12 United States Patent

Kaxiras et al.

US010387312B2

US 10,387,312 B2
Aug. 20, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(86)

(87)

(65)

(60)

(1)

SYSTEM AND METHOD FOR EVENT
MONITORING IN CACHE COHERENCE
PROTOCOLS WITHOUT EXPLICIT
INVALIDATIONS

Applicants: Stefanos Kaxiras, Uppsala (SE);
Alberto Ros, Uppsala (SE)

Stefanos Kaxiras, Uppsala (SE);
Alberto Ros, Uppsala (SE)

Inventors:

Assignee: ETA SCALE AB, Uppsala (SE)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 392 days.

Appl. No.: 15/108,948

PCT Filed: Jan. 2, 2015

PCT No.: PCT/IB2015/050030

§ 371 (c)(1),

(2) Date: Jun. 29, 2016

PCT Pub. No.: W02015/101951
PCT Pub. Date: Jul. 9, 2015

Prior Publication Data

US 2016/0321181 Al Nov. 3, 2016

Related U.S. Application Data

Provisional application No. 61/923,253, filed on Jan.
3, 2014.

Int. CL

GO6F 12/00 (2006.01)

GO6F 12/0831 (2016.01)
(Continued)

102

1061

1091

(52) U.S. CL
CPC GO6F 12/0831 (2013.01); GO6F 12/084

(2013.01); GO6F 12/0815 (2013.01);

(Continued)

(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

GO6F 13/385

710/105
GO6F 1/3203

713/500

6,233,640 B1* 5/2001 Luke

ttttttttttttttttttttt

tttttttttttttttt

2003/0140264 Al* 7/2003 Kawano

(Continued)

OTHER PUBLICATTONS

Adve et al., “Weak Ordering—A New Definition,” Proceedings of
the 17th Annual International Symposium on Computer Architec-
ture, ISCA ’90, May 28-31, 1990, pp. 2-14, Seattle, WA, US.

(Continued)

Primary Examiner — David Y1

Assistant Examiner — Craig S Goldschmudt

(74) Attorney, Agent, or Firm — Patent Portiolio Builders
PLLC

(57) ABSTRACT

Synchronization events associated with cache coherence are
monitored without using invalidations. A callback-read 1s
1ssued to a memory address associated with the synchroni-
zation event, which callback-read either reads the last value
written 1n the memory address or blocks until a next write
takes place in the memory address and reads a newly written
value.

14 Claims, 9 Drawing Sheets

CALLBACK DIRECTORY

110

GETS GETX GETCH
1 08‘\ \ 4 \ J
GLOBAL CACHE
104 $

MAIN MEMORY

MAXN = #CORES (OR #THREADS)

US 10,387,312 B2
Page 2

(51) Int. CL

GO6F 12/0815 (2016.01)
GO6F 12/084 (2016.01)
GO6F 12/128 (2016.01)
GO6F 13/16 (2006.01)
GO6F 12/0811 (2016.01)
GO6F 12/0817 (2016.01)

(52) U.S. CL
CPC ... GOGF 12/128 (2013.01); GOG6F 13/1663
(2013.01); GO6F 12/082 (2013.01); GO6F
12/0811 (2013.01); GOGF 2212/314 (2013.01);
GOGF 2212/621 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0088494 Al* 5/2004 Glasco GO6F 12/0804
711/141
2012/0198174 Al* 8/2012 Nellans GO6F 12/0804
711/133

OTHER PUBLICATIONS

Ashby et al., “Software-Based Cache Coherence with Hardware-
Assisted Selective Self-Invalidations Using Bloom Filters,” IEEE

Transactions on Computers, Apr. 2011, vol. 60, No. 4.

Choi et al., “DeNovo: Rethinking Hardware for Disciplined Paral-
lelism,” 2011 International Conference on Parallel Architectures
and Compilation Techniques (PACT), Oct. 10-14, 2011, Galveston,
TX, US.

Goodman et al., “Efficient Synchronization Primitives for Large-
Scale Cache-Coherent Multiprocessors,” Computer Architecture

News, Apr. 1989, vol. 17, No. 2.

International Search Report and Written Opinion dated Apr. 9, 2015
in related International Application No. PCT/IB2015/050030.
Kaxiras et al., “A New Perspective for Efficient Virtual-Cache
Coherence,” Proceedings of the 40th Annual International Sympo-
situm on Computer Architecture, ISCA 13, Jun. 23-27, 2013,
Tel-Aviv, IL.

Kaxiras et al., “SARC Coherence: Scaling Directory Cache Coher-
ence 1n Performance and Power,” IEEE Micro, Sep./Oct. 2010, pp.
54-65, vol. 30, No. 5.

Lebeck et al., “Dynamic Self-Invalidation: Reducing Coherence
Overhead 1n Shared-Memory Multiprocessors,” Proceedings of the
22nd Annual International Symposium on Computer Architecture,
Jun. 22-24, 1995, Santa Margherita Ligure, IT.

Papadopoulos et al., “Monsoon: an Explicit Token-Store Architec-
ture,” ACM SIGARCH Computer Architecture News—Special
Issue: Proceedings of the 17th Annual International Symposium on
Computer Architecture, Jun. 1990, pp. 82-91, vol. 18, No. 2SI.
Ros et al., “Complexity-Eflective Multicore Coherence,” Proceed-
ings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, Sep. 19-23, 2012, pp.
241-252, Minneapolis, MN, US.

Scott, “Shared-Memory Synchronization,” Synthesis Lectures on
Computer Architecture, Jun. 2013, Morgan & Claypool Publishers.
Sorin et al., “A Primer on Memory Consistency and Cache Coher-
ence,” Synthesis Lectures on Computer Architecture, Nov. 2011,
vol. 6, No. 3, Morgan & Claypool Publishers.

Sung et al., “DeNovoND: Efficient Hardware Support for Disci-
plined Non-Determinism,” Proceedings of the 18th International

Conference on Architectural Support for Programming LLanguages
and Operating Systems, ASPLOS *13, Mar. 16-20, 2013, pp. 13-26,
Houston, TX, US.

* cited by examiner

U.S. Patent Aug. 20, 2019 Sheet 1 of 9 US 10,387,312 B2

100
AR

102 102

CALLBACK DIRECTORY

110

106 106 106 |
W ‘g g ‘oo

109

net

GETS GETX GETC I MAXN = #CORES (OR #THREADS)

108 v
l{ GLOBAL CACHE

104 - i |
1 MAIN MEMORY |

FIG. 1

U.S. Patent Aug. 20, 2019 Sheet 2 of 9 US 10,387,312 B2

CB ASSUME THAT ALL CB BITS ARE 0
CORE| 0123 BECAUSE ALL CORES READ THE
STEP| LAST VALUE
: R
1 0000
- —— CORES 0, 2 ISSUE CB

CORE 3: WRITES X
DATA TO CORE 0,2 CB BITS OF CORE

- ———— CORES 1 ISSUES CB
—— DATA TO CORE 1 BECAUSE OF SET
4 0001 CB BIT (WHICH IS RESET)
- - CORE 0 ISSUES CB
EVICTION
5 | 1001

DATA X TO CORE 0, 3

— INITIAL STATE AFTER REPLACEMENT

— CORE 3 ISSUES CB

—» DATA TO CORE 3 BECAUSE OF SET
CB BIT (WHICH IS RESET)

FIG. 2

U.S. Patent Aug. 20, 2019 Sheet 3 of 9 US 10,387,312 B2

F/E CB INITIAL STATE WAS 1111,0000; ASSUME
CORE| 01 2 3 0123 | ALL CORESREAD THE VALUE AND
STEP T T | HAVE RESET ALL THE F/E BITS

1 0000 ; 00060 CORE 0, 2 ISSUE CB

2 0000 10160
| CORE 3: WRITES X

DATA TO CORE 0, 2

3 0101 0000 CORE 1, 3 F/E SET TO FULL

CORE 1 ISSUES CB

DATA TO CORE 1 BECAUSE OF

4 0001 0000 | FULL F/E BIT (WHICH IS RESET)

“—— CORES 0, 1 ISSUE CB
“— EVICTION

> ANSWER CORE 0, 1
CBs WITH CURRENT
VALUE

5 0001 1100

/
6 1111 0000 INITIAL STATE AFTER REPLACEMENT

CORE 3 ISSUES CB

0000 DATA TO CORE 3 BECAUSE OF FULL
l F/E BIT (WHICH IS RESET)

7 11160

FIG. 3

U.S. Patent Aug. 20, 2019 Sheet 4 of 9 US 10,387,312 B2

GETCB | GETX

400 110

CALLBACK
REQUEST
QUEUE

CALLBACK
DIRECTORY

FIG. 4

U.S. Patent Aug. 20, 2019 Sheet 5 of 9 US 10,387,312 B2

INITIAL 5TATE

F/E CB CORE ACTION COMMENTS
STEP| A/O| 0123 0111213
1 | | 1111 I

> | 1| 0000 L| |CORE?2ATTEMPTS AND GETS LOCK (ALL F/E RESET)

3 P 1 000090 L CORE 0 ATTEMPTS LOCK

4 |1 [0000 L i CORE 1 ATTEMPTS LOCK

5 1 0000 L |{CORE 3 ATTEMPTS LOCK

R || |CORE2 UNLOCKS AND WAKES CORE 3
(ROUND-ROBIN LEFT TO RIGHT)

7 | 1| o000 | 0100 U |CORE 3 UNLOCKS AND WAKES CORE 0

8§ | 1| 0000 | 0000 |U CORE 0 UNLOCKS AND WAKES CORE 1
CORE 1 UNLOCKS AND LEAVES LOCK

o 1 1 SR 00060 U OPEN (NO CB => ALL F/E SET)

0] 1| oooo0o | 0000 |L CORE 2 ATTEMPTS AND GETS LOCK (ALL F/E RESET)

i

FIG. S

U.S. Patent

STEP

A/O

F/E
0123

1111

0000

0000

0000

00040

0000

0000

00060

Aug. 20, 2019

CB

1101

11060

1101

1010

0001

0101

£2 ™

Sheet 6 of 9 US 10,387,312 B2

CORE ACTION COMMENTS

e

INITIAL STATE

CORE 2 READS (AND RESETS ALL F/E)

| CORE 0,1,3 ISSUE RMW BUT HAVE TO WAIT (F/E BITS
| EMPTY) BY SETTING CBS

|
|
|
)
R
CORE 2 ACQUIRES LOCK AND WAKES CORE 3
x | (ROUND-ROBIN LEFT TO RIGHT)
|
l
|
|
|
E
I

CORE 3 TESTS BUT FAILS (LOCK IS TAKEN), ISSUES
NEW RMW AND SETS AGAIN THE SAME CB

W

CORE 2 RELEASES LOCK, WAKES CORE 0 WITH NEW
VALUE

CORE 0 TESTS AND ACQUIRES LOCK WAKES CORE 1

| | CORE 1 TESTS BUT FAILS (LOCK IS TAKEN), ISSUES
| | NEW RMW AND SETS AGAIN THE SAME CB

FI1G. 6

U.S. Patent

Aug. 20, 2019

Sheet 7 of 9 US 10,387,312 B2

VALUE (WRITE -g1)

| F/E CB CORE ACTION COMMENTS
STEP| A/O | 0123 0123 (0]1]2]3}
1 1 1111 0000 | |INITIAL STATE
2 1 0000 0000 ’ ' M’ | CORE 2 READS (AND RESETS ALL F/E)
3 1 0000 1101 | W CORE 0,1,3 READ BUT HAVE TO WAIT (F/E EMPTY
R
BR
4 , 0000 101 | CORE 2 ACQUIRES THE LOCK BUT DOES NOT WAKE
BER UP ANY OTHER CORE (WRITE ¢)
| : lwl |
5 |l 0000 1100 | I | IR CORE 2 RELEASES LOCK, WAKES CORE 3 WITH NEW
l | [M| VALUE (WRITE cp1)
| l““l
p | 0000 L1100 |11 CORE 3 TESTS AND ACQUIRES LOCK BUT DOES NOT
o WAKE UP ANY OTHER CORE (WRITE)
| W,
R
. | 0000 0100 |N CORE 3 RELEASES LOCK, WAKES CORE 0 WITH NEW
W,

CORE 0 TESTS AND ACQUIRES LOCK BUT DOES NOT
WAKE UP ANY OTHER CORE (WRITE CB O)

FI1G. 7

U.S. Patent Aug. 20, 2019 Sheet 8 of 9 US 10,387,312 B2

800

MONITORING SYNCHRONIZATION EVENTS ASSOCIATED WITH
CACHE COHERENCE WITHOUT USING INVALIDATIONS BY:

802

ISSUING A CALLBACK-READ TO A MEMORY ADDRESS

804

WHICH CALLBACK-READ EITHER READS THE LAST VALUE WRITTEN
IN THE MEMORY ADDRESS OR

806

BLOCKS UNTIL A NEXT WRITE TAKES PLACE IN THE MEMORY

ADDRESS AND THEN READS A NEWLY WRITTEN VALUE

FIG. 8

US 10,387,312 B2

Sheet 9 of 9

Aug. 20, 2019

U.S. Patent

H Wolat - - - R
RIS e TE L ~ s
O R R e i FLEL

L e wa] B L L

aal L2
awean te . .

4 HE R L I
[

RHEE .
S T e

m:1-..1..1....:......I..||:|..:..|.1.:..:...i.........:..:......|1||||.....|:.|...r:.=.::..,............I.,.I.il.l...I;

LA AN B P BN e e e
e -

.
-.:.,.u_.."u_.. DS .
& 4

Y

O
[T E AN R

G,

Y L e i ¥ L Wbl ot o 8 o o b o ot o b ol b > "y T T

LETTLEERERR TN I F

e .
WAt M o moa b
LHOE =k Bt I i I

e o

LM - R b PR H
IR A A

e rrrr e d T I LR LEIEL

i

T

g b e e .

[EH- RS- MR SO
R s

SISD-Fwd-Callback

= SISD-Fwd-LLCSp

dy A H ML

Lt
T

P

FIG. 9

US 10,387,312 B2

1

SYSTEM AND METHOD FOR EVENT
MONITORING IN CACHE COHERENCE
PROTOCOLS WITHOUT EXPLICIT
INVALIDATIONS

RELATED APPLICATION

The present application 1s related to, and claims priority
from U.S. Provisional Patent Application No. 61/923,233,
filed Jan. 3, 2014, entitled “SYSTEM AND METHOD TO
IMPLEMENT SPIN-WAITING IN CACHE COHERENCE
WITHOUT INVALIDATIONS”, to Stefanos Kaxiras and
Alberto Ros, the disclosure of which is incorporated herein
by reference.

TECHNICAL FIELD

Embodiments described herein relate in general to syn-
chronization or coherence in multiprocessor systems and,
more particularly, to event monitoring in a multiprocessor
system that does not use explicit invalidations.

BACKGROUND

In many multiprocessor systems, memory devices are
organized 1n hierarchies including main memory and one or
more levels of cache memory. Data can reside 1n one or more
of the cache levels and/or main memory. Cache coherence
protocols are used 1n multiprocessor systems to address the
potential situation where not all of the processors see the
same data value for a given memory location.

Memory systems are said to be coherent 1f they see
memory accesses to a single data location 1n order. This
means that 11 a write access 1s performed to data location X,
and then a read access 1s performed to the same data location
X, the memory hierarchy should return X regardless of
which processor performs the read and write and how many
copies of X are present 1in the memory hierarchy. Likewise,
coherency also typically requires that writes be performed 1n
a serialized manner such that each processor sees those write
accesses 1n the same order.

There are various types of cache coherency protocols and
mechanisms. For example, “explicit mnvalidation™ refers to
one mechanism used by cache coherence protocols wherein
when a processor writes to a particular data location 1n a
cache then all of the other caches which contain a copy of
that data are flagged as invalid by sending explicit mvali-
dation messages. An alternative mechanism 1s updating
wherein when a processor writes to a particular data location
in a cache, then all of the other caches which contain a copy
of that data are updated with the new value. Both of these
cache coherence mechamsms thus require a significant
amount of signaling, which scales with the number of cores
(or threads) which are operating 1n a given data processing
system. Accordingly, these various cache protocols and
mechanisms are known to have their own strengths and
weaknesses, and research continues into improving cache
coherency protocols with an eye toward maintaining (or
improving) performance while reducing costs (e.g., energy
consumption) associated with coherency trafhic.

For example, recently a number of proposals have been
set forth which aim to simplily coherence by relying on
data-race-iree semantics and on self mvalidation to elimi-
nate explicit invalidation traflic and the need to track readers
at the directory. The motivation for simplifying coherence
has been established 1n numerous articles, some of which are
mentioned heremn. For example, with the addition of seli-

10

15

20

25

30

35

40

45

50

55

60

65

2

downgrade, the directory can be eliminated, see, e.g., A. Ros
and S. Kaxiras, “Complexity-eflective multicore coher-
ence,” 1n 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2012, and
virtual cache coherence becomes feasible at low cost, with-
out reverse translation, see, e.g., S. Kaxiras and A. Ros, “A
new perspective for eflicient virtual-cache coherence,” in
40th International Symposium on Computer Architecture
(ISCA), 2013. Significant savings in area and energy con-
sumption without sacrificing performance, have also been
demonstrated. Additional benefits regarding ease-of-verifi-
cation, scalability, time-to-market, etc., are possible as a
result of simplifying rather than complicating such funda-
mental architectural constructs as coherence.

In self-invalidation cache coherence protocols, writes on
data are not explicitly signaled to sharers as 1s the case with
explicit mnvalidation cache coherence protocols. Instead, a
processor automatically invalidates 1ts locally stored cache
copy of the data. However, data races throw such seli-
invalidation protocols 1nto disarray, producing non-sequen-
tial-consistent executions, see, e.g., A. R. Lebeck and D. A.
Wood, “Dynamic self-invalidation: Reducing coherence
overhead 1n shared-memory multiprocessors,” in 22nd Inter-
national Symposium on Computer Architecture (ISCA),
1995. All such proposals seen thus far offer sequential
consistency for data-race-free (DRF) programs, see, e.g., S.
V. Adve and M. D. Hill, “Weak ordering—a new definition,”
in 17th International Symposium on Computer Architecture,
1990.

Data-race-Iree semantics require that contlicting accesses
(e.g., a read and a write to the same address from different
cores or processors) must be separated by synchronization
(perhaps transitive over a set of threads). Self-invalidation 1s
therefore 1nitiated on synchronization.

There are situations where explicit invalidation may be
preferred over self-invalidation. For istance, spin-waiting,
also known as busy-waiting, which involves checking to see
if a lock 1s available, can be performed more ethiciently with
explicit invalidations and local spinning on a cached copy,
rather than repeatedly self-invalidating and re-fetching.
While self-invalidation works well for race-free data, it
shows an 1inherent weakness when 1t comes to spin-waiting.
Entering a critical section, or just spin-waiting for change of
state, requires repeated self-invalidation of the lock or tlag
variable. Herein lies the problem: spin loops cannot spin on
a local copy of the synchronization variable which would be
explicitly imnvalidated and re-fetched only with the writing of
a new value in write-invalidate protocols. Repeated seli-
invalidation 1n local caches leads to excessive traflic to the
shared last-level cache (LLC) 1n the system, wasting band-
width and/or energy. In the text below, the shared LLC 1s
also sometimes referred to as a “global cache™ or a *“shared
cache”.

The solutions that have been proposed to this problem
with self-invalidation protocols thus far are costly. For locks,
they mvolve some form of hardware queuing either with a
blocking bit in the LLC cache lines and request queuing in
the LL.C controller when this bit 1s set, or with a full-blown
hardware implementation of queue locking, see, e.g., J. R.
Goodman, M. K. Vernon, and P. J. Woest, “Eflicient syn-
chronization primitives for large-scale cache-coherent mul-
tiprocessors” ACM, 1989, vol. 17, no. 2, and H. Sung, R.
Komuravelli, and S. V. Adve, “DeNovoND: Eflicient hard-
ware support for disciplined non-determinism,” 1 18th
International Conference on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS),
2013. The cost and complexity of these proposals 1s not

US 10,387,312 B2

3

trivial. Further, they tie the lock algorithm to the specifics of
the hardware implementation (so the lock algorithm inherits,
for better or worse, whatever fairness, starvation, live-lock
properties, etc. are oflered by the hardware mechanism).

One option 1s to consider reverting back to explicit
invalidation for a small set of addresses, namely spin vari-
ables. However, explicit invalidations are unsolicited and
unanticipated, giving rise to a number of drawbacks that
make them unappealing. Because they are unanticipated,
explicit invalidations cause significant protocol state explo-
s10n to resolve protocol races. Because they are unsolicited,
explicit invalidations break the mold of a simple request-
response protocol, meaning that they cannot be used for
virtual caches without reverse translation.

Accordingly, it would be desirable to provide systems and
methods that avoid the afore-described problems and draw-
backs associated with the handling of spin waiting and other
event monitoring situations without using explicit invalida-
tions as part of the event monitoring mechanism.

SUMMARY

The embodiments described herein, among other things,
address the weaknesses of self invalidation described above,
but at the same time refrain from compromising some of its
important properties such as simplicity and compatibility
with virtual cache coherence. For example such embodi-
ments can be used in protocols that simplify coherence by
climinating explicit invalidation from event monitoring dur-
ing synchronization.

According to some embodiments, a callback mechanism
1s described which avoids repeated self-invalidation and
re-fetch of data. Callbacks follow a request-response para-
digm, are efliciently implemented in a small structure, and
climinate wasteful re-fetches of data while at the same time
allowing the cores to pause (e.g., to save energy) rather than
actively spin on a cached copy waiting for a change of state.

As described above, there 1s an inherent difliculty 1n
self-invalidation protocols” ability to handle spin-waiting,
and other event monitoring cache coherence activities.
Explicit invalidations work better than self-invalidation for
spin-waiting but carry significant complexity. The embodi-
ments disclosed herein address, among other things, seli-
invalidation’s biggest weakness: intentional data races for
synchronization.

According to an embodiment, a computer system includes
multiple processor cores, at least one local cache memory
associated with and operatively coupled to each core for
storing one or more cache lines accessible only by the
associated core, a shared memory, the shared memory being
operatively coupled to the local cache memories and acces-
sible by the cores, the shared memory being capable of
storing a plurality of cache lines, and wherein a core 1ssuing
a callback-read to a memory address either reads the last
value written 1n this address or blocks until the next write
takes place in the memory address and then reads a new
value such that the callback-read enables event monitoring,
for coherence of the at least one local cache and the shared
memory without using explicit invalidations.

According to another embodiment, a method 1ncludes the
steps of monitoring synchronization events associated with
cache coherence without using invalidations by 1ssuing a
callback-read to a memory address, which callback-read
either reads the last value written in the memory address or

10

15

20

25

30

35

40

45

50

55

60

65

4

blocks until a next write takes place 1n the memory address
and reads a newly written value.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of the specification, illustrate one or
more embodiments and, together with the description,
explain these embodiments. In the drawings:

FIG. 1 depicts an exemplary multiprocessor architecture
including a callback directory according to an embodiment;

FIG. 2 shows how callback reads to an address are
handled as a series of steps and corresponding bit states in
a callback directory according to an embodiment;

FIG. 3 shows how callback reads to an address are
handled as a series of steps and corresponding bit states in
a callback directory including both full/empty bits and
callback bits according to an embodiment;

FIG. 4 illustrates the usage of a callback request queue 1n
conjunction with a callback directory according to an
embodiment;

FIG. 5 illustrates operation of a callback directory entry
involving a callback write one instruction according to an
embodiment;

FIG. 6 illustrates operation of a callback directory entry
involving a callback write one instruction 1nteracting with a
locking mechanism according to an embodiment;

FIG. 7 illustrates operation of a callback directory entry
involving a callback write zero instruction interacting with
the locking mechanism of FIG. 6 according to an embodi-
ment;

FIG. 8 1s a tlowchart 1llustrating a method for performing
a callback read according to an embodiment; and

FIG. 9 15 a graph illustrating simulation results comparing
a multiprocessing system’s performance using callback
mechanisms according to an embodiment with that multi-
processing system’s performance using a conventional seli-
invalidation protocol.

DETAILED DESCRIPTION

The following description of the embodiments refers to
the accompanying drawings. The same reference numbers in
different drawings 1dentily the same or similar elements. The
following detailed description does not limit the invention.
Instead, the scope of the invention i1s defined by the
appended claims. Some of the following embodiments are
discussed, for simplicity, with regard to the terminology and
structure of multiprocessor or multicore cache coherence
protocols. However, the embodiments to be discussed next
are not limited to these configurations, but may be extended
to other arrangements as discussed later.

Retference throughout the specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure or characteristic described 1n connection with an
embodiment 1s included 1n at least one embodiment of the
subject matter disclosed. Thus, the appearance of the phrases
“in one embodiment” or “in an embodiment” in various
places throughout the specification 1s not necessarily refer-
ring to the same embodiment. Further, the particular fea-
tures, structures or characteristics may be combined in any
suitable manner 1n one or more embodiments.

Embodiments provide for a callback mechanism (referred
to herein sometimes as a callback) that can be applied to
ordinary load 1nstructions that are involved 1n non-data-race-
free accesses or via specialized instructions disclosed herein.
The callback mechanism generates, for example and accord-

US 10,387,312 B2

S

ing to one embodiment, a callback read which blocks
waiting for a write 1f no intervening write happened since its
last invocation. Callback according to the embodiments
provides the benefit of explicit invalidation, for only these
few accesses that need 1t, but without the cost of 1mple-
menting a full-blown mvalidation protocol (incurring all its
complexity and cost) at the same time with a self-invalida-
tion solution which would otherwise defeat the purpose of
simplifying cache coherence with self-invalidation. Other
embodiments also describe various types of callback writes.

To provide some context for understanding an environ-
ment 1 which the embodiments can operate, consider a
computer system 100 as shown in FIG. 1. Therein the system
100 includes multiple processor cores 102, main memory
104, at least one local cache memory 106 associated with
and operatively coupled to each core 102 for storing one or
more cache lines of data which are accessible only by the
associated core 102, and a global cache memory 108. The
global cache memory 108 1s operatively coupled to the local
cache memories 106 and main memory 104 and accessible
by the cores 102 via a network interconnect 109, the global
cache memory 108 being capable of storing a plurality of
cache lines of data. Those skilled 1in the art will appreciate
that the computer architecture 1llustrated in FIG. 1 1s purely
exemplary and that the embodiments can be implemented 1n
different architectures than the one illustrated therein. For
example, the cache hierarchy can include additional levels,
¢.g., level 2 cache, level 3 cache, etc.

The system 100 also includes a callback directory 110
according to an embodiment. The callback mechanism
implemented using the callback directory 110 1s mitiated by
a reader core 102 (or thread) that wishes to read the next
value that 1s to be written on a particular address. The reader
core 102 (or thread) places a callback marker (henceforth
referred to simply as “callback™) on the address 1t reads. The
callback marker 1s, according to this embodiment, a callback
(CB) bit stored in the callback directory 110 which 1s
associated with the address (tag) and the reader core 102 (or
thread). Other embodiments provide for other mechanisms
to enable this callback functionality. When a write occurs on
an address whose CB bit 1s set, the written value 1s sent to
the waiting reader core 102 (or thread). If the write occurred
prior to the reader core 102 (or thread) setting the callback
marker (but after the reader core 102 issues the callback
instruction), then the current value stored in this address 1s
returned to the reader core 102 (or thread). In the embodi-
ment of FIG. 1, the CB bits serve the dual purpose of
indicating whether a particular core 102 has 1ssued a call-
back instruction for a particular address and also whether a
write has occurred to that address since the last time that a
core has i1ssued a callback nstruction for that address.
Although not shown in the embodiment of FIG. 1 (see
instead FI1G. 3), the callback mechanism can mstead include
a Tull/empty bit (F/E) per core or thread associated with each
address, to separate the dual functionality of the CB bits 1n
the embodiment of FIGS. 1 and 2 to better manage the writes
that occur on this address prior to the setting of a callback.
According to various embodiments described below, a call-
back can be imitiated transparently on selected memory
accesses (e.g., load mstructions) or explicitly mnitiated by a
specific callback instruction.

In the embodiment of FIG. 1, callback reads are imple-
mented via a callback bit (CB) per core that 1s associated
with an address (tag). A set of CB bits, may be associated
with each desired memory address, each bit 1n the set
corresponding to a core (and/or a thread). Conceptually,
every address could have 1ts own set of callback bits, but of

10

15

20

25

30

35

40

45

50

55

60

65

6

course this 1s impractical i a callback directory table 110
having a limited size. In practice, a relatively small directory
110 maintains a set of these bits per cache line, typically just
for a few cache lines. Because callback bits are typically
needed for very few addresses (e.g., for synchronization
variables, locks and flags) the callback directory 110 does
not need to cover the entirety of the address space or even
the entirety of the cached data. According to an embodiment,

it 1s the callbacks themselves that allocate entries 1n the
callback directory 110. As shown in FIG. 1, the callback
directory 110 has tags to check for a hit or a miss. All
callbacks and all writes regarding callbacks (see below for
the full list) go to the callback directory 110. If the callbacks
or writes regarding callbacks miss 1n the callback directory
110, then the callback directory 110 allocates a new entry for
the missed tag and may evict another entry 11 there 1s no free
space 1n the callback directory 110. Any desired replacement
algorithm can be used to eflect eviction as will be apparent
to those skilled in the art. Additionally, it can be seen that,
in this embodiment a callback 1s for a particular address,
e.g., representing a word in this embodiment, however 1t will
be appreciated by those skilled in the art that the callback
could be associated with a different granularity of data, e.g.,
a byte or a block.

The callback directory 110 1s, in this embodiment, man-
aged as a cache (e.g., with evictions and a replacement
policy) but 1s not backed by main memory 104. A logical
upper limit for the number of entries 1n this directory 110
would be equal to the number of cores (since there can be
only so many callbacks set on different variables as the
number of cores) or, alternatively, the number of entries can
be equal to the number of threads for multithreaded cores. In
other implementations the number of entries in the callback
directory 110 may be set using other criteria.

In cache coherence protocols which have a delayed write
through, a write performed by a core 102 may be stuck in a
write buller for some time. In this case 1t 1s not visible to the
rest of the computer system, at least not until 1t 1s flushed
(presumably because of synchronization) to the last level
cache at which point it 1s made globally wvisible. Thus,
according to an embodiment, the callback directory 110 can
be located logically at the level where writes become
globally visible to all cores 102, e.g., the shared last level
cache for some coherence protocols. Further, a write typi-
cally needs to access the callback directory at the time 1t
becomes globally visible rather than before that (1.e., when
it 1s lhudden 1n a write buller near the core).

As mentioned earlier, the granularity of the callback
tracking can be for any desired data block, e.g., per cache
line. However, since embodiments typically only need to
track the CB bits for a limited set of addresses, such
embodiments can aflord to do this at a word granularity, thus
allowing independent callback reads for individual words 1n
a cache line. This works well with the individual-word
updating of the global cachelines 1n a self-downgrade pro-
tocol according to some embodiments.

In contrast to invalidation directories, a callback directory
110 1s not 1n the critical path of reads (GetS) or writes
(GetX). In the latter case, the callback directory 110 1s
accessed 1n parallel with the global cache 108. As shown 1n
FIG. 1 only callback reads (GetCB) need to consult the
callback directory 110 before accessing the global cache
108. With the exemplary system 100 in mind, an operational
example which illustrates how the callback mechanism
operates according to an embodiment will now be provided
with respect to FIG. 2.

US 10,387,312 B2

7

The example 1n FIG. 2 mvolves a single address being
accessed by four cores 102 (core0 . . . core3). Thus, each row
in FIG. 2 represents a single row or entry in the callback
directory 110 at diflerent times (steps). As shown, there are
four CB bits, one per core 120, corresponding to this address
which are stored 1n the callback directory 110 and associated
with the tag for this address. In this example, a CB bit value
of 0 indicates that no callback is requested by the corre-
sponding core (or thread) and a CB bit value of 1 indicates
that a callback 1s requested by the corresponding core (or
thread), although those skilled 1n the art will appreciate that
those bit value roles could be reversed. Prior to the callback
steps 1llustrated 1in FIG. 2, the mitial state of the CB bits 1s
1 (which 1s also the default state after the CB bits are lost,
¢.g., due to a replacement 1n the callback directory 110).
Assume next that all CB bits are O (step 1) because all of the
cores 102 have previously read the last value of this data and
have reset their CB bit. Assume next that cores 0 and 2 1ssue
callback reads to this address, setting the corresponding CB
bits (step 2), thereby indicating that they would like to
receive the value from this address when 1t 1s written to
again. The callbacks block since there i1s currently no new
value to consume, as indicated by the CB value of zero when
the callback reads arrive at the callback directory 110.

Later, when a write 1s performed on the address from core
3, the callbacks are activated and two wakeup messages
carry the newly created value to cores 0 and 2. Then, the
corresponding CB bits for core 0 and core 2 are set to false
(1.e., 0) and the unset CB baits of the cores that did not have
a callback are set to 1 (step 3), 1.e., the CB bits for cores 1
and 3 1n this example. This functionality ensures that cores
that had a callback have now consumed the new value of the
recent write to the address, but cores that did not set a
callback can henceforth directly access the written value
because their corresponding CB bits are set. This latter
functionality can alternatively be provided by a separate set
of full/empty bits which are discussed below with respect to
the embodiment of FIG. 3. Thus when a core issues a
callback request and finds its CB bait set 1n callback directory
110 for that address, 1t consumes the value and resets 1ts CB
bit. This 1s shown 1n step 4 after core 1 1ssues a callback
request to this particular address.

A replacement 1n the callback directory 110, e.g., which
may occur for example when another address 1s selected to
be added to the callback directory 110, causes CB bits to be
lost for the address being replaced. Since the callback
directory 110 1s not backed in main memory 104, the data
associated with the address being evicted 1s sent to all cores
102 for which callbacks are set on that address in response
to the eviction nstruction (step 3). The cores 102 that have
a callback set 1n the callback directory are notified that their
callback 1s answered but get the last value written (and not
the newer value they are waiting for). These are the seman-
tics of a simple read that 1s unordered with respect to writes.
Re-1nstalling an address 1n the callback directory 110 sets all
its CB bits to 1, meaning that any subsequent callback
request 1mmediately gets the last written value without
waiting (steps 6 and 7).

For the embodiment of FIGS. 1 and 2, consecutive writes
to an address, without any intervening callback reads, set all
the CB bits (for all cores 102) of this address and subse-
quently broadcast to all cores 102 the wrtten values. To
avoid this behavior more bits can be used 1n conjunction
with the CB bits to diflerentiate when a core 1s waiting for
a new write and when a new value 1s available for the next
callback to consume as will now be described below with
respect to the embodiment of FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

8

In another embodiment callback reads are implemented
via a full/empty (F/E) bit and a callback bit per core 102 that
are associated with an address. Thus the callback directory
110 shown 1n FIG. 1 would be expanded to include another
set of F/E bits for each row. This embodiment also limits the
written values that are sent during a write to only the cores
102 that are waiting for these values, without the need of a
callback request queue (described below with respect to
FIG. 4). The following example, shown in FIG. 3, illustrates

this approach.
As 1 the example of FIG. 2, the example of FIG. 3

concerns a single global shared address, such that each row
in FI1G. 3 corresponds to a single row or entry in the callback

directory 110 at different times (steps). As shown, 1n this

embodiment, there are four F/E bits and four CB bits, one
per core 102, corresponding to this particular address. In this
example, a CB bit value of O indicates that no callback 1s
requested by the corresponding core (or thread) and a CB bit
value of 1 indicates that a callback 1s requested by the
corresponding core (or thread), and an F/E bit value of 1
indicates full, while 0 indicates empty, although those
skilled 1n the art will appreciate that those bit value roles
could be reversed. The starting state prior to step 1 occurring
in the embodiment of FIG. 3 1s that all F/E bits are set to 1
(full), and all callback bits are set to 0 (no callback). This 1s
also the default state after F/E bits and the CB bits are lost
(e.g., due to a replacement). Assume, for this example, that
all cores 102 have read the address of interest in this
example with a callback read and that no further writes have
occurred since then. The state for this callback directory
entry 1s then all F/E bits set to 0 and all CB bits set to O (step
1).

Assume now that cores 0 and 2 1ssue callback reads to this
address, setting the corresponding CB bits (step 2). The
callback reads block and wait since there 1s no value to
consume. When later a write 1s performed on the address
from core 1, the callbacks are answered and two wakeup
messages carry the newly created value to cores 0 and 2.
Then, the corresponding callbacks are set to false (0) and the
unset F/E bits of the cores that did not have a callback are
set to full (step 3). Cores 102 that had a callback have now
consumed the write, but cores that did not set a callback can
henceforth directly access the written value because their
corresponding F/E bits are set to full. When a core 102 1ssues
a callback and finds 1ts F/E bit set (fulljin the callback
directory 110, it consumes the value and leaves both 1ts F/E
bit and callback bit unset (empty and no callback). This 1s
shown 1n step 4 1n FIG. 3. It will be appreciated by those
skilled 1n the art from this example that a callback can
consume a single write, whether 1t happens before or after
the callback. If the write happened before the callback, then
the callback immediately returns, otherwise i1t will get called
back from the write 1itself. It Wlll also be apparent that this
embodiment generates a bulk behavior for all the cores 102
that are waiting on a callback.

As with previous embodiments, an eviction or replace-
ment 1n the callback directory 110 causes the F/E and CB
bits for the evicted address to be lost 1n this embodiment as
well. Since the callback directory 110 1s not backed 1n main
memory 104, discarding the information regarding which
cores 102 are waiting for a write 1s not optimal. In this
embodiment all the callbacks that have been set on the
evicted address are satisfied before eviction. The current
value 1s sent to all the cores 102 that have a set CB bit on
the address (as shown 1n FIG. 3, step 5). The cores 102 that

are waiting for a callback are notified that their callback 1s

US 10,387,312 B2

9

answered but they receive the last value that was made
globally visible for this address and not a future value.

When a cache line 1s fetched from memory 1t 1s assumed
that all 1ts F/E bits are set to full, and since there cannot be
any outstanding callbacks all the CB bits are set to 0. This
1s the default starting state of an 1imtialized variable (FI1G. 3,
step 6). Once a core 1ssues a callback request toward an
address having this default starting state, it will immediately
consume the value and reset its F/E bit value (step 7).

Alternatively, and according to another embodiment, a
callback request queue can be used 1n conjunction with F/E
bits 1n the callback directory as another mechanism to limit
the sending of newly written values to only the cores 102
that have an outstanding request relative to embodiments
that only use CB bits (e.g., FIG. 1), as will now be discussed
with respect to FIG. 4. In this embodiment the CB bits
previously provided in the callback directory 110 are
replaced with a unique callback-queue per callback direc-
tory. Each queue 400 stores the pending callback requests
issued for a given core for a given address. When a queue
400 becomes full, callbacks in that queue can be dequeued
and answered, although with the old data.

Thus, 1n the embodiment of FIG. 4, a callback request
queue 400 1s used 1n conjunction with the callback directory
110 which contains the F/E bits, but no CB bits. The request
queue 400 contains all the requests from cores 102 that are
blocked and waiting for a new write to a given address.
When a write occurs, the newly written value 1s only sent to
the cores 102 that have a request 1n the request queue 400.
The corresponding requests are then removed from the
callback request queue 400. This embodiment, like the
embodiment of FIG. 3, limits the sending of written values
to only the cores 102 that are waiting for such a value.

Like the previous embodiment without the callback
request queue 400, an eviction or replacement 1n the call-
back directory 110 causes the CB bits for the evicted address
to be lost. Since the callback directory 110 1s not backed in
main memory 104, discarding the information regarding
which cores 102 are waiting for a write 1s not optimal. In this
embodiment all of the callback requests that are waiting 1n
the queue 400 corresponding to the evicted address are
satisfied before eviction. The cores 102 that are waiting for
a callback are notified that their callback 1s answered but
they receive the last value that was made globally visible for
this address and not a future value.

In another embodiment only one callback out of many 1s
serviced on a write. Previous embodiments optimize the
case of a data race mvolving multiple reads conflicting with
a write. When a new value 1s produced by a write all
(waiting) reads are woken up. Likewise, reads from many
different cores may consume the same value that was
previously written. This fits well with synchronization 1di-
oms having a broadcast or multicast behavior (e.g., barriers).
However, 1f one considers lock synchronization, a callback
mechanism that wakes up all waiting reads may be 1netli-
cient. In lock synchronization only one out of a set of
competing lock acquires succeeds. Thus, releasing a lock,
which 1s a write on the lock variable, should wake up one
waiting acquire mstead of all. Likewise, a free lock could be
read by the first lock acquire that arrives, rather than all.

In this embodiment being referred to herein as “callback
one”, to optimize the case of locks, a variant of the write
being referred to herein as a “wrniteCB1” that wakes up a
single waiting callback can be used 1n addition to the
previously described callbacks. When using this new coher-
ence struction the number of callbacks that are satistied 1s
specified by the write—not the reads that set the callbacks.

10

15

20

25

30

35

40

45

50

55

60

65

10

To distinguish a callback one from the previous callback
embodiments described above and illustrated 1n FIGS. 1-4,
the previous callback embodiments shall now be referred to
as “callback all” embodiments.

Using a writeCB1 wakes up a single callback, 11 there are

any callbacks set. But 1t also has another equally important
effect: 1t forces all F/E bits to act 1n unison, 1.e., behave as
a single F/E bit. The change 1n the functionality of the F/E
bits for embodiments which provide for both callback ones
and callback all 1s encoded 1n an “All/One” (A/O) bit in the
callback directory entries. This bit 1s set to “All” by default
and, when the A/O bit 1s set to “All”, then the F/E bits of a
callback directory entry act individually as described 1n the
previous callback-all embodiments of FIGS. 1-4. However,
when a writeCB1 1s 1ssued by one of the cores 102, this sets
the A/O bit to “One” causing the F/E bits of the callback
directory entry to behave in unison (as a single bit) and
making the entry have a “callback-one” status. Any normal
write or read to an address having a tag in the callback
directory 110 for this embodiment resets the A/O bit to
“All.”

FIG. 5 provides a high-level example of a callback one
and callback all embodiment. Assume that the A/O bit of the
callback entry 1s already set to “One” and the entry has the
F/E bits set to “tull” (step 1), 1.e., a callback one instruction
has previously been issued by one of the cores 102 for the
address of interest 1n FIG. 5. In step 2, core 2 gets the lock
and since 1t reads the lock value all the F/E bits are set to
“empty”’. Thus, no other core 102 can now read the value of
the lock (since 1t 1s “empty”) and have to set their corre-
sponding CB bit and wait when they attempt the lock as
shown 1n steps 3, 4 and 5.

When core 2 releases the lock with a writeCB1 1t wakes
up just one ol the waiting cores (step 6). Which core 1s
awakened 1s a matter of policy, and any desired policy may
be selected to i1dentity which core to awaken depending
upon the particular implementation desired, e.g., random,
pseudo-random, FIFO, round-robin, etc. One embodiment
uses a pseudo-random policy to determine which core
awakens 1n response to a writeCBl1, starting from any set CB
bit and proceeding round-robin towards cores with higher
IDs (wrapping around at the highest ID). In FIG. S, using
this pseudo-random round-robin policy the order that the
cores get the lock 1s 2, 3, 0, 1, which 1s different than the
arrival of acquires at the callback directory (i.e., 2, 0, 1, 3).
Steps 6-9 thus show a one at a time unlocking of the cores
102 based on this exemplary awakening policy, but other
orders could have been generated using other policies.

In contrast to callback-all, when a writeCB1 satisfies a
callback, 1.e., when all of the cores have been awakened, the
F/E bits are left undisturbed, set to “empty” unless, as 1s the
case 1n the example of FIG. 3, there 1s no callback leit to
satisly 1 which case all the F/E bits and the A/O bit are set
to “tull” (step 9). (In a callback-all embodiment the F/E bits
of the cores that did not have callbacks are set to “full”.) In
all cases, no individual F/E bit 1s set or reset but rather all
of them are set or reset as 1f they were a single bit. This 1s
the abstraction of a callback-one embodiment: a value can
only match one read that either precedes or succeeds the
write creating this value.

Similarly to callback-all, a callback-one directory entry
can be evicted by satisiying all 1ts callbacks with the current
value. The starting state, when 1t 1s brought back in the

callback directory, 1s all F/E bits set to “full” and all CB bits
cleared. The All/One bit 1s reset to “All.”

In another embodiment a write callback zero (also called
herein a “writeCB0”) satisfies no callbacks that are set. Lock

US 10,387,312 B2

11

acquires are typically implemented using atomic primitives
such as T&S, Fetch&func, CAS, or others. In general, a lock

acquire 1s an algorithm based on an atomic read-modity-

write (RMW) operation. For example, 1n the case of a lock
implemented with Test&Set (T&S) the write sets the lock to
“taken” when the test succeeds (i.e., when 1t finds the lock
“not-taken”). A writeCB1 described 1n the previous embodi-
ment satisfies only one out of many waiting callbacks.
However, 1in the case the Test succeeds and the Set takes
place, then there 1s no need to wake up any callback, as its
corresponding RMW 1s destined to fail. This expectation
holds for the write of successtul lock acquires, leading to the
potential for optimization with the addition of a writeCBO.

FIG. 6 shows the performance 1ssue with writeCB1 1n this
scenar1o. Therein, core 2 performs a RMW and gets the lock.
In the process, its read sets all E/E bits to “empty” (0). At this
point, no other core can read the value of the lock. Instead,
subsequent reads must set a callback (steps 2-3 1n FIG. 6).
If the RMW succeeds and writes the lock using a writeCBl1,
it will wake up one of the waiting cores—in this example,
core 3 (step 4). However, since the lock was just acquired by
core 2, the acquire of core 3 1s bound to fail and has to be
repeated (step 3). In eflect, core 3 loses 1ts turn because 1t
was woken up prematurely. When the lock 1s then released
with a writeCB1, core 0 1s woken up (step 6). Its RMW
succeeds (the lock just changed value, step 7) and core 0
enters 1ts critical section by writing the lock. Core 0, 1n turn,
prematurely wakes up core 1 (step 8).

This s1tuation 1s avoided 11 the write of the RMW does not
wake up any callbacks: 1.e., with a writeCBO0. FIG. 7 shows
the same example as FIG. 6 except using a writeCB0 1n the
RMW operations instead of a writeCB1. By exploiting
knowledge of the semantics of a lock acquire, the writeCB0
embodiment optimizes the hand-ofl of the lock among cores,
without unnecessary traflic.

The previous embodiments illustrate different mecha-
nisms by which an explicit callback request istruction can
be serviced when sent from a core 102 (or thread) to the
memory hierarchy. However, according to other embodi-
ments, callback requests can be embedded into (or be
implicit with) the 1ssuance of other instructions by the cores
102 (or threads). Some examples now follow.

To implement races, loads and stores and atomic instruc-
tions operate directly on the global cache 108. In one
embodiment “load-through,” and “store-through” 1nstruc-
tions specifically for races, skip the L1 caches 106 and go
directly to the global cache 108 and the callback directory
110, but do not cause the seli-invalidation or self-downgrade
of any other address. Separate fences are needed 1n this case
to enforce desired orderings.

In one embodiment a load throughgenerates a
read_through read that has the behavior of a non-blocking
callback. It consumes a value 1f one 1s available (1.¢., sets the
F/E to “empty” il it was “full”) but does not block and
returns the current value of the data i1 there 1s no new value
(1.e., F/E bit previously set to “empty”). A load_through
optionally allocates an entry in the callback directory 110 1f
it misses there.

In one embodiment a load_through instruction, called
load-callback (Id_cb), generates a callback read, and 1is
typically used i a spin-loop. An optional load_through
instruction without a callback generates a read_through read
and can precede the spin-loop to consume any outstanding
callbacks left from previous invocations of the callback. The
user, or the compiler, or both can insert load-callback
instructions at the appropriate places, for istance i spin-

10

15

20

25

30

35

40

45

50

55

60

65

12

waiting 1dioms. Synchronization and related multithreading
libraries can also be annotated with the appropriate call-back
loads.

Store_through instructions are of three types according to
an embodiment: Store-callback0 (st_cb0) that 1ssues a
writeCB0 write, Store-callbackl (st_cbl) that 1ssues a
writeCB1 write, and Store-through (st_through) or Store-
callbackAll (st_cbA) that 1ssues a writeCBall write. All of
them perform the write-through immediately, and wake up
0, 1, or all callbacks waiting at the callback directory.

Atomic nstructions are composed of a load-through and
store-through performed atomically. Either the load or the

store can be one of the previous types. To keep the name
short, we denote them as

{1dI1d_cb}&{st_cbOlst_cbllst_cbA}. Table 1 lists all the
types with an example of where they are used.

TABLE 1

Operation Example and Comments

1d__through General conflicting load. First loan 1n spin-
waiting. LLC responds immediately. Resets
the F/E bit.

1d_ cb Subsequent (blocking) loads in spin-waiting.
Waits for F/E bit to be full. Resets F/E bit.

st_ ¢chO Not used. Does not service any callbacks.

Lock release. Service one callback.

General conflicting store. Barrier release.
Services all callbacks.

Test& Test& Set to acquire a lock and enter a
critical section.

Fetch&Add to signal one waiting thread.
Fetch&Add in a barrier.

Spin-waiting on Test&Set to acquire a lock and
enter a critical section.

Not used.

Not used.

st _c¢bl

St_ through (or
st_ cbA)

{1d} & {st_cbO}

{1d} & {st_cbl}
{1d} & {st_cbA}
{1d_cb} & {st_cb0}

{1d_cb} & {st_cbl}
{1d_cb} & {st_cbA}

As another example, 1n an embodiment a callback read 1s
generated via a new 1nstruction called “compare and call-
back™. The instruction according to this embodiment has the
following functionality, shown below 1n three steps:

1. Load_through T, M \\ load a temp register T from

memory location M

2. Compare T, R \\ compare register T to register R (or an

immediate value)

3. If successtul continue; otherwise 1ssue a callback

(Id_cb) to M and wazit for reply.

When the reply arrives the 1nstruction resumes from step
2, and repeats until 1t continues to the next instruction (1n the
“1”” clause of step 3). The comparison (equality, inequality,
other), the result of the comparison (successiul or unsuc-
cessiul), the result of the instruction when 1t exits (registers
updated or other side eflects), and the way the wait 1s
performed (pause, sleep, thread re-schedule, etc.) can be
defined appropnately by those skilled in the 1n the art. The
instruction, 1f interrupted for any reason, restarts from the
load.

The user, or the compiler, or both can insert compare-
and-callback istructions at the appropniate places, for
instance 1n spin-waiting 1dioms. Synchronization and related
multithreading libraries can also be annotated with the
approprate call-back loads.

According to another embodiment, load-linked/store-con-
ditional instructions (e.g., Idl_1/stl_c and Idqg_l/stq_c, Alpha
architecture, lwarx/stwcx, PowerPC architecture, II/sc,
MIPS architecture, and Idrex/strex, ARM version 6 and
above) can be implemented with callbacks and a callback
directory as follows. A load-linked instruction executed by

US 10,387,312 B2

13

a core reads the current value (from the LLC) and sets a
callback (the corresponding CB bit of this core) but does not
block. Execution continues with the next instruction in
program order. A store-conditional instruction executed by a
core succeeds (and writes to the memory location) only
when the corresponding CB bit has been set by the same
core, but no other CB bit 1s set; 1n any case the store-
conditional clears the CB bit corresponding to the core that
executes this mstruction.

In an alternative embodiment the load-linked 1nstruction
clears all other CB bits when 1t sets the CB bit corresponding
to the core executing this instruction.

In addition to being implemented 1n, and characterized as,
a computer system as described above, embodiments can
also be characterized as methods. For example, as shown 1n
the flow chart of FIG. 8, a method for performing event
monitoring, €.g., spin waiting, without using explicit mnvali-
dations according to an embodiment can include a number
of steps. Therein, as indicated by step 800, a computer
system monitors one or more synchronization events with-
out using explicit invalidations by performing certain steps.
For example, at step 802, a core 1ssues a callback read to a
memory address, e.g., associated with a synchromization
event such as a lock. If the address has been written (e.g., 1f
the value of the core’s corresponding F/E bit for that address
1s 1n the state “tull”) the callback read completes immedi-
ately (step 804); otherwise callback read blocks and awaits
a write to that address (step 806).

To test the eflicacy of the embodiments, Applicants have
performed various evaluations using a simulator. Specifi-
cally, an evaluation was performed 1s based on Wisconsin
GEMS, which 1s a detailed simulator for multiprocessor
system modeling in-order cores. The Ruby cycle-accurate
memory simulator (provided by GEMS), offers a detailed
timing model. The interconnect 109 was modeled with the
GARNET network simulator. The simulated system used to
test an embodiment was a 16-core chip multiprocessor.
Energy consumption was modeled with the CACTI 6.5 tool,
assuming a 32 nm process technology.

A wide variety of parallel applications were used for this
evaluation, 1n particular, the entire Splash-2 suite with the
recommended input parameters and several benchmarks
from the PARSEC benchmark suite, all of them with the
simmedium input, except Fluiddanimate and Streamcluster
that use the stmsmall nput.

Specifically, the evaluation showed the impact of using a
callback mechanism according to these embodiments by
comparing the callback with a self-invalidation protocol that
spins on the global cache 108. FIG. 9 shows the comparative
results between a simulated system using callbacks (SISD-
Fwd-Callback) and a similar simulated system using seli-
invalidations which spin on the LLC (SISD-Fwd-LLCSpin).
Network traflic 1s where the important impact of the embodi-
ments can be seen as execution time of the simulated
applications remains largely unafiected. On average, as
shown 1n FIG. 9, usage of callback mechanisms according to
the embodiments reduces network trathic by 25% while for
some spin-intensive applications the effect 1s much greater.

From the foregoing, 1t will be appreciated that the
embodiments apply to (but are not limited to) computer
systems that use self-invalidation 1n their local caches to
maintain cache coherence, and as an alternative to grafting
explicit 1nvalidations onto a self-invalidation protocol to
handle situations, like spin-waiting, that self-invalidation
protocols handle poorly. Although those skilled 1n the art
will appreciate the differences between callback mecha-

10

15

20

25

30

35

40

45

50

55

60

65

14

nisms, as described herein, and explicit invalidations, some
of those differences are reiterated below for clanty.

A callback 1s different than an explicit invalidation as it 1s
explicitly requested and waited upon. For similar reasons, a
callback 1s diflerent than unsolicited update operations (e.g.,
as 1n update protocols). From the point of view of the cache,
a callback read 1s still an ordinary request-response trans-
action—mno other complexity 1s involved. The callback intro-
duces no protocol races because cores are either blocked
waiting for the callback response or immediately complete
the read. From the point of view of the global cache 108, a
callback 1s a simple data response without any further
bookkeeping.

In contrast, explicit invalidations are unsolicited and their
arrival unanticipated. An explicit invalidation can arrive to
a core at any time and at any cache state, which dramatically
increases the race conditions and therefore the number of
states required 1n the caches to account for all the scenarios.
In addition, explicit mnvalidations are not suitable for efli-
cient virtual-cache coherence, for the same reason. Explicit
invalidations are not anticipated at a virtual cache, which
means that a reverse translation (physical to virtual) must be
performed to ensure correct delivery to the virtual cache. In
contrast, callbacks are explicitly waited for (as a result of a
request) so they require no address identification.

In terms of energy efliciency, callbacks have at least two
advantages over explicit invalidations. First, callbacks are
more eflicient in the number of messages needed to com-
municate a new value. A callback requires three messages:
{callback, write, data} or {write, callback, data} depending
on the relative order between the read and the write. Explicit
invalidation, however, requires five messages: {write,
invalidation, acknowledgment, load, data}. A further impor-
tant benefit of a callback 1s that a core can easily go 1nto a
power-saving mode while waiting for its callback read to be
fulfilled.

Callbacks are compatible with virtual-cache coherence
without reverse translation, as it 1s purely a request-response
transaction. A callback message to a core does not need
reverse translation because the core 1s explicitly waiting for
it. In case multiple callbacks are allowed from the same core
(1.e., 1n a multithreaded core), each can have its own CB bit,
or their requests can queue (at the callback directory) on the
same CB bit. In the case where the callback directory 1s
unable to hold all state, the end result 1s to turn callbacks,
cllectively, into simple reads.

Callbacks are designed to, among other things, optimize
spin-waiting so that 1t blocks between consecutive writes
(creation of values). One property of a callback 1s that 1t will
return eirther the last written value or it will block waiting for
the next written value. A callback that falls between two
writes will return the value of one of these two writes, but
does not skip a write. The previous value 1s returned 1n the
case of a replacement 1n the callback directory.

Callback semantics are also different than Full/Empty
semantics. In the latter, full/empty semantics are designed
for producer-consumer synchronization, and both reads and
writes block: reads block on Empty and writes block on Full.
By way of contrast, callback has the semantics of a read; 1t
cannot block writes which proceed unconstrained to update
the value.

Various embodiments are described above, however those
skilled 1n the art will also appreciate that other embodiments
are contemplated, some of which are described below.

According to one embodiment a callback-read from a core
to an address with a set of CB baits, completes by reading the
current value 1n this address when the CB bit corresponding

US 10,387,312 B2

15

to this core 1s set, and when the corresponding CB bit 1s
unset, the callback-read sets the CB bit and completes when
a new value 1s written 1n this address and the value for-
warded to the core that 1ssued the callback-read, and a write
to the same address, that 1s made globally visible, forwards
the written value to all the cores that have their correspond-
ing CB bit set for this address and clears the CB bits that
were set and sets the CB bits that were unset.

According to one embodiment a set of callback (CB) bits
and full/’empty (F/E) bits, 1s associated with each memory
address, each CB bit and each F/E bit of an address’ set
corresponds to a core.

According to a further embodiment a callback-read from
a core to an address with a set of CB and F/E bits, completes
by reading the current value in this address when the E/E bit
corresponding to this core 1s set, and when the correspond-
ing F/E bit 1s unset, the callback-read sets the corresponding
CB bit and completes when a new value 1s written 1n this
address and the value forwarded to the core that 1ssued the
callback-read, and a write, sometimes being referred to as
writeCBall, to the same address, that 1s made globally
visible, forwards the written value to all the cores that have
their corresponding CB bait set for this address, and clears the
CB bits that were set and sets the F/E bits that correspond to
the CB bits that were unset.

According to a further embodiment a load_through gen-
crates a read_through read that has the behavior of a
non-blocking callback. It consumes a value 1f one 1s avail-
able (1.e., sets the F/E to “empty” il 1t was “full”) but does
not block and returns the current value of the data if there 1s
no new value (1.e., F/E bit previously set to “empty”). A
read_through optionally allocates an entry in the callback
directory 110 11 1t misses there.

According to a further embodiment an address’” F/E bits
that correspond to the cores, act 1n unison as if they were a
single bit. IT any F/E bit 1s set, all others are set; 1f any 1s
cleared, all others are cleared.

According to a further embodiment a write being referred
to herein as writeCBl1, to an address, that 1s made globally
visible, forwards the written value to only one core that has
its corresponding CB bait set for this address, and clears the
corresponding CB bit that was set. If no core has a CB bt
set, then the write sets all the F/E bits.

According to further embodiment a write being referred to
herein as writeCB0, to an address, that 1s made globally
visible, does not forward the written value any core that has
its corresponding CB bit set for this address.

According to a further embodiment CB bits for a set of
addresses are kept 1n a callback directory located at the point
or points where writes become globally wvisible in the
computer system.

According to a further embodiment CB bits and F/E baits
for a set of addresses are kept 1n a callback directory located
at the point or points where writes become globally visible
in the computer system.

According to a further embodiment the callback directory
1s limited 1n size and CB and F/E bits for an address are
evicted to accommodate the bits for a new address, and the
current data value of the evicted address 1s forwarded to all
the cores that have the corresponding CB bit set for the
evicted address, and the CB bits for the new address that
replaces the evicted address are initialized to unset and the
F/E bits are mitialized to set (full).

According to a further embodiment a callback to a
memory address 1s 1ssued by a compare-and-callback
instruction, that reads the current value in the address,
compares 1t to some other value supplied to the instruction

10

15

20

25

30

35

40

45

50

55

60

65

16

and completes, and the processor core continues to the next
instruction, when the comparison succeeds and 1ssues a
callback to the address when the comparison fails, and
repeats from the comparison when 1t receives a response 1o
the callback until the comparison succeeds and the nstruc-
tion completes.

The compare-and-callback instruction may take the pro-
cessor core to a low power state when the instruction 1is
awaiting for a response to a callback.

According to another embodiment, a computer system
according to the present invention comprises multiple pro-
cessor cores, a main memory, at least one local cache
memory associated with and operatively coupled to each
core for storing one or more cache lines accessible only by
the associated core, a global cache memory, the global cache
memory being operatively coupled to the local cache memo-
rics and main memory and accessible by the cores, the
global cache memory being capable of storing a plurality of
cache lines, and wherein a core 1ssuing a callback-read to a
memory address either reads the last value written 1n this
address or blocks until the next write takes place in this
address and reads the new value.

The computer system may comprise a set of callback
(CB) bits which 1s associated with each memory address,
cach bit 1n the set corresponds to a core.

In the computer system a callback-read from a core to an
address with a set of CB bits, completes by reading the
current value in this address when the CB bit corresponding
to this core 1s set, and when the corresponding CB bit 1s
unset, the callback-read sets the CB bit and completes when
a new value 1s written 1n this address and the value for-
warded to the core that 1ssued the callback-read, and a write
to the same address, that 1s made globally visible, forwards

the written value to all the cores that have their correspond-
ing CB bit set for this address and clears the CB bits that
were set and sets the CB bits that were unset.

The set of callback (CB) bits and full/empty (F/E) bits,
may be associated with each memory address, each CB bit
and each F/E bit of an address’ set corresponds to a core.

According to one embodiment a callback-read from a core
to an address with a set of CB and F/E bits, completes by
reading the current value 1n this address when the F/E bit
corresponding to this core 1s set, and when the correspond-
ing F/E bit 1s unset, the callback-read sets the corresponding
CB bit and completes when a new value 1s written 1n this
address and the value forwarded to the core that 1ssued the
callback-read, and a write to the same address, that 1s made
globally visible, forwards the written value to all the cores
that have their corresponding CB bait set for this address and
clears the CB bits that were set and sets the F/E bits that
correspond to the CB bits that were unset.

According to one embodiment CB bits for a set of
addresses are kept 1n a callback directory located at the point
or points where writes become globally visible in the
computer system.

According to one embodiment the CB bits and F/E bits for
a set of addresses are kept 1n a callback directory located at
the point or points where writes become globally visible 1n
the computer system.

According to a further embodiment the callback directory
1s limited in size and CB and F/E bits for an address are
evicted to accommodate the bits for a new address, and the
current data value of the evicted address 1s forwarded to all
the cores that have the corresponding CB bit set for the
evicted address, and the CB bits for the new address that
replaces the evicted address are 1nitialized to unset and the
F/E bits are mitialized to set (full).

US 10,387,312 B2

17

According to a further embodiment the CB bits corre-
spond to program threads.

According to a further embodiment a callback to a
memory address 1s 1ssued by a compare-and-callback
instruction, that reads the current value in the address,
compares 1t to some other value supplied to the instruction
and completes, and the processor core continues to the next
istruction, when the comparison succeeds, and issues a
callback to the address when the comparison fails, and
repeats from the comparison when 1t receives a response to
the callback until the comparison succeeds and the nstruc-
tion completes. The compare-and-callback instruction may
take the processor core to a low power state when the
istruction 1s awaiting for a response to a callback.

The embodiments thus provide an ethicient mechanism for
dealing with, among other things, spin-waiting without the
overhead and complexity of including an explicit invalida-
tion protocol alongside a self-invalidation protocol, and
without reverting to mvalidation signatures or specialized
hardware queue locking. In this respect, the embodiments
retain valuable properties of self-invalidation protocols:
simplicity, low cost, compatibility with virtual caches. It
should be understood that this description 1s not intended to
limit the invention. On the contrary, the exemplary embodi-
ments are intended to cover alternatives, modifications and
equivalents, which are included in the spirit and scope of the
invention. Further, 1in the detailed description of the exem-
plary embodiments, numerous specific details are set forth in
order to provide a comprehensive understanding of the
invention. However, one skilled 1n the art would understand
that various embodiments may be practiced without such
specific details.

Although the {features and eclements of the present
embodiments are described 1in the embodiments in particular
combinations, each feature or element can be used alone
without the other features and elements of the embodiments
or 1n various combinations with or without other features
and elements disclosed herein. The methods or flow charts
provided 1n the present application may be implemented in
a computer program, software, or firmware tangibly embod-
ied 1n a computer-readable storage medium for execution by
a general purpose computer or a processor.

This written description uses examples of the subject
matter disclosed to enable any person skilled 1n the art to
practice the same, including making and using any devices
or systems and performing any incorporated methods. The
patentable scope of the subject matter 1s defined by the
claims, and may include other examples that occur to those
skilled 1n the art. Such other examples are intended to be
within the scope of the claims.

What 1s claimed 1s:

1. A computer system comprising:

multiple processor cores;

at least one local cache memory associated with and

operatively coupled to each core for storing one or
more cache lines accessible only by the associated core;
a shared memory, the shared memory being operatively
coupled to the local cache memories and accessible by
the cores, the shared memory being capable of storing
a plurality of cache lines; and

a callback directory containing a set of callback (CB) bits
associated with a memory address, wherein each CB bit
in the set corresponds to a core;

wherein a core 1ssuing a callback-read to the memory

address either reads the last value written 1 the
memory address, or 1s blocked from reading from the
memory address until the next write takes place in the

10

15

20

25

30

35

40

45

50

55

60

65

18

memory address and then reads a new value of said
next write, such that the callback-read enables event
monitoring for coherence of the at least one local cache
and the shared memory without using explicit invali-
dations,
when a CB bit corresponding to the core that 1ssued the
callback-read is set, the callback-read 1s completed by
the core reading the last value 1n the memory address;

when the CB bit corresponding to the core that 1ssued the
callback-read 1s unset, the callback-read triggers setting
of the CB bit and the callback-read 1s completed when
the new value 1s written 1n the memory address and the
new value 1s forwarded to the core that issued the
callback-read; and

when the new value 1s written 1n the memory address, the

new value 1s forwarded to all of the cores that have their
corresponding CB bit set for the memory address, CB
bits previously set for the memory address are cleared,
and CB bits previously unset for the memory address
are set.

2. The computer system of claim 1 where the CB bits
correspond to program threads of the cores.

3. The computer system of claim 1, wherein the callback
read to the memory address 1s 1ssued by a compare-and-
callback instruction wherein the core either continues to a
next instruction or 1ssues the callback read to the memory
address.

4. The computer system of claim 3, wherein the compare-
and-callback instruction takes the core to a power-saving
state when the compare-and-callback instruction 1s awaiting
a response to a callback read.

5. The computer system of claim 1, further comprising a
callback queue which stores pending callback requests
issued for the memory address.

6. A computer system comprising;:

multiple processor cores;

at least one local cache memory associated with and

operatively coupled to each core for storing one or
more cache lines accessible only by the associated core;
a shared memory, the shared memory being operatively
coupled to the local cache memories and accessible by
the cores, the shared memory being capable of storing
a plurality of cache lines; and

a callback directory containing a set of callback (CB) bits
and full/empty (F/E) bits associated with a memory
address, wherein each CB bit and each F/E bit of the set
corresponds to a different one of the cores;

wherein a core 1ssuing a callback-read to the memory

address either reads the last value written 1n the
memory address, or 1s blocked from reading from the
memory address until the next write takes place in the
memory address and then reads a new value of said
next write, such that the callback-read enables event
monitoring for coherence of the at least one local cache
and the shared memory without using explicit invali-
dations

when an F/E bit corresponding to the core that 1ssued the

callback-read 1s set, the callback-read from the core to
the memory address with the set of CB and F/E bits 1s
completed by the core reading the last value 1n the
memory address;

when the F/E bit corresponding to the core that issued the

callback-read 1s unset, the callback-read triggers setting
of a CB bit which corresponds to the memory address,
and the call-back read 1s completed when the new value
1s written in the memory address and the new value 1s
forwarded to the core that 1ssued the callback-read; and

US 10,387,312 B2

19

when the new value 1s written 1n the memory address, the
new value 1s forwarded to all of the cores that have a
corresponding CB bit set for the memory address,
corresponding CB bits previously set are cleared, and
F/E bits that correspond to the CB bits previously unset
are set.

7. The computer system of claim 6 wherein a read through
read of the memory address 1ssued by a core bypasses the at
least one local cache memory associated with the core and
resets an F/E bit of the memory address that corresponds to
the core.

8. The computer system of claim 6 wherein the callback
directory also contains an All/One bit associated with the
memory address; and wherein when the All/One bit 1s set to
one, the F/E bits for the memory address operate 1in unison
such that the F/E bits for the memory address act as a single
F/E bit; and wherein when the All/One bit 1s set to all, the
F/E bits for the memory address operate independently of
one another such that each F/E bit has 1ts value changed
independently by a corresponding core.

9. The computer system of claim 8 wherein a write
callback one write instruction to the memory address sets the
All/One bit to one; wherein the write callback one write
instruction selects a single core that has its corresponding
CB bit set for the memory address and forwards a written
value to only this single core and resets the corresponding
CB bit; and further wherein when no core has i1ts corre-
sponding CB bit set for the memory address, the write
callback one write instruction sets all the F/E bits which
correspond to the memory address.

10

15

20

25

20

10. The computer system of claim 8 whereimn a write
callback zero write mnstruction to the memory address sets
the All/One bit which corresponds to the memory address to
one.

11. The computer system of claim 8 wheremn a write
callback all write instruction to the memory address sets the
All/One b1t to all; forwards a written value to all of the cores
that have their corresponding CB bit set for the memory
address, clears the corresponding CB bits previously set and
sets the F/E bits that correspond to CB bits previously unset.

12. The computer system of claim 1, wherein each of the
multiple processor cores 1s configured to 1ssue at least one of
a callback read and a callback write to access the callback
directory using one of a corresponding special load/store or
atomic instruction.

13. The computer system of claim 1 wherein the callback
directory 1s located at one or more cache levels where writes
become globally visible 1n the computer system.

14. The computer system of claim 6 wherein, when there
1s no Iree space in the callback directory, the memory

address 1s evicted to accommodate a new memory address

and a current data value of the evicted memory address 1s

torwarded to all the cores that have the corresponding CB bit
set for the evicted memory address; and

wherein the CB bits for the new memory address that

replaces the evicted address are initialized to unset and

the F/E bits for the new memory are initialized to set.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

