VY 7t N6 /' \a8 '
inhients, / n

' inharits overrides

inheriEs
Gyerrgdes

service-provider specific service-provider spedific
configuration component | § configuration component

service-provider specific service-provider specific
configuration component configuration component

FIG. 2

U.S. Patent Aug. 20, 2019 Sheet 3 of 5 US 10,387,498 B2

L regeive a request to authornize a user
- computing device from a service provider

select a service-provider spedific configuration .
compeneant as a current configuration component GO

any remaining references
to other configuration components
in current configuration
component?

no

' Yes It

designate referenced configuration component
| as current configuration component

combine referenced configuration component with
L current configuration component hased on type of reference

: s 72
form a reply-configuration specification

determine whether to provide authorization 24

form, based on the reply-configuration specification, a
reply 1o the reguest including a result of the determination

send the reply § 78

FiG. 3

.76

U.S. Patent Aug. 20, 2019 Sheet 4 of 5 US 10,387,498 B2

third-partty Saes application thirg-party Saak appicalion

AF1 servey weh gerver

aaa

user computing device

agdiminidrator conpuating

device 480

user comvputing device

Jdatas validator
W2 2B

--

i P . 254
J—————— f'ﬁﬁﬁﬂﬂf ?ﬁﬁmﬁ’
| data syne P g { 3' B

....................................... 2 ob

rules repository

rgles engineg I '

- 258

\231 connector scheme
FEQOSHITY

252 idenhly provider

identity managemeant system

FIG. 4

U.S. Patent Aug. 20, 2019 Sheet 5 of 5 US 10,387,498 B2

 COAIRUTER SYSTEM
000

| processor |
b d83%e 1

INTEREALE =

| PROCESSOR | | o oevice(s |

RELECHI

‘i‘{’fﬁgg

0 SYSTER MFAMORY |
| o 328 :
 INTEREACE el]

182¢ i PROGRAN

8 L INSTRUCTIONS |
. PROCESSTIR | 8

FRLLY

30N

DATA
Al

FIG. 5

US 10,387,498 B2

1

POLYMORPHIC CONFIGURATION
MANAGEMENT FOR SHARED
AUTHORIZATION OR AUTHENTICATION
PROTOCOLS

BACKGROUND

1. Field

The present disclosure relates generally to computer secu-
rity and, more specifically, to polymorphic configuration
management for shared authorization or authentication pro-
tocols.

2. Description of the Related Art

Recently, many software applications have migrated to
the cloud. Often, user-facing and back-end soitware appli-
cations execute on remote computer systems hosted by
various parties. Examples include productivity suites, cal-
endaring applications, email, document management plat-
forms, enterprise resource planning applications, project
management applications, and various databases. When
attempting to use these applications, before being granted
access, users are often authenticated or otherwise authorized
by the computer system to determine that the person seecking
access 1s authornized to do so.

SUMMARY

The following 1s a non-exhaustive listing of some aspects
of the present techniques. These and other aspects are
described in the following disclosure.

Some aspects imnclude a process including: receiving, from
a first service-provider computer system, via a network, with
an 1dentity-provider computer system, a request to authorize
a user computing device, wherein: the request specifies a
first service provider among a plurality of different service
providers on a plurality of different domains for which the
identity-provider computer system 1s configured to make
authorization determinations, and the request 1s received
after the user computing device requests access from the first
service-provider computer system; forming, with the 1den-
tity-provider computer system, a first reply-configuration
specification from a first plurality of configuration compo-
nents, wherein forming comprises: accessing a graph of
configuration components, the graph defining reply-configu-
ration specifications for the plurality of different service
providers, the first plurality of configuration components
corresponding to a subset of the graph, determining that at
least some of the first plurality of configuration components
pertain to the first service-provider computer system based
on a path in the graph along edges of the graph, and
evaluating a relationship defined by an edge of the graph to
determine, at least in part, how to combine a pair of
configuration components linked by the edge into at least
part of the first reply-configuration specification, wherein: at
least some of the first plurality of configuration components
pertain to service providers among the plurality of diflerent
service providers other than the first service provider, and
the first reply-configuration specification specifies at least
part ol a message to communicate an authorization deter-
mination to the first service-provider computer system;
determining, with the identity-provider computer system,
whether to provide authorization; forming, with the 1dentity-
provider computer system, based on the first reply-configu-
ration specification, a reply to the request, the reply includ-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing a result of the authorization determination; and sending,
with the identity-provider computer system, the reply.

Some aspects include a tangible, non-transitory, machine-
readable medium storing instructions that when executed by
a data processing apparatus cause the data processing appa-
ratus to perform operations including the above-mentioned
pProcess.

Some aspects include a system, including: one or more
processors; and memory storing 1instructions that when
executed by the processors cause the processors to eflectuate
operations of the above-mentioned process.

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned aspects and other aspects of the
present techniques will be better understood when the pres-
ent application 1s read 1n view of the following figures 1n
which like numbers indicate similar or 1dentical elements:

FIG. 1 1s a block diagram of a computing environment
including an identity-provider computer system 1in accor-
dance with some embodiments;

FIG. 2 1s a configuration component graph in accordance
with some embodiments;

FIG. 3 1s a flowchart of an example of an authorization
process 1n accordance with some embodiments;

FIG. 4 1s an example of an 1dentity management system
in which the preceding system, graph, and process may be
implemented 1n accordance with some embodiments; and

FIG. 5 1s an example of a computer system by which the
above processes and systems may be implemented 1n accor-
dance with some embodiments.

While the present techmiques are susceptible to various
modifications and alternative forms, specific embodiments
thereol are shown by way of example 1n the drawings and
will herein be described 1n detail. The drawings may not be
to scale. It should be understood, however, that the drawings
and detailed description thereto are not intended to limit the
present techniques to the particular form disclosed, but to the
contrary, the intention 1s to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of
the present techniques as defined by the appended claims.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

To mitigate the problems described herein, the inventors
had to both mmvent solutions and, 1n some cases just as
importantly, recognize problems overlooked (or not yet
foreseen) by others 1n the field of cyber security. Indeed, the
inventors wish to emphasize the difliculty of recognizing
those problems that are nascent and will become much more
apparent 1n the future should trends in industry continue as
the inventors expect. Further, because multiple problems are
addressed, i1t should be understood that some embodiments
are problem-specific, and not all embodiments address every
problem with traditional systems described herein or provide
every benefit described herein. That said, improvements that
solve various permutations of these problems are described
below.

Securing user-facing distributed computing applications
1s a persistent challenge. Often, these distributed applica-
tions have a client-server architecture 1n which users inter-
face with a client computing device to access computing
resources via the server over a network. Often, the network
1s an untrusted network, such as the Internet or 1n some cases
an intranet, placing the client computing devices relatively
remote from the server. As a result, 1t can be diflicult to

US 10,387,498 B2

3

determine whether attempts to access resources via the
server should be authorized or are unauthorized malicious
requests.

To determine whether requests are authorized, a variety of
different approaches are often used. In many cases, users are
asked to supply one or more credentials, such as a username
and password, with the latter often being a relatively high
entropy string known to an authorized user and diflicult for
others to guess. Often, multifactor authentication or autho-
rization protocols supplement passwords with other signals
that are diflicult for an attacker to impersonate, for instance,
demonstrating possession of a computing device configured
to generate a cryptographic key or demonstrating possession
ol a cell phone that receives a text message with a pin code.

Certain authorization approaches present challenges when
used 1n the context of web browsers and other client-side
applications used to access potentially untrusted resources,
like public websites and certain application program inter-
faces accessed by some native applications. Often, these
client-site applications 1mplement a security model that
constrains the client-site application for security purposes,
for instance, by limiting access to certain areas of client
memory and preventing resources ifrom one domain from
accessing resources from another domain via the client
computing device. For mstance, many web browsers imple-
ment a same origin policy that prevents a malicious website
from reading a cookie set by a different website, like that of
a bank storing a user’s password or authenticated session
credentials, or 1n some cases, from requesting resources
from another domain. (None of which 1s to suggest that the
present techniques are limited to use cases with a same
origin policy.)

These security techniques often make it diflicult for an
authorization determination to be securely shared across
multiple servers on different domains. A given server at a
given domain may receirve user credentials and make an
authorization determination and store a result of the deter-
mination on the client computing device for reference in
subsequent exchanges during a computing session (e.g., as
a session cookie). But 1t can be diflicult for a different server
on a different domain to access that information or leverage
the previous determination. As a result, often users are asked
to engage 1n multiple 1nstances of authorization sessions
with the different servers, which can be burdensome to users,
can increase an attack surface with multiple computing
systems each having user credentials, and can consume
excess bandwidth and computing resources.

Some or all of these challenges may be mitigated with a
shared authorization or authentication protocol. These pro-
tocols often specily various ways lfor one server having
made an authentication or authorization determination to
communicate the result with other servers on other domains
while honoring the client-side security constraints discussed
above. Examples include the security assertion markup
language (SAML), the lightweight directory access protocol
(LDAP), OAuth (and OAuth 2.0), OpenlD, OpenlD con-
nect, and Facebook™ connect. In some cases, the shared
authorization authentication protocol 1s a single sign-on
protocol by which a given determination may be used on
multiple domains, for instance, with the SAML protocol,
and 1n some cases, some of these protocols may be used 1n
combination.

Many existing ways of implementing shared authoriza-
tion or authentication protocols are not well suited for
emerging trends 1n the field of computer science. Increasing
numbers of companies are increasing relying on cloud-
hosted software as a service (SaaS) applications provided by

5

10

15

20

25

30

35

40

45

50

55

60

65

4

diverse arrays of third parties (which 1s not to suggest that
the present techniques are not also useful in on-premises
deployments). Often, each of these different SaaS applica-
tions 1implements a given shared authorization authentica-
tion protocol differently from the others, e€.g., a user may
interface with a dozen different SAML 1mplementations. It
1s expected that many relatively large companies will have
accounts with more than 10, and 1n many cases more than
20, or more than 50 different SaaS applications with which
their users interface, often with each SaaS application (or
on-premises application) implementing a shared authoriza-
tion or authentication protocol differently. And identity
management applications designed to help multiple compa-
nies manage this complexity may interface with more than
100 or more than 200 different SaaS applications among
those used by their client the base. Complicating the chal-
lenge, In many cases the SaaS applications change their
implementation of an authorization or authentication proto-
col over time, with multiple versions being implemented, 1n
some cases at the same time for diflerent users. As a result,
existing techmiques for speciiying how to communicate an
authentication or authorization determination between serv-
ers on different domains are expected to become unwieldy
and unmanageable due to an explosion 1n complexity from
these trends. A given computing system may need to manage
several hundred or several thousand diflerent specifications
for how to communicate this information, and those speci-
fications may experience changes as often as a several times
a day or week among the collection.

FIG. 1 shows an example of a computing environment 10
having an i1dentity-provider computer system 12 configured
to mitigate some of these challenges and address other needs
in industry described below and that will be apparent to a
reader of ordinary skill in the art. In some embodiments, the
identity-provider computer system 12 may break up the
confliguration specifications mto configuration components,
some of which may be reusable 1n multiple configuration
specifications, thereby making the collection easier to reason
about, modily, and implement. Further, some configuration
components may have polymorphic properties by which
configuration settings 1n those components may be inherited
or overridden by other configuration components, thereby
increasing the amount of reusability and enhancing many of
the other benefits of reuse of configuration components.

The technique 1s illustrated by a brielf overview of a
particular example targeting the security assertion markup
language protocol. Some embodiments build SAML con-
figurations such that the code generates correct SAML
assertions for any target integration. A hierarchy of SAML
configurations (e.g., in JavaScript™ object notation (JSON)
documents) are merged at run-time to determine the correct
SAML configuration for a given SaaS application (e.g., a
given version of a given application program interface (API)
ol a given resource of a given application of a given SaaS
provider). For mstance, a base class may describe common
default SAML configuration parameters, and extensions (or
instances, or implementations) of that base class may
modily or extend upon the default parameters, 1n some cases
through multiple levels of a hierarchy. Some embodiments
include variables for substitution within some of the con-
figuration documents. As a result, a relatively terse set of
documents that are relatively easy to reason about and
manage may specily behavior for authentication and autho-
rization exchanges with a heterogeneous array of SaaS (or
on-premises) shared authentication or authorization APIs.

Security assertion markup language or other shared
authentication or authorization protocols, such as other

US 10,387,498 B2

S

single sign-on protocols suitable for use with the security
constraints 1mposed by web browsers, may be implemented
with the i1denftity provider 12 shown in FIG. 1, e.g., 1n the
context of the i1llustrated computing environment 10. In this
example, the computing environment 10 may include mul-
tiple user computing devices 14, multiple service-provider
computer systems 16, and a network 18 through which the
vartous 1llustrated components communicate with one
another. Three service-provider computer systems 16 and
three user computing devices 14 are illustrated, but embodi-
ments are consistent with, and commercial implementations
are expected to include, substantially more instances of
these components. For instance, the number of user com-
puting devices may exceed 1,000, 10,000, or 100,000, and
the number of service-provider computer systems 16 may
exceed 20, 50, or 100.

In some embodiments, each user computing device 14
may be used by a different user to access a given one of the
service-provider computer systems 16 upon being authenti-
cated or authorized by the identity-provider computer sys-
tem 12. (Or some computing devices 14 may be shared, or
some users may have multiple computing devices 14.) Each
of these components may include various forms of the
computers described below with reference to FIG. 5. For
example, the user computing devices 14 may be desktop
computers, laptop computers, tablet computers, mobile
phones, wearable computing devices, sets top box comput-
ing devices, or the like. In some embodiments, the service-
provider computer systems 16 are cloud hosted collections
of computers, for instance, 1n a data center, accessed through
an API or a web iterface (by a web browser or native
application executing on a user computing device 14) and
provided as a SaaS application. Or 1n some cases, some of
the service-provider computer systems may be on premises
applications. The network 18 may include the Internet or
various other networks, such as local area networks, wireless
area networks, cellular networks, and the like.

In some cases, before a user computing device 14 1s
granted access to resources or other services provided by a
service-provider computer systems 16, the respective user
computing device 14 may be authorized or authenticated by
the identity-provider computer system 12. The service-
provider computer system 16 may selectively grant access
based on the authorization or authentication determination
by the identity-provider computer system 12. The term
“authentication” herein refers to an indication that a user 1s
(e.g., has suthiciently demonstrated themselves to be) who
they represent themselves to be, for instance, that a user
accessing resources with a user identifier 1s able to supply a
password associated with that user identifier. The term
“authorization” herein refers to an indication that a user
should be granted access to some resource. Generally,
“authentication” serves as ‘“authorization,” so the term
“authentication” 1s primarily used below. But 1t should be
appreciated that such references to “‘authentication” are
generic to “authorization,” and the present techniques may
be used for authorization determinations.

The terms “service provider” and “identity provider”
correspond to roles 1n the security assertion markup lan-
guage protocol and 1include computing systems filling those
roles. But the terms as used herein are not limited to
computing systems implementing this protocol and refer to
other computing systems implementing corresponding roles
in other shared authentication or authorization protocols,
like those listed above.

In the illustrated embodiment, the 1dentity-provider com-
puter system 12 may be implemented on one or more

10

15

20

25

30

35

40

45

50

55

60

65

6

computing devices, such as with a plurality of rack-mounted
servers 1n a data center or as a single, standalone computer.
In some cases, the various components described below may
be replicated and separated from other components via a
load balancer that allocates individual instances of tasks to
different replicas of components to scale to larger use cases.
Some embodiments may be configured to scale to relatively
large implementations, for instance, handling more than 10,
and 1n many commercially relevant use cases at peak usage,
more than 100 authorization authentication determinations
per second with a response latency of less than 500 ms, for
instance less than 200 ms. Users are expected to be sensitive
to changes in latency on the order of 50 ms, and some
embodiments may offer relatively low latency responses
relative to certain traditional approaches implemented at the
described scales (which 1s not to suggest that slower
responses are not also in accordance with some embodi-
ments).

In some embodiments, the i1dentity-provider computer
system 12 includes a server 20, an authenticator 22, a user
credential repository 24, a dispatcher 26, a configuration
component repository 28, and an assertion composer 30. In
some cases, these components may communicate with one
another to implement a process described below with ret-
erence to FIG. 3 by operating upon a data structure described
below with reference to FIG. 2, 1n some cases 1n the context
of an i1dentity management system described below with
reference to FIG. 4.

In some embodiments, the server 20 may be a Web server
or an API server, such as a nonblocking server, configured
to listen to a port at a network address of the identity
provider 12, recerve via that port requests for authentication
or authorization, and send via that port replies indicating the
result of authorization or authentication determinations. In
some embodiments, the server 20 may assign session i1den-
tifiers to incoming requests and route incoming request to
the authenticator 20 along with that session 1dentifier, which
may be carried through as context through an authentication
session and used by the server 20 to identify a network
address and port to which to send the reply, e.g., based on a
session record mapping the session identifier to the address/
port.

In some cases, authentication or authorization requests
may be received from a service-provider computer system
16, for instance, upon a user computing device 14 requesting
to access a resource or other service from that service-
provider computer system 16. In some cases, the request for
authentication may be received via the network 18 without
passing through the user computing device 14. Or 1n some
cases, the service-provider computer system 16 may send
instructions to the user computing device 14 mstructing that
user computing device 14 to send a request to the 1dentity-
provider computer system 12. Similarly, 1n some cases,
replies indicating authentication determinations may be sent
to a service-provider computer system 16 without passing
through a user computing device 14. Or some embodiments
may send a redirect command to a user computing device 14
with a uniform resource locator (URL) of a service-provider
computer system 16 that includes as a parameter a result of
an authentication determination, thereby communicating the
result via the user computing device 14 to the service-
provider computer system 16. In some cases, where a user
1s not authentication, some embodiments may determine to
not send a message to a service-provider computer system
16 at all.

In some cases, the request may be characterized as a
service-provider mnitiated single-sign-on request, or 1n some

US 10,387,498 B2

7

cases, the request may be an ID provider imitiated single-
sing-on request. In the latter example, the identity provider
12 may not recerve the request from the service provider 16.
Rather, the user computing device 14 may send a request
directly to the identity provider 12, asking to login to a
service provider 16. The identity provider 12 may send an
unsolicited response (indicating that the user 1s authenti-
cated) to the service provider 16, which processes it and logs
the user 1n even though 1t did not initiate the process with a
request. Some embodiments support both scenarios, where
the request 1s nitiated by the service provide 16 and where
the request 1s mmitiated by the user computing device 14.

In some cases, a request to authenticate a user includes a
user 1dentifier (such as one that 1s unique to the user among,
a user base of the identity-provider computer system 12), a
user password, and an identifier of the service-provider
computer system 16 to which the user seeks access (such as
an 1dentifier that 1s unique to the service-provider computer
system among all service-provider computer systems sup-
ported by the identity-provider computer system 12). Some
embodiments of the identity-provider computer system 12
may recerve this request and perform the process of FIG. 3
described below. In some cases, a request does not 1include
the user’s password, and the user’s password may be with-
held from the service-provider computer system 16 in order
to reduce an attack surface of the computing environment
10. In some cases, once a user 1s authenticated for a given
service provider, other request from other service providers
during a given (1.e., any particular one) authenticated session
involving the 1dentity provider and the user may be deemed
authenticated without the user needing to resupply their
credentials. Some embodiments may terminate such a ses-
s1on upon a threshold amount of time occurring or upon the
user ceasing to have any current sessions ongoing with any
of the service-provider computer systems 16. After an
authenticated session 1s terminated with the identity-pro-
vider computer system 12, the user may be asked to (via a
user interface displayed at the instruction one of computer
systems 12 or 16) resupply their username and password or
other credentials.

In some embodiments, the authenticator 22 may be con-
figured to make authentication (or authorization) determi-
nations by comparing user credentials supplied in the
request (which may include multiple exchanges over time,
¢.g., one with a username and another with a password) with
corresponding user credentials 1 the user credential reposi-
tory 24. For instance, some embodiments may determine
whether a supplied password associated with a username
matches a stored password associated with the same user-
name in the user credential repository 24. In some embodi-
ments, passwords in the user credential repository 24 may

not be stored 1n plaintext, and some embodiments may store
an encrypted version of a password, such as a cryptographic
hash calculated with an SHA-2 hash algorithm or other hash
algorithms. Upon receiving a password in a request to
authenticate a user, some embodiments may apply the same
hash function to the received credential and compare the
hashed received credential to the stored hash value to
determine whether they match. This approach 1s expected to
help protect passwords 1n the event of a data breach in which
a malicious party gains access to the user credential reposi-
tory 24, as the attacker would merely obtained encrypted
values without providing the plaintext passwords.

In some embodiments, the authenticator 22 may commu-
nicate the result of an authentication determination to the
assertion composer 30, which may compose a reply to the

10

15

20

25

30

35

40

45

50

55

60

65

8

requesting device or system indicating whether the user
computing device 1s authenticated.

As noted above, the structure and attributes of this reply
may be different for each of the different service providers
(corresponding to the different service-provider computer
systems 16). This heterogeneity may give rise to substantial
complexity, which may increase latency and make the
identity-provider computer system 12 difficult to manage
and reason about. In some embodiments, this complexity
may be mitigated by the dispatcher 26 and the configuration
component repository 28, for instance, by implementing the
techniques described below with reference to FIGS. 2 and 3.
In some embodiments, the dispatcher 26 may receive the
identifier of the service provider corresponding to the
request, for instance, from the authenticator 22, the server
20, the assertion composer 30, or 1n a list of identifiers 1n a
batch process. Then, the dispatcher 26 may form a reply-
configuration specification specific to the service provider,
1.¢., one that complies with the requirements of the corre-
sponding service provider to eflectively communicate a
result of an authentication determination. These require-
ments may be different for each of the different service
providers, though in some cases, portions of the require-
ments may be the same among multiple service providers,
and some of the requirements may be the same for all of the
service providers. In some embodiments, the reply-configu-
ration specification may be formed dynamically, 1n response
to receiving the request. This approach 1s expected to
accommodate revisions in the various components of the
reply-configuration specification over time with relatively
little computational complexity.

Or some embodiments may form the reply-configuration
specification (or a portion thereof) 1n advance, for 1nstance,
as part of a hourly or daily batch process for every one of the
service providers, which 1s expected to produce relatively
fast, low latency accessible reply-configuration specifica-
tions for composing a reply. In this faster example, at
use-time, or as a periodic process (like every minute or
hourly), some embodiments may verily that each component
of a reply-configuration specification has not expired, for
instance, due to a new version being implemented, before
using the preformed reply-configuration specification. Upon
determining that at least one component has expired, some
embodiments may dynamically re-form the reply-configu-
ration specification and replace the preformed one with the
dynamically formed one for subsequent use, for instance, 1n
a cache of pre-formed reply-configuration specifications. In
some embodiments, each pre-formed reply-configuration
specifications may include a component string including
version numbers of each component, and some embodi-
ments may compare each of those version numbers to a
repository of then current version numbers for components
to make the preceding determination.

The reply-configuration specification may take a variety
of different forms, depending upon the type of shared
authentication or authorization protocol in use. Examples
consistent with the security assertion markup language pro-

tocol 1s shown below.
Base SAML.:

1

“displayName™: “Generic SAML”,

“_schema”: “applicationGenericSaml”,
“s50”: {
“ﬂppCOﬂﬁg”: {

“responselsssuerRequired”: false,

US 10,387,498 B2

9

-continued

“Issuelag™: 3,
“responseValidity™”: 5,
“ssoldPRequest™: {

“binding”: “urn:oasis:names:tc:SAML:2.0:bindings:

HTTP-POST”
h
s
“idPConfig”: {
“1ssuer’’: “https URL of security.com”,
“IssuerFormat™: “urn:oasis:names:tc:SAML:2.0:nameid-format:
entity”,
“subjectConfirmationMethod™: “urn:oasis:names:tc:SAML:2.0:cm:
bearer”,
“signaturel.ocation’: “Assertion”,
“authnContextClassRef™;

“urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtected Transport™

)
h
h

Rally™ SAML dernived from base SAML.:

{
“ schema”; “applicationRally”,
“s50”: {
“spName”: “rally”,
“appConfig”: {

“acsUrl”: “https URL of sso.rallydev.com/sp/ACS.saml2”,

“entityld”: “sso.rallydev.com”,

“relayState™: “https URL of
rallyl.rallydev.com/slm/j__sso__security__check™,

“nameldFormat™: “urn:oasis:names:tc:SAML:1.1:nameid-
format:email Address”,

“nameld”: {

“type’”: “attribute”,

“value’: “userName”

}
“ssoSpRequest™: {
“signingCert”: “-----BEGIN CERTIFICATE-----\r'\n\r\[signing-
cert-here]'rn----- END CERTIFICATE----- \rin\rn”

h
Js

“idPConfig”: {

“issuer’”: {
“type’: “template”,

“value”: “CASaaSAppSecurity-{{application. id}}”

h
y
h
h

Of note, the above derived example includes variables.
The *“i1ssuer” configuration 1s of type “template,” where the
value 1s arrived at from the “application 1d.” Thus, when the
above configuration 1s used to form a response, some
embodiments may parse the “issuer” field, detect the
reserved term “template” therein, and then retrieve a value
tor the “1ssuer” field based on the reference in the “value”
sub-field. In some cases, variables may be evaluated when
forming the configuration to populate portions of the con-
figuration, or in some cases, variables may be evaluated
when forming the reply based on the configuration. In some
cases, the “value” field may reference parameters 1n program
state (e.g., parameters supplied to a function called to form
the reply based on the configuration), or 1n some cases, the
“value” field may include a query to another data source,
like a SQL query to a relational database, an xpath query for
XML, a JSONpath query for JSON, or a regular expression
for various other strings or types of documents. Some
embodiments may include other types of templates or val-
ues, e.g., variables that denote conditional branding, e.g.,
“value: 1f X, then wvalue 1s Y, else, value 1s Z.” Some

10

15

20

25

30

35

40

45

50

55

60

65

10

templates or values may reference other functions and
include parameters of those other functions, and embodi-
ments may apply to the parent field values returned by the
functions based on the parameters.

The various fields 1n this example have configurations for
the properties described 1n the SAML specification, such as
the version 2.0 specification. (It should be noted that the
specification for a protocol 1s distinct from the reply-con-
figuration specification for a particular implementation of
the protocol, as protocols often permit a range of design
choices and parameter settings 1 any given implementa-
tion.) Each preceding line 1s an example of a configuration
setting or reference to a nested group of settings. Other
confliguration settings may be schema settings that indicate
how to format, validate, permit, or require one of the lines
above. The configuration settings may be grouped into
configuration components, each having or otherwise at least
in part specilying (e.g., by indicating types ol permitted
values), at least one configuration setting, and the configu-
ration components may be combined by the dispatcher 26 to
form the reply-configuration specification, for instance, as
described below with reference to FIGS. 2 and 3.

In some embodiments, the assertion composer 30 may
form a reply to a request for authentication (or authorization)
based on both the reply-configuration specification and the
result ol an authentication determination. In some cases,
forming the reply may include inserting a result of the
authentication determination into a given field designated
for the result 1n the reply-configuration specification. In
some cases, composing the reply may include populating a
number of fields 1n accordance with a schema indicated by
the reply-configuration specification. For instance, a given
reply-configuration specification may include some configu-
ration settings that indicate fields and values, and some
configuration settings that indicate fields and how to deter-
mine the values (e.g., a query, or reference to a variable from
which a value may be determined). Some embodiments may
determine those values that are not yet determined and
populate the corresponding fields.

Examples of reply-time determined values (in contrast to
pre-determined values, such as those determined or other-
wise obtained before receiving a request for authentication)
include calculating various cryptographic signatures, for
instance, 1 accordance with an asymmetric encryption
protocol, like various forms of public key encryption, such
as the RSA or DSA algonthms. Some examples include
supplying a security certificate, such as an x.509 certificate.

In some embodiments, forming the reply includes creat-
ing a copy of the reply-configuration specification, parsing
the copy for fields having values that need to be determined,
determining those values, and storing those values 1n the
corresponding fields of the copy. Or, some embodiments
may form the reply as a separate document. In some
embodiments, forming the reply includes forming a hierar-
chical serialized document, like a JSON or an XML docu-
ment. In some cases, the type of serialization may be
speciflied by the reply-configuration specification. In some
embodiments, the reply-configuration specification may
indicate other aspects of a reply, such as protocol binding
supported by the service-provider computer system to which
the reply 1s to be sent. Examples of protocol bindings
include application layer and transport layer protocol bind-
ings. For example, some embodiments may indicate whether
HTTP or HI'TPS 1s to be used. Some protocol bindings may
indicate use of SSL or TLS, and which versions, are per-
mitted or required. In some embodiments, the configuration

11

settings indicate attributes required by the service-provider
computer system to which the reply 1s to be sent, such as

US 10,387,498 B2
12

pairs of fields and corresponding values required to eflec- following form:

tively communicate a determination.

SAML Response (Assertion) for Rally™:

<Response Destination="https URL of sso.rallydev.com/sp/ACS.saml2”

ID="__[ID-code-here]”
Issuelnstant="2017-01-20T15:43:58.8172"

Version="2.0"
xmlns="“urn:oasis:names:tc:SAML:2.0:protocol”
>

<saml2:Issuer Format="urn:oasis:mmames:tc:SAML:2.0:nameid-format:entity™
xmlns:saml2="um:oasis:names:tc:SAML:2.0:assertion”
>CASaaS AppSecurity-[1ssuer-code-here| </saml2:Issuer>

<ds:Signature xmlns:ds="http URL of www.w3.0rg/2000/09/xmlds1g# ">

<ds:Si1gnedInfo>
<ds:CanonicalizationMethod Algorithm="http URL of www.w3.0rg/2001/10/xml-

exc-cldn#” />
<ds:SignatureMethod Algorithm="http URL of www.w3.org/2000/09/xmlds1g#rsa-

shal” />
<ds:Reference URI="# 51{790b&&-6998-4d5b-b77a-1dbi5482da97’>

<ds:Transforms=>
<ds:Transform Algorithm="http URL of

www.w3.0rg/2000/09/xmldsig#enveloped-signature™ />
<ds:Transform Algorithm="http URL of www.w3.0rg/2001/10/xml-exc-

cldn#” />
</ds:Transforms>
<ds:DigestMethod Algorithm="http URL of
www.w3.org/2000/09/xmldsig#shal™ />
<ds:DigestValue>[digest-value-here| =</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>[signature-value-here]|</ds:SignatureValue>
<ds:KeyInfo>
<ds: X509Data>
<ds:X509Certificate>[certificate-code-here]
</ds: X509Certificate™>
</ds:X509Data>
</ds:KeyInfo>
</ds:Signature>
<saml2p:Status xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol’>
<saml2p:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success” />
</saml2p:Status>
<gsaml2:Assertion ID="_57dcb2el-a302-44db-2a84-946¢c11388665”
[ssuelnstant="2017-01-20T15:43:538.8172"”
Version="2.0"
xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion”™
>
<gaml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:entity”>CASaaSAppSecurity-416a9¢83-9¢cb7-4191-9531-191b19c87323</saml2 :Issuer>
<ds:Signature xmlns:ds="http URL of www.w3.0rg/2000/09/xmlds1g#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http URL of
www.w3.0rg/2001/10/xml-exc-c14n#” />
<ds:SignatureMethod Algorithm="http URL of

www.w3.0rg/2000/09/xmldsig#rsa-shal™ />
<ds:Reference URI="# 57dcb2el-a302-44db-aa84-946¢c1{38R665°>

<ds:Transforms>
<ds:Transform Algorithm="http URL of

www.w3.0rg/2000/09/xmldsig#enveloped-signature™ />
<ds:Transform Algorithm="http URL of www.w3.0rg/2001/10/xml-

exc-cldn#” />
</ds:Transforms>

<ds:DigestMethod Algorithm="http URL of
www.w3.0rg/2000/09/xmldsig#shal™ />
<ds:DigestValue>eF K7THFHXxVZFeFEVn+K/I1i/tJw=</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>[signature-value-here] </ds:SignatureValue>
<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>[certificate-value-here]

</ds: X509Certificate>
</ds: X509Data>

</ds:KeyInfo>
</ds:Signature>
<saml2:Subject>
<gaml2:NamelD Format="um:oasis:names:tc:SAML:1.1:nameid-

format:email Address”>email-address (@ company.com</saml2:NamelD>
<saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer”>

Based on the above example reply-configuration specifi-
cation, a reply may be composed, taking for instance the

US 10,387,498 B2

13

-continued

<saml2:SubjectConfirmationData

sso.rallydev.com/sp/ACS.saml2”
/>
</saml2:SubjectConfirmation>
</saml2:Subject>

<saml2:Conditions NotBefore="2017-01-20T15:38:58.8177"

NotOnOrAfter="2017-01-20T15:48:58.8172”

e

<saml2:AudienceRestriction>
<saml2:Audience>sso.rallydev.com</saml2: Audience>
</saml2:AudienceRestriction>
</saml2:Conditions=>

<saml2: AuthnStatement Authnlnstant="2017-01-20T15:43:58 8177

<gaml2:AuthnContext>

14

NotOnOrAfter="2017-01-20T15:48:58.8172”
Recipient="https URL of

<saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtected Transport

</saml2:AuthnContextClassRef>
<fsaml2:AuthnContext>
</saml2:AuthnStatement>
</saml2:Assertion>
</Response>

Additional examples are given 1n a program code listing
filed herewith, the contents of which are hereby incorporated
by reference.

In some embodiments, the assertion composer 30 may
send the formed reply to the server 20 1n association with a
session 1dentifier, and the server 20 may 1dentily a port and
network address to which to send the reply based on the
session 1dentifier. The server 20 may then send the reply
indicating the result of the authentication determination in a
message that 1s compliant with the reply-configurations
specification specific to the service provider to which the
user computing device 14 seeks access. As noted above, in
some cases, the reply 1s sent to a service-provider computer
system 16, without passing through a user computing device
14, for 1nstance, 1n a message addressed by the server 20 to
a network address of the service-provider computer system
16. Or 1n some cases, replies may be communicated to a
service-provider computer system 16 via a user computing
device 14, for instance, by sending a redirect command to a
user computing device 14 having a URL of a service-
provider computer system 16 and URL parameters contain-
ing the formed reply (e.g., in some OAuth implementations).

FI1G. 2 shows an example data model of the configuration-
component repository 28 described above. In this example,
confliguration components are arranged 1n a graph 40. A data
structure or other collection of information can constitute a
graph without being labeled as a graph in program code
provided that 1t has the attributes of a graph, as that term 1s

used 1n the field of computer science. The 1llustrated graph
40 includes a plurality of configuration components 42, 44,
46, 48, 50, 52, 54, and 56, which each serve as respective
nodes of the graph 40. In this example, the graph 40 1s a
directed graph having edges extending between pairs of the
nodes, those edges indicating that one node invokes the
other node 1n the direction indicated by the arrow.

In some embodiments, the graph 40 further includes
attributes associated with each edge, those attributes indi-
cating a type of relationship between the pair of nodes
connected by the edge. In the illustrated example, there are
two types ol relationships, overrides and inherits, which
indicate how the referencing node 1s to be combined with the
referenced node. In some embodiments, a node that inherits
from another node 1s combined by appending (or otherwise
grouping together) the two configuration components, such
that the referencing node has the attributes of the referenced

25

30

35

40

45

50

55

60

65

node as expressed 1n the referenced node. In some embodi-
ments, a node that overrides a reference node replaces some
or all of the configuration settings of the referenced node.
For mstance, the same configuration setting field may appear
both 1 a referencing node and a referenced node, and the
configuration setting of the referencing node may control 1n
the combination, with the other attributes of the referenced
node otherwise being inherited. Embodiments may parse
pairs of nodes 1n such a relationship to i1dentify duplicate
entries, reference a type of relationship to determine how to
resolve the contlict, and replace the overridden values.

In some cases, the graph 40 may be characterized as a call
graph 1n which edges are denoted by sequences of tokens,
like strings, within documents that reference another con-
figuration component and indicate a type of relationship, for
instance, a statement that configuration component 50
(within a body of text defining configuration component 30,
like a JSON document) inherits from configuration compo-
nent 44 (1n some cases specilying a subset of component
44). In this example, a body of text defining configuration
component 44 may similarly include a string that identifies
a base configuration component 40 and indicates that con-
figuration component 44 overrides base configuration com-
ponent 42. Some embodiments may parse the text in each of
the bodies of text corresponding to a given configuration
component to 1dentily these references and the correspond-
ing relationships and, then, combine the configuration com-
ponents as indicated by that parsed text, for instance, as
indicated below with reference to FIG. 3.

In some embodiments, the graph 40 may be expressed as
a collection of hierarchical serialized format documents,
cach corresponding to one of the illustrated configuration
components. In some embodiments, a plurality of the con-
figuration components may be expressed 1n a single hierar-
chical serialized format document, for instance, with difler-
ent configuration components being expressed at lower
levels of the hierarchy, like 1n a list. In some embodiments,
the graph 40 may be expressed in program state, for
instance, as a collection of objects having as attributes the
other indicated edges. In some embodiments, the graph 40
may be stored 1n various forms of databases, like a document
database, such as the MongoDB™ database, a key-value
store, or as entries 1n a relational database.

In some embodiments, the graph 40 may be a tree graph
with a hierarchy or a forest graph with a plurality of

US 10,387,498 B2

15

hierarchies. In some embodiments, the graph 40 may be a
graph 1n which every node 1s reachable by at least one other
node of the graph. In some embodiments, the graph 40 may
be an acyclic graph. In some embodiments, the graph 40
includes a base configuration component 42 referenced
directly or mdirectly by every other configuration compo-
nent. In some embodiments, the graph 40 may include
service-provider specific configuration components 50, 52,
54, and 56, which may be leal nodes of a tree graph and, 1n
some cases, may uniquely correspond to a respective one of
the service providers. In some embodiments, the dispatcher
26 may select a service-provider specific configuration com-
ponent as an entry into the graph 40 to form a corresponding,
reply-configuration specification.

In some cases, the service-provider specific components
may not be the leal nodes, and these components may be
referenced by other, more specific components. For instance,
cach organization managing accounts for members of the
organization (e.g., employees of a company) may have an
organization-speciiic, service-provider specific component.

As 1indicated, reply-configuration specifications may be
composed from a plurality of the illustrated configuration
components of the graph 40. In some cases, a path (along
edges) through the graph 40 may define how to form the
reply-configuration specification corresponding to that path.
In some cases, a given configuration component may be
shared by multiple reply-configuration specifications, 1n
some cases with different types of relationships to other
configuration components. In some cases, some configura-
tion components may be specific to a given reply-configu-
ration specification, without being shared with other reply-
configuration specifications. In some cases, the base-
configuration component 42 may be shared by every reply-
configuration specification denoted 1n the graph 40.

FIG. 3 shows an example of a process 60 that may be
performed by the identity-provider computer system 12
described above, but 1s not limited to that implementation. In
some cases, the process 60 may be performed multiple
times, concurrently, 1 overlapping sessions corresponding,
to different requests for authorization or authentication. In
some cases, the illustrated steps may be performed 1n a
different order from that indicated, which 1s not to suggest
that other embodiments described herein are not also simi-
larly amenable to vanation. In some embodiments, istruc-
tions that cause a computing system to perform the process
60, or otherwise implement functionality described herein,
may be stored on a tangible, non-transitory, machine-read-
able medium, for instance 1n the form of program code and
data operated upon that by that program code. In some cases,
the medium may be distributed, such that portions of the
medium are resident in different computing devices that
perform different subsets of the instructions, or 1 some
cases, the medium may be resident within a single comput-
ing device.

In some embodiments, the process 60 begins with receiv-
ing a request to authorize a user computing device from a
service provider, as indicated by block 62. In some cases,
this request may be received by the server 20 described
above. In some cases, the recerved request may be routed
through a user computing device, or in some cases, the
received request may be received without the request pass-
ing through a user computing device.

Next, some embodiments may select a service-provider
specific configuration component as a current configuration
component, as indicated by block 64. In some cases, this
may include parsing a service provider identifier from the
received request and selecting one of the service-provider

5

10

15

20

25

30

35

40

45

50

55

60

65

16

specific configuration components 50, 52, 54, or 56 shown
in FIG. 2 based on that configuration component corre-
sponding with the identifier.

Next, some embodiments may form a reply-configuration
specification by recursively executing a sequence of steps to
traverse a graph denoting reply-configuration specifications
for each of a plurality of diflerent service providers, such as
the graph of FIG. 2. In some cases, the traversal may be a
depth first traversal or a breadth first traversal. In some
cases, the traversal 1s achuieved through a recursive traversal,
in which a routine processing a given configuration com-
ponent 1dentifies references to other configuration compo-
nents and, upon 1dentifying such a reference, calls 1tself with
the referenced configuration component as a function call
parameter to be operated upon.

Some embodiments 1nclude determining whether there
are any remaimng references to other configuration compo-
nents 1 a current configuration component, as indicated by
block 68. This may include parsing text describing a con-
figuration component to identily tokens indicating refer-
ences. A reference 1s said to remain 11 subsequent operations
described with reference to block 66 have not yet been
initiated for that reference. Upon determining that another
reference remains, some embodiments may designate the
referenced configuration component as a current configura-
tion component, as indicated by block 70, 1n a function call
to a routine that forms the reply-configuration specification,
as indicated by block 66. Thus, some embodiments may then
determine whether that referenced configuration component
references other configuration components, 1n some cases
through nested recursive calls traversing a graph. In some
cases, the number of recursions corresponding to edges 1n
the graph may be relatively large, for instance, exceeding 3,
5, or 15 1n particularly complex arrangements.

Upon determining that no referenced configuration com-
ponents remain (or 1n some cases concurrently with pro-
cessing other reference configuration components), some
embodiments may combine referenced configuration com-
ponents with a current configuration component based on a
type of the reference, as indicated by block 72. In some
cases, this may include determining the type of reference,
for instance, an inherits or overrides reference, and combin-
ing based on this type. In some cases, the combination may
take the form described above with reference to examples by
which one configuration component inherits from another or
by which one configuration component overrides another.

Thus, some embodiments may form the reply-configura-
tion specification through this combination based on a
polymorphic denotation of reply-configuration specifica-
tions. A variety of different types of polymorphic arrange-
ments may be used, depending upon various trade-ofls in
expressiveness and complexity, including ad hoc polymor-
phism and parametric polymorphism. As indicated, combi-
nation may take a variety of different forms, including
replacing values 1n one component with values 1n another,
inserting values from one component fields in another,
creating a new record based on to previously existing
records, and modifying an existing record based on another
record, assigning values to variables in one component
based on values 1n another, or the like.

Next, some embodiments may determine whether to
provide authorization, as indicated by block 74. This may
include performing the operations attributed above to the
authenticator 22.

Next, some embodiments may form, based on the reply-
configuration specification, a reply to the request including
a result of the determination, as indicated by block 76. In

US 10,387,498 B2

17

some embodiments, this may include performing the opera-
tions attributed above to the assertion composer 30 of FIG.
1. As indicated, “forming” may be implemented in variety of
ways, mcluding composing a new record (e.g., information
in program state or data structure 1n persistent storage) based
on previously existing records or modilying an existing
record based on other records.

Next, some embodiments may send the reply, as indicated
by block 78. As discussed above, in some cases, sending the
reply may include sending the reply directly to the request-
ing service provider or routing the reply through the user
computing device, for instance with a redirect instruction
sent to the user computing device including the reply as a
URL parameter.

In some embodiments, the above techniques may be used
in an 1dentity management system, like that described below
with reference to FIG. 4, but 1t should be appreciated that
these techniques are useful in a variety of different other use
cases, only some examples of which are described above.

FIG. 4 1s a block diagram of a computing environment
230 1n which the above-described techniques may be imple-
mented, though 1t should be emphasized that this 1s one
example of a variety of different systems that are expected
to benefit from the presently described techniques.

As enterprises move their applications to the cloud, and 1n
particular to SaaS applications provided by third parties, it
can become very burdensome and complex to manage roles
and permissions of employees. For example, a given busi-
ness may have 20 different subscriptions to 20 diflerent SaaS
offerings (like web-based email, customer resource manage-
ment systems, enterprise resource planning systems, docu-
ment management systems, and the like). And that business
may have 50,000 employees with varying responsibilities in
the organization, with employees coming and going and
changing roles regularly. Generally, the business would seek
to tightly control which employees can access which SaaS
services, and often which features of those services each
employee can access. For instance, a manager may have
permission to add or delete a defect-tracking ticket, while a
lower-level employee may only be allowed to add notes or
advance state of the ticket 1n a workilow. Or certain employ-
ces may have elevated access to certain email accounts or
sensitive human resources related documents. Each time an
employee arrives, leaves, or changes roles, diflerent sets of
SaaS user accounts may need to be added, deleted, or
updated. Thus, many businesses are facing a crisis of com-
plexity, as they attempt to manage roles in permissions
across a relatively large organization using a relatively large
number of SaasS services with relatively fine-grained feature-
access controls.

These 1ssues may be mitigated by some embodiments of
the computing environment 230, which includes an 1dentity
management system 232 that manages roles and permissions
on a plurality of different third-party SaaS applications 234
and 236. In some cases, the SaaS applications may be
accessed by users having accounts and various roles, subject
to various permissions, on user computing devices 238, 240,
or 242, and those accounts may be managed by an admin-
istrator operating administrator computing device 244. In
some cases, the user computing devices and adminmistrator
computing device may be computing devices operated by a
single entity, such as a single entity within a single local area
network or domain. Or 1n some cases, the user computing,
devices 238, 240, and 242 may be distributed among a
plurality of different local area networks, for instance, within
an organization having multiple networks. In the figure, the
number of third-party application servers and user comput-

10

15

20

25

30

35

40

45

50

55

60

65

18

ing devices 1s two and three respectively, but it should be
appreciated that commercial use cases are expected to
involve substantially more instances of such devices.
Expected use cases involve more than 10 third-party SaaS
applications, and 1n many cases more than 20 or 50 third-
party SaaS applications or on-premises applications. Simi-
larly, expected use cases involve more than 1,000 user
computing devices, and 1n many cases more than 10,000 or
more than 50,000 user computing devices. In some cases,
the number of users 1s expected to scale similarly, 1n some
cases, with users transitioming into new roles at a rate
exceeding 10 per day, and 1n many commercially relevant
use cases, exceeding 100 or 1,000 per day on average.
Similarly, versioning of third-party APIs and addition or
subtraction of third-party APIs 1s expected to result 1n new
APIs or new versions of APIs being added monthly or more
often 1n some use cases.

In some embodiments, the user computing devices 238,
240, and 242 may be operated by users accessing or seeking
access to the third-party SaaS applications, and administra-
tor computing device 244 may be operated by a system
administrator that manages that access. In some embodi-
ments, such management may be facilitated with the identity
management system 232, which in some cases, may auto-
matically create, delete, or modily user accounts on various
subsets or all of the third-party SaaS applications 1n response
to users being added to, removed from, or moved between,
roles 1n an organization. In some embodiments, each role
may be mapped to a plurality of account configurations for
the third-party SaaS applications. In some embodiments, in
response to a user changing roles, the administrator may
indicate that change 1n roles via the administrator computing
device 244, 1n a transmission to the i1dentity management
system 232. In some embodiments, the device 242 may
execute an example of the above-described designated appli-
cation 241.

In response to this transmission, the identity management
system may retrieve from memory and updated set of
account configurations for the user in the new role, and
records of these new account configurations may be created
in a graph database 1n the identity management system 232.
That graph database and the corresponding records may be
synchronized with corresponding third-party applications
234 and 236 to implement the new account configurations.
Further, 1n some cases, a new deployment of the identity
management system 232 may contain a graph database
populated mnitially by extracting data from the third-party
SaaS applications and translating that data into a canonical
format suitable for the graph database. In some embodi-
ments, the third-party SaaS applications may include an API
server 260 and a web server 262.

In some embodiments, the computing environment 230
includes a data validator 228 that validates data according to
diverse data schemas. In some cases, the data validator
includes a document database storing diverse schemas, a
schema formation module that performs a process to form
schemas, including a schema crawler configured to recur-
sively crawl through a set of linked schemas, and modules
that combine criteria from the schemas. In some cases, the
data validator 228 may validate data entering the identity
repository 234 of the 1dentity management system 232.

In some embodiments, the identity management system
232 may include a web/API server 229. In some embodi-
ments, the server 229 may receiving in-bound or out-bound
data, 1dentify a corresponding document specitying how to
translate between API formats (or constitute the document
via references expressing inheritance and polymorphism),

US 10,387,498 B2

19

and perform a process to translate data between external data
schemas and an internal data schema of the identity reposi-
tory 254.

In some embodiments, each of the third-party SaaS appli-
cations are at diflerent domains, having different subnet-
works, at diflerent geographic locations, and are operated by
different entities. In some embodiments, a single entity may
operate multiple third-party SaaS applications, for instance,
at a shared data center, or 1n some cases, a different third-
party may host the third-party SaaS applications on behalf of
multiple other third parties. In some embodiments, the
third-party SaaS applications may be geographically and
logically remote from the identity management system 232
and each of the computing devices 238, 240, 242, and 244.
In some embodiments, these components 232 through 242
may communicate with one another via various networks,
including the Internet 246 and various local area networks.

In some embodiments, the identity management system
232 includes a controller 248, an identity provider 231, a
data synchronization module 250, a rules engine 252, and
identity repository 254, a rules repository 256, and a con-
nector schema repository 238. In some embodiments, the
controller 248 may direct the operations described above, 1n
some cases by communicating with the various other mod-
ules of the identity management system and the other
components of the computing environment 230. In some
embodiments, the data synchronization module 250 may be
configured to synchromize records in the 1dentity repository
254 with records 1n the third-party SaaS applications, for
instance by translating those records at the direction of the
controller 248. For instance, a user may transier into a sales
group at a company, and the rules may indicate that in the
new role, the user 1s be given a SaaS customer-relationship
management account, and that account 1s to be added 1n the
SaaS application to a group corresponding to a geographic
sales region. These may lead to sequential tasks, where the
account needs to be created via the API, betore the API can
be commanded to add the account to a group.

In some embodiments, the 1identity provider 231 accesses
user credentials in the i1dentity repository 256, which may
host the above-described user credentials 24. In some cases,
the above-described configuration-component repository 28
may be stored in the connector scheme repository 258. In
some embodiments, the API/Web server 229 may serve the
role of the server 20 described above. Other components of
the above-described 1dentity provider 12 of FIG. 1 may be
resident in the identity management system as identity
provider 231, or the identity provider 231 may be structured
as described above with reference to FIG. 1 without being
turther itegrated into the 1dentity management system 232.
In some cases, the third-party SaaS applications 234 and 236
may perform the operations described above by the service-
provider computer systems 16.

In some embodiments, the rules engine 252 may be
configured to update the identity repository 254 based on
rules in the rules repository 256 to determine third-party
SaaS application account configurations based on changes in
roles of users, for instance received from the administrator
computing device 244, at the direction of controller 248. In
some embodiments, the administrator computing device 244
may send a command to transition a user from a first role to
a second role, for istance, a command indicating the user
has moved from a first-level technical support position to a
management position. In response, the controller 248 may
retrieve a set of rules (which may also be referred to as a
“policy”) corresponding to the former position and a set of
rules corresponding to the new position from the rules

10

15

20

25

30

35

40

45

50

55

60

65

20

repository 246. In some embodiments, these sets of rules
may indicate which SaaS applications should have accounts
for the corresponding user/role and configurations of those
accounts, like permissions and features to enable or disable.
In some embodiments, these rules may be sent to the rules
engine 252, which may compare the rules to determine
differences from a current state, for instance, configurations
to change or accounts to add or remove. In some embodi-
ments, the rules engine 252 may update records in the
identity repository 254 to indicate those changes, for
instance, removing accounts, changing groups to which
users belong, changing permissions, adding accounts,
removing users from groups, and the like. In some cases,
applying the rules may be an example of unordered tasks
performed by the system. In some embodiments, these
updates may be updates to a graph data structure. In some
embodiments, the graph data structure may be a neo4j graph
database available from Neo Technology, Inc. of San Mateo,
Calif. In some embodiments, the controller 248 may respond
to these updates by istructing the data sync module 252
translate the modified nodes and edges into API commands
and sending those API commands to the corresponding
third-party SaaS applications.

In some embodiments, the identity repository 254 may
include a graph data structure indicating various entities and
relationships between those entities that describe user
accounts, user roles within an organization, and the third-
party SaaS applications. For instance, some embodiments
may record as entities in the graph data structure the
third-party SaaS applications, accounts of those applica-
tions, groups ol user accounts (in some cases 1 a hierar-
chical taxonomy), groups of users 1n an organization (again,
in some cases 1n a hierarchical taxonomy, like an organiza-
tional structure), user accounts, and users. Fach of these
nodes may have a variety of attributes, e.g., user names for
user accounts, user identifiers for users, group names, and
group leaders for groups, and the like. In some embodi-
ments, the graph data structure may be a neody graph
database available from Neo Technology, Inc. of San Mateo,
Calif.

In some embodiments, these nodes may be related to one
another through various relationships that may be encoded
as edges of the graph. For instance, an edge may indicate
that a user 1s a member of a subgroup, and that that subgroup
1s a member of a group of subgroups. Similarly, and edge
may 1ndicate that a user has an account, and that the account
1s a member of a group of accounts, like a distribution list.
In some examples, and edge may indicate that an account 1s
with a SaaS application, with the respective edge linking
between a node corresponding to the particular account and
another node corresponding to the SaaS application. In some
embodiments, multiple SaaS applications may be linked by
edges to a node corresponding to a given party, such as a
third-party.

In some embodiments, this data structure 1s expected to
aflord relatively fast operation by computing systems for
certain operations expected to be performed relatively fre-
quently by the identity management system 232. For
instance, some embodiments may be configured to relatively
quickly query all accounts of the user by requesting all edges
of the type “has_an_account” connected to the node corre-
sponding to the user, with those edges 1dentitying the nodes
corresponding to the respective accounts. In another
example, all members of a group may be retrieved relatively
quickly by requesting all nodes connected to a node corre-
spond to the group by an edge that indicates membership.
Thus, the graph data structure may aflord relatively fast

US 10,387,498 B2

21

operation compared to many traditional systems based on
relational databases 1n which such relationships are evalu-
ated by cumbersome join operations extending across sev-
cral tables or by maintaining redundant indexes that slow
updates. (Though, embodiments are also consistent with use
of relational databases instead of graph databases, as mul-

tiple, independently useful techniques are described).

FIG. 5 15 a diagram that illustrates an exemplary comput-
ing system 1000 1n accordance with embodiments of the
present technique. Various portions of systems and methods
described herein, may include or be executed on one or more
computer systems similar to computing system 1000. Fur-
ther, processes and modules described herein may be
executed by one or more processing systems similar to that
of computing system 1000.

Computing system 1000 may include one or more pro-
cessors (e.g., processors 10104-10107) coupled to system
memory 1020, an mput/output I/O device iterface 1030,
and a network interface 1040 via an input/output (I/0)
interface 1050. A processor may include a single processor
or a plurality of processors (e.g., distributed processors). A
processor may be any suitable processor capable of execut-
ing or otherwise performing instructions. A processor may
include a central processing unit (CPU) that carries out
program 1instructions to perform the arithmetical, logical,
and iput/output operations of computing system 1000. A
processor may execute code (e.g., processor firmware, a
protocol stack, a database management system, an operating,
system, or a combination thereof) that creates an execution
environment for program instructions. A processor may
include a programmable processor. A processor may include
general or special purpose microprocessors. A processor
may receive instructions and data from a memory (e.g.,
system memory 1020). Computing system 1000 may be a
uni-processor system including one processor (e.g., proces-
sor 1010a), or a multi-processor system including any
number of suitable processors (e.g., 1010q-1010z). Multiple
processors may be employed to provide for parallel or
sequential execution of one or more portions of the tech-
niques described herein. Processes, such as logic flows,
described herein may be performed by one or more pro-
grammable processors executing one or more computer
programs to perform functions by operating on input data
and generating corresponding output. Processes described
herein may be performed by, and apparatus can also be
implemented as, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific mtegrated circuit). Computing system 1000
may 1nclude a plurality of computing devices (e.g., distrib-
uted computer systems) to implement various processing
functions.

I/O device imterface 1030 may provide an interface for
connection of one or more I/O devices 1060 to computer
system 1000. I/O devices may include devices that receive
iput (e.g., from a user) or output information (e.g., to a
user). I/O devices 1060 may include, for example, graphical
user interface presented on displays (e.g., a cathode ray tube
(CRT) or liqud crystal display (LLCD) monitor), pointing
devices (e.g., a computer mouse or trackball), keyboards,
keypads, touchpads, scanning devices, voice recognition
devices, gesture recognition devices, printers, audio speak-
ers, microphones, cameras, or the like. I/O devices 1060
may be connected to computer system 1000 through a wired
or wireless connection. I/0 devices 1060 may be connected
to computer system 1000 from a remote location. 1/O
devices 1060 located on remote computer system, for

10

15

20

25

30

35

40

45

50

55

60

65

22

example, may be connected to computer system 1000 via a
network and network interface 1040.

Network interface 1040 may include a network adapter
that provides for connection of computer system 1000 to a
network. Network interface may 1040 may facilitate data
exchange between computer system 1000 and other devices
connected to the network. Network interface 1040 may
support wired or wireless communication. The network may
include an electronic communication network, such as the
Internet, a local area network (LAN), a wide area network
(WAN), a cellular communications network, or the like.

System memory 1020 may be configured to store program
instructions 1100 or data 1110. Program instructions 1100
may be executable by a processor (e.g., one or more of
processors 1010a-10107) to implement one or more embodi-
ments of the present techmiques. Instructions 1100 may
include modules of computer program instructions for
implementing one or more techniques described herein with
regard to various processing modules. Program instructions
may include a computer program (which 1n certain forms 1s
known as a program, software, software application, script,
or code). A computer program may be written 1n a program-
ming language, including compiled or mterpreted lan-
guages, or declarative or procedural languages. A computer
program may include a unit suitable for use in a computing
environment, including as a stand-alone program, a module,
a component, or a subroutine. A computer program may or
may not correspond to a file 1n a file system. A program may
be stored 1n a portion of a file that holds other programs or
data (e.g., one or more scripts stored 1n a markup language
document), 1n a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub programs, or portions of code). A
computer program may be deployed to be executed on one
or more computer processors located locally at one site or
distributed across multiple remote sites and interconnected
by a communication network.

System memory 1020 may include a tangible program
carrier having program instructions stored thereon. A tan-
gible program carrier may include a non-transitory computer
readable storage medium. A non-transitory computer read-
able storage medium may include a machine readable stor-
age device, a machine readable storage substrate, a memory
device, or any combination thereof. Non-transitory com-
puter readable storage medium may include non-volatile
memory (e.g., tflash memory, ROM, PROM, EPROM,
EEPROM memory), volatile memory (e.g., random access

memory (RAM), static random access memory (SRAM),
synchronous dynamic RAM (SDRAM)), bulk storage

memory (e.g., CD-ROM and/or DVD-ROM, hard-drives),
or the like. System memory 1020 may include a non-
transitory computer readable storage medium that may have
program 1nstructions stored thereon that are executable by a
computer processor (e.g., one or more of processors 1010a-
10107) to cause the subject matter and the functional opera-
tions described herein. A memory (e.g., system memory
1020) may include a single memory device and/or a plurality
of memory devices (e.g., distributed memory devices).
Instructions or other program code to provide the function-
ality described herein may be stored on a tangible, non-
transitory computer readable media. In some cases, the
entire set of mstructions may be stored concurrently on the
media, or in some cases, diflerent parts of the instructions
may be stored on the same media at different times, e.g., a
copy may be created by writing program code to a {irst-1n-
first-out buffer in a network interface, where some of the
instructions are pushed out of the bufler before other por-

US 10,387,498 B2

23

tions of the 1nstructions are written to the bufler, with all of
the 1nstructions residing 1n memory on the bufler, just not all
at the same time.

I/O mterface 1050 may be configured to coordinate I/0O
traflic between processors 1010a-10107, system memory
1020, network interface 1040, I/O devices 1060, and/or
other peripheral devices. I/O interface 1050 may perform
protocol, timing, or other data transformations to convert
data signals from one component (e.g., system memory
1020) into a format suitable for use by another component
(e.g., processors 10104-10107). I/O interface 1050 may
include support for devices attached through various types
of peripheral buses, such as a vanant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard.

Embodiments of the techniques described herein may be
implemented using a single instance of computer system
1000 or multiple computer systems 1000 configured to host
different portions or instances of embodiments. Multiple
computer systems 1000 may provide for parallel or sequen-
tial processing/execution ol one or more portions of the
techniques described herein.

Those skilled 1n the art will appreciate that computer
system 1000 1s merely illustrative and 1s not intended to limat
the scope of the techniques described herein. Computer
system 1000 may include any combination of devices or
software that may perform or otherwise provide for the
performance of the techniques described herein. For
example, computer system 1000 may include or be a com-
bination of a cloud-computing system, a data center, a server
rack, a server, a virtual server, a desktop computer, a laptop
computer, a tablet computer, a server device, a client device,
a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a vehicle-
mounted computer, or a Global Positioning System (GPS),
or the like. Computer system 1000 may also be connected to
other devices that are not illustrated, or may operate as a
stand-alone system. In addition, the functionality provided
by the illustrated components may 1n some embodiments be
combined 1n fewer components or distributed 1n additional
components. Similarly, 1n some embodiments, the function-
ality of some of the illustrated components may not be
provided or other additional functionality may be available.

Those skilled 1n the art will also appreciate that while
various items are 1llustrated as being stored 1n memory or on
storage while being used, these 1tems or portions of them
may be transierred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, 1n other embodiments some or all of
the software components may execute in memory on another
device and communicate with the 1llustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as 1nstructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-accessible medium separate from computer system
1000 may be transmitted to computer system 1000 wvia
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a commumnication
medium such as a network or a wireless link. Various
embodiments may further include receiving, sending, or
storing nstructions or data implemented 1n accordance with
the foregoing description upon a computer-accessible
medium. Accordingly, the present techniques may be prac-
ticed with other computer system configurations.

10

15

20

25

30

35

40

45

50

55

60

65

24

In block diagrams, illustrated components are depicted as
discrete functional blocks, but embodiments are not limited
to systems in which the functionality described herein 1s
organized as 1llustrated. The functionality provided by each
of the components may be provided by software or hardware
modules that are differently organized than is presently
depicted, for example such soiftware or hardware may be
intermingled, conjoined, replicated, broken up, distributed
(e.g. within a data center or geographically), or otherwise
differently organized. The functionality described herein
may be provided by one or more processors of one or more
computers executing code stored on a tangible, non-transi-
tory, machine readable medium. In some cases, third party
content delivery networks may host some or all of the
information conveyed over networks, in which case, to the
extent information (e.g., content) 1s said to be supplied or
otherwise provided, the information may provided by send-
ing instructions to retrieve that information from a content
delivery network.

The reader should appreciate that the present application
describes several independently useful techniques. Rather
than separating those techniques into multiple 1solated pat-
ent applications, applicants have grouped these techniques
into a single document because their related subject matter
lends 1tself to economies in the application process. But the
distinct advantages and aspects of such techniques should
not be conflated. In some cases, embodiments address all of
the deficiencies noted herein, but 1t should be understood
that the techniques are independently useful, and some
embodiments address only a subset of such problems or offer
other, unmentioned benefits that will be apparent to those of
skill in the art reviewing the present disclosure. Due to costs
constraints, some techniques disclosed herein may not be
presently claimed and may be claimed 1n later filings, such
as continuation applications or by amending the present
claims. Similarly, due to space constraints, neither the
Abstract nor the Summary of the Invention sections of the
present document should be taken as containing a compre-
hensive listing of all such techmques or all aspects of such
techniques.

It should be understood that the description and the
drawings are not intended to limit the techniques to the
particular form disclosed, but to the contrary, the intention 1s
to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the present techniques
as defined by the appended claims. Further modifications
and alternative embodiments of various aspects of the tech-
niques will be apparent to those skilled 1n the art 1n view of
this description. Accordingly, this description and the draw-
ings are to be construed as illustrative only and are for the
purpose of teaching those skilled in the art the general
manner of carrying out the techniques. It 1s to be understood
that the forms of the techniques shown and described herein
are to be taken as examples of embodiments. Elements and
materials may be substituted for those illustrated and
described herein, parts and processes may be reversed or
omitted, and certain features of the techniques may be
utilized independently, all as would be apparent to one
skilled 1n the art after having the benefit of this description
of the techniques. Changes may be made in the elements
described herein without departing from the spirit and scope
of the techniques as described in the following claims.
Headings used herein are for organizational purposes only
and are not meant to be used to limit the scope of the
description.

As used throughout this application, the word “may™ 1s
used 1n a permissive sense (1.e., meaning having the poten-

US 10,387,498 B2

25

t1al to), rather than the mandatory sense (1.e., meaning must).

22 4

The words “include”, “including”, and “includes™ and the
like mean including, but not limited to. As used throughout
this application, the singular forms “a,” “an,” and “the”
include plural referents unless the content explicitly indi-
cates otherwise. Thus, for example, reference to “an ele-
ment” or “a element” 1ncludes a combination of two or more
clements, notwithstanding use of other terms and phrases for
one or more elements, such as “one or more.” The term “or”

1s, unless indicated otherwise, non-exclusive, 1.e., encom-
passing both “and” and “or.” Terms describing conditional
relationships, e.g., “in response to X, Y,” “upon X, Y,”, “if
X, Y,” “when X, Y,” and the like, encompass causal rela-
tionships in which the antecedent 1s a necessary causal
condition, the antecedent 1s a suflicient causal condition, or
the antecedent 1s a contributory causal condition of the
consequent, e.g., “state X occurs upon condition Y obtain-
ing” 1s generic to “X occurs solely upon Y and “X occurs
upon Y and Z.” Such conditional relationships are not
limited to consequences that instantly follow the antecedent
obtaining, as some consequences may be delayed, and 1n
conditional statements, antecedents are connected to their
consequents, e.g., the antecedent 1s relevant to the likelihood
of the consequent occurring. Statements 1n which a plurality
ol attributes or functions are mapped to a plurality of objects
(e.g., one or more processors performing steps A, B, C, and
D) encompasses both all such attributes or functions being
mapped to all such objects and subsets of the attributes or
functions being mapped to subsets of the attributes or
functions (e.g., both all processors each performing steps
A-D, and a case in which processor 1 performs step A,
processor 2 performs step B and part of step C, and

processor 3 performs part of step C and step D), unless
otherwise indicated. Further, unless otherwise indicated,
statements that one value or action 1s “based on” another
condition or value encompass both instances 1n which the
condition or value is the sole factor and instances 1n which
the condition or value i1s one factor among a plurality of
factors. Unless otherwise 1indicated, statements that “each”
instance of some collection have some property should not
be read to exclude cases where some otherwise 1dentical or
similar members of a larger collection do not have the
property, 1.e., each does not necessarily mean each and
every. Limitations as to sequence of recited steps should not
be read 1nto the claims unless explicitly specified, e.g., with
explicit language like “after performing X, performing Y,” 1n
contrast to statements that might be improperly argued to
imply sequence limitations, like “performing X on items,
performing Y on the X’ed items,” used for purposes of
making claims more readable rather than specilying
sequence. Statements referring to “at least Z of A, B, and C.,”
and the like (e.g., “at least Z of A, B, or C”), refer to at least
7. of the listed categories (A, B, and C) and do not require
at least Z units 1 each category. Unless specifically stated
otherwise, as apparent from the discussion, it 1s appreciated
that throughout this specification discussions utilizing terms
such as “processing,” “computing,” “calculating,” “deter-
mimng” or the like refer to actions or processes of a specific
apparatus, such as a special purpose computer or a similar
special purpose electronic processing/computing device.
To the extent that, 1n this patent, certain U.S. patents, U.S.
patent applications, or other materials (e.g., articles) have
been incorporated by reference, the text of such U.S. patents,
U.S. patent applications, and other materials 1s, however,
only incorporated by reference to the extent that no contlict
exists between such material and the statements and draw-

b B Y

10

15

20

25

30

35

40

45

50

55

60

65

26

ings set forth herein. In the event of such contlict, the text of
the present document governs.

The present techniques will be better understood with
reference to the following enumerated embodiments:
1. A tangible, non-transitory, machine-readable medium
storing 1nstructions that when executed by one or more
computers eflectuate operations comprising: receiving, from
a first service-provider computer system or from a user
computing device, via a network, with an identity-provider
computer system, a request to authenticate a user computing
device, wherein: the request specifies a first service provider
among a plurality of different service providers on a plurality
of different domains for which the identity-provider com-
puter system 1s configured to make authentication determi-
nations; forming, with the identity-provider computer sys-
tem, a first reply-configuration specification from a first
plurality of configuration components, wherein forming
comprises: accessing a graph of configuration components,
the graph defining reply-configuration specifications for the
plurality of different service providers, the first plurality of
configuration components corresponding to a subset of the
graph, determining that at least some of the first plurality of
configuration components pertain to the first service-pro-
vider computer system based on a path 1n the graph along
edges of the graph, and evaluating a relationship defined by
an edge of the graph to determine, at least in part, how to
combine a pair of configuration components linked by the
edge 1nto at least part of the first reply-configuration speci-
fication, wherein: at least some of the first plurality of
configuration components pertain to service providers
among the plurality of diflerent service providers other than
the first service provider, and the first reply-configuration
specification specifies at least part of a message to commu-
nicate an authentication determination to the first service-
provider computer system; determining, with the i1dentity-
provider computer system, whether to provide
authentication; forming, with the identity-provider computer
system, based on the first reply-configuration specification,
a reply to the request, the reply including a result of the
authentication determination; and sending, with the 1dentity-
provider computer system, the reply.
2. The medium of embodiment 1, comprising: receiving,
from a second service-provider computer system, a request
for authentication of another user computing device; access-
ing the graph of configuration components to obtain a
second plurality of configuration components, wherein: the
second plurality of configuration components contains at
least one configuration component that is not in the first
plurality of configuration components; the second plurality
ol configuration components contains at least one configu-
ration component that 1s 1n the first plurality of configuration
components; forming, {from the second plurality of configu-
ration components, a second reply-configuration specifica-
tion diflerent from the first reply-configuration specification;
and sending a reply to the second service-provider computer
system based on the second reply-configuration specifica-
tion.
3. The medium of any one of embodiments 1-2, wherein: the
configuration components in the graph are each a respective
document formatted in a hierarchical serialization format;
and edges of the graph are denoted 1n the documents by text
referencing another of the documents and indicating a
relationship to the referenced document, wherein the com-
bining 1s based on a type of relationship among a plurality
of types of relationships 1n the graph, with different types
corresponding to different ways of combining the docu-
ments.

US 10,387,498 B2

27

4. The medium of any one of embodiments 1-3, wherein:
forming the first reply-configuration specification com-
prises: parsing a {irst configuration component to 1dentify a
reference to a second configuration component, the refer-
ence denoting the edge, the first and second configuration
component being the pair of configuration components

linked by the edge.

5. The medium of embodiment 4, wherein: the relationship
specifies that the first configuration component inherits from
the second configuration component; and combining com-
prises adding a configuration setting from the first configu-
ration component to a plurality of configuration settings in
the second configuration component.

6. The medium of embodiment 4, wherein: the relationship
speciflies that the first configuration component overrides the
second configuration component; and combining comprises
replacing a configuration setting 1n the second configuration
component with a configuration setting in the first configu-
ration component.

7. The medium of any one of embodiments 1-6, wherein: the
graph 1s a directed acyclic graph; and forming the first
reply-configuration specification comprises: recursively tra-
versing the directed acyclic graph 1n a depth first traversal to
torm the first reply-configuration specification from three or
more configuration components forming three respective
nodes on the path 1n the graph, the recursion beginning with
a conflguration component uniquely associated with the first
service provider among the plurality of different service
providers.

8. The medium of any one of embodiments 1-7, wherein: the
graph of configuration components comprises a polymor-
phic arrangement of configuration components 1 which a
base configuration specification 1s mnvoked by a plurality of
other configuration components to apply configuration set-
tings 1n the base configuration component 1n combination
with the other configuration components.

9. The medium of embodiment 8, wherein: the polymorphic
arrangement 1s ad hoc polymorphism.

10. The medium of embodiment 8, wherein: the polymor-
phic arrangement 1s parametric polymorphism.

11. The medium of any one of embodiments 1-10, wherein:
the first reply-configuration specification 1s formed before
receiving the request for authentication; and the operations
comprise: alter receiving the request for authentication,
determining that each configuration component used to form
the first reply-configuration specification has not expired.
12. The medium of any one of embodiments 1-11, wherein
the first reply-configuration specification comprises: Cryp-
tographic signature requirements ol the first service-pro-
vider computer system for authentication messages; appli-
cation or transport layer protocol bindings supported by the
first service-provider computer system for authentication
messages; and attributes required by the first service-pro-
vider computer system for authentication messages.

13. The medium of embodiment 12, wherein: the reply
includes authentication of a user based on credentials sup-
plied via the user computing device; determining to provide
authentication comprises comparing the credentials to stored
user credentials associated with a user account; the graph of
configuration components includes a plurality of documents
cach having different subsets ol configuration settings of
Security Assertion Markup Language configurations corre-
sponding to five or more diflerent service-provider computer
systems; sending the reply comprises sending an extensible
markup language document satisfying the cryptographic
signature requirements via at least some of the protocols

5

10

15

20

25

30

35

40

45

50

55

60

65

28

among the supported bindings with at least some of the
required attributes, wherein the reply includes more than 20
confliguration settings.

14. The medium of any one of embodiments 1-13, wherein:
forming the first reply-configuration specification comprises
steps for instantiating a reply-configuration specification;
sending the reply comprises steps for indicating authentica-
tion to the first service-provider computer system; and the
graph 1s arranged according to means for specitying a call
graph.

15. The medium of any one of embodiments 1-14, wherein:
the first reply-configuration specification specifies how to
format, for the first service provider, a cryptographically
signed Security Assertion Markup Language response hav-
ing an encrypted cryptographically signed assertion i1denti-
fier, the format being different from that of at least some of
the other service providers.

16. A method comprising: the operations of any one of
embodiments 1-15.

1’7. A system, comprising: one or more processors; and
memory storing instructions that when executed by the
processors cause the processors to eflectuate operations
comprising: the operations of any one of embodiments 1-15.

What 1s claimed 1s:

1. A tangible, non-transitory, machine-readable medium
storing 1nstructions that when executed by one or more
computers ellectuate operations comprising:

recerving, from a {irst service-provider computer system

or from a user computing device, via a network, with an
identity-provider computer system, a request to authen-
ticate a user computing device, wherein:

the request specifies a first service provider among a

plurality of different service providers on a plurality
of different domains for which the identity-provider
computer system 1s configured to make authentica-
tion determinations;
forming, with the identity-provider computer system, a
first reply-configuration specification from a first plu-
rality of configuration components, wherein forming
COMPrises:
accessing a graph of configuration components, the
graph defining reply-configuration specifications for
the plurality of different service providers, the first
plurality of configuration components corresponding

to a subset of the graph,
determining that at least some of the first plurality of
configuration components pertain to the first service-
provider computer system based on a path in the
graph along edges of the graph, and
evaluating a relationship defined by an edge of the
graph to determine, at least 1n part, how to combine
a pair ol configuration components linked by the
edge mto at least part of the first reply-configuration
specification, wherein:
the pair of configuration components linked by the
edge pertain to first service-provider computer
system,
the pair of configuration components linked by the
edge are among the at least some of the first
plurality of configuration components,
at least some of the first plurality of configuration
components pertain to service providers among
the plurality of different service providers other
than the first service provider, and

US 10,387,498 B2

29

the first reply-configuration specification specifies at
least part of a message to communicate an authen-
tication determination to the first service-provider
computer system;
determining, with the identity-provider computer system,
whether to provide authentication;
forming, with the identity-provider computer system,
based on the first reply-configuration specification, a
reply to the request, the reply including a result of the
authentication determination; and
sending, with the identity-provider computer system, the
reply to the first service-provider computer system or to
the user computing device.
2. The medium of claim 1, comprising:
receiving, from a second service-provider computer sys-
tem, a request for authentication of another user com-
puting device;
accessing the graph of configuration components to obtain
a second plurality of configuration components,
wherein:
the second plurality of configuration components con-
tains at least one configuration component that 1s not
in the first plurality of configuration components;
the second plurality of configuration components con-
tains at least one configuration component that 1s 1n
the first plurality of configuration components;
forming, from the second plurality of configuration com-
ponents, a second reply-configuration specification dii-
ferent from the first reply-configuration specification;
and
sending a reply to the second service-provider computer
system based on the second reply-configuration speci-
fication.
3. The medium of claim 1, wherein:
the configuration components in the graph are each a
respective document formatted in a hierarchical serial-
1zation format; and
edges of the graph are denoted 1n the documents by text
referencing another of the documents and indicating a
relationship to the referenced document, wherein the
combining 1s based on a type of relationship among a
plurality of types of relationships in the graph, with
different types corresponding to different ways of com-
bining the documents.
4. The medium of claim 1, wherein:
forming the first reply-configuration specification com-
Prises:
parsing a {irst configuration component to identily a
reference to a second configuration component, the
reference denoting the edge, the first and second
configuration component being the pair of configu-
ration components linked by the edge.
5. The medium of claim 4, wherein:
the relationship specifies that the first configuration com-
ponent inherits from the second configuration compo-
nent; and
combining comprises adding a configuration setting from
the first configuration component to a plurality of
confliguration settings 1n the second configuration com-
ponent.
6. The medium of claim 4, wherein:
the relationship specifies that the first configuration com-
ponent overrides the second configuration component;
and
combining comprises replacing a configuration setting in
the second configuration component with a configura-
tion setting 1n the first configuration component.

10

15

20

25

30

35

40

45

50

55

60

65

30

7. The medium of claim 1, wherein:
the graph 1s a directed acyclic graph; and
forming the first reply-configuration specification com-
prises:
recursively traversing the directed acyclic graph 1n a
depth first traversal to form the first reply-configu-
ration specification from three or more configuration
components forming three respective nodes on the
path 1n the graph, the recursion beginning with a
configuration component uniquely associated with
the first service provider among the plurality of
different service providers.
8. The medium of claim 1, wherein:
the graph of configuration components comprises a poly-
morphic arrangement ol configuration components 1n
which a base configuration specification 1s mnvoked by
a plurality of other configuration components to apply
configuration settings 1n the base configuration com-
ponent 1n combination with the other configuration
components.
9. The medium of claim 8, wherein:
the polymorphic arrangement 1s ad hoc polymorphism.
10. The medium of claim 8, wherein:
the polymorphic arrangement 1s parametric polymor-
phism.
11. The medium of claim 1, wherein:
the first reply-configuration specification 1s formed belore
receiving the request for authentication; and
the operations comprise:
after recerving the request for authentication, determin-
ing that each configuration component used to form
the first reply-configuration specification has not
expired.
12. The medium of claim 1, wherein the first reply-

confliguration specification comprises:

cryptographic signature requirements of the first service-
provider computer system for authentication messages;

application or transport layer protocol bindings supported
by the first service-provider computer system {for
authentication messages; and

attributes required by the first service-provider computer
system for authentication messages.

13. The medium of claim 12, wherein:

the reply includes authentication of a user based on
credentials supplied via the user computing device;

determining to provide authentication comprises compar-
ing the credentials to stored user credentials associated
with a user account:

the graph of configuration components includes a plural-
ity ol documents each having different subsets of
configuration settings of Security Assertion Markup
Language configurations corresponding to five or more
different service-provider computer systems;

sending the reply comprises sending an extensible markup
language document satistying the cryptographic signa-
ture requirements via at least some of the protocols
among the supported bindings with at least some of the
required attributes, wherein the reply includes more
than 20 configuration settings.

14. The medium of claim 1, wherein:

forming the first reply-configuration specification com-
prises steps for instantiating a reply-configuration
specification;

sending the reply comprises steps for indicating authen-
tication to the first service-provider computer system;
and

US 10,387,498 B2

31

the graph 1s arranged according to means for specifying a
call graph.
15. The medium of claim 1, wherein:
the first reply-configuration specification specifies how to
format, for the first service provider, a cryptographi-
cally signed Security Assertion Markup Language
response having an encrypted cryptographically signed
assertion 1dentifier, the format being different from that
of at least some of the other service providers.
16. A method, comprising:
receiving, from a first service-provider computer system
or from a user computing device, via a network, with an
identity-provider computer system, a request to authen-
ticate a user computing device, wherein:
the request specifies a first service provider among a
plurality of different service providers on a plurality
of different domains for which the identity-provider
computer system 1s configured to make authentica-
tion determinations;
forming, with the identity-provider computer system, a
first reply-configuration specification from a first plu-
rality of configuration components, wherein forming
COMprises:
accessing a graph ol configuration components, the
graph defining reply-configuration specifications for
the plurality of different service providers, the first
plurality of configuration components corresponding
to a subset of the graph,
determining that at least some of the first plurality of
confliguration components pertain to the first service-
provider computer system based on a path in the
graph along edges of the graph, and
evaluating a relationship defined by an edge of the
graph to determine, at least 1n part, how to combine
a pair of configuration components linked by the
edge 1nto at least part of the first reply-configuration
specification, wherein:
the pair of configuration components linked by the
edge pertain to first service-provider computer
system,
the pair of configuration components linked by the
edge are among the at least some of the first
plurality of configuration components,
at least some of the first plurality of configuration
components pertain to service providers among

the plurality of diflerent service providers other
than the first service provider, and

10

15

20

25

30

35

40

45

32

the first reply-configuration specification specifies at
least part of a message to communicate an authen-
tication determination to the first service-provider
computer system:
determining, with the identity-provider computer system,
whether to provide authentication;
forming, with the identity-provider computer system,
based on the first reply-configuration specification, a
reply to the request, the reply including a result of the
authentication determination; and
sending, with the identity-provider computer system, the
reply to the first service-provider computer system or to

the user computing device.
17. The method of claim 16, wherein:

forming the first reply-configuration specification com-
Prises:
parsing a first configuration component to identily a
reference to a second configuration component, the
reference denoting the edge, the first and second
configuration component being the pair of configu-
ration components linked by the edge.
18. The method of claim 17, wherein:
the relationship specifies that the first configuration com-
ponent mherits from the second configuration compo-
nent; and
combining comprises adding a configuration setting from
the first configuration component to a plurality of
conflguration settings 1n the second configuration com-
ponent.
19. The method of claim 17, wherein:
the relationship specifies that the first configuration com-
ponent overrides the second configuration component;
and
combining comprises replacing a configuration setting in
the second configuration component with a configura-
tion setting 1n the first configuration component.
20. The method of claim 16, wherein:
the graph 1s a directed acyclic graph; and
forming the first reply-configuration specification com-
Prises:
recursively traversing the directed acyclic graph 1n a
depth first traversal to form the first reply-configu-
ration specification from three or more configuration
components forming three respective nodes on the
path 1n the graph, the recursion beginning with a
configuration component uniquely associated with
the first service provider among the plurality of
different service providers.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

