US010374986B2

a2y United States Patent (10) Patent No.: US 10,374,986 B2

Walkin et al. 45) Date of Patent: Aug. 6, 2019
(54) SCALABLE, REAL-TIME MESSAGING 0,208,691 Bl 3/2001 Balakrishnan et al.
SYSTEM 6,549,959 Bl 4/2003 Yates et al.
7,047,394 Bl 5/2006 Van Dyke et al.
: : 7,065,633 Bl 6/2006 Yates, Jr. et al.
(71) Applicant: Machine Zone, Inc., East Palo Alto, 7.376.092 B2 5/2008 Yajnik et al
CA (US) 7.420,952 B2* 9/2008 da Costa HO4L. 41/0806
370/319
(72) Inventors: Lev Walkin, Santa Clara, CA (US); 7,613,813 B2 112009 Hussain et al.
Fredrik Erik Linder, Dublin, CA (US) 7,668,908 B2 2/2010 Kakivaya et al.
7,676,580 B2 3/2010 Hill et al.
(73) Assignee: SATORI WORLDWIDE, LLC, Palo (Continued)

Alto, CA (US)

OTHER PUBLICATTIONS

*3) Notice: Subject to any disclaimer, the term of this
J Yy
patent is extended or adjusted under 35 Jafarpour et al., Dynamic LLoad Balancing for Cluster-based Publish/

U.S.C. 154(b) by 0 days. Subscribe System, IEEE, 2009, http://1eeexplore.ieee.org/document/
5230660/.*
(21) Appl. No.: 15/244,380 (Continued)
(22) Filed: Aug. 23, 2016 Primary Examiner — Hieu T Hoang
(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(65) Prior Publication Data (US) LLP; Daniel E. Ovanezian
US 2018/0063039 Al Mar. 1, 2018
(57) ABSTRACT
(51) Int. Cl. Methods, systems, and apparatus, including computer pro-
Gool 15/16 (2006.01) grams encoded on a computer storage medium, for balanc-
HO4L 12/56 (2006.01) ing loads 1n a publish-subscribe system. An example method
HO4L 29/08 (2006.01) includes: selecting a first hosting node from a plurality of
(52) U.S. CL hosting nodes based, at least in part, on a load data selected
CPC .. HO4L 51/04 (2013.01); HO4L 51/I14 from at least one of node-specific data representing loads on
(2013.01); HO4L 6771008 (2013.01) the plurality of hosting nodes and channel-specific data
(58) Field of Classification Search representing a load associated with a channel; sending a
CPC e, HO4L 67/327 request to the first hosting node to temporarily host a portion
USPC e, 709/203, 206 ol a channel; temporarily hosting the channel portion by the
See application file for complete search history. first hosting node by temporarily storing one or more
messages published to the channel, and temporarily provid-
(56) References Cited ing, to a plurality of subscribers to the channel, access to the

one of more messages; receiving a request to access the

U.S. PATENT DOCUMENTS channel portion; and granting permission to access the

4264924 A 4/1981 Freeman channel portion.

5,706,331 A 1/1998 Wang et al. _ _

5,878,228 A 3/1999 Miller et al. 20 Claims, 8 Drawing Sheets
(]" 00
¥

case | S8lECting a first hosting node o temporartly host a portion §
’ 14 of » channetl, basad on node-specific data andior channel- §
' soeciic data

1
1
\

Y

p
504 L Sencing a request to (he firsl hosting node 10 temperarily §
i host the channgl poriion

3

sp6~ | Recewving a request from an interdsce node (o access the §
charnet norticrn :

¥

ss=ST1 Granting permission {o the interface node o access the
' channe! portion

4
[

US 10,374,986 B2

Page 2
(56) References Cited 2012/0023116 Al 1/2012 Wilkes et al.
2012/0110599 Al1* 5/2012 Schoning GO6F 9/542
U.S. PATENT DOCUMENTS 719/318
2012/0150960 Al 6/2012 Nalawade
7,774,720 Bl 8/2010 Demetriades et al. 2012/0197990 Al 82012 Li et al.
7.917,124 B2 3/2011 D’Angelo et al. 2012/0226797 Al 9/2012 Ghosh et al.
7.929.562 B2 4/2011 Petrovykh 2012/0271927 Al 10/2012 Shakirzyanov et al.
7.941.448 B2 5/2011 Eslambolchi et al. 2012/0278728 A1 11/2012 Malin et al.
7.970.828 B2 6/2011 Carmeli et al. 2012/0284756 Al 11/2012 Kotecha et al.
7970918 B2 6/2011 Thompson et al. 2013/0031162 Al 1/2013 Willis et al.
8,051,140 B2 11/2011 Lum et al. 2013/0066967 Al 3/2013 Alexander
8,065,384 B2 11/2011 Plewnia et al. 2013/0067114 Al 3/2013 Hjelm et al.
8,065,504 B2 11/2011 Yates, JIr. et al. 2013/0081060 Al 3/2013 Otenko
8,074,055 Bl 12/2011 Yates, Jr. et al. 2013/0132553 Al* 5/2013 Stratton HO041. 41/50
8,080,672 B2 12/2011 Horvitz 709/223
8,121,828 B2 2/2012 Yates, Jr. et al. 2013/0159472 Al 6/2013 Newton et al.
8,375,095 B2 2/2013 Yurkovich et al. 2013/0212491 Al 82013 Yerli
8,392,555 B2 3/2013 @Gale et al. 2013/0254314 Al 9/2013 Chow
8,429,702 B2 4/2013 Yasrebi et al. 2013/0290449 Al 10/2013 Norby et al.
8,441,965 B2 5/2013 Jazra 2013/0340097 A1 12/2013 Gowel
8,489,674 B2 7/2013 Srivastava et al. 2014/0082085 Al 3/2014 Krishnaprasad et al.
8,539,359 B2 9/2013 Rapaport et al. 2014/0114738 Al 4/2014 Tseng et al.
8,605,781 B2 12/2013 Rabenold et al. 2014/0189772 Al 7/2014 Yamagishi et al.
8,799,213 B2 8/2014 Wong et al. 2014/0226713 Al 8/2014 Perlman et al.
8,850,015 B2 9/2014 Finn 2014/0237057 Al 8/2014 Khodorenko
8,850,490 Bl 9/2014 Thomas et al. 2014/0286354 Al* 9/2014 Van De Poel GO6F 9/542
8,856,202 B2 10/2014 McCabe et al. 370/463
8,886,731 B2 11/2014 Gunawardena et al. 2014/0310369 A1 10/2014 Makhervaks et al.
8,898,293 B2 11/2014 Raleigh et al. 2014/0372489 A1 12/2014 Jaiswal et al.
8,937,962 B2 1/2015 Tomonaga et al. 2014/0372755 Al 12/2014 Rustock et al.
8,965,409 B2 2/2015 Abhyanker 2015/0012598 Al 1/2015 Klimt
9,043,822 Bl 5/2015 Calzone et al. 2015/0100664 Al 4/2015 Flack et al.
9,215,261 B2 12/2015 Marcus 2015/0207851 Al 7/2015 Nampally
9,270,944 B2 2/2016 Brooks et al. 2015/0262151 Al 9/2015 Enzminger et al.
9,319,363 Bl 4/2016 Walkin et al. 2015/0317676 A1 11/2015 Reid et al.
9,319,365 Bl 4/2016 Milyakov 2015/0365358 A1 12/2015 Strassner
9,385,976 Bl 7/2016 Haitn 2015/0379160 A1 12/2015 Avraham et al.
9,397,973 Bl 7/2016 Kushnir et al. 2016/0072865 Al 3/2016 Kaplinger et al.
9,407,585 Bl 8/2016 Walkin et al. 2016/0219089 Al 7/2016 Murthy et al.
9,407,593 Bl 8/2016 Milyakov 2016/0261480 Al 9/2016 Agarwal et al.
9,577911 Bl 2/2017 Castleman 2016/0285986 Al 9/2016 Mokhtari et al.
9,602,450 Bl 3/2017 Kushnir et al. 2018/0027068 Al* 1/2018 Kumarcoev.... G06Q 50/01
9,602,455 B2 3/2017 Walkin et al. 709/206
9,608,928 Bl 3/2017 Walkin
9,608,953 Bl 3/2017 Kushnir et al.
2002/0016851 Al 2/2002 Border OTHER PUBLICATIONS
2004/0073641 Al 4/2004 Minhazuddin et al.
2004/0083264 Al 4/2004 Veselov Bustamante, F., “The Active Streams Approach to Adaptive Dis-
2004/0139166 Al 7/2004 Collison tributed Applications and Services,” Thesis, Georgia Institute of
2004/0139309 Al 7/2004 Gentil et al. Technolosv: 112pes.: Nov. 2001
2004/0167932 Al 8/2004 Edmonds 85 15opgs.s MOV, ' | |
2005/0021622 Al 1/2005 Cullen Chakravarthy, S. and Vontella, N., “A Publish / Subscribe Based
2005/0047396 Al 3/2005 Helm et al. Architecture of an Alert Server to Support Prioritized and Persistent
2005/0171799 Al 8/2005 Hull et al. Alerts,” Lecture Notes in Computer Science; 3347:1-6-116; Jan.
2005/0210109 Al1* 9/2005 Brownc......... HO41. 12/1859 2004.
| | 709/206 Cilia, M., et al., “Looking into the Past: Enhancing Mobile Publish/
2005/0262205 Al 11/2005 Nikolov et al. Subscribe Middleware,” Proceedings of the 2nd Int’l Workshop on
gggggggéé%g i légggg ggg;:;na{;t Al Distributed Event-based Systems (DEBS °03); pp. 1-8; Jun. 2003.
2006/0106840 Al * 5/2006 Rooney “““““““““““ HO41. 67/26 COI'S&I'O,A., etf':ll., “Ql.lf':lllty of Service 1n Publish/Subscribe Mddleware,”
2006/0149787 Al 7/2006 Surlaker et al. IOS Press; pp. 1-19; 2003.
2007/0013948 Al 1/2007 Bevan Int’l Search Report and Written Opinion of the ISA/EP in PCT/
2007/0028173 Al 2/2007 Lauder US2016/022316; dated Jun. 1, 2016; 11pgs.
2007/0174233 Al1* 7/2007 Ginisoooeeeeenn, HO4L 41/145 Int’l Search Report and Written Opinion of the ISA/EP in PCT/
2008/0016198 Al 1/2008 Johnston-Watt et al. US2016/023164; dated Jul. 11, 2016; 15pgs.
2008/0186973 Al 8/2008 Shihara et al. King, A., et al., “Load Balancing Content-Based Publish/Subscribe
2008/0235366 A'_‘ 9/2008 Telfer Systems,” ACM Transactions on Computer Systems; 28(4):9:1-
2009/0157795 Ai‘ 6/2009 Black Vahdat, A. and Becker, D., “Epidemic Routing for Partially-
2009/0222348 Al 9/2009 Ransom et al. " . .
2000/0287761 Al* 11/2000 Hawkins ... H041. 67/02 CO_ImeCted Ad Hoc Ne.tworks, DUk’_a University; 14pgs.; Jul. 2000.
700/20? Zeidler, et al., “Mobility Support with REBECA,” Proc. 23rd Int’l
2010/0251262 Al 9/2010 Rokicki et al. Conference on Distributed Computing Systems Workshops; May
2011/0060812 A1 3/2011 Middleton 19-22, 2003, 7pgs.
2011/0176554 Al 7/2011 Yamada et al. “Cloud Pub/Sub,” accessed on the internet at: https://cloud.google.
2011/0179162 Al 7/2011 Mayo com/pubsub/overview; downloaded Aug. 7, 2015; Spgs.
2011/0231523 Al 9/2011 Haugland et al. “Publish—subscribe pattern™; accessed on the internet at: https://
2011/0320550 Al* 12/2011 Lawson GOO6F 9/542 en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern; down-
709/206 loaded Aug. 7, 2015; 4pgs.

US 10,374,986 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“Welcome to PyPubSub’s Home Page!,” accessed on the internet at:
http://pubsub.sourceforge.net/; downloaded Aug. 7, 2015; 2pgs.
U.S. Appl. No. 15/223,392, filed Jul. 29, 2016, Scalable, Real-Time
Messaging System, Walkin et al.

U.S. Appl. No. 14/821.421, filed Aug. 7, 2015, Scalable, Real-Time
Messaging System, Walkin et al.

U.S. Appl. No. 15/067,476, filed Mar. 11, 2016, Scalable, Real-Time
Messaging System, Walkin et al.

U.S. Appl. No. 15/175,588, filed Jun. 7, 2016, Message Compres-
sion In Scalable Messaging System, Walkin.

U.S. Appl. No. 15/231,044, filed Aug. 8, 2016, Access Control for

Message Channels 1n a Messaging System, Walkin et al.

U.S. Appl. No. 15/244,380, filed Aug. 23, 2016, Scalable, Real-
Time Messaging System, Walkin.

U.S. Appl. No. 15/202,908, filed Jul. 6, 2016, Multiple-Speed
Message Channel of Messaging System, Walkin.

U.S. Appl. No. 15/063,390, filed Mar. 7, 2016, Systems and
Methods for Storing and Transferring Message Data, Milyakov.
U.S. Appl. No. 14/879,661, filed Oct. 9, 20135, Systems and Methods
for Storing Message Data, Hatrl.

U.S. Appl. No. 15/196,597, filed Jun. 29, 2016, Systems amd
Methods for Transferring Message Data, Kushnir et al.

U.S. Appl. No. 15/155,384, filed May 16, 2016, Maintaining
Persistence of a Messaging System, Kushnir, et al.

Cagle, K., “Convert a Text File to XML,” accessed on the Internet
at http://www.devx.com/getHelpOn/10MinuteSolution/20356; down-
loaded Sep. 22, 2016, 8pgs.

Phanishayee, A., “Chaining for Flexible and High-Performance
Key-Value Systems,” Doctoral Dissertation, Carnegie Mellon Uni-
versity, School of Computer Science; 148pgs.; Sep. 2012.

U.S. Appl. No. 15/274,281, filed Sep. 23, 2016, Systems and
Methods for Providing Messages to Multiple Subscribers, Milyakov.
U.S. Appl. No. 15/252,989, filed Aug. 31, 2016, Data Replication in
Scalable Messaging System, Hafr et al.

Int’l Search Report and Written Opinion of the ISA/EP in PCT/
US2016/039958; dated Oct. 4, 2016; 11pgs.

U.S. Appl. No. 15/290,695, filed Oct. 11, 2016, Systems and
Methods for Storing Message Data, Hafrl.

U.S. Appl. No. 15/291,633, filed Oct. 12, 2016, Systems and
Methods for Storing and Transferring Message Data, Milyakov.
U.S. Appl. No. 15/443,286, filed Feb. 24, 2017, Data Storage
Systems and Methods Using A Real-Time Messaging System.
U.S. Appl. No. 15/442,061, filed Feb. 24, 2017, Channel Manage-
ment 1n Scalable Messaging System.

U.S. Appl. No. 15/442,036, filed Feb. 24, 2017, Selective Distri-
bution of Messages in A Scalable, Real-Time Messaging System.
U.S. Appl. No. 15/436,217, filed Feb. 17, 2017, Scalable, Real-Time
Messaging System.

U.S. Appl. No. 15/435,915, filed Feb. 17, 2017, Systems and
Methods for Transferring Message Data.

U.S. Appl. No. 15/443,550, filed Feb. 15, 2017, Maintaining Per-
sistence of A Messaging System.

U.S. Appl. No. 15/433,525, filed Feb. 15, 2017, Multiple-Speed
Message Channel of Messaging System.

Int’l Search Report and Written Opinion of the ISA/EP in PCT/
US2014/041531; dated Oct. 6, 2016, 12 pgs.

Int’l Search Report and Written Opinion of the ISA/EP in PCT/
US2016/037358; dated Oct. 10, 2016, 13pgs.

Int’l Search Report and Written Opinion of the ISA/EP in PCT/
US2016/041530; dated Oct. 6, 2016, 12pgs.

Jafarpour H et al., (2009), ‘Dynamic Load Balancing for Cluster-
Based Publish Subscribe System,” 9th Annual International Sym-
posium on applications and the Internet, Bellevue, WA, Jul. 20-24,
2009, IEEE, Piscataway, NJ (Pub), (7 pages), downloaded from the
internet at <http://1eeeexplore.ieee.org/document/5230660/> on Dec.
22, 2016.

Preshing J, ‘Atomic v. Non-Atomic Operations,” Preshing on Pro-
gramming, Jun. 18, 2013, J Preshing (Ed), Octopress (Pub),
XP-002762097 (10 pages) downloaded from <http://preshing.com/
20130618/atomic-vs-non-atomic-operations on Sep. 20, 2016.
PCT/US2017/036349; International Search Report and Written Opin-
ion dated Jul. 27, 2017; 13 pages.

* cited by examiner

U.S. Patent Aug. 6, 2019 Sheet 1 of 8 US 10,374,986 B2

Subsariber 1

Channal 2

Publisher 2 Subscriber 2

*®
° >
o .
>

Subsoriber N

Publisher A

G, 1A

Client (102)

G, 18

U.S. Patent Aug. 6, 2019 Sheet 2 of 8 US 10,374,986 B2

100 _ VTN

(EXTERNAL
NETWORK

(216}

INTERNAL
NETWORK
(218)

Channel §
Manager |

1214)

FiG. 2

U.S. Patent Aug. 6, 2019 Sheet 3 of 8 US 10,374,986 B2

Handler

(301)

' hand over {3206}
e —

|
E | prepare-publish-ack {308} |
o@ffeeereeeeerreeres e seeeeeeeeeeeseeeseeseeeseese oo eseeeee e eeeseeeeeeeeemeememmeremeencon]
i T ; E
: publish {310} E -
5
i publish {312} | R
| publish {314} : E
000000
| E E

publish-ack {316}

: o : E
| ngbilish {318} | |
i | _ E
: | nublish-ack {320} i
M—_MMWM :
E E |
E i E
E i i
; : _ _ :
: | publish-nak {3308} :
& | E
i | eof {332 |
e e e e
E E E
E E |

G, 3A

U.S. Patent Aug. 6, 2019 Sheet 4 of 8 US 10,374,986 B2

Handler
(351}

! messages {364} i
E E' messages (366 E
Ei E; E
Ei messages-ack {368) E‘ Eﬁ
R Sty ok
H- | |
E' | !
| E? E:
E‘ | E:
! | i
! E' !
E: Ej E
| | unsubscribed {390) gz
| | eof {392) |
| | |
| | i

US 10,374,986 B2

Sheet 5 of 8

Aug. 6, 2019

U.S. Patent

Y Ol

e Ll R sk R Rt A N L Ao R aha a LR at B I T N e L e B e e e
bbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

e i i o e o

L
2
>
ittt
)
o
s
-

Tﬂl
S
=
P
N
=

(p12}
sabipueiy
121831228 1gY

i

it it pt it it o it it it it

b it pt it it pt _ il it it pt it

.

PR S B S S g wg

(Bo8)
ssausygnd

(rop)
RisysHyGny

~ Gz MNE ~ HLIA m &L) ” |

o
b St
=

Rl i i

et L L

(o) F

SIBUSHONY _

oo¢

US 10,374,986 B2

Sheet 6 of 8

Aug. 6, 2019

U.S. Patent

Hy i
(FPOTED CaBPES I -y
A
§2%4,
2OpuLiAl
IBULRYTS | a....__....

(EOTE) Ssbesysw

/

O
o
¥

(FOTY) 5a30pssSa ..

{3 N

.. {ECF) OOf PPUUBYD

US 10,374,986 B2

Sheet 7 of 8

Aug. 6, 2019

U.S. Patent

(/87

b olatomeictely

(uado) sosp

0UZ8Y-L008Y
{08}
MGG PESO

S Ol

0008 LE8LY 0S8LV-LOCLY | | Q0BLH-LiLiy |
(c6¥ {6y} . (6w m
ROMG PASO NOOK} 35010 L 420G pondxs

?

(pasopa} yOiy ./
-
-
e
- -
- -
-
ral
PR
—~ o -~
..

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

L 004501048 | |
S 47 /A B
PO pasidxs

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

N\ _(zep) ovy jauneys

D6¥

U.S. Patent Aug. 6, 2019 Sheet 8 of 8 US 10,374,986 B2

500

Selecting a first hosting node to temporarily host a portion
of a channel, based on node-specific data and/or channel- |
specific data

302

soq— | oending a request to the first hosting node to temporarily
' nost the channet portion

506— | Receiving a request from an interface node {0 access the
channel portion

spz-5 1 Granting permisgsion o the interface node 1o access the
channel portion

F1G. 5

US 10,374,986 B2

1

SCALABLE, REAL-TIME MESSAGING
SYSTEM

BACKGROUND

This specification relates to a data communication system
and, 1n particular, a system that implements real-time, scal-
able publish-subscribe messaging.

The publish-subscribe pattern (or “PubSub”) 1s a data
communication messaging arrangement implemented by
soltware systems where so-called publishers publish mes-
sages to topics and so-called subscribers receive the mes-
sages pertaining to particular topics to which they are
subscribed. There can be one or more publishers per topic
and publishers generally have no knowledge of what sub-
scribers, 1f any, will receive the published messages. Some
PubSub systems do not cache messages or have small caches
meaning that subscribers may not receive messages that
were published before the time of subscription to a particular
topic. PubSub systems can be susceptible to performance
instability during surges of message publications or as the
number of subscribers to a particular topic increases.

SUMMARY

In general, one aspect of the subject matter described in
this specification can be embodied 1n a computer-imple-
mented load-balancing method for a publish-subscribe sys-
tem. The method includes: selecting a first hosting node
from a plurality of hosting nodes based, at least in part, on
load data selected from at least one of node-specific data
representing loads on the plurality of hosting nodes and
channel-specific data representing a load associated with a
channel; sending a request to the first hosting node to
temporarily host a portion of the channel; temporarily host-
ing the channel portion by the first hosting node by tempo-
rarily storing one or more messages published to the chan-
nel, and temporarily providing, to a plurality of subscribers
to the channel, access to the one or more messages; receiv-
ing a request to access the channel portion; and granting
permission to access the channel portion.

In certain examples, the node-specific data includes one
or more load metrics, which can be or include, for example:
a number of channel portions being temporarily hosted by
the respective hosting nodes, a number of interface nodes
having permission to access the respective hosting nodes, a
data reception rate of the respective hosting nodes, a data
transmission rate of the respective hosting nodes, a storage
utilization of the respective hosting nodes, and/or a process-
ing rate of the respective hosting nodes. The method can
include receiving at least a portion of the node-specific data
from the plurality of hosting nodes. Alternatively or addi-
tionally, the method can include determining at least a
portion of the node-specific data based, at least 1n part, on
received requests to access channel portions and on permis-
sions granted to access channel portions.

In some examples, the channel-specific data includes one
or more load metrics, which can be or include, for example:
a number of subscribers to the channel, a number of pub-
lishers to the channel, a rate at which messages are published
to the channel, a rate at which messages are read from the
channel, a number of interface nodes having permission to
access the channel, and/or a channel portion size for the
channel. The method can include recerving at least a portion
of the channel-specific data from at least one of a hosting
node and an interface node. Selecting the first hosting node
from the plurality of hosting nodes based, at least 1n part, on

10

15

20

25

30

35

40

45

50

55

60

65

2

the load data can include: determining, based at least in part
on the node-specific data, that a load on the first hosting node
1s lowest among respective loads on the hosting nodes; and
selecting the first hosting node based, at least 1n part, on the
determination. In some instances, selecting the first hosting
node from the plurality of hosting nodes based, at least in
part, on the load data includes: determining, based at least in
part on the node-specific data, that a load on the first hosting
node 1s below a threshold load level; and selecting the first
hosting node based, at least 1n part, on the determination.

In various implementations, selecting the first hosting
node from the plurality of hosting nodes based, at least in
part, on the load data includes: determining, based at least in
part on a portion of the node-specific data corresponding to
the first hosting node and on a portion of the channel-specific
data corresponding to the channel, an expected load on the
first hosting node that would result from the first hosting
node hosting the portion of the channel; determining that the
expected load on the first hosting node 1s below a threshold
load level; and selecting the first hosting node based, at least
in part, on the determination that the expected load on the
first hosting node 1s below the threshold load level. The
channel portion can include a first portion of the channel, the
channel can include a second portion, and selecting the first
hostmg node from the plurality of hosting nodes based, at
least 1n part, on the load data can include: determining that
the first hosting node hosts the second channel portion;
determining that a load on the first hosting node 1s below a
threshold load level; and selecting the first hosting node
based, at least 1n part, on the determinations that the first
hosting node hosts the second channel portion and that the
load on the first hosting node 1s below the threshold load
level.

In certain examples, the channel portion includes a first
portion of the channel, the channel further includes a second
portion, and selecting the {first hosting node from the plu-
rality of hosting nodes based, at least 1n part, on the load data
includes: determining that a second hosting node hosts the
second channel portion; determining that a load on the
second hosting node 1s above a threshold load level; deter-
mining that a load on the first hosting node 1s below the
threshold load level; and selecting the first hosting node
based, at least 1n part, on the determinations that the load on
the second hosting node 1s above the threshold load level and
that the load on the first hosting node 1s below the threshold
load level. In one example, selecting the first hosting node
from the plurality of hosting nodes based, at least 1n part, on
the load data includes: determining, based at least in part on
a portion of the channel-specific data, an expected load
associated with hosting the channel portion; determining,
based at least in part on the node-specific data and on the
expected load associated with hosting the channel portion,
that hosting the channel portion on the first hosting node
would reduce inequality of load distribution among the
hosting nodes; and selecting the first hosting node based, at
least 1n part, on the determination that hosting the channel
portion on the first hosting node would reduce 1inequality of
load distribution among the hosting nodes.

In another aspect, the subject matter of this specification
relates to a publish-subscribe system having a plurality of
hosting nodes, an interface node, and a channel manager
node. The system 1s operable to perform operations 1nclud-
ing: selecting a first hosting node from the plurality of
hosting nodes based, at least 1n part, on a load data selected
from at least one of node-specific data representing loads on
the plurality of hosting nodes and channel-specific data
representing a load associated with a channel; sending a

US 10,374,986 B2

3

request to the first hosting node to temporarily host a portion
of the channel, wherein the first hosting node temporarily
hosts the channel portion by temporarily storing one or more
messages published to the channel, and temporarily provid-
ing, to a plurality of subscribers to the channel, access to the
one or more messages; receiving, from the interface node, a
request to access the channel portion; and granting, to the
interface node, permission to access the channel portion.

In various 1nstances, the operation of selecting the first
hosting node from the plurality of hosting nodes based, at
least 1n part, on the load data includes: determining, based at
least 1n part on the node-specific data, that a load on the first
hosting node 1s lowest among respective loads on the
hosting nodes; and selecting the first hosting node based, at
least 1n part, on the determination. The operation of selecting
the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data can include: deter-
mimng, based at least in part on the node-specific data, that
a load on the first hosting node 1s below a threshold load
level; and selecting the first hosting node based, at least 1n
part, on the determination. In some examples, the operation
of selecting the first hosting node from the plurality of
hosting nodes based, at least 1n part, on the load data
includes: determining, based at least 1n part on a portion of
the node-specific data corresponding to the first hosting node
and on a portion of the channel-specific data corresponding
to the channel, an expected load on the first hosting node that
would result from the first hosting node hosting the portion
of the channel; determining that the expected load on the
first hosting node 1s below a threshold load level; and
selecting the first hosting node based, at least 1n part, on the
determination that the expected load on the first hosting
node 1s below the threshold load level.

In certain implementations, the channel portion includes
a {irst portion of the channel, the channel further includes a
second portion, and the operation of selecting the first
hosting node from the plurality of hosting nodes based, at
least 1n part, on the load data includes: determining that the
first hosting node hosts the second channel portion; deter-
miming that a load on the first hosting node 1s below a
threshold load level; and selecting the first hosting node
based, at least 1n part, on the determinations that the first
hosting node hosts the second channel portion and that the
load on the first hosting node 1s below the threshold load
level. In some instances, the channel portion includes a first
portion of the channel, the channel further includes a second
portion, and the operation of selecting the first hosting node
from the plurality of hosting nodes based, at least 1n part, on
the load data includes: determining that a second hosting,
node hosts the second channel portion; determining that a
load on the second hosting node 1s above a threshold load
level; determining that a load on the first hosting node 1s
below the threshold load level; and selecting the first hosting,
node based, at least in part, on the determinations that the
load on the second hosting node 1s above the threshold load
level and that the load on the first hosting node 1s below the
threshold load level. In one example, the operation of
selecting the first hosting node from the plurality of hosting
nodes based, at least 1n part, on the load data includes:
determining, based at least in part on a portion of the
channel-specific data, an expected load associated with
hosting the channel portion; determining, based at least in
part on the node-specific data and on the expected load
associated with hosting the channel portion, that hosting the
channel portion on the first hosting node would reduce
inequality of load distribution among the hosting nodes; and
selecting the first hosting node based, at least 1n part, on the

10

15

20

25

30

35

40

45

50

55

60

65

4

determination that hosting the channel portion on the first
hosting node would reduce 1nequality of load distribution
among the hosting nodes.

In another aspect, the subject matter of this specification
relates to an article that includes a non-transitory machine-
readable medium having instructions stored thereon that
when executed by one or more computers causes the com-
puters to perform operations including: selecting a first
hosting node from a plurality of hosting nodes based, at least
in part, on a load data selected from at least one of node-
specific data representing loads on the plurality of hosting
nodes and channel-specific data representing a load associ-
ated with a channel; sending, to the first hosting node, a
request to temporarily host a portion of the channel; tem-
porarily hosting the channel portion by the first hosting node
by temporarily storing one or more messages published to
the channel, and temporarily providing, to a plurality of
subscribers to the channel, access to the one or more
messages; receiving a request to access the channel portion;
and granting permission to access the channel portion.

Elements of embodiments or examples described with
respect to a given aspect of the mvention can be used in
various embodiments or examples of another aspect of the
invention. For example, 1t 1s contemplated that features of
dependent claims depending from one independent claim
can be used 1n apparatus, systems, and/or methods of any of
the other independent claims.

The details of one or more embodiments of the subject
matter described 1n this specification are set forth in the
accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will

become apparent from the description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example system that supports the
Pub Sub communication pattern.

FIG. 1B illustrates functional layers of software on an
example client device.

FIG. 2 1s a diagram of an example messaging system.

FIG. 3A 15 a data tlow diagram of an example method for
writing data to a streamlet.

FIG. 3B 1s a data tlow diagram of an example method for
reading data from a streamlet.

FIG. 4A 15 a data flow diagram of an example method for
publishing messages to a channel of a messaging system.

FIG. 4B 1s a data flow diagram of an example method for
subscribing to a channel of a messaging system.

FIG. 4C 1s an example data structure for storing messages
ol a channel of a messaging system.

FIG. § 1s a flowchart of an example method for storing
messages ol a messaging system.

DETAILED DESCRIPTION

FIG. 1A illustrates an example system 100 that supports
the Pub Sub commumnication pattern. Publisher clients (e.g.,
Publisher 1) can publish messages to named channels (e.g.,
“Channel 17) by way of the system 100. A message can
comprise any type ol information including one or more of
the following: text, image content, sound content, multime-
dia content, video content, binary data, and so on. Other
types ol message data are possible. Subscriber clients (e.g.,
Subscriber 2) can subscribe to a named channel using the
system 100 and start recerving messages which occur after

US 10,374,986 B2

S

the subscription request or from a given position (e.g., a
message number or time oflset). A client can be both a
publisher and a subscriber.

Depending on the configuration, a PubSub system can be
categorized as follows:

One to One (1:1). In this configuration there 1s one
publisher and one subscriber per channel. A typical use
case 1s private messaging.

One to Many (1:N). In this configuration there 1s one
publisher and multiple subscribers per channel. Typical
use cases are broadcasting messages (e.g., stock
prices).

Many to Many (M:N). In this configuration there are
many publishers publishing to a single channel. The
messages are then delivered to multiple subscribers.
Typical use cases are map applications.

There 1s no separate operation needed to create a named
channel. A channel 1s created implicitly when the channel 1s
subscribed to or when a message 1s published to the channel.
In some implementations, channel names can be qualified by
a name space. A name space comprises one or more channel
names. Different name spaces can have the same channel
names without causing ambiguity. The name space name can
be a prefix of a channel name where the name space and
channel name are separated by a dot or other suitable
separator. In some 1mplementations, name spaces can be
used when specitying channel authorization settings. For
instance, the messaging system 100 may have appl.foo and
appl.system.notifications channels where “appl™ 1s the
name of the name space. The system can allow clients to
subscribe and publish to the appl.foo channel. However,
clients can only subscribe to, but not publish to the
appl.system.notifications channel.

FIG. 1B illustrates functional layers of software on an
example client device. A client device (e.g., client 102) 1s a
data processing apparatus such as, for example, a personal
computer, a laptop computer, a tablet computer, a smart
phone, a smart watch, or a server computer. Other types of
client devices are possible. The application layer 104 com-
prises the end-user application(s) that will integrate with the
Pub Sub system 100. The messaging layer 106 1s a pro-
grammatic itertace for the application layer 104 to utilize
services of the system 100 such as channel subscription,
message publication, message retrieval, user authentication,
and user authorization. In some 1mplementations, the mes-
sages passed to and from the messaging layer 106 are
encoded as JavaScript Object Notation (JSON) objects.
Other message encoding schemes are possible.

The operating system 108 layer comprises the operating,
system soltware on the client 102. In various implementa-
tions, messages can be sent and received to/from the system
100 using persistent or non-persistent connections. Persis-
tent connections can be created using, for example, network
sockets. A transport protocol such as TCP/IP layer 112
implements the Transport Control Protocol/Internet Protocol
communication with the system 100 that can be used by the
messaging layer 106 to send messages over connections to
the system 100. Other communication protocols are possible
including, for example, User Datagram Protocol (UDP). In
turther implementations, an optional Transport Layer Secu-
rity (TLS) layer 110 can be employed to ensure the confi-
dentiality of the messages.

FI1G. 2 1s a diagram of an example messaging system 100.
The system 100 provides functionality for implementing
PubSub communication patterns. The system comprises
software components and storage that can be deployed at
one or more data centers 122 1n one or more geographic

10

15

20

25

30

35

40

45

50

55

60

65

6

locations, for example. The system comprises MX nodes
(e.g., MX nodes or multiplexer nodes 202, 204 and 206), @
nodes (e.g., Q nodes or queue nodes 208, 210 and 212), one
or more channel manager nodes (e.g., channel managers
214, 215), and optionally one or more C nodes (e.g., C nodes
or cache nodes 220 and 222). Each node can execute 1n a
virtual machine or on a physical machine (e.g., a data
processing apparatus). Each MX node serves as a termina-
tion point for one or more publisher and/or subscriber
connections through the external network 216. The internal
communication among MX nodes, Q nodes, C nodes, and
the channel manager, 1s conducted over an internal network
218, for example. By way of illustration, MX node 204 can
be the terminus of a subscriber connection from client 102.
Each Q node buflers channel data for consumption by the
MX nodes. An ordered sequence of messages published to
a channel 1s a logical channel stream. For example, i1 three
clients publish messages to a given channel, the combined
messages published by the clients comprise a channel
stream. Messages can be ordered 1n a channel stream, for
example, by time of publication by the client, by time of
receipt by an MX node, or by time of receipt by a Q node.
Other ways for ordering messages 1n a channel stream are
possible. In the case where more than one message would be
assigned to the same position in the order one of the
messages can be chosen (e.g., randomly) to have a later
sequence 1n the order. Each channel manager node 1s respon-
sible for managing () node load by splitting channel streams
into so-called streamlets (also referred to herein as “channel
portions™). Streamlets are discussed further below. The
optional C nodes provide caching and load removal from the
Q nodes. Q nodes may also be referred to herein as “hosting
nodes.” MX nodes may also be referred to herein as “inter-
face nodes.”

In the example messaging system 100, one or more client
devices (publishers and/or subscribers) establish respective
persistent connections (e.g., TCP connections) to an MX
node (e.g., MX node 204). The MX node serves as a
termination point for these connections. For instance, exter-
nal messages (e.g., between respective client devices and the
MX node) carried by these connections can be encoded
based on an external protocol (e.g., JSON). The MX node
terminates the external protocol and translates the external
messages to internal communication, and vice versa. The
MX nodes publish and subscribe to streamlets on behalf of
clients. In this way, an MX node can multiplex and merge
requests of client devices subscribing for or publishing to the
same channel, thus representing multiple client devices as
one, mstead of one by one.

In the example messaging system 100, a Q node (e.g., Q
node 208) can store one or more streamlets of one or more
channel streams. A streamlet 1s a data butler for a portion of
a channel stream. A streamlet will close to writing when 1ts
storage 1s full. A streamlet will close to reading and writing,
and be de-allocated when 1its time-to-live (TTL) has expired.
By way of 1llustration, a streamlet can have a maximum size
of 1 MB and a T'TL of three minutes. Different channels can
have streamlets limited by different sizes and/or by diflerent
TTLs. For instance, streamlets 1n one channel can exist for
up to three minutes, while streamlets in another channel can
exist for up to 10 minutes. In various implementations, a
streamlet corresponds to a computing process running on a
Q node. The computing process can be terminated after the
streamlet’s TTL has expired, thus freeing up computing
resources (for the streamlet) back to the Q node, for
example.

US 10,374,986 B2

7

When receiving a publish request from a client device, an
MX node (e.g., MX node 204) makes a request to a channel
manager (e.g., channel manager 214) to grant access to a
streamlet to write the message being published. Note, how-
ever, that i the MX node has already been granted write
access to a streamlet for the channel (and the channel has not
been closed to writing), the MX node can write the message
to that streamlet without having to request a grant to access
the streamlet. Once a message 1s written to a streamlet for a
channel, the message can be read by MX nodes and provided
to subscribers of that channel.

Similarly, when receiving a channel subscription request
from a client device, an MX node makes a request to a
channel manager to grant access to a streamlet for the
channel from which messages are read. If the MX node has
already been granted read access to a streamlet for the
channel (and the channel’s TTL has not been closed to
reading) the MX node can read messages from the streamlet
without having to request a grant to access the streamlet. The
read messages can then be forwarded to client devices that
have subscribed to the channel. In various implementations,
messages read from streamlets are cached by MX nodes so
that MX nodes can reduce the number of times needed to
read from the streamlets.

By way of illustration, an MX node can request a grant
from the channel manager that allows the MX node to store
a block of data into a streamlet on a particular () node that
stores streamlets of the particular channel. Example stream-
let grant request and grant data structures are as follows:

StreamletGrantRequest = {
"channel": string()
"mode": "read” | "write"
“position”: 0

h

StreamletGrantResponse = {

"streamlet-1d": "abcdef82734987",
"limit-size': 2000000, # 2 megabytes max
"limit-msgs": 5000, # 5 thousand messages max
"limit-life"”: 4000, # the grant 1s valid for 4 seconds
“g-node”: string()
“position”: 0

The StreamletGrantRequest data structure stores the name
of the stream channel and a mode 1indicating whether the MX
node mtends on reading from or writing to the streamlet. The
MX node sends the StreamletGrantRequest to a channel
manager node. The channel manager node, in response,
sends the MX node a StreamletGrantResponse data struc-
ture. The StreamletGrantResponse contains an identifier of
the streamlet (streamlet-1d), the maximum size of the
streamlet (limit-size), the maximum number of messages
that the streamlet can store (limit-msgs), the TTL (limit-life),
and an i1dentifier of a Q node (g-node) on which the streamlet
resides. The StreamletGrantRequest and StreamletGrantRe-
sponse can also have a position field that points to a position
in a streamlet (or a position in a channel) for reading from
the streamlet.

A grant becomes invalid once the streamlet has closed.
For example, a streamlet 1s closed to reading and writing
once the streamlet’s TTL has expired and a streamlet 1s
closed to writing when the streamlet’s storage 1s full. When
a grant becomes invalid, the MX node can request a new
grant {rom the channel manager to read from or write to a
streamlet. The new grant will reference a different streamlet
and will refer to the same or a different QQ node depending
on where the new streamlet resides.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 3A 1s a data flow diagram of an example method for
writing data to a streamlet 1in various embodiments. In FIG.
3A, when an MX node (e.g., MX node 202) request to write
to a streamlet 1s granted by a channel manager (e.g., channel
manager 214), as described before, the MX node establishes
a Transmission Control Protocol (TCP) connection with the
Q node (e.g., Q node 208) 1dentified in the grant response
received from the channel manager (302). A streamlet can be
written concurrently by multiple write grants (e.g., for
messages published by multiple publisher clients). Other
types of connection protocols between the MX node and the
QQ node are possible.

The MX node then sends a prepare-publish message with
an 1dentifier of a streamlet that the MX node wants to write
to the Q node (304). The streamlet 1dentifier and Q node
identifier can be provided by the channel manager in the
write grant as described earlier. The Q node hands over the
message to a handler process 301 (e.g., a computing process
running on the Q node) for the identified streamlet (306).
The handler process can send to the MX node an acknowl-
edgement (308). After recerving the acknowledgement, the
MX node starts writing (publishing) messages (e.g., 310,
312, 314, and 318) to the handler process, which in turns
stores the received data in the identified streamlet. The
handler process can also send acknowledgements (316, 320)
to the MX node for the recerved data. In some implemen-
tations, acknowledgements can be piggy-backed or cumu-
lative. For instance, the handler process can send to the MX
node an acknowledgement for every predetermined amount
of data received (e.g., for every 100 messages received) or
for every predetermined time period (e.g., for every one
millisecond). Other acknowledgement scheduling algo-
rithms, such as Nagle’s algorithm, can be used.

If the streamlet can no longer accept published data (e.g.,
when the streamlet 1s full), the handler process sends a
Negative-Acknowledgement (NAK) message (330) indicat-
ing a problem, following by an EOF (end-oi-file) message
(332). In thus way, the handler process closes the association
with the MX node for the publish grant. The MX node can
then request a write grant for another streamlet from a
channel manager 11 the MX node has additional messages to
store.

FIG. 3B 1s a data flow diagram of an example method for
reading data from a streamlet 1n various embodiments. In
FIG. 3B, an MX node (e.g., MX node 204) sends to a
channel manager (e.g., channel manager 214) a request for
reading a particular channel starting from a particular mes-
sage or time offset in the channel. The channel manager
returns to the MX node a read grant including an 1dentifier
ol a streamlet containing the particular message, a position
in the streamlet corresponding to the particular message, and
an 1dentifier of a Q node (e.g., Q node 208) containing the
particular streamlet. The MX node then establishes a TCP
connection with the Q node (352). Other types of connection
protocols between the MX node and the (Q node are possible.

The MX node then sends to the (Q node a subscribe
message (354) with the identifier of the streamlet (1in the Q)
node) and the position 1n the streamlet from which the MX
node wants to read (356). The Q node hands over the
subscribe message to a handler process 351 for the streamlet
(356). The handler process can send to the MX node an
acknowledgement (358). The handler process then sends
messages (360, 364, 366), starting at the position in the
streamlet, to the MX node. In some implementations, the
handler process can send all of the messages 1n the streamlet
to the MX node. After sending the last message 1n a

particular streamlet, the handler process can send a notifi-

US 10,374,986 B2

9

cation of the last message to the MX node. The MX node can
send to the channel manager another request for another
streamlet containing a next message in the particular chan-
nel.

If the particular streamlet 1s closed (e.g., after its T'TL has
expired), the handler process can send an unsubscribe mes-
sage (390), followed by an EOF message (392), to close the
association with the MX node for the read grant. The MX
node can close the association with the handler process
when the MX node moves to another streamlet for messages
in the particular channel (e.g., as mnstructed by the channel
manager). The MX node can also close the association with
the handler process 11 the MX node receives an unsubscribe
message from a corresponding client device.

In various implementations, a streamlet can be written
into and read from at the same time instance. For instance,
there can be a valid read grant and a valid write grant at the
same time instance. In various implementations, a streamlet
can be read concurrently by multiple read grants (e.g., for
channels subscribed to by multiple publisher clients). The
handler process of the streamlet can order messages from
concurrent write grants based on, for example, time-oi-
arrival, and store the messages based on the order. In this
way, messages published to a channel from multiple pub-
lisher clients can be serialized and stored in a streamlet of
the channel.

In the messaging system 100, one or more C nodes (e.g.,
C node 220) can oflload data transiers from one or more ()
nodes. For 1nstance, 1 there are many MX nodes requesting,
streamlets from Q nodes for a particular channel, the stream-
lets can be oflloaded and cached 1n one or more C nodes. The
MX nodes (e.g., as mstructed by read grants from a channel
manager) can read the streamlets from the C nodes nstead.

As described above, messages for a channel 1n the mes-
saging system 100 are ordered in a channel stream. A
channel manager (e.g., channel manager 214) splits the
channel stream into fixed-sized streamlets that each reside
on a respective QQ node. In this way, storing a channel stream
can be shared among many (Q nodes; each Q node stores a
portion (one or more streamlets) of the channel stream. More
particularly, a streamlet can be stored in, for example,
registers and/or dynamic memory elements associated with
a computing process on a Q node, thus avoiding the need to
access persistent, slower storage devices such as hard disks.
This results in faster message access. The channel manager
can also balance load among Q nodes in the messaging
system 100 by monitoring respective workloads of the @
nodes and allocating streamlets 1n a way that avoids over-
loading any one Q) node.

In various implementations, a channel manager maintains
a list identifying each active streamlet, the respective (Q node
on which the streamlet resides, an identification of the
position of the first message in the streamlet, and whether
the streamlet 1s closed for writing. In some implementations,
Q nodes notify the channel manager and any MX nodes that
are publishing to a streamlet that the streamlet 1s closed due
to being full or when the streamlet’s TTL has expired. When
a streamlet 1s closed, the streamlet remains on the channel
manager’s list of active streamlets until the streamlet’s TTL
has expired so that MX nodes can continue to retrieve
messages from the streamlet.

When an MX node requests a write grant for a given
channel and there 1s not a streamlet for the channel that can
be written to, the channel manager allocates a new streamlet
on one of the QQ nodes and returns the identity of the
streamlet and the Q node in the StreamletGrantResponse.
Otherwise, the channel manager returns the identity of the

10

15

20

25

30

35

40

45

50

55

60

65

10

currently open for writing streamlet and corresponding ()
node 1n the StreamletGrantResponse. MX nodes can publish
messages to the streamlet until the streamlet 1s full or the
streamlet’s TTL has expired, after which a new streamlet can
be allocated by the channel manager.

When an MX node requests a read grant for a given
channel and there 1s not a streamlet for the channel that can
be read from, the channel manager allocates a new streamlet
on one of the QQ nodes and returns the identity of the
streamlet and the Q node in the StreamletGrantResponse.
Otherwise, the channel manager returns the identity of the
streamlet and Q node that contains the position from which
the MX node wishes to read. The Q node can then begin
sending messages to the MX node from the streamlet
beginning at the specified position until there are no more
messages 1n the streamlet to send. When a new message 1s
published to a streamlet, MX nodes that have subscribed to
that streamlet will receive the new message. I a streamlet’s
TTL has expired, the handler process 351 sends an EOF
message (392) to any MX nodes that are subscribed to the
streamlet.

As described earlier in reference to FIG. 2, the messaging
system 100 can include multiple channel managers (e.g.,
channel managers 214, 215). Multiple channel managers
provide resiliency and prevent single point of failure. For
instance, one channel manager can replicate lists of stream-
lets and current grants 1t maintains to another *“slave”
channel manager. As for another example, multiple channel
managers can coordinate operations between them using
distributed consensus protocols, such as, for example, Paxos
or Raft protocols.

FIG. 4A 15 a data flow diagram of an example method for
publishing messages to a channel of a messaging system. In
FIG. 4A, publishers (e.g., publisher clients 402, 404, 406)
publish messages to the messaging system 100 described
carlier in reference to FI1G. 2. For instance, publishers 402
respectively establish connections 411 and send publish
requests to the MX node 202. Publishers 404 respectively
establish connections 413 and send publish requests to the
MX node 206. Publishers 406 respectively establish con-
nections 415 and send publish requests to the MX node 204.
Here, the MX nodes can communicate (417) with a channel
manager (e.g., channel manager 214) and one or more ()
nodes (e.g., Q nodes 212 and 208) in the messaging system
100 via the internal network 218.

By way of illustration, each publish request (e.g., in JSON
key/value pairs) from a publisher to an MX node includes a
channel name and a message. The MX node (e.g., MX node
202) can assign the message 1n the publish request to a
distinct channel 1n the messaging system 100 based on the
channel name (e.g., “fo0”) of the publish request. The MX
node can confirm the assigned channel with the channel
manager 214. If the channel (specified 1n the subscribe
request) does not yet exist in the messaging system 100, the
channel manager can create and maintain a new channel 1n
the messaging system 100. For instance, the channel man-
ager can maintain a new channel by maintaining a list
identifving each active streamlet of the channel’s stream, the
respective Q node on which the streamlet resides, and
identification of the positions of the first and last messages
in the streamlet as described earlier.

For messages ol a particular channel, the MX node can
store the messages 1n one or more bullers or streamlets 1n the
messaging system 100. For instance, the MX node 202
receives from the publishers 402 requests to publish mes-
sages M11, M12, M13, and M14 to a channel {oo. The MX

node 206 receives from the publishers 404 requests to

US 10,374,986 B2

11

publish messages M78 and M79 to the channel foo. The MX
node 204 receives from the publishers 406 requests to

publish messages M26, M27, M28, M29, M30, and M31 to

the channel foo.

The MX nodes can i1dentily one or more streamlets for
storing messages for the channel foo. As described earlier,
cach MX node can request a write grant from the channel
manager 214 that allows the M X node to store the messages
in a streamlet of the channel {oo. For instance, the MX node

202 receives a grant from the channel manager 214 to write
messages M11, M12, M13, and M14 to a streamlet 4101 on

the Q node 212. The MX node 206 receives a grant from the

channel manager 214 to write messages M78 and M79 to the
streamlet 4101. Here, the streamlet 4101 1s the last one (at
the moment) of a sequence of streamlets of the channel
stream 430 storing messages of the channel foo. The stream-
let 4101 has messages (421) of the channel foo that were
previously stored 1n the streamlet 4101, but 1s still open, 1.¢.,
the streamlet 4101 still has space for storing more messages
and the streamlet’s TTL has not expired.

The MX node 202 can arrange the messages for the
channel foo based on the respective time that each message
was received by the MX node 202, e.g., M11, M13, M14,
M12 (422), and store the received messages as arranged 1n
the streamlet 4101. That 1s, the MX node 202 receives M11
first, followed by M13, M14, and M12. Similarly, the MX
node 206 can arrange the messages for the channel foo based
on their respective time that each message was received by
the MX node 206, ¢.g., M78, M79 (423), and store the
received messages as arranged 1n the streamlet 4101. Other
arrangements or ordering of the messages for the channel are
possible.

The MX node 202 (or MX node 206) can store the
received messages using the method for writing data to a
streamlet described earlier 1n reference to FIG. 3A, for
example. In various 1mplementat10ns the MX node 202 (or
MX node 206) can bufler (e.g., in a local data bufler) the
received messages for the channel foo and store the received
messages 1n a streamlet for the channel foo (e.g., streamlet
4101) when the bullered messages reach a predetermined
number or size (e.g., 100 messages) or when a predeter-
mined time (e.g., 50 milliseconds) has elapsed. For instance,
the MX node 202 can store 1n the streamlet 100 messages at
a time or 1 every 50 milliseconds. Other acknowledgement
scheduling algorithms, such as Nagle’s algorithm, can be
used.

In various implementations, the Q node 212 (e.g., a
handler process) stores the messages of the channel foo in
the streamlet 4101 in the order as arranged by the MX node
202 and MX node 206. The QQ node 212 stores the messages
of the channel foo 1n the streamlet 4101 1n the order the
node 212 receives the messages. For instance, assume that
the Q node 212 receives messages M78 (from the MX node
206) first, followed by messages M11 and M13 (from the
MX node 202), M79 (from the MX node 206), and M14 and
M12 (from the MX node 202). The Q node 212 stores in the
streamlet 4101 the messages 1n the order as received, e.g.,
M78, M11, M13, M79, M14, and M12, immediately after
the messages 421 that are already stored 1n the streamlet
4101. In this way, messages published to the channel foo
from multiple publishers (e.g., 402, 404) can be serialized 1n
a particular order and stored in the streamlet 4101 of the
channel foo. Different subscribers that subscribe to the
channel foo will recerve messages of the channel foo 1n the
same particular order, as will be described in more detail 1n

reterence to FIG. 4B.

10

15

20

25

30

35

40

45

50

55

60

65

12

In the example of FIG. 4A, at a time instance after the
message M12 was stored in the streamlet 4101, the MX node
204 requests a grant from the channel manager 214 to write
to the channel foo. The channel manager 214 provides the
MX node 204 a grant to write messages to the streamlet
4101, as the streamlet 4101 1s still open for writing. The MX
node 204 arranges the messages for the channel foo based on
the respective time that each message was received by the
MX node 204, e.g., M26, M27, M31, M29, M30, M28 (424),
and stores the messages as arranged for the channel foo.

By way of illustration, assume that the message M26 1s
stored to the last available position of the streamlet 4101. As
the streamlet 4101 1s now tull, the Q node 212 sends to the
MX node 204 a NAK message, following by an EOF
message, to close the association with the MX node 204 for
the write grant, as described earlier 1n reference to FIG. 3A.
The MX node 204 then requests another write grant from the
channel manager 214 for additional messages (e.g., M27,
M31, and so on) for the channel foo.

The channel manager 214 can monitor available (Q nodes
in the messaging system 100 for their respective workloads
(e.g., how many streamlets are residing in each QQ node). The
channel manager 214 can allocate a streamlet for the write
request from the MX node 204 such that overloading (e.g.,
too many streamlets or too many read or write grants) can be
avoided for any given QQ node. For instance, the channel
manager 214 can identily a least loaded QQ node in the
messaging system 100 and allocate a new streamlet on the
least loaded QQ node for write requests from the MX node
204. In the example of FIG. 4A, the channel manager 214
allocates a new streamlet 4102 on the Q node 208 and
provides a write grant to the MX node 204 to write messages
for the channel foo to the streamlet 4102. As shown in FIG.
4A, the Q node stores 1n the streamlet 4102 the messages
from the MX node 204 1n an order as arranged by the MX
node 204: M27, M31, M29, M30, and M28 (assuming that
there 1s no other concurrent write grant for the streamlet
4102 at the moment).

When the channel manager 214 allocates a new streamlet
(c.g., streamlet 4102) for a request for a grant from an MX
node (e.g., MX node 204) to write to a channel (e.g., 100),
the channel manager 214 assigns to the streamlet 1ts TTL,
which will expire after TTLs of other streamlets that are
already 1n the channel’s stream. For instance, the channel
manager 214 can assign to each streamlet of the channel
foo’s channel stream a T'TL of 3 minutes when allocating the
streamlet. That 1s, each streamlet will expire 3 minutes after
it 1s allocated (created) by the channel manager 214. Since
a new streamlet 1s allocated after a previous streamlet 1s
closed (e.g., filled entirely or expired), in this way, the
channel foo’s channel stream comprises streamlets that each
expires sequentially after its previous streamlet expires. For
instance, as shown 1n an example channel stream 430 of the
channel foo in FIG. 4A, streamlet 4098 and streamlets
before 4098 have expired (as indicated by the dotted-lined
gray-out boxes). Messages stored in these expired streamlets
are not available for reading for subscribers of the channel
foo. Streamlets 4099, 4100, 4101, and 4102 are still active
(not expired). The streamlets 4099, 4100, and 4101 are
closed for writing, but still are available for reading. The
streamlet 4102 1s available for reading and writing, at the
moment when the message M28 was stored 1n the streamlet
4102. At a later time, the streamlet 4099 will expire,
following by the streamlets 4100, 4101, and so on.

FIG. 4B 1s a data tlow diagram of an example method for
subscribing to a channel of a messaging system. In FIG. 4B,
a subscriber 480 establishes a connection 462 with an MX

US 10,374,986 B2

13

node 461 of the messaging system 100. Subscriber 482
establishes a connection 463 with the MX node 461. Sub-
scriber 485 establishes a connection 467 with an MX node
468 of the messaging system 100. Here, the MX nodes 461
and 468 can respectively communicate (464) with the chan-
nel manager 214 and one or more (Q nodes 1n the messaging
system 100 via the internal network 218.

A subscriber (e.g., subscriber 480) can subscribe to the
channel foo of the messaging system 100 by establishing a
connection (e.g., 462) and sending a request for subscribing
to messages ol the channel foo to an MX node (e.g., MX
node 461). The request (e.g., 1n JSON key/value pairs) can
include a channel name, such as, for example, “100.” When
receiving the subscribe request, the MX node 461 can send
to the channel manager 214 a request for a read grant for a
streamlet 1n the channel foo’s channel stream.

By way of illustration, assume that at the current moment

the channel foo’s channel stream 431 includes active stream-
lets 4102, 4103, and 4104, as shown in FIG. 4B. The

streamlets 4102 and 4103 each are full. The streamlet 4104
stores messages of the channel foo, including the last
message (at the current moment) stored at a position 47731.
Streamlets 4101 and streamlets before 4101 are invalid, as
their respective TTLs have expired. Note that the messages
M78, M11, M13, M79, M14, M12, and M26 stored in the
streamlet 4101, described earlier in reference to FI1G. 4A, are
no longer available for subscribers of the channel foo, since
the streamlet 4101 1s no longer valid, as 1ts TTL has expired.
As described earlier, each streamlet 1n the channel foo’s
channel stream has a TTL of 3 minutes, thus only messages
(as stored 1n streamlets of the channel foo) that are published
to the channel foo (1.e., stored into the channel’s streamlets)
no earlier than 3 minutes from the current time can be
available for subscribers of the channel foo.

The MX node 461 can request a read grant for all
available messages 1n the channel foo, for example, when
the subscriber 480 1s a new subscriber to the channel foo.
Based on the request, the channel manager 214 provides the
MX node 461 a read grant to the streamlet 4102 (on the Q
node 208) that 1s the earliest streamlet in the active stream-
lets of the channel foo (i.e., the first 1n the sequence of the
active streamlets). The MX node 461 can retrieve messages
in the streamlet 4102 from the (Q node 208, using the method
for reading data from a streamlet described earlier in refer-
ence to FIG. 3B, for example. Note that the messages
retrieved from the streamlet 4102 maintain the same order as
stored 1n the streamlet 4102. However, other arrangements
or ordering of the messages 1n the streamlet are possible. In
various 1mplementations, when providing messages stored
in the streamlet 4102 to the MX node 461, the QQ node 208
can bufler (e.g., 1n a local data builer) the messages and send
the messages to the MX node 461 when the buller messages
reach a predetermined number or size (e.g., 200 messages)
or a predetermined time (e.g., 50 milliseconds) has elapsed.
For instance, the Q node 208 can send the channel foo’s
messages (from the streamlet 4102) to the MX node 461 200
messages at a time or i every 50 milliseconds. Other
acknowledgement scheduling algorithms, such as Nagle’s
algorithm, can be used.

After receiving the last message in the streamlet 4102, the
MX node 461 can send an acknowledgement to the Q node
208, and send to the channel manager 214 another request
(e.g., Tor a read grant) for the next streamlet 1n the channel
stream of the channel foo. Based on the request, the channel
manager 214 provides the MX node 461 a read grant to the
streamlet 4103 (on QQ node 472) that logically follows the
streamlet 4102 1n the sequence of active streamlets of the

10

15

20

25

30

35

40

45

50

55

60

65

14

channel foo. The MX node 461 can retrieve messages stored
in the streamlet 4103, e.g., using the method for reading data
from a streamlet described earlier in reference to FIG. 3B,

until 1t retrieves the last message stored in the streamlet
4103. The MX node 461 can send to the channel manager
214 yet another request for a read grant for messages in the
next streamlet 4104 (on Q node 474). After receiving the
read grant, the MX node 461 retrieves message of the
channel foo stored in the streamlet 4104, until the last
message at the position 47731. Similarly, the MX node 468
can retrieve messages irom the streamlets 4102, 4103, and
4104 (as shown with dotted arrows 1n FIG. 4B), and provide
the messages to the subscriber 485.

The MX node 461 can send the retrieved messages of the
channel foo to the subscriber 480 (via the connection 462)
while receiving the messages from the Q node 208, 472, or
4'74. In various implementations, the MX node 461 can store
the retrieved messages 1 a local bufler. In this way, the
retrieved messages can be provided to another subscriber
(c.g., subscriber 482) when the other subscriber subscribes
to the channel foo and requests the channel’s messages. The
MX node 461 can remove messages stored in the local butler
that each has a time of publication that has exceeded a
predetermined time period. For instance, the MX node 461
can remove messages (stored in the local bufler) with
respective times ol publication exceeding 3 minutes. In
some 1mplementations, the predetermined time period for
keeping messages 1n the local buller on MX node 461 can
be the same as or similar to the time-to-live duration of a
streamlet 1n the channel foo’s channel stream, since at a
given moment, messages retrieved from the channel’s
stream do not include those in streamlets having respective
time-to-lives that had already expired.

The messages retrieved from the channel stream 431 and
sent to the subscriber 480 (by the MX node 461) are
arranged 1n the same order as the messages were stored 1n
the channel stream, although other arrangements or ordering
of the messages are possible. For instance, messages pub-
lished to the channel foo are serialized and stored in the
streamlet 4102 1n a particular order (e.g., M27, M31, M29,
M30, and so on), then stored subsequently in the streamlet
4103 and the streamlet 4104. The MX node retrieves mes-
sages Irom the channel stream 431 and provides the
retrieved messages to the subscriber 480 1n the same order
as the messages are stored in the channel stream: M27, M31,
M29, M30, and so on, followed by ordered messages in the
streamlet 4103, and followed by ordered messages in the
streamlet 4104.

Instead of retrieving all available messages 1n the channel
stream 431, the MX node 461 can request a read grant for
messages stored 1n the channel stream 431 starting from a
message at particular position, e.g., position 47202. For
instance, the position 47202 can correspond to an earlier
time instance (e.g., 10 seconds before the current time) when
the subscriber 480 was last subscribing to the channel foo
(e.g., via a connection to the MX node 461 or another MX
node of the messaging system 100). The MX node 461 can
send to the channel manager 214 a request for a read grant
for messages starting at the position 47202. Based on the
request, the channel manager 214 provides the MX node 461
a read grant to the streamlet 4104 (on the Q node 474) and
a position on the streamlet 4104 that corresponds to the
channel stream position 47202. The MX node 461 can
retrieve messages in the streamlet 4104 starting from the
provided position, and send the retrieved messages to the

subscriber 480.

US 10,374,986 B2

15

As described above i1n reference to FIGS. 4A and 4B,
messages published to the channel foo are serialized and
stored 1n the channel’s streamlets 1n a particular order. The
channel manager 214 maintains the ordered sequence of
streamlets as they are created throughout their respective
time-to-lives. Messages retrieved from the streamlets by an

MX node (e.g., MX node 461, or MX node 468) and
provided to a subscriber can be, 1n some implementations, in
the same order as the messages are stored in the ordered
sequence of streamlets. In this way, messages sent to dif-
ferent subscribers (e.g., subscriber 480, subscriber 482, or
subscriber 485) can be 1n the same order (as the messages
are stored 1n the streamlets), regardless which MX nodes the
subscribers are connected to.

In various implementations, a streamlet stores messages
in a set of blocks of messages. Each block stores a number
of messages. For imstance, a block can store two hundred
kilobytes of messages. Each block has 1ts own time-to-live,

which can be shorter than the time-to-live of the streamlet
holding the block. Once a block’s TTL has expired, the

block can be discarded from the streamlet holding the block,
as described 1n more detail below 1n reference to FIG. 4C.

FI1G. 4C 1s an example data structure for storing messages
of a channel of a messaging system. As described with the
channel foo 1n reference to FIGS. 4A and 4B, assume that at
the current moment the channel foo’s channel stream 432
includes active streamlets 4104 and 4105, as shown 1n FIG.
4C. Streamlet 4103 and streamlets before 4103 are invalid,
as their respective TTLs have expired. The streamlet 4104 1s
already full for its capacity (e.g., as determined by a corre-
sponding write grant) and 1s closed for additional message
writes. The streamlet 4104 1s still available for message
reads. The streamlet 4105 1s open and 1s available for
message writes and reads.

By way of illustration, the streamlet 4104 (e.g., a com-
puting process running on the () node 474 shown in FIG. 4B)
currently holds two blocks of messages. Block 494 holds
messages from channel positions 47301 to 47850. Block 495
holds messages from channel positions 47851 to 48000. The
streamlet 4105 (e.g., a computing process running on
another Q node 1n the messaging system 100) currently
holds two blocks of messages. Block 496 holds messages
from channel positions 48001 to 48200. Block 497 holds
messages starting from channel position 48201, and still
accepts additional messages of the channel foo.

When the streamlet 4104 was created (e.g., by a write
grant), a first block (sub-bufler) 492 was created to store
messages, €.g., ifrom channel positions 47010 to 47100.
Later on, after the block 492 had reached its capacity,
another block 493 was created to store messages, €.g., from
channel positions 47111 to 47300. Blocks 494 and 495 were
subsequently created to store additional messages. After-
wards, the streamlet 4104 was closed for additional message
writes, and the streamlet 4105 was created with additional
blocks for storing additional messages of the channel foo.

In this example, the respective TTL’s of blocks 492 and
493 had expired. The messages stored 1n these two blocks
(from channel positions 47010 to 47300) are no longer
available for reading by subscribers of the channel foo. The
streamlet 4104 can discard these two expired blocks, e.g., by
de-allocating the memory space for the blocks 492 and 493.
The blocks 494 or 495 could become expired and be
discarded by the streamlet 4104, before the streamlet 4104
itsell becomes 1nvalid. Alternatively, streamlet 4104 1tself
could become 1nvalid before the blocks 494 or 495 become
expired. In this way, a streamlet can hold one or more blocks

5

10

15

20

25

30

35

40

45

50

55

60

65

16

of messages, or contain no block of messages, depending on
respective TTLs of the streamlet and blocks, for example.

A streamlet, or a computing process running on a () node
in the messaging system 100, can create a block for storing
messages of a channel by allocating a certain size of memory
space from the (Q node. The streamlet can receive, from an
MX node 1n the messaging system 100, one message at a
time and store the received message 1 the block. Alterna-
tively, the MX node can assemble (1.e., bufler) a group of
messages and send the group of messages to the Q node. The
streamlet can allocate a block of memory space (from the @
node) and store the group of messages in the block. The MX
node can also perform compression on the group of mes-
sages, €.g., by removing a common header from each
message or performing other suitable compression tech-
niques.

Referring again to FIG. 2, 1n some examples, the systems
and methods described herein balance load among the
nodes for one or more channels. For example, when select-
ing a (Q node to host a streamlet for a channel, the channel
manager 214 can select the (Q node based on 1ts present
workload (also referred to herein as “load™) and/or based on
an expected workload the QQ node will have once the hosting
begins. The workload of the () node and other nodes can be
determined using load data that provides an indication of
how active or busy the Q nodes are at the current time and/or
are projected to be 1n the future. The load data for a given
(Q node can include one or more load metrics, such as, for
example, information about the number of messages being
handled or processed by the Q node. In various implemen-
tations, the load data 1s or can include a combination of two
or more load metrics. For example, the combination can be
linear, non-linear, weighted, or un-weighted, although other
combinations are possible. In one example, the load data can
be a weighted combination of load metrics, with weights for
the combination determined through experimental measure-
ments and analysis of system performance. Linear regres-
s10n or other data-fitting techniques can be used to determine
the weights and/or the load metrics that have the greatest
influence on workload and system performance. In some
instances, the load data can include node-specific data
representing loads on one or more Q nodes and/or channel-
specific data representing loads associated with one or more
channels. The load data can be or include, for example, a
combination (e.g., a weighted combination) of node-specific
data and/or channel-specific data.

In certain examples, the node-specific load data can
include the rate at which messages are being written to the
Q node and/or the rate at which messages are being deliv-
ered from the Q node. In general, the higher the rate at which
the Q node 1s sending and/or recerving messages, the higher
the workload 1s for the Q node. The rate of transfer to or
from the Q node can be compared with maximum or
threshold transter rates for the Q node. The threshold
transfer rates can be determined statically, for example, by
observing a system configuration, such as a network inter-
face (e.g., Ethernet) device’s capacity. Alternatively or addi-
tionally, the threshold transfer rates can be determined
dynamically, for example, by observing the maximum trans-
fer rates at which response latencies remain at a pre-defined
level. An 1mitial threshold transfer rate can also be deter-
mined experimentally, such as during benchmarking of the
system. In various instances, if the rate of transier to and/or
from the (Q node 1s at, near or exceeds the maximum
available or threshold transfer rate, the workload and/or the
possible future workload for the Q node can be considered
high, such that the Q node is less likely to be selected for

US 10,374,986 B2

17

hosting of additional streamlets at that time. In some
examples, message transfer rates are measured 1n terms of
the number of messages per time (e.g., messages per second)
and/or the data transfer rate (e.g., bytes per second).

In some 1nstances, the node-specific load data can include
the number of streamlets or messages currently stored by the
Q nodes. The storage 1n the (Q node can be compared with
a maximum or threshold storage value for the Q node. The
threshold storage value can be determined statically, for
example, by observing the system configuration and dedi-
cating a portion of the system memory (e.g., RAM), such as
70%, 80%, 90% or other suitable percentage, to the appli-
cation. An 1mitial threshold storage value can be determined
experimentally, such as during benchmarking of the system.
In general, when storage 1n a () node 1s at, near or exceeds
the threshold storage value, the workload and/or possible
future workload can be considered high and/or the QQ node
may have limited space for additional storage. In such cases,
the Q node 1s less likely to be selected at that time for storage
of additional streamlets. The number of messages stored by
a Q node may be measured, for example, 1n bytes or 1n
number of messages.

Alternatively or additionally, node-specific load data for a
given (Q node can include information about the number of
channels or channel portions (i.e., streamlets) currently
being hosted or processed by the Q node. The number of
channels or channel portions being hosted or processed by
the Q node can be compared with a maximum or threshold
number of channels. If the number of channels hosted by the
Q node 1s at, near or exceeds the maximum number of
channels, the workload of the Q node and/or the possible
future workload can be considered high. In wvarious
instances, the maximum number of channels can be limited
by and/or determined from the system memory and/or the
CPU and network overhead of keeping or maintaining a
channel. An initial maximum number of channels can be
determined experimentally, such as during benchmarking of
the system. As messaging activity for a channel increases,
the workload for the Q node hosting the channel can be
expected to increase. The channel manager 214 can monitor
trends 1 channel messaging activity to predict how the
hosting of streamlets will influence (Q node loads. If the
expected workload associated with hosting a streamlet will
be too high for a Q node, the channel manager 214 can select
a different Q node that has suflicient workload capacity
and/or available storage to host the streamlet.

In some nstances, the node-specific load data for a Q
node 1s measured based on the number of MX nodes that
have been given read and/or write access to the QQ node. The
workload of a Q node can increase as the number of MX
nodes having read/write access to the Q node increases.
Additionally, the number of MX nodes having read/write
access to the Q node can provide an indication of the
possible future workload for the Q node. For example, when
a large number of MX nodes have read/write access to the
Q node, the potential for high message transier rates exists,
even though current message transfer rates may not be high.
In such cases, the MX nodes can put higher demands on the
Q node, as the activity level on corresponding channels
increases. The node-specific load data for a Q node can
include, 1 some instances, mformation regarding (1) the
number of received requests from MX nodes to access
streamlets stored on the QQ node and/or (1) the number of
permissions granted to the MX nodes to access the stream-
lets.

In general, the node-specific load data for a (Q node can
include the processing rate for the Q node. A computation or

10

15

20

25

30

35

40

45

50

55

60

65

18

processing rate for the Q node can be calculated and
compared with a threshold or maximum processing value for

the Q node. The threshold processing (CPU) value can be,
for example, between 30% and 70% of a Q node CPU limiat,
to account for spikes, although other threshold processing
values are possible. In one example, the threshold process-
ing value can be determined by observing system behavior
under actual production load and determining safe con-
straints, for example, by determining a level at which the
system becomes unstable, which may be indicated by oscil-
lations 1n traflic or processing rates. In one example, the
threshold processing value can be equal to one-half or
one-third of the processing rate corresponding to the onset of
system 1nstability, although other threshold processing val-
ues are possible. When the processing rate for the (Q node 1s
at, near, or exceeds the threshold processing value, the
workload for the Q node can be considered high. With a high
workload, the Q node 1s less likely to be selected by the
channel manager 214 to host a new streamlet.

In addition to monitoring the QQ node workloads, the
channel manager 214 can also monitor rates of change 1n the
workloads. The node-specific load data can include, for
example, an indication of how the message transier rates,
message storage amounts, number of channels hosted, num-
ber of MX node connections, the processing rate for the Q
node, and/or other load metrics are changing over time. The
rates of change can be or include, for example, a derivative
or slope associated with the load metrics. The rates of
change can be used to predict what the workload will be 1n
the future for the Q node. For example, the channel manager
214 can use the current workload and the rate of change to
extrapolate (e.g., linearly) from the current workload to a
predicted future workload.

In general, to determine 11 a current or future workload of
a (Q node 1s high, the systems and methods (e.g., the channel
manager 214) can compare the current or future workload
(e.g., a message transier rate or a storage rate) with a
threshold value. The threshold value can be, for example, a
maximum value that should not be exceeded, to avoid
performance issues. In some 1nstances, the threshold value
can be determined through experimental observation and/or
1s chosen to be a workload above which system performance
1s reduced or otherwise not optimal. The workload for a ()
node can be expressed as a raw load level or as a percentage
of the threshold value. In general, when the current or
predicted workload 1s at or near (or even exceeds) the
threshold value, the Q node can be considered overloaded
and 1s less likely to be selected to host a new streamlet.

Additionally or alternatively, the systems and methods
(e.g., the channel manager 214) can balance loads on the @
nodes by considering channel-specific data. In general,
channel-specific data relates to information about a channel
for which a new streamlet will be hosted. Channel-specific
data can include, for example, the number of subscribers to
a channel and/or the number of publishers to the channel. If
the number of subscribers and/or publishers to the channel
1s high, an anticipated load associated with a new streamlet
for the channel can also be high. Likewise, the channel-
specific data can include a rate at which messages are
published to the channel. A high publication rate for a
channel 1s generally an indication that a workload associated
with a new streamlet for the channel will be high. In some
examples, the channel-specific data includes the number of
interface nodes having permission to access the channel. In
general, when a large number of interface nodes can access
a channel, the expected workload for the channel will be
high, for example, due to more requests to read from or write

US 10,374,986 B2

19

to the channel. Accordingly, channel-specific data can allow
the channel manager 214 to predict a workload associated
with a particular channel. The channel manager 214 can use
the predicted workload to determine how much work will be
associated with hosting a new streamlet for the channel. The
channel manager 214 can then use the predicted workload to
choose an appropriate (Q node for hosting the new streamlet.
For example, 1t the predicted workload for the streamlet 1s
expected to be high, based on the channel-specific data, the
channel manager 214 can choose a (Q node having a work-
load that 1s low enough to handle the high workload asso-
ciated with the new streamlet.

In various examples, the node-specific data and/or the
channel-specific data can consider or include geographic
location. For example, 1f channel activity 1s primarily
expected to be 1n a particular geographic location (e.g., New
Zealand), then the channel manager 214 can select a Q node
that resides 1n or near the geographic location (e.g., in a New
Zealand data center).

In some examples, the one or more Q nodes and/or the one
or more MX nodes provide the channel manager 214 with
the load data, including the node-specific data and/or the
channel-specific data. The Q nodes can be configured, for
example, to monitor their message transier rates, messages
storage amounts, MX node connections, etc., and any asso-
ciated rates of change, and provide that information (e.g.,
node-specific data) to the channel manager 214. The same or
similar node-specific information can be collected by MX
nodes and/or provided to the channel manager 214 by MX
nodes. The channel-specific data can likewise be collected
by Q nodes and/or MX nodes and sent to the channel
manager 214. For example, the Q nodes and/or the MX
nodes can monitor one or more channels to determine the
number of subscribers, the number of publishers, the rate of
message publication, and/or the number of MX connections
for the channels.

In general, the channel manager 214 uses the load data
(1.e., node-specific data and/or channel-specific data) to
balance loads among the various Q nodes. For example, the
channel manager 214 can use the load data to select the next
(Q node for hosting a new streamlet. The next Q node can be
chosen based on i1ts current workload or projected future
workload, compared to other Q nodes 1n the system. For
example, when the channel manager 214 1s selecting a Q
node to host a streamlet for a channel, the channel manager
214 can choose a (Q node that has the lowest workload or the
lowest projected future workload among the available
nodes. To predict the future workload, the channel manager
214 can estimate an additional workload associated with a
tuture hosting task and add the additional workload to the
current workload for the Q node. The channel manager 214
can also consider how many streamlets being hosted by the
Q node will expire 1n the future, thereby reducing the
node’s workload.

In some cases, the channel manager 214 can predict a Q
node’s workload at a future time as follows: future
workload=current workload+expected change 1in workload.
The current workload 1s generally a Q node’s workload at a
current time. The expected change in workload 1s an
expected difference between the current workload and the
expected workload at the future time. The expected change
in workload can be determined based on, for example, the
predicted increase in workload (e.g., due to hosting new
streamlets and/or increases in channel activity) and the
predicted decrease in workload (e.g., due to streamlet expi-
ration and/or decreases 1in channel activity).

10

15

20

25

30

35

40

45

50

55

60

65

20

In certain instances, the systems and methods (e.g., the
channel manager 214 and/or the Q nodes) can monitor the
workloads of the various Q nodes to determine when new
streamlets need to be opened or closed. For example, the
channel manager 214 can decide to close a streamlet on a Q
node when a workload of the Q node 1s getting high. The
channel manager 214 can then open a new streamlet for the
corresponding channel on a different Q node, preferably
selected based on the load data and QQ node workloads, as
described herein.

In various 1nstances, when a first streamlet will be closed
and a second streamlet immediately following the first
streamlet will be opened, the channel manager 214 can open
the second streamlet on the (Q node that 1s hosting the first
streamlet. When deciding to use the same QQ node for the first
and second streamlets, the channel manager 214 can first
coniirm that the workload of the Q node 1s below a threshold
level, such that opening the second streamlet will not
overload the QQ node. Alternatively, 11 the workload of the Q
node 1s above the threshold level, the channel manager 214
can select a different Q node, having a workload below the
threshold level, to host the second streamlet.

In general, when selecting QQ nodes to host new stream-
lets, the systems and methods can attempt to balance work-
loads among the available Q nodes. When a new streamlet
will be opened, for example, the channel manager 214 can
determine an expected workload associated with hosting the
new streamlet. The channel manager 214 can then select a)
node to host the new streamlet based on the expected
workload associated with hosting the streamlet. The QQ node
can be selected such that workloads are distributed equally
across the Q nodes of the system. To determine workload
inequality among the Q nodes, the channel manager 214 can
determine a standard deviation of the workload distribution
and select () nodes for new hosting tasks in an eflort to
minimize the standard deviation. Other measurements of
workload mequality can include, for example, the difference
between a maximum workload and a mimmimum workload
among the () nodes, or the variance among the (Q nodes. In
general, when selecting the next Q node for hosting a
streamlet, the channel manager 214 can make a Q node
selection that reduces workload inequality among the Q
nodes.

In certain examples, the channel manager 214 can send a
request to a Q node to terminate hosting of a streamlet. The
request to terminate can be sent, for example, when a
determination 1s made that there are no subscribes to the
channel associated with the streamlet and/or when a time-
to-live for the streamlet has expired. In response to the
request, the () node can terminate the hosting of the stream-
let and inform the channel manager 214 that the hosting has
been terminated. Terminating the hosting of the streamlet
can include, for example, closing the streamlet to further
publication, closing the streamlet to further reading, and/or
deleting message data associated with the streamlet. A
decision to close a streamlet can be based on, for example,
the determination that the size of the streamlet exceeds a
threshold size, the determination that the age of the streamlet
exceeds a threshold age (e.g., a TTL), and/or the determi-
nation that the hosting node has experienced a communica-
tion failure.

In some 1nstances, an MX node informs the channel
manager 214 about a request from a publisher to publish to
a new channel. In such a case, the channel manager 214 can
determine that the channel does not exist and, 1n response,
can select a (Q node to host a streamlet for the new channel.
The Q node selection can be performed using the techniques

US 10,374,986 B2

21

described herein. The channel manager 214 can select the
same (Q node or a different Q node to host additional
streamlets for the new channel (e.g., when a preceding or
youngest streamlet 1s closed to further publication).

FIG. 5 1s a flowchart of an example method for balancing
workload among (Q nodes of a publish-subscribe system.
The method can be implemented using a channel manager,
such as, for example, the channel manager 214 of the
messaging system 100. The method begins by selecting (step
502), from a plurality of hosting nodes (1.e., Q nodes) of a
publish-subscribe system, a first hosting node (i.e., a first Q
node) to temporarily host a portion of a channel of the
publish-subscribe system. In certain instances, temporarily
hosting the channel portion includes temporarily storing one
or more messages published to the channel, and temporarily
providing, to a plurality of subscribers to the channel, access
to the one or more messages. The method also includes
sending (step 504), to the first hosting node of the publish-
subscribe system, a request to temporarily host the channel
portion. A request to access the channel portion 1s recerved
(step 506) from an interface node (1.e., an MX node) of the
publish-subscribe system. Permission to access the channel
portion 1s granted (step 508) to the interface node. In
general, selecting the first hosting node to temporarily host
the channel portion includes selecting the first hosting node
from the plurality of hosting nodes based, at least 1n part, on
load data that includes node-specific data representing loads
on the plurality of hosting nodes and/or channel-specific
data representing a load associated with the channel.

Embodiments of the subject matter and the operations
described 1n this specification can be implemented 1n digital
clectronic circuitry, or 1n computer software, firmware, or
hardware, including the structures disclosed 1n this specifi-
cation and their structural equivalents, or in combinations of
one or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, 1.€., one or more modules of
computer program instructions, encoded on computer stor-
age medium for execution by, or to control the operation of,
data processing apparatus. Alternatively or in addition, the
program 1nstructions can be encoded on an artificially-
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that 1s generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus. A
computer storage medium can be, or be included 1n, a
computer-readable storage device, a computer-readable stor-
age substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover,
while a computer storage medium 1s not a propagated signal,
a computer storage medium can be a source or destination of
computer program instructions encoded i1n an artificially-
generated propagated signal. The computer storage medium
can also be, or be included 1n, one or more separate physical
components or media (e.g., multiple CDs, disks, or other
storage devices).

The operations described 1n this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or recerved from other sources.

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application-specific

10

15

20

25

30

35

40

45

50

55

60

65

22

integrated circuit). The apparatus can also include, 1 addi-
tion to hardware, code that creates an execution environment
for the computer program 1n question, €.g., code that con-
stitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them. The apparatus and execution environ-
ment can realize various different computing model inira-
structures, such as web services, distributed computing and
orid computing infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written 1n any
form of programming language, including compiled or
interpreted languages, declarative or procedural languages,
and 1t can be deployed 1n any form, including as a stand-
alone program or as a module, component, subroutine,
object, or other unit suitable for use 1 a computing envi-
ronment. A computer program may, but need not, correspond
to a file 1n a file system. A program can be stored in a portion
of a file that holds other programs or data (e.g., one or more
scripts stored 1n a markup language resource), 1n a single file
dedicated to the program in question, or 1n multiple coor-
dinated files (e.g., files that store one or more modules,
sub-programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform actions by operating on mput data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application-specific integrated cir-
cuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions 1 accor-
dance with 1nstructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receirve data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic disks, magneto-optical disks,
optical disks, or solid state drives. However, a computer
need not have such devices. Moreover, a computer can be
embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device (e.g., a universal serial
bus (USB) flash drive), to name just a few. Devices suitable
for storing computer program instructions and data include
all forms of non-volatile memory, media and memory
devices, including, by way of example, semiconductor
memory devices, e.g., EPROM, EEPROM, and f{flash
memory devices; magnetic disks, e.g., imnternal hard disks or
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated 1n, special purpose logic
circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-

US 10,374,986 B2

23

mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., a mouse, a trackball, a touchpad, or a
stylus, by which the user can provide input to the computer.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the
user can be any form of sensory feedback, e.g., visual
teedback, auditory feedback, or tactile feedback; and 1nput
from the user can be received 1 any form, including
acoustic, speech, or tactile input. In addition, a computer can
interact with a user by sending resources to and receiving
resources from a device that 1s used by the user; for example,
by sending web pages to a web browser on a user’s client
device 1n response to requests received from the web
browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of digital data
communication, €.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks).

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HI'ML page) to a
client device (e.g., for purposes of displaying data to and
receiving user mput from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

A system of one or more computers can be configured to
perform particular operations or actions by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that in operation causes or cause the
system to perform the actions. One or more computer
programs can be configured to perform particular operations
or actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus
to perform the actions.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain
features that are described 1n this specification in the context
ol separate embodiments can also be implemented 1n com-
bination 1n a single embodiment. Conversely, various fea-
tures that are described in the context of a single embodi-
ment can also be mmplemented 1n multiple embodiments
separately or in any suitable subcombination. Moreover,
although features may be described above as acting in
certain combinations and even 1itially claimed as such, one
or more features from a claimed combination can in some

10

15

20

25

30

35

40

45

50

55

60

65

24

cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation 1n all embodi-
ments, and i1t should be understood that the described
program components and systems can generally be inte-
grated together 1n a single software product or packaged nto
multiple software products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in
the claims can be performed 1n a different order and still
achieve desirable results. In addition, the processes depicted
in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

What 1s claimed 1s:

1. A load-balancing method for a publish-subscribe sys-
tem, the load-balancing method comprising:

selecting, by one or more computer processors, a first

hosting node from a plurality of hosting nodes based, at
least 1n part, on load data comprising node-specific data
representing loads on the plurality of hosting nodes and
channel-specific data representing a load associated
with a channel comprising a channel portion to be
temporarily offloaded;

sending, by the one or more computer processors, a

request to the first hosting node to temporarily host the
channel portion of the channel, wherein the request to
the first hosting node to temporarily host the channel
portion comprises an indication for one or more mes-
sages published to the channel to be temporarily stored
and for access to the one or more messages to be
temporarily provided to a plurality of subscribers, and
wherein the one or more messages were previously
stored on a second hosting node;

recerving a request to access the channel portion; and

granting permission to access the channel portion.

2. The load-balancing method of claim 1, wherein the
node-specific data comprises one or more load metrics
selected from at least one of: a number of channel portions
being temporarily hosted by the respective hosting nodes, a
number of interface nodes having permission to access the
respective hosting nodes, a data reception rate of the respec-
tive hosting nodes, a data transmission rate of the respective
hosting nodes, a storage utilization of the respective hosting
nodes, or a processing rate of the respective hosting nodes.

3. The load-balancing method of claim 1, further com-
prising:

recerving at least a portion of the node-specific data from

the plurality of hosting nodes.

4. The load-balancing method of claim 1, further com-
prising:

determining at least a portion of the node-specific data

based, at least 1n part, on received requests to access the
channel portion and on permissions granted to access
the channel portion.

US 10,374,986 B2

25

5. The load-balancing method of claim 1, wherein the
channel-specific data comprises one or more load metrics
selected from at least one of: a number of subscribers to the
channel, a number of publishers to the channel, a rate at
which messages are published to the channel, a rate at which
messages are read from the channel, a number of interface
nodes having permission to access the channel, or a channel
portion size for the channel.

6. The load-balancing method of claim 1, further com-
prising:

receiving at least a portion of the channel-specific data

from at least one of a hosting node or an interface node.
7. The load-balancing method of claim 1, wherein select-
ing the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data comprises:
determining, based at least 1n part on the node-specific
data, that a load on the first hosting node i1s lowest
among respective loads on the hosting nodes; and

selecting the first hosting node based, at least 1n part, on
the determination.

8. The load-balancing method of claim 1, wherein select-
ing the first hosting node from the plurality of hosting nodes
based, at least 1 part, on the load data comprises:

determining, based at least 1n part on the node-specific
data, that a load on the first hosting node i1s below a
threshold load level; and

selecting the first hosting node based, at least 1n part, on

the determination.
9. The load-balancing method of claim 1, wherein select-
ing the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data comprises:
determining, based at least 1n part on a portion of the
node-specific data corresponding to the first hosting
node and on a portion of the channel-specific data
corresponding to the channel, an expected load on the
first hosting node that would result from the first
hosting node hosting the portion of the channel;

determining that the expected load on the first hosting
node 1s below a threshold load level; and

selecting the first hosting node based, at least 1n part, on

the determination that the expected load on the first
hosting node 1s below the threshold load level.

10. The load-balancing method of claim 1, wherein the
channel portion comprises a first portion of the channel,
wherein the channel further comprises a second channel
portion, and wherein selecting the first hosting node from the
plurality of hosting nodes based, at least 1n part, on the load
data comprises:

determining that the first hosting node hosts the second

channel portion;
determining that a load on the first hosting node 1s below
a threshold load level; and

selecting the first hosting node based, at least 1n part, on
the determinations that the first hosting node hosts the
second channel portion and that the load on the first
hosting node 1s below the threshold load level.

11. The load-balancing method of claim 1, wherein the
Channel portion comprises a {first portion of the channel,
wherein the channel further comprises a second channel
portion, and wherein selecting the first hosting node from the
plurality of hosting nodes based, at least 1n part, on the load
data comprises:

determining that the second hosting node hosts the second

channel portion;

determining that a load on the second hosting node 1s

above a threshold load level;

5

10

15

20

25

30

35

40

45

50

55

60

65

26

determiming that a load on the first hosting node 1s below

the threshold load level; and

selecting the first hosting node based, at least 1n part, on

the determinations that the load on the second hosting
node 1s above the threshold load level and that the load
on the first hosting node 1s below the threshold load
level.

12. The load-balancing method of claim 1, wherein select-
ing the first hosting node from the plurality of hosting nodes
based, at least in part, on the load data comprises:

determining, based at least 1 part on a portion of the

channel-specific data, an expected load associated with
hosting the channel portion;

determiming, based at least 1n part on the node-specific

data and on the expected load associated with hosting
the channel portion, that hosting the channel portion on
the first hosting node would reduce mequality of load
distribution among the hosting nodes; and

selecting the first hosting node based, at least 1n part, on

the determination that hosting the channel portion on
the first hosting node would reduce 1mnequality of load
distribution among the hosting nodes.

13. A computing device, comprising:

a channel manager node operable to:

select a first hosting node from a plurality of hosting,
nodes based, at least 1n part, on load data comprising,
node-specific data representing loads on the plurality
of hosting nodes and channel-specific data represent-
ing a load associated with a channel comprising a
channel portion to be temporarily offloaded;

send a request to the first hosting node to temporarily host

the channel portion of the channel, wherein the request
to the first hosting node to temporarily host the channel
portion comprises an indication for one or more mes-
sages published to the channel to be temporarily stored
and for access to the one or more messages to be
temporarily provided to a plurality of subscribers to the
channel, and wherein the one or more messages were
previously stored on a second hosting node;

receive, Irom an interface node, a request to access the

channel portion; and

grant, to the interface node, permission to access the

channel portion.

14. The computing device of claim 13, wherein to select
the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data the channel manager
node 1s further to:

determine, based at least in part on the node-specific data,

that a load on the first hosting node 1s lowest among
respective loads on the hosting nodes; and

select the first hosting node based, at least in part, on the

determination.

15. The computing device of claim 13, wherein to select
the first hosting node from the plurality of hosting nodes
based, at least in part, on the load data the channel manager
node 1s further to:

determine, based at least 1n part on the node-specific data,

that a load on the first sting node 1s below a threshold
load level; and

select the first hosting node based, at least in part, on the

determination.

16. The computing device of claim 13, wherein to select
the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data the channel manager
node 1s further to:

determine, based at least in part on a portion of the

node-specific data corresponding to the first hosting

US 10,374,986 B2

27

node and on a portion of the channel-specific data
corresponding to the channel, an expected load on the
first hosting node that would result from the {first
hosting node hosting the portion of the channel;

determine that the expected load on the first hosting node
1s below a threshold load level; and

select the first hosting node based, at least 1n part, on the

determination that the expected load on the first hosting
node 1s below the threshold load level.

17. The computing device of claam 13, wherein the
channel portion comprises a first portion of the channel,
wherein the channel further comprises a second channel
portion, and wherein to select the first hosting node from the
plurality of hosting nodes based, at least 1n part, on the load
data the channel manager node 1s further to:

determine that the first hosting node hosts the second

channel portion;

determine that a load on the first hosting node 1s below a

threshold load level; and

select the first hosting node based, at least 1n part, on the

determinations that the first hosting node hosts the
second channel portion and that the load on the first
hosting node 1s below the threshold load level.

18. The computing device of claam 13, wherein the
channel portion comprises a first portion of the channel,
wherein the channel further comprises a second channel
portion, and wherein to select the first hosting node from the
plurality of hosting nodes based, at least 1n part, on the load
data the channel manager node 1s further to:

determine that the second hosting node hosts the second

channel portion;

determine that a load on the second hosting node 1s above

a threshold load level,;

determine that a load on the first hosting node 1s below the

threshold load level; and

select the first hosting node based, at least 1n part, on the

determinations that the load on the second hosting node
1s above the threshold load level and that the load on the
first hosting node 1s below the threshold load level.

10

15

20

25

30

35

28

19. The computing device of claim 13, wherein to select
the first hosting node from the plurality of hosting nodes
based, at least 1n part, on the load data the channel manager
node 1s further to:

determine, based at least in part on a portion of the

channel-specific data, an expected load associated with
hosting the channel portion;

determine, based at least 1n part on the node-specific data

and on the expected load associated with hosting the
channel portion, that hosting the channel portion on the
first hosting node would reduce inequality of load
distribution among the hosting nodes; and

select the first hosting node based, at least in part, on the

determination that hosting the channel portion on the
first hosting node would reduce mequality of load
distribution among the hosting nodes.

20. A non-transitory machine-readable medium having
instructions stored thereon that, when executed by one or
more computer processors, cause the one or more computer
Processors to:

select a first hosting node from a plurality of hosting

nodes based, at least in part, on load data comprising
node-specific data representing loads on the plurality of
hosting nodes and channel-specific data representing a
load associated with a channel comprising a channel
portion to be temporarily offloaded;

send, to the first hosting node, a request to temporarily

host the channel portion of the channel, wherein the
request to the first hosting node to temporarily host the
channel portion comprises an indication for one or
more messages published to the channel to be tempo-
rarily stored and for access to the one or more messages
to be temporarily provided to a plurality of subscribers,
and wherein the one or more messages were previously
stored on a second hosting node;

recerve a request to access the channel portion; and
grant permission to access the channel portion.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

