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HYPERVISOR WITH VIRTUAL-MEMORY
FILE SYSTEM

BACKGROUND

Hypervisors can be updated several times a year to
provide new features and to address bugs, compatibility
1ssues, and emergent security issues. To eflect the update, a
hypervisor can be used to update 1ts own disk 1mage;
rebooting then results 1n the update. During this procedure,
applications hosted by the hypervisor may have to be
checkpomted (e.g., suspended and copied to disk) and
restarted; the resulting interruption of the applications may
be at best undesirable and, 1n many cases, may be unaccept-
able. The need to restart applications can be avoided by
migrating them (and their respective virtual machines and/or
containers) to other hardware-plus-hypervisor systems;
however, the resulting network bandwidth consumption and
inevitable performance hits can be unacceptable. So, mini-
mizing interruptions and performance penalties associated
with hypervisor updates continues to be an important objec-
tive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram of a computer system,
shown at a suspend time T1 and at a resume time 12, having
a hypervisor with a virtual-memory file system and virtual
machines.

FIG. 2 1s another schematic diagram of the computer
system of FIG. 1, detailing a virtual machine and associated
state data.

FIG. 3 15 a detail of a p-frame of the state data of FIG. 2.

FIG. 4 1s a schematic diagram of a computer system
having a hypervisor with a virtual-memory file system.

FIG. 5 1s a schematic diagram of main memory of the
computer system of FIG. 4.

FIG. 6 1s a flow chart of a hypervisor-swap process that
can be implemented using the computer systems of FIG. 1,
FIG. 4, and other systems.

DETAILED DESCRIPTION

In accordance with the present invention, a hypervisor can
establish and use a virtual-memory file system (VMemFS)
to transfer data to another (potentially newer version of the)
hypervisor on the same machine. The data can be pointers to
the main memory of source hypervisor, hence no need to
copy the data which can be used to hand-ofl virtual machines
ciiciently. Thus for example, the VMemFS provides for
hypervisor updates that at most mimimally interrupt the
virtual-machine operation.

Herein, a “file system™ 1s a protocol for storing informa-
tion to and retrieving information from storage media.
Various file systems have been developed for various media
types, including hard disks, optical disks, and magnetic tape.
For example, NTFS (New Technology File System) 1s a
hard-disk file system that was introduced by International
Business Machines as part of the Windows NT operating
system 1n 1993. Although designed for hard disks, NTFS 1s
used with other media types (e.g., volatile and non-volatile
memory) formatted as hard disks. Over the years, more
advanced versions of NTFS have been introduced. As 1is
implicit in the notion of a file system, newer versions are at
least backwardly compatible with older versions so that
information stored using one version of the file system can
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be accessed by other instances of the same version and by
later versions of the same file system.

VMemFS is a file system for virtual memory in much the
same way that NTEFS 1s a file system for disk media.
However, since the target media 1s virtual, its physical
representations i machine memory and the mappings
between virtual memory and machine memory are both
stored by the VMemFS.

The hypervisors of interest herein tend to be updated
much more frequently than the file systems they include.
When a hypervisor 1s updated, the new version can contain
any 1intelligence required for translating between versions.
For example, a new version may introduce a new or revised
data format and provide conversion {facilities to handle
updates and rollbacks. When VMemFS 1s updated, the
updated version of VMemFS can include any intelligence
required to understand the content written by the previous
version of itself. Alternatively, the new hypervisor version
can 1nclude the conversion facilities for translating between
the old and new versions of the VMemFS.

For example, 1n FIG. 1, a computer system 100 1s shown
at two different times during a hypervisor swap 101: a time
T1 at which a suspend procedure 1s performed, and a later
time T2 at which a resume procedure 1s performed. In the
interim, a ‘“post-swap” hypervisor 1s swapped in for a
“pre-swap” hypervisor. During the swap, the virtual-
memory contents of the virtual machines remains repre-
sented 1n memory so as to achieve a very short duration
between suspend and resume procedures, thus minimally
interrupting virtual-machine operations.

Hardware for computer system 100 includes a processor
102, other devices 104 including communications devices,
and non-transitory media including machine (physical)
memory 106 and mass storage 108. Processor 102, which
can include one or more x86 processors (available from Intel
Corp.) or Arm processors (available from Arm, Ltd.)
includes a memory-management unit having a multi-level
page table structure 110. This hardware page table permits
rapid virtual-machine memory address translations.

Mass storage 108 1s encoded with code representing an
“old” (aka “‘pre-swap’”) hypervisor disk image 112, a “new”
hypervisor disk image 114, and virtual-machine images 116,
which are respective disk images for virtual machines 102.
Machine memory 106 1s encoded with code representing the
active hypervisor kernel 120, which at time T1 1s the kernel
corresponding to old hypervisor image 112. At time T1, the
new hypervisor represented by new hypervisor image 114 1s
iactive, so there 1s no corresponding post-swap kernel at
time T1.

Pre-swap kernel 120 includes and employs a correspond-
ing pre-swap virtual memory file system VMemFS 122.
Kernel 120 tracks the states of the hardware of the virtual
machines: virtual processor states such as register contents
and page table entries, virtual device states such as network
addresses for network-interface cards (NICs), memory
states, and virtual-memory states including page-irame map-
pings and other per-page states (e.g., “dirty” versus “clean”.
VMemFS 122 1s then used to store descriptions of these
hardware states.

VMemFS 122 stores data representing the locations,
content, and format of the pre-swap virtual-machine device
state data 124, the number and locations of machine frames
125, the assignments of virtual-memory pages 126 to virtual
machines 102, the mappings of pages 126 to frames 124 and
the locations of these mappings. The names and locations of
the files for the various types of state data can be stored in
a VMemFS virtualization directory 128. Directory 128 may
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be stored 1n a default location or in a location referenced by
a pointer stored 1n a detfault location.

Instead of copying entire guest memory, only the data
structures that manage the guest memory are copied. In
some embodiments, these data structures are stored by
VMemFS mitially so that they do not have to be copied at
suspend time. VMemFS 122 stores directory of VMs and for
cach VM 1t stores the checkpoint state with special handling
for guest memory.

In some embodiments, the VMemFS 1s only used to
implement a hypervisor update or other swap. A system that
1s not standardized 1s used instead during normal operation.
In such cases, the VMemFS may, in preparation for a swap,
translate some virtual-machine state data to a format that can
be mgested by another instance of the VMemFS. In the
illustrated embodiment, VMemFS 122 1s used full time,
during normal operation and for hypervisor updates. An
advantage of the full-time use 1s that no ftranslation 1is
required to prepare for the swap, which can thus proceed
more quickly and directly.

Note that the format of the VMemFS 1s distinct from the
format of the data stored by VMemFS The hypervisor kernel
stores mformation into VMemFS and version/format of the
data stored 1in the VMemFS has major impact on whether
hypervisor kernel needs to convert or not. In other words the
format of data stored 1n VMemkFS by pre swap kernel 1s fixed
and known to post swap kernel. The same data format in post
format kernel 1s same or upgraded, 1n both cases, 1t knows
how to deal with 1it.

Once 1t has suspended virtual machines 102, the pre-swap
kernel can trigger a boot of the post-swap hypervisor using
new hypervisor 1mage 114. This results 1 a post-swap
kernel 140 with a post-swap virtual-memory file system
VMemFS 142. If post-swap VMemFS 142 1s the same
version as the pre-swap VMemFS 122, then post-swap
virtual-machine state data 144 can match the pre-swap
virtual machine state data 124; likewise the post-swap
VMemFS pointers 146 can match pre-swap VMemFS point-
ers 128.

In general, file systems provide a way to create/read/write/
delete files/objects. Usually file systems do not interpret the
data the user 1s storing into them. For example, NTFS, does
not know what 1s being stored, e.g., whether 1t 1s a simple
word document or a movie file. Other software interprets the
data and uses the file system to store and retrieve data. In
other words, file systems provide mechanisms to manage
data. Accordingly, VMemFS provides the storage mecha-
nisms to store a virtual machine’s data (such as virtual
device state); 1n some cases, €.g., guest memory, VMemFES
only store pirames, or data structures to manage the guest
memory ).

In computer system 100, it 1s the pre swap or post swap
kernel that uses the VMemFS to store and retrieve the VM
checkpoint data. In other words, if the VMemFS version
didn’t change, 1t can manage the data without any difliculty
and 1 the VMemFS version changes, 1t should able to
understand the previous format and still manage the data
given to 1t by previous version. The VMemFES version may
not change but virtual device state format or pirame format
might be changed; 1n this case, the soitware components that
understand these data read from the older-version VMemFS
and provide for any translation required.

Another view of computer system 100 i1s presented 1n
FIG. 2. From a virtual hardware perspective, a virtual
machine 202 of virtual machines 102 (FIG. 1) includes a
virtual processor 204, virtual memory 206, and other virtual
devices 208. This virtual hardware hosts a guest operating
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4

system 210, which, 1n turn, hosts an application, 212. State
data 124 includes a p-frame array 214. p-frame array 214
includes a series of p-frames 221, 222 . . . 22N, where N 1s
the number of pages assigned to virtual machine 202. In
addition, state data 124 includes state data for virtual pro-
cessor 204 and other virtual devices 206.

Virtual memory 206 includes guest memory, which
includes guest page table pages. Thus, when guest memory
1s captured during a suspend operation, the guest virtual-
address to guest physical address data 1s captured. Processor
102 needs to convert virtual addresses to machine addresses.
Guest OS 210 maintains virtual address to physical address
mappings, while hypervisor kernel 120 maintains the physi-
cal address to machine address mapping. Processor 102
combines both mappings. Hypervisor kernel 120 has mul-
tiple data structures that help in converting physical
addresses to machine addresses. P-frames of array 124 have
the full mapping information, while other data structures are
caches of p-frames. P-frame array 124 Is stored in VMemFS
122 along with the virtual-device state.

The page states represented 1n a p-frame, e.g., p-frame
221 1n FIG. 3 can vary between VMemFS versions. P-frame
221 can have 64 bits that can be divided 1nto (not-necessarily
contiguous) groups of bit positions. One “reserved” group
302 1s constituted by bit positions that have no meaming 1n
a version of the VMemFS, but that are available to accom-
modate new states that may become important in a future
version. Another group 304 includes bits that have transier
information relevant to a hypervisor swap. A third group 306
includes bits that are not relevant to a hypervisor swap but
are useful at other times, e.g., during normal operation.

For example, the swap-relevant group 304 can have bits
dedicated to indicating whether or not a page 1s present 1n
machine memory or whether or not 1t 1s “dirty” (as a
modification that has not been written back to a copy of the
hard disk). However, other possible states may be transitory
transitional states that may not be possible when a virtual-
machine 1s suspended. For example, during normal opera-
tion, a virtual-memory page can be 1n the process of being
swapped 1nto or out of machine memory. A p-frame format
could indicate states as follows: 000=not present, 001=being
swapped 1n, Oll=present & clean, 100=present and dirty,
101=being written back.

However, the transitions can be allowed to complete
betfore a suspend operation 1s consummated. In that case, the
new hypervisor does not need to check for these transition
states upon launch. Therefore, these transition states would
be represented 1n “other mfo” group 306. For example, a
“XFER 1nfo” group 304 of bits having transier information
relevant to a hypervisor swap can include two bits: 00=not
present, O1=present & clean, 10=present & dirty; then other
info 306 can include one bit: O=transierring 1n, 1=writing
back. Another example for “other info™ 306 1s pin count, the
number of components pinning this mapping. When a com-
ponent 1s pinning a mapping, the hyper-visor 1s not allowed
to swap out or remap. However, at the suspend time this
count 1s necessarily zero, so 1t 1s not necessary to transier i1t
to the other hypervisor.

In computer system 100, the old and the new hypervisors
support virtual machines. However, the present invention
applies to other types of hypervisors as well, e.g., hypervi-
sors that support process containers that serve as virtual
application environments (as opposed to virtual machines,
which serve as virtual operating-system environments).
Herein, a “hypervisor” 1s a virtualizing operating system. At
a mimimum, the hypervisors of interest herein virtualize
main (machine) memory to provide for virtual memory.




US 10,387,186 B2

S

Some hypervisors provide for virtual machines, process
containers, and/or other virtual-computing environments.

In computer system 100, the invention 1s applied to
suspending and resuming virtual machines. In other embodi-
ments, e.g., relating to containers, processes other than
virtual machines can be suspended and resumed to allow a
live-swap of an underlying hypervisor. These embodiments
store data structures used to manage virtual memory in a
VMemFS much the way computer system 100 uses a
VMemFS to store p-frames and other structures during a
hypervisor swap.

For example, a computer system 400, shown 1n FIG. 4,
provides a virtual-memory file system (VMemFS) 402 that
1s used to store data structures employed to manage virtual
memory 404. Computer system 400 includes hardware: a
processor 410, communications and other devices 412, and
non-transitory media 414. Media 414 includes mass storage
416 and random-access machine memory 418. Media 414 1s
encoded with code 420 defining, in mass storage 416, an
application image 424, a “pre-swap”” hypervisor image 426,
a “post-swap” hypervisor image 427, and a virtual-memory
backing store 428. Virtual-memory backing store 428 1s
typically used for systems 1n which virtual memory space 1s
too large to {it in machine memory all at once. In systems for
which the machine memory space 1s large enough to accom-
modate all of virtual memory, a virtual-memory backing
store may not be required.

Code 420 further defines, 1n machine memory 418, an
application process 430 associated with application 1image
424, a hypervisor kernel 432 associated with hypervisor
image 426, and a machine memory directory 434. Hyper-
visor kernel 432 includes a mass-storage file system 436
(e.g., NTFS) for storing information to and retrieving infor-
mation from mass storage 418. Hypervisor kernel 432 also
includes VMemES 402. As with NTFS, VMemFS 1s for
storing information to and retrieving from main memory; the
information can be the data structures to manage virtual
memory or for transferring VM state during the upgrade
process from the pre-swap kernel to post swap kernel.

Using VMemFS 402 to store mappings, kernel 432
assigns pages VP1-VP5 of virtual memory 404 to computing
processes (associated with kernel 432 and/or application
430). The processes 1ssue read and write commands to
addresses 1n the virtual pages assigned to them. The pages,
in turn, can be assigned to respective machine-memory
frames MF1-MF3 to provide for physical storage of virtual
page data. For example, if page VP2 i1s assigned to frame
MF1, then, when a process addresses a location within page
VP2, 1n reality, it accesses the corresponding location within
frame MF1. Kernel 432 tracks the assignments of pages to
frames as page-frame (aka, p-frame or p-1) data 440, which
1s stored in a region MFO of machine memory.

Page-frame data 440 1s presented in greater detail in FIG.
5. For each virtual-page, page-frame data 440 indicates
whether or not 1t 1s assigned to a machine frame and, if so,
the frame to which 1t 1s assigned. In addition, page-frame
data 440 indicates for each page, whether there 1s a valid
representation of 1t 1n mass storage. For example, page VP4
1s assigned to machine frame MF2, and there 1s no valid
backup 1n mass storage. This can occur because data 1n page
VP4 and, thus, 1n frame MF2, has been modified, and the
modification has not been written back to backing store 428.
As 1s commonly the case, the number of virtual pages (5) in
FIG. 4, exceeds the number of machine frames (3) to which
the pages can be assigned. When a process requests access
to a page not assigned to a machine frame, a valid repre-
sentation of the requested page can be swapped from mass
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storage to a frame that has been occupied by a virtual page
for which there 1s a valid representation 1n mass storage.
Note that the page numbers are presented 1n parentheses in
FIG. § because they can be implicit 1n the order of the
page-frames and, therefore, need not be specified explicitly.

Also presented 1n greater detail in FIG. 5, machine-
memory directory 434 identifies locations, e.g., as address
ranges, of 1tsell, frames, and page-frame data. The directory
1s stored 1n a default location or a pointer at a default location
identifies the location of the directory. Alternatively, the
directory can be constituted by a set of pointers that implic-
itly 1identity program objects based on the code that accesses
the locations pointed to.

Hypervisor kernel 432 1s designed to protect (or, at least,
not corrupt) the locations of the directory, frames, and
page-frame data from initialization and overwriting during
booting of a hypervisor. Once a hypervisor 1s booted, it can
use directory 434 to access the page-frame data and the
machine frames so as to manage virtual memory. Where the

booted hypervisor 1s different from the hypervisor that
managed the virtual memory before the boot, a transfer of
control of virtual memory will have been effected without
having to save memory contents to mass storage and without
moving the bulk of memory contents to a new location.
Thus, hypervisor swaps can be eflected with minimal inter-
ruption to processes that access virtual memory.

In summary, the VMemFS empowers a host hypervisor to
access data objects and imterpret the mnformation contained
therein. For example, file system VMemFS determines
which bits in the page-frame data are used to i1dentify a
machine frame and which bits are used to indicate whether
or not a valid backup 1s available. Just as NTFS allows one
computer to retrieve mformation stored on a hard disk by
another computer, VMemFS allows one hypervisor to
retrieve virtual memory contents and mappings written by
another hypervisor. In other words, VMemFS allows one
hypervisor to retrieve “information about virtual memory or
pirames (mappings from guest physical address to machine
memory) written by another hypervisor.

A hypervisor swap process 600, guided by a VMemFES, 1s
flow-charted 1n FI1G. 6. At 601, a hypervisor boot 1s initiated.
In some scenarios, a prior hypervisor imitiates the boot as
part of a procedure to replace 1tself with an updated or other
different version of the hypervisor. At 602, during the boot
operation, the hypervisor (e.g., its boot loader) locates a
virtualization directory identifying locations of virtualiza-
tion data 1n machine memory. The virtualization directory 1s
a data object the structure and location of which 1s deter-
mined by the VMemFS. That structure can be a directory
tree, a table of contents, or a set of pointers as in computer
system 100 of FIG. 1.

From the perspective of the boot loader, these locations
are not to be overwritten during the boot process, at least not
prior to a time when the included data 1s consumed. How-
ever, the boot process does overwrite other locations within
machine memory. For example, kernel components can be
loaded into machine memory locations not otherwise occu-
pied by virtualization data. Thus, at 603, locations 1dentified
by the wvirtualization data as locations that might store
virtualization data are not overwritten during booting, while
other locations of machine memory are overwritten. The
pages that need to be protected can be derived from the data
that 1s stored in VMemkFS.

At 604, the hypervisor locates machine-memory frames to
be used for storing physical representations ol virtual-
memory contents, and one or more page-frame maps. The
page-frame maps may allow page lookups to determine




US 10,387,186 B2

7

associated frames or frame lookups to determine associated
pages. Also, the maps can include page or frame state data,
such as whether a page 1s present (represented) 1n machine
memory or whether a frame 1s “dirty”, e.g., includes modi-

fications that have not been written back to a disk version of 3

the associated frame: 11 so, the page and frame are “dirty”;
if there are no modifications that have not been written back
to disk, then the page and frame are “clean”.

Some hypervisors can support multiple virtual-computing
environments, €.g., virtual machines and/or process contain-
ers. In such cases, each virtual-computing environment can
have 1ts own page-frame map. Thus, there may be multiple
page-frame maps that must be preserved during boot and
used during normal operation for {translating wvirtual
addresses to machine addresses.

The page-frame-map states can be represented in the
page-frame map(s). The VMemFS determines which states
are represented and how each state 1s represented in the
memory map. Even when a hypervisor 1s updated to a new
version, the VMemFS version may remain the same. In that
case, and even 1n some cases where the VMemFS version 1s
changed, the map data can be used as-1s. However, in some
cases, a new VMemFS version of a new hypervisor may
require a format change for page-frame maps and/or other
virtualization data written by a prior version of the
VMemFS. In such a case, the more advanced version of the
VMemFS 1is responsible for any required conversion. In
such cases, at 605, the new (more advanced) file system may
convert the virtualization data for 1ts own use. In an update,
the more advanced version can perform the conversion
during or after boot. In a rollback operation, the more
advanced version can perform the conversion in connection
with a suspend operation to be followed by a boot of a
hypervisor with a prior VMemFS version.

At 606, normal operation may be resumed. As an appli-
cation or applications are executing and issuing read/write
accesses of virtual memory, the hypervisor translates the
virtual (page) addresses to machine (frame) addresses using,
the page-frame map or a derivative thereof. Typically, the
page-frame map 1s used to generate a page table for a
processor so that the translation can be performed faster in
hardware. The page table 1s thus a derivative of the page-
frame map. The page table may be derived from a page-
frame map derived by a new VMemFS from a page-frame
map prepared by a previous version of the VMemFS. If at
605, a hypervisor with a new version of a VMemF'S converts
the stored VMemFS, then the page-frame map may be
converted, and the converted map may be considered a
derivative of the page-irame map 1n place when booting was
initiated.

When a page address 1s called for which there 1s no
counterpart in machine memory, the result may be that a
page represented 1 mass storage 1s copied from mass
storage to a frame 1n machine memory, often overwriting
contents of a page previously represented by that frame. This
change can be reflected by updating the page-frame map at
607.

At 608, virtual machines, containers, and/or other appli-
cation processes are suspended so that page-frame mappings
are fixed. Suspension can occur for many reasons including
preparation for a hypervisor hot-swap. If the VMemFS 1s
relied upon during normal operation and during the hot
swap, then the suspension can be straightforward. If the
VMemFS is only established and used during the hot-swap,
the establishment can be at or near the time of the suspend.
Preferably, the VMemFS i1s used during normal operation to
avoid this additional step.
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An additional step may also be required to convert
between state data formats 1 different versions of the
VMemFS are mvolved. In an update operation, a new
VMemFS may convert after reboot on an as-needed basis, so
the conversion step does not delay the resume and the impact
of the update may still not be experienced by a user.
However, in a rollback operation to an older VMemkFS, the
conversion may have to be performed before resumption,
which 1s likely to delay the resume relative to the suspend.
After the suspend, process 600 can return to action 601 to
reboot the same or a diflerent hypervisor.

In general, the time required for a hypervisor swap can be
quite fast. The suspend operation can be essentially instan-
taneous since most of the information required can have
been pre-stored i the VMemFS. There are cases where
some time 1s required for format changes upon resume.
However, the format changes or other modifications can be
delayed until the relevant information 1s required. In other
words, 1t 15 not necessary to perform all format changes and
modifications before operation 1s resumed. Thus, the “inter-
ruption” between suspend and resume can be on the order of
a second or less.

A conceptual distinction may be drawn between embodi-
ments that employ the same VMemFS during normal opera-
tion and during hypervisor swaps, and embodiments that call
a VMemF'S for the purpose of a hypervisor swap, butrely on
a different VMemFS for normal operation. However, as a
practical matter, greater consistency in the way information
1s stored and retrieved during normal vs. transier operation
can reduce interruption ol a hosted application during a
hypervisor swap. For example, consistency between page-
frame map formats can reduce or eliminate a requirement to
reformat p-irames at the time of suspension in anticipation
of a hypervisor swap. For this reason, in the preferred
conceptualization, there 1s one VMemFS with both a normal
mode and a transier mode, with embodiments differing in
how similar or distinct these modes are.

Herein, “VMemFS” stands for “virtual-memory file sys-
tem” and denotes a standardized protocol for storing data in
and retrieving data from physical machine memory that
includes mappings between physical and virtual addresses.
Although standardized, a VMemFS allows extensions and
modifications as long as backward compatibility 1s main-
tamned. Statements to the effect that a hypervisor or a
hypervisor kernel “has” or “includes” a VMemFS indicate
that the hypervisor or hypervisor kernel includes code
required to implement the standardized protocol. Statements
to the effect that an agent (e.g., a hypervisor kernel) stored
data “in” a VMemF'S refer to storing data 1n a data structure
created in conformance with the protocol.

Herein, a “directory” 1s any data structure used to deter-
mine what can be found where. For example, a directory can
be a directory tree (as was used in MSDOS, distributed by
Microsoit Corp.), a table of contents, or a set of pointers.
Herein, a pointer 1s data identifying a memory address or a
range ol memory addresses.

Herein, art labeled “prior art”, if any, 1s admitted prior art;
art not labeled “prior art” 1s not admitted prior art. The
foregoing embodiments and modifications to and variations
upon those embodiments are provided for by the present
invention, the scope of which 1s defined by the following
claims.

What 1s claimed 1s:

1. A process comprising:

initiating a boot of a first hypervisor on a computer system
having machine memory;
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moditying and preserving, respectively by the first hyper-
visor during booting, contents of a first portion of the
machine memory and contents of a second portion of
the machine memory;

locating, by the first hypervisor using a first virtual-

memory {ile system of the first hypervisor, i the
second portion of the machine memory, frames of the
machine memory and a mapping between pages and
frames; and

after booting 1s complete, executing, by the first hyper-

visor, of application processes, the executing including
translating addresses of locations within pages of vir-
tual memory to addresses of corresponding locations
within the frames of machine memory.

2. The process of claim 1 wherein the executing includes
resuming at least a first virtual machine.

3. The process of claim 2 further comprising, before the
initiating, suspending the first virtual machine, the preserv-
ing maintaining memory contents of the virtual machine
between 1ts suspension and its resumption.

4. The process of claim 2 wherein the locating 1s also of
a mapping of pages to virtual machines.

5. The process of claim 2 further comprising updating,
using the first virtual-memory file system, the mapping
between pages and frames when a page 1s newly assigned to
a frame.

6. The process of claim 5 wherein the locating involves
using pointers to locate the frames and the mapping.

7. The process of claim 6 further comprising;:

suspending, by the first hypervisor, a second virtual

machine;
initiating, by the first hypervisor, a boot of a second
hypervisor on the computer system, the second virtual
machine being either the same as the first virtual
machine or different from the first virtual machine;:

modilying and preserving, respectively by the second
hypervisor during i1ts booting, contents of the first
portion of the machine memory and contents of the
second portion of the main memory;

locating, by the second hypervisor using a second virtual-

machine file system of the second hypervisor, frames of
the machine memory and a mapping between pages and
frames; and

after booting 1s complete, resuming, by the second hyper-

visor, the second virtual machine.

8. The process of claim 7 wherein the first virtual-memory
file system separates, 1n the mapping, information required
for resuming processes from information not required for
resuming processes.

9. The process of claim 7 wherein the first and second
hypervisors are different versions of the same hypervisor,
and the first and second virtual-memory file systems are
instances of the same version of the virtual-memory file
system.

10. The process of claim 7 wherein one of the first and
second virtual-memory file systems 1s a more advanced
version and the other of the first and the second virtual-
memory file systems 1s a less advanced version, the more
advanced version converting the mapping between a format
conforming to the more advanced version and a format
conforming to the less advanced version in connection with
suspending the application processes or 1n preparation for
resuming the application processes.

11. A system comprising non-transitory media encoded
with code that, when executed by a processor, implements
the process of claim 1.
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12. A system comprising non-transitory media encoded
with code that, when executed by a processor, defines a first
hypervisor for hosting an application process that addresses
virtual memory and for translating the virtual-memory page
addresses to machine-memory frame addresses, the hyper-
visor tracking assignments of pages to frames using a first
instance of a virtual-memory file system so that another
hypervisor incorporating a second instance of the same
virtual-memory file system can resume the application pro-
cess after 1t 1s suspended by the first hypervisor using the
mapping maintained using the first mnstance of the virtual-
memory file system.

13. A system as recited 1n claim 12 wherein the applica-
tion process 1s a virtual machine process.

14. The system of claim 12 wherein the first virtual-
memory {ile system separates information required for
resuming the virtual-machine process from imformation not
required for resuming the virtual-machine process.

15. A system comprising non-transitory media encoded
with code that, when executed by a processor, implements a
process including:

initiating a boot of a first hypervisor on a computer system

having machine memory;

moditying and preserving, respectively by the first hyper-

visor during booting, contents of a first portion of the
machine memory and contents of a second portion of
the machine memory;

locating, by the first hypervisor using a first virtual-

memory file system of the first hypervisor, in the
second portion of the machine memory, frames of the
machine memory and a mapping between pages and
frames; and

alter booting 1s complete, executing, by the first hyper-

visor, of application processes, the executing including
translating addresses of locations within pages of vir-
tual memory to addresses of corresponding locations
within the frames of machine memory.

16. The system of claim 15 wherein the executing
includes resuming at least a first virtual machine.

17. The system of claim 16 further comprising, before the
initiating, suspending the first virtual machine, the preserv-
ing maintaining memory contents of the virtual machine
between 1ts suspension and its resumption.

18. The system of claim 16 wherein the locating 1s also of
a mapping ol pages to virtual machines.

19. The system of claim 16 wherein the process further
includes updating, using the first virtual-memory file sys-
tem, the mapping between pages and frames when a page 1s
newly assigned to a frame.

20. The system of claim 19 wherein the locating involves
using pointers to locate the frames and the mapping.

21. The process of claim 20 wherein the process further
includes:

suspending, by the first hypervisor, a second virtual

machine;
imtiating, by the first hypervisor, a boot of a second
hypervisor on the computer system, the second virtual
machine being either the same as the first virtual
machine or different from the first virtual machine;

moditying and preserving, respectively by the second
hypervisor during its booting, contents of the first
portion of the machine memory and contents of the
second portion of the main memory;

locating, by the second hypervisor using a second virtual-

machine file system of the second hypervisor, frames of
the machine memory and a mapping between pages and
frames; and
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after booting 1s complete, resuming, by the second hyper-

visor, the second virtual machine.

22. The process of claim 21 wherein the first virtual-
memory file system separates, in the mapping, information
required for resuming processes from information not
required for resuming processes.

23. The process of claim 21 wherein the first and second
hypervisors are diflerent versions of the same hypervisor,
and the first and second virtual-memory file systems are
instances ol the same version of the virtual-memory file
system.

24. The process of claim 21 wherein one of the first and
second virtual-memory file systems 1s a more advanced
version and the other of the first and the second virtual-
memory file systems 1s a less advanced version, the more
advanced version converting the mapping between a format
conforming to the more advanced version and a format
conforming to the less advanced version in connection with
suspending the application processes or 1n preparation for
resuming the application processes.
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