12 United States Patent

(10) Patent No.:

US010372699B2

US 10,372,699 B2

He et al. 45) Date of Patent: Aug. 6, 2019
(54) PATCH-UP OPERATIONS ON INVALIDITY (56) References Cited
DATA
U.S. PATENT DOCUMENTS
(71) Applicant: Oracle International Corporation, 0128972 B2 9/2015 Raja et al
Redwood Shores, CA (US) 0,323,799 B2 4/2016 Hase et al.
9483,517 B2 11/2016 Raja et al.
(72) Inventors: Xiaoming He, Redwood Shores, CA gjgggjggé E%: 2%8; Elalll(lpd ++++++++++++++++++ éo(ggﬁfl }354 gg
_ : - 678, | ckard
(US); Solmaz Kolahi, Redwood City, 0,881,048 B2 1/2018 Kamp et al.
CA (US); Vivekanandhan Raja, 2005/0076113 AL* 4/2005 KIOtZ ..oovvvvvrreecee. HO4L 41/12
Fremont, CA (US); Tirthankar Labhiri, 709/224
Palo Alto, CA (US); Vasudha 2009/0216709 Al* 82009 Cheng GOG6F 17/30442
: : 2016/0350363 Al*™ 12/2016 Raja GO6F 17/30377
Krishnaswamy, Fremont, CA (US): 2017/0262489 AL* 9/2017 S€0 .oovoovcreee. GOGF 17/30377
Sanket Hase, Mountain View, CA (US) 2017/0286291 Al* 10/2017 Thomas GOGF 12/0253
2018/0060378 Al* 3/2018 Kulkarni GO6F 17/30371
(73) Assignee: Oracle International Corporation, . .
Redwood Shores, CA (US) * cited by examiner
. . L . Pri E 'ner — Ashish Th
(*) Notice: Subject to any disclaimer, the term of this PTRATY SAGTIRET > DS
. . Assistant Examiner — Aryan D Toughiry
patent 1s extended or adjusted under 35 . i -
U.S.C. 154(b) by 248 days (74) Attorney, Agent, or Firm — Elliot H. Karlin;
T ' Hickman Palermo Becker Bingham LLP
(21) Appl. No.: 15/264,978 (57) ABSTRACT
(22) Filed: Sep. 14, 2016 Techniques are described for maintaiming coherency of a
portion ol a database object populated in the volatile memo-
635 Prior Publication Data ries ol multiple nodes 1n a database cluster. | he techniques
(65) 1es of multiple nodes in a datab | Th hniq

involve maintaiming a local mvalidation bitmap for which
identifies block-level invalidity data and 1tem-level 1nvalid-
ity data. In response to detecting a patch-up triggering event,

US 2018/0075079 Al Mar. 15, 2018

(51) Int. CI. a particular node 1dentifies, in the block-level invalidity data,
GoOol 16/23 (2019.01) blocks that have been marked as invalid. For each block that
(52) US. CL has been marked as 1nvalid, the node 1dentifies specific items
CPC ... GO6F 16/2322 (2019.01), GO6F 16/2365 that have changed and marks the i1tems as invalid in the
(2019.01) item-level invalidity data. The node then updates the block-
(58) Field of Classification Search level invalidity data to indicate that the blocks are no longer
CPC ... GO6F 17/30333; GOoF 17/30371; GO6F invalid.
17/30545

See application file for complete search history. 20 Claims, 8 Drawing Sheets

DATABASE CLUSTER 100

NODEA0Z | PROCESSOR(S) 108 NODE 122 PROCESSOR(S) 123
. VORATILE MEMORY 12 120 nivizs Tanip YOLATILE MEVDRY 12t
E DB. E.EHHELR i li.é} “““ E_:_F;-i_ é‘i‘j:é: '''''' i M3 f&?.ﬁ"n" E’;R i 134 136
'“r-ﬂﬁ --l.'ﬂl"f?.if,,.-------,l 5y AR ih:iz—*: g,_______j,_f?‘_igl:'_ _________ SMU
PRIVATE | HIRICY || RIC2ERICS | | 17,1 2|0 PRIVATE IR1CT | R1C2 || R1C3 || PR
IRNL 4300 [R2CH || R2C2BR2C3 | 18 |6 JRNL 130 11 R2CTIRC2|IR2C3 T G0
""""""""" RICTI RACIBRICA [V ir [0 [G RaCt i R3C2 || R3O O
GLOEA : | | AR IR Lo aras GLOB | | R
J;LEE“:' J RaCt | racz fraca || | 00 J‘;\h?_“? Ract | Recz || Raca || |- 010]
______ T RS0 | RECZERECA || | 1y i]i8 [0] S THRECH I R5CZ || REC3 | P LALE
BUFFER RECT || REC2HERSCI | | -1 0| ¢ | BUFEER |11 RBCTERBCZ| REC3 -0 0
CACHE 43§ || |} T \ CACHE 139
f’_;"" ""*-,._‘_‘_H
H“__M_ __r,_,..f'df
H““m.ﬂ e __r,_,..:#ﬂ,
DATABASE 167
........ SLOCKAZO 1 BLOOKA8G 11 BLOCKI19Q
tagtE | [l R1C1,RIC2,RICS, || || R3C1,R3CZ,R3C3, || || R5CH RECZ RECY, | |
164 il R2CH,R202,R2C3 ||l R4C1,R4C2, RAC3 R6C1, REC2, RBCS |||
L 150 TRANSACTION RECORDS B

e

-
i — _—
e - e ———

US 10,372,699 B2

Sheet 1 of 8

Aug. 6, 2019

U.S. Patent

all J- - i e i

e
. il -
amp

1111111111111111111

£O0H T4 108y
£G4 708 108y

11111111

_‘o.mﬂ xooﬁ.mm

r..u.l..l._l_..l_....sll_._r!l...l.. .
.I.TI_.-I_.II.I-.I_ i
e
. i

11111111111111111111111111

ROV WATAS “_W,on
pa01% NQE 1ol

-

&9l 38VaVLYE

AL

val
F VL

.
t .
- h I
i .
. . J oy
. *. . .
4o
4t .
. T *. .
. T *.
4o
bt

. ﬂ “ sl sl s e e e e el s el e el el e el e

d344Nd

ShL TINYT

WEOD

0Eh INGP

ALVALEA

97T 1SN

--mw&mm aa |

e e S S e e e e e e N [T AW W W W

D9 |
1 206 |
| Z0vd |
| 708y |
| ToTY |
| ToLY |

DOE,

| TT 3HOVD |
B HEREEE I
o ||
o | LIe0_|
LOTY || | OTT INMf
Lok || 3lvamd |
30T 1SN
W33 A0

L ok k& &k b

001 ¥2L8M10 48vaEvLY(

US 10,372,699 B2

Sheet 2 of 8

Aug. 6, 2019

U.S. Patent

e

1111111

-

.
.

iiiiii

i e

P o
sl i B I

[rorrep PP e PP o P o P e ep P PP e PP P op P opFop P op PP opF PP ep PP op P opFopFopFopFopFopPepF oo PP op P opFep P opFepFepF e opF P opPop P opFopFopFopFopFepPepF e op P opFopPopFeopFop P opPepF PP epPopPop P opFopFopFopFepFopPepF P opPopFopPopFopFop P opPepF P opFepPopFop P opFopFop P opF g opPepP e P op P opFopPopFopFopFopPepF P opFep P opPeop P opFopFopFopFopFopPepF o P opPopFop P opFepF opFopPepF P opFep P opFopFopFopFopFepF eyt

P S S g Sy S Tt Syl Sy Sy Ayl SAgfs Syt Syl agfs Syl St A T St St Sy Ty S S My Syt Sl gl Sy Syt gl Sy St Ay Shyge Sy

il NS

i T

€09y
 £054 |
- £0bd
LORY
07y |
€01 |

ffffffff
e e e e e e e i e o a a a

vawmw
105y |
mewmw
RoixE:
102 |
Rxeid-3

BTT 3HOVD ||
o oW3ddng

ZIT N
WO

011 INYP

R T R M D A R T S S U R S U S R S R S S T R S N g e

G0 15N
d3nd3s 80

}}}}}}}

| {RVASINL T2 [y puoman 31avI0A

g0T (814055300 M

\\\..xxa..ﬂ...ts.i&tsti.t:fffr:aaf//.
SCHOOIH NOLLOVENYYL 051 _
“E09 o9 ooy || | cona zor 1ond ||| eoca zoed oz |||
£06H Z06H 106y £ 708 LOCY | 1 €01y 204 Loty
06l 0078 081 MO0 021 X007 “”
___ eovdsvavlvd
T T T T ——— T

US 10,372,699 B2

Sheet 3 of 8

Aug. 6, 2019

U.S. Patent

g e - e -l i sl gy

,,.,.,f_‘.,.z__ _f.;f g7 "9l

P R R R R R R R R R R R S R R R R SR R R R S R R R S R S R G R R S g S R S R S S R R S R S R R R R S S R R S S R S R R S S R R S R R R R R R R S R R G S S S S R S R R R S R R R R R R R S R S S S R S S R S S R R R R R S R R R S R S R e R R S R S S R R SR R R R S R R R S R R S S S R S R R S R S R R R R R R S R R R S R R R S R S S R R S R S R S R S S g g g

il il il plle il el plle_pli gl i plle_plis pils il pl pli il il pleplie lle_plle gl il plle il plle_plie e plios pis i ple_plie pis ple plls _plin plle_ sl pils il nilplie plie il il il plle il il il il e plle il el el gl i plle s pils il plle_pli gl il pieplie lle_plie gl il plle il pile_plie e plios pils i ple_plie pispli plls_plie pile_ sl pils il nil_piie plie il sl il plle il

€09 ‘7004 109 | EOPH TOP LOVY || |l £07d TOZH 10Ty || RELE
'E05Y Z0OSH LOGY || || 'eOeY ZoeH I0e || | eold iz oy (i) 1 F1eWd

**

uel R0 Usluo0nd jf OLO0TME

B J _______________ N@.ﬂmmﬁmmﬁ.ﬂwﬁm

.... e, P

ok E]

i JHOYO
H344N8

T e
L weoo

|1
L

.........

. - I - A I

|| 50T 1SN
|| d3Ad35 80

US 10,372,699 B2

Sheet 4 of 8

Aug. 6, 2019

U.S. Patent

e o b]

iii

CO9 2094 100y || | €Ovd Zovd 1ovd ||| £0%d T0zd 10z L | FOT
€06y Z05H 106y | | '£06Y 208y 108y || | 60N 2010w | T189L

111
u ¥ " L TT T T
3 - ’
BLaT g
m,
L r
- . - h -y

i o 4 T il il sk wlln O -
i e el alle il ulle e -

BT IHOVD
MA4-415%

R S S Sy S S A Sy S Syl S Syt S SAs S Sl SO TRy S St SO Sy S S S T S gl S Sy

wWao1o

[

OLL INYP
SLVARId

801 LSN
HIAHGS 890

¥0L AHOWIZN 3TLYI0A

11

US 10,372,699 B2

Sheet 5 of 8

Aug. 6, 2019

U.S. Patent

£y wumm 108

[eoou 7oa 100 | | comi zom 1ors || coc zozavona ||l | 9
_ mwmm Numm womm |

Ol T VoL

0I5
SOV
£08Y
ARIeIA.
€0l

L 04
2012
201%
L O
2013

ZEL INNGD
WEOD |

+
]
llllllllllllllllllllllllllllllll “
................ +
F
4 ¥
4]
4 ¥
4] :]
: Q _H : _Zmﬂ :
4 T- ¥
H i
“ “
H : m— : 2
.) H

Y
$ +

e il el il el ple ol i gl e plie plh ol ol i plle il il il il il ple plle il ol il

L= F § F § F § F]

907 1SN ||
NMIANIZ 8T |

L L . L N L N L L L L L L L N L o L o

O0T {S)NOSSIO0ON

£01 30N

S 1dYL

US 10,372,699 B2

Sheet 6 of 8

Aug. 6, 2019

U.S. Patent

| 0T (S)H0S5I00Nd |

SCHOOT NOLLOVONYSL 0591 o
COPY 0P 1OV || | €028 ZoTHL0zd (Il
€084 Z08H 108 || | €O ZOl oW (I
o Q8LMO0] 0210078 |
291 A0VEYLVQ
| \x\iskaiiiia:“&tit%ixiiiri e - - :....E::.H.r!:r....,,.::f..........,.... |
— S
.r-.f-....,..uu..... .
f#rrfi-?rf;fi}f?atji.}fti!,{!r | e R .1........1{......!......:.\!.1.._.\
S e 1T SHOVO
oY || 2094 |} 109 d341018
E0GH | 206¥ || LORY || Mo T
COVE | SIS LIVE L e e TvE0T9 |
B Nt R e ————
£O7Y || ZOTH || 10Ty OTT N
EOLY | 2O [101 3L AN
& Cadin ow 507 |
LR] T | ASNDeEmEsEg
| [NVLSERL U2V 507 AMOWER TULYION

£ Ol

US 10,372,699 B2

Sheet 7 of 8

Aug. 6, 2019

U.S. Patent

ey
AHOMIIN
a0

9T p—

**

LANGA LN

||

W - :q_;; _______________ W _ JOV4HILNE W wwmmﬁ
p MLAN __ m. i
HOML=N m | NOILYOINDWIWOD | #O553008d

AGONSIN
NEY I

FOAA(
SOVHOLE

dAAMSAS

TOHINOO
HQSANG

g R R R L R R L L e a ag

3DIA30 LN

o

AV 1dSIH

L
M)
lll‘ll‘l

N
N
FRCN)

N

e]
RN M

)
L)
ata ety

»
)
»
L

(3
”.__.” H.q”.__.“.___”.q“....q.a o A AL]
.___H.___ .__.“.4”.4“...“.___”.._4... *
W

L)

L)

RN N N
RN

)

*
[
&

-
L3
[y

.4.__.4”._.”4”4”...”.___”4
Ll)
CEE R i R

..4...”.4H4”...H4...4”...H4”.._ WA R
Pl a3

JAEE AR AR A L R
R A A AR A A

LALLM N
el o) Ll] L)

H;H#H#H;H...;&...;H...H&H.._“..r# Eal
el e e e e

..:.4.4....44...4.4....44...4.4..”4 LR
R

L)
L)

»

4-:4
e e M M B e e

»

N)

)

o

-

F)
»
»
»

o
")
»
5
o
»
5
Nt et N M

»
B

»

L e N e)
Lt e)
et e e e
E N RE N MR M
o

NN NN NN N

Ny Ny g e e g e By e B g e e g e By e By ey e g By B g e B By ey B g ey gy B g By e By B g ey gy N e B By N ey By e gy e AT
_._H.qu...”.qn.q”...“a”a”...“a L
L R AL AL L A AL MM N B
BAAE A S AL AL
BAAE A AR AL
L A LM A AL MM L
AR AR AR ALy
R
Ll sk s
Lk ol e)
Ll 0 3 a0 E 0k 3 a0 a0 Bl
DR e sl el a
Ll e A)
L 3k aE ka3 a2 W)
dp atdr e Al e ;
M Yy

M T N

L el st s sl sl L v Y
”...H.q”...”_..u.q”.q”_..u.q”.q”...“_q... ety
Ll al el

LU S el s L)

»

5

o

»
"
)

5

»

»

)

FY
o
44-444-444-44:4-444-444-444-44

NN

”}.“l.”}.”l.“l.”l.”}.“l.” .l. % ”l.“
Lt At sl) *
N)
a5 L
» S el sl el Pl
» Pt At *
* O a2l -
'y Pt) *
E B] Pl Nl sy)
Attt It Ny Tata
e AL S e e i R X
P A A LRt A Ml P St e *
LA C I AL XY AL LN ol el o})
a0 O Ny O e A s aa s a0 *
P S WA Sl el) Pl
A AN) P A At At s) *
OO N M N -
AR T R A M A M A Pt) *
A e e BOACE A AR sy)
A A A A) e A O} *
. P e M) ot A S el el Pl
I.-.q.___.__.._.“.ﬁ.___”.ﬂ.ﬂ.__..._...__... .__H.4.___...4.4....4.4.4.-.4.-.4.._....-.4....4.._....-.4....- B A A e e a a a aa P
A L AN At MM) T A A A) ey P At s st el) *
R e . M N) e WA BRI R
L ML ML AL O B Mt Lt s Al s B] e e a0l
WA N A A S A M WA At s MR AW,
A A A R R R R JE A L N L A A
B A O N L O) N a2l ol
L s a3 L L L S A A] L A R S AL A P L LA st ety
NN A N A N A el el sl el s et sl
O O O G S e A s el a2l L G a aaCa alal e A a0
A e M A S A M A
L A A L N Ay * N A A A A A Aty - . o e A M ALt A
L N S a N a a MM 'y N S a2 - S A M Al T M
A e R A N R MR » R A A A RN AL S At A o P At s e s st ety
TR e e Py » SR R A) ol A)
e e a0 * L A e O OO OO el ; * e A s aa s a0
Pt M) W PN el sl et sl et sl el
S Al el oy S A ot] o P A AL s)
el L A R M O R 'y N a0 a0l
P A A et oy L A AL N R ML M Pt A Ll P LA A A Aty
) » e e e e ML M Sttt et Pl A R
A e e ey Lt A s sl a Al a3 e s el a0y 3l L e s 2l sl sl)
P s sl n L N A A A M e L Ty P N A At e)
L N L A Aty L) WA AR A R AR) Lo At A s s L)
Ll M s M el] S M M S M M N) Lt A M
N A A et) o A A AR SR A A A) s sl)
%.4.4....4.4.4.___.4.4.._.._... * WA e e P Lt N A A
L el e e e el a0 A A M L ool a0l Pl A e aal aa a ala
ot s A e el WA I e ol oy ol P s e
Bl N N N N bk) B N L
L N O N a0y Pl - e OO
et ot M B N I S R A A S AN) AL Salaae L AL M A
Pt A A Al A e e BoA AR ol 2y A A s
s s M, A sl A0 LAl M M AL AL M M A A M A a0 Pl sl sl s 2l a3
L A Al o) WA A el el a5 Sl 2]
W e e A) Pl N A A A A A A Y - Lt el)} de AR e i
L N a0 W AL C A L) P O W P N A A S a al
A M) L R A A A N R A A A L A A A R A A A A M A M A B A) ot s} P A A A A A
P A O Al N N N A A N) S R R R) ANy P A
s el a3 sl 2l 2l L AL LSO AL L A M A AL AL M M ML N AL L B LA Al Mt A ML AL AL M MM) S AL at) I e e el
Lt s D el AT A e N A N A A A A el Ea Pl WA A
s M L A A A A A N R R M N A MY L N A A S R AR A M A N L A N Ny
L N O a0 s el M A S L M M M N LM C AL I AL M) YOG Pl el el O O
sl A o A A N A A A R A S A S S BN A O N A A B B A A AL A A S AL N A A A B S oA L el)
Pt A A Al R A e e el e TR A AR A M Sl
o s 2l s a2l LAt A a0}] LAt M s O} L A s M a2l Al et a0 ety L O M O
P A s N e N N e N N AN Ny A A A N A e A A MM P) —aw
W e e R) Pt A A A A N A A A R S A A A A M) L A L A A R M AT o N A N aw
8 L A Al 0K, a7 2) e M M M N N a0 2 A A A O N O a0 e N A M M
#444444444444.@;444; L N A B A S A A R B AL 0 MR M A A A A R AL M R A A A A A A L A A A S L A A M A e A A L A
L A A S Y P N T e N N N N N) A A e A e e .__-..4....4.._....4.4....._.._....._.._....._.._....._._.-_ PR e
o s sl a3 sl 2l 2l Ul et el el ey M A O GO Y At A et e s sl s sl et a0 s s U 3 M 2 L G G Ml O sy A M G O A
L s e s Al W o) WA A WA A A o N A A R) » WA A
M, o o AN T T N N L O O 00 s M B A Ly PO OO0 DN OO G0N
L N O A - O O P OO O A M e L A M M Al el O L A a0
A S A o) L M A A AL N A A R A B M A L N A I A I A M R A A) L At A T AR
f AR R P P N A A A M) WA e e AR AR AR A L S A
o s sl s a2l e ey Calat 0 e O O M G A s e e at a s a0 U a U O M O O 1 W
L A sl Pl el P N e e M A U ot s e sl el WA ' =Talmata
W e e A) PN R N A R N R LN B AT Pl e I E N A ML At 'y LR M
L N a0 . sl a0 P OO OO Ll M M Al M P A O O] a0 PO OO - Lk
A B o) Ll R A A A A A A A A A A R A A RN = e W RN R A R A R WA R A A A A
0 L A Al) AR P W WA R N AL el L AE N Y S ot W R)
s s s sl " x L OGO 0 Lt e a a a a a a a a a a a a A O a0 el O el Ny w
A R M N A)) Pl WA R WA A WA A E N A A R A P
P s M D * N A e A A M A M AN, N A A Y Al e 2 L A Ay PN)
L N DG - onw w . S S O a0 S B A M) P a2 P O A L)
M)) 'y T L A A A A S AL MR N x n o e R R RNy el e s sl B ALt L aara ALY
L N M a Wa L A N o e M M M OGO 3 Ut a0 U0 -
s sl el ol L) o) * el a3 e U O A 2l O} el a0 O s L O a2l ;
L A Al W M P a._...q.4.__.._._ii#;iii##;ii;i%ii;iiiii S el ; P N A e M A
8 BRI T Jat o 'y A A L At A s PN N A N A At Al A R R
L A Al s M w A A N a y a a LM IC N C LMW ¥ ¥ LI L
e A A e A A S AL) * N R A R A AR M A M, A A A P N A A A ALy e L A A S el o)
P A St N N N R R N) B Nt Y T e e e a a .
o s sl a3 sl 2l 2l el x A A s s s sl o s s} P OO AL ML AL AL ALl ¥ v v N Rl M) Pl a a a0l
Lt s D el el ol A WA R E s W s D
s M it * “ N A A A A Al A A At Ny N A A Y L R A A A A e TR R R R
L N O a0 R S a2 W N a a a a a a a al M L N O N A a
sl A Al 'y “_ e A A A Al A A A WA R e et s A M A e sl
Pt A A Al Ll Al Ml a Mt Mt WA R I A e At A e) B S My
t e e s s s al 3 Pl el x el e a0 el aaC) A A a2l el s s al 2l
P A sl e sl Sl P A s WA R Pt e a at a s al P A
W e e R R el 'y oot W WA R St A L sl s e ey i
L N Pl el a0 el . L At a0 R M O a2 e Al M A M e
A . * “Wu P A A Al Al A M} P A A s A M)
P A O A L N . P A A) A Fa et ar M arN Wt
e s el sl s o a2l S x e a0} el e O O G L e G el .-tn_
s A sl e . K- L A At e s) . WA D
N Pt Al * s S P Wt N Boaa e
L N O a0 Al H : A A e s Al N a2 a2 a0
et ot M Pl s el 'y A e A A L e et M Al e
L SN Pt el) . s WAl o A N A M Pt 3
e e s sl a2l ety x p__““ A O e Al ol a2l s sy el
P A sty P s S et e sl e e)
e M P L 'y B e i A R A e AL Al ac)
L Al s M Al N Lt A e N N OO a0
n Pl sl el sl el * A A A A A A Aty A e el el sl el
* . i N N e At A LA X At
'y x A e e Al el e s s a3 al 2l 3 a0l dr el aal s}
L a aE a aa al) B s s sl T e e T e M A M A
'y a0 a0 T
TR N a0 B R O A a0
x A A B L el
) AN St A el 'y Lt e o A
S e a0l SR e a2l S
* P N N At) St s et sl alal P A N
PP AR e e R o L AL A A L N L AL A
ae L M At A AL A ML MMl AL ML L Lt Al Al Mal)
Pl Pt Al s el el sl el . Pl e sl el sl el o A A AL A et M e el el oy
Sty mﬂn_ L A S AN el N A A AL M N s . AR R R R
el P e e s al sl a0l 44..4..4...4444_% a0l e sl
) P s e sl - P N At A M) Pt sl e e
A Sl AL N AL > L A L Al st Ll de A R
T w R a JA e a x x a s s WA o A A s, A A AL S
L M A A Al M L A A e A MM A AL M A i i e e
e e a s s a a S A a0 P 0
L e Al a0l L et s) Cal e el s el i ataCa) LAl sl
A AL P N N A e L P A e) Ea
Fy e A L L A L A) N e e e * L A
e A e a0 el el sl e e L Ca e
a2l S e e s st el el Salalaa P N At A Al Al Pt s e sl e el arY
PN IE N AL N NN X R U e X a3 Ml ML N W DA Nt N Al LA AL 2l
Lt s D el P e s M) AR A A e Al al Pl N A A A At Mty -
N B M Mt e A M A N A Ny P A A A a2 A M "y L
L N O L Al a3 C e N O O N A M N A O o W
et ot M A A e i i A A L A M et s el s sl el A A MM N, 2 e A
Pt A A Al B L e s WAl S A N el A s NN A N
o s el 3 sl 2l 2l L A A s e Gl i S A sl a al aC aal; e al al M, 2} O s)
P A e N e M P A A Al M B e Al A M A A s WA
P s L A O O OO O e L O a8l S OO O OO .-._._.........__........__........__............_....._.._...1
L N A e A RN S S A RNl A S N e Al a3 M al it W L A M aa a i a A A N a2l R N OGO
e A A A) P A N M M 7 P A P N A A A A N A A A A Ay A R WA A
P A O A N N M At M) WA R AR P A s P M) B e SN AN w .
s el a3 sl 2l 2l " W A O e e s a0 LA AL AL AL ML AL ML A a0} "
A A e * A A At A s) Lt s s WA AT WA
B M AL e M A A a3 P A A st Al N A A A A A Aty
L N A A N sl N et NG L A sl s a0 e O a0 D OO r
sl A : A M A A A e A s sl s al L A A A B AL I AL S ALl A R SN
Pt A A Al A A s N A A M N T T A W A A A MY
o s 2l s a2l N A s a2l ; G Ll sl s al ol 3 el LAl A A B ALt M L)
L Al et s T T e 444;{4444;44;& e AN S . . Pt e e
Al M Ml L N A A A A A Al P L A sy P RN e L A A A AL A
L N a0, N N O DN Pl el U A OO G * L N a0 - B
st A, L A A A A S ALy At sl Al ; 'y L A A M AL M W ; o A A S A M P
9 L N N ST aa w U O G Ca O G " O
s i 3 sl 2l 2l O a0y P a2ty Pl 2O L el il)
Pt A D Al WA N e) R N A A M .
s, P O 0O N Al U U OO0 O A O "
L N N A s, 2l A sl a0} N O M L 0 E RNl a3 R W
L A s s e WA R L A L A AL A Aty AR R s s st s
Lt A A WA R . A N L A ey L A A N L Py
1 o s 2l s a2l Lt At aaCa at a al; DAL AL 0L M AC ML ML ML L It et el O e ey O a0 G L 'y
P A sl e W Pt sl . el S a e A L N AN el e
M B) L N A A A A AL M A) I A A A e A L A A A A A
L A a0 Al OO P a0 T Pt A A e Pt A O M A e N OO
A) WA L A A A A B S LAt e Al) A L A S At Al S A w % A A S L AL Al 'y
P A A A WA R A .;##;#;;##;% L AE A A a0 L N A N L »
s el sl oM, L) Lt A O) e A a3 e Al el a0 a0 O G Ll a0 e) - O A A s Al sl ol x
Pt s e sl N A A A A) s P R M A A At Fa) s - AR e
0 i al O M) iR e M w O 0) t..........__........__........__........__........__.M...
L N T N L U OO Ll S O - PO OGO -y LA M O AN
At M N A M g A WA R P L N A A o B A A
2 L N W gl - - P NG . S w wan U O
s sl a2l A Ot M aly Pl * Ca aar sy x U a0 * G el
P A sl el el WA P » » Pt s e) . sl L N A A M el
W e e R N A A A A Rk * N A A A A3 Pl s A AN 2Ny
L N a0 W Salata e, LML ML I O a0 e w A e O M a0
s A B AT A C N R N AR AR A R Palal S A A S L AL AN, 2 Y
P A a0 WA PN WA AR M M Pl 3 L N A N e A
e s el a3 sl 2l 2l w O O el ; LALLM M L G el Ol G el
Lt s D el A N A e A A) Ca) . B A e - A A M A R A M
- A M N} * N A A A A N Ay Pt} o N A A A) s A a3
L N A Al A W M M Ll et M OO PO . e O Pl) A A O
.-4...4..4...4444;.4“.4““4““4;: : A B A A M g P o L L il Al s A
6 WA g ii.ﬁu L N M O WD) B P OO e e T e - . A O
s a3 sl o s L sl A0 L A Al s al N e A A s O Lt s a2l LAl at A s el
A AR o W e AT e P A N M e M RN A N P N A L N A A M Al
s) L Ol U M N N N e N e Mttt N N N A A
L N G - LAt LML ML ML AL ML LN L a0 o 0 R S AE M O M
e A B M A e A B A A L A 0 A M 3 N A A A A A A A A M AL) L N A A AN A A A
Ll S N N R N M L M NN A N Lt N O L N A N e A
o sl s a0 L AGAC LA M M M M AL M N N a a a a a a aCa a a a al a M Ll et A el e a2l O A A s Al sl ol
Lt s D Al e N A A R AL B T L M A A M
M L A A A A A A L N A A A S R A A A A A A A M At Y A L
& L N O Ll el OO OO i R nCal a n aal a RE Rl P M N A A O
et ol M L A A A BN MR L A A A A AR M A M A WA A R A Al
g Pt A AW A N N A A A N N A R A _.-..___.__..___.4.__..___.___.__..___.___.__..___.-_. WA AR A
o s 2l s a2l 3 Lt s A A s Al a3 R AR MC IR A MM M A MM L O s sl A G
P A A s AT N N M) WA P A A AN Y
s W L O O N i al a M N T N N N A A 0O
A M s al I Lt M N O N N O a2 P OO M O M
R R L A A AL A N AN T T A R A A M A MM A A A A
e N O a0 3 L N OO O BT T T OGN N U N
u S Al Al e el Ll a3 L M O M a2l Al A A A O O} P M O e O A A s a2
Pt A A Al . e N NN A A M) S e a a R S M S N nl A nl P N A A
O OO L O O O Ml e A R R A A) T OO 0O
L e A N A '3 Ll et O ONG M DN AL E ML I S A N a0
L A A A L A A x A A A A B M 3 A N A A A S A A A WA R A A P A
A A M o W » L A R A DI M M LA AL M) WA A WA
L A a6l L s a3 M al; L A s M a2l O a0y W e a0
B A T g i N S A A A) L N A A A A L R e) St A et e el Y N A A
A U A e a Tt a a aa MR P N L s ey O
Ll s a2l L OO OO W . e R a0
S A oy L A A A P A M s e AR A s s A)
N S ey A W R P Pl o N a a a a N A
Lt el s o} L M s el a0 sl a0y . Talannanw et ey N e el
P N A A Y L S N A M PN e N M P Al WA
Mttt N N L O M 0N A] LA U a8 OGO
L N OO N PO 0 -y Saaa a2l N a0
A R B M WA R N N A A) N Al A A A A My ol
e N L N N) - L O T
s L e a aaCM) a0 w SaTnw L i ar N 00N
S Al s M LN S A M) Al w Py A s e A Ay
L A A L AN A A M A el s} o) L L A A A O s
L N DO L OO O O w T el Al el
L A A B L A A L A I Ll) waw S A et s a alala} s A
...._._.-.___._._.4.4.___.4.__..4.___.___.___.___.__. A C L XLt e .y) L e s ;##;#;;%
P a8 w L a0 O a0y ' B N Al el
R Rl WA A el . e Cat e W
N N A A A A a3 LML R ML NS Talanln Y o A N St Pl s)
LR a0 Ml AL el M el W -)
A A e e WA R Pl Al AL A sl el
L O Satwe P T
e o) a0 il ol ol sl a2 x
Py A Pl DN WA »
[l o Pl i e BoR "
Ul PN WG N At Al el 3 Al el M)
) A P e s
Py e aly N N N A)
xw e e i i N A e e al a alal;
" W ol O N AL A
"ty Y) A s A)
P A) e N N e a0
'y] 'y P AL P A
" P * Nl WA
w D) el el sl el 0 O
Caw ' DN N A
o ' i e N A O M
N At . e M a0
) ™ e A A)
NN : a0
] Q Al Al el N A G a aal;
R) § A R M
e N GO
N N H A A O
P AL B A
R WA AR A
A el G
t e OOl L N A A M el
P N e e
o N a2l L U M W
A A L R R
N A N A O
i i N A A A a2l
O - L A A A M
n 441444% o M Y
N N P00 A N O O 2
i N B WA
N el U O N N
el el a0 A Al el
N Pl L N A A N Sl Al
P N A L L e e
N a0l Pl A A O
S) s s A)
Ol e At L N A A N Al Y
D - el el a3l 2l N A A s Al sl 2l
s e s e sl) WA
T O O 0
N s N) A N O O 2
L N A A A A B
N U O O
O MG A s el
AR R L N A A M Al
t e Nl a0 N A A
N A M a2l M O M
A A A AL A A A A)
el s) N R N At e
el el e a2 O A A s Al a8l
N e e N WA
a S AL A N A L
N A A O
N A A O A S s
N N T
A A N A A M O G
AR R e P N A AN Al
.-"....__.....__.....__..__..__..__..__..__..__. N A 0O
L s a2l = M O M
Pt s s) A A A
e M N A O
At et el * L A A s A a2l
WA T A N A A Ml
S i W 0 N O "
P N aaa a Ll N P e 0 nE a R Al E E
N A At S L M) L R A A S A 3R
el s al aal) WA A A R A M e
L e e i * L A a2 a3 a2l 3 a2l
L A N A e s e
M e T N N At e sl
e O A M) L O OO O
L A A M A L A A AL A A A M A M A
M Ll LA AL M) Ca a0
Ll el a2 L
Pt A e N
L A T G0N L M
N A N O
T A R L A A Ml
. M N Pt A N
L A P O
e e s e
At A AL A LI A Al
S A O O W
N S L A ALy a0
L O B
A e
L P
S .I“.‘."‘I"l) ’

US 10,372,699 B2

1

PATCH-UP OPERATIONS ON INVALIDITY
DATA

FIELD OF THE INVENTION

The present invention relates to data storage and retrieval
techniques 1n a database, and more specifically to improved
computer-implemented techniques for maintaining cross-
node invalidity data of an in-memory database object in a
multi-node database cluster.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described 1n this section qualify as prior
art merely by virtue of their inclusion 1n this section.

Database systems typically store database objects (e.g.
tables, indexes, etc.) on disk, and load data 1tems from those
database objects 1nto volatile memory on an as-needed basis.
Once loaded into volatile memory, the data items may
remain cached in volatile memory so that subsequent
accesses to the same data items will not incur the overhead
ol accessing a disk. Those data items may be replaced 1n
cache, for example, to make room in volatile memory to
store other data i1tems that have been requested.

Rather than load individual data items on a per-item basis,
entire database objects, or portions thereof, may be pre-
loaded into volatile memory. Various approaches for loading
entire database objects, or selected portions thereof, into
volatile memory to speed up database operation processing,
are described 1n U.S. patent application Ser. No. 14/377,179,
entitled “Mirroring, In Memory, Data From Disk To
Improve Database operation Performance”, filed Jul. 21,
2014, referred to herein as the “Mirroring” application, the
contents of which 1s incorporated herein 1n 1ts entirety.

According to the approaches described in the Mirroring
application, database objects, or portions thereol, are stored
in volatile memory 1n a different format than the format that
those same objects have on disk. For example, the in-
memory copies of the objects may be stored 1 a column-
major format, while the on-disk copies are stored 1n a
row-major format. An n-memory version or copy of an

object (or selected portions thereol), 1s referred to herein as
an In-Memory-Columnar Unit (IMCU).

On-disk data 1s stored i “blocks™. For disk blocks that
store data for a table of a database, a single block may
contain i1tems from a plurality of rows of the table. When a
particular node wishes to make a change to one or more
items that are stored 1n a particular block, the particular node
obtains a write lock that covers the particular block, loads a
copy of the block into a builer cache 1n volatile memory, and
makes the change to the cached copy of the block. When the
transaction that made the change commits, the changes
made by the transaction become permanent.

When the data items in a block are changed, then the
copies ol those data items that reside 1n IMCUs become
stale. For example, assume that block A has 1tems X, Y and
7., and that a transaction 1 node 1 updates 1tem X. Assume
turther that copies of items X, Y and Z are in an IMCU 1n
node 2. After the update to 1item X made 1 node 1, the copy
of item X in the IMCU 1n node 2 1s stale. To prevent the use
of stale data, node 2 responds to the update to block A by
updating locally-stored invalidity data to indicate that,

within 1ts IMCU, block A 1s mnvalid.

10

15

20

25

30

35

40

45

50

55

60

65

2

When the mvalidity data for an IMCU indicates that a
block 1s invalid, then the node that hosts the IMCU must go
to a source other than the IMCU to obtain the current version

of data from the block. For example, because node 2 has
marked block A as invalid for its IMCU, node 2 will respond
to requests for current versions of i1tems X, Y and Z by
obtaining those versions from other sources (such as an
in-memory journal, builer cache, or disk). Because these
items must be obtained from other sources, the efhiciency
improvement that results from maintaining the IMCU 1n
node 2 1s diminished.

In the foregoing example, only item X was actually
updated. Consequently, the IMCU within node 2 actually
has the most recent version of items Y and Z. However,
because the invalidation 1s performed at the block level,
node 2 treats all items from block A as being invalid. Thus,
node 2 looks elsewhere for the current versions of items Y
and 7 even though the IMCU within node 2 has the current
versions of items Y and Z.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 1s a block diagram 1illustrating a database cluster
with a current version of a database object in the volatile
memories of multiple nodes;

FIG. 2A 15 a block diagram 1llustrating a single node of a
database cluster and an on-disk database.

FIG. 2B 1s a block diagram illustrating a database with
block-level invalidity data identifying invalidity on a block-
level basis.

FIG. 2C 1s a block diagram illustrating a node of a
database cluster accessing transaction records of an on-disk
database to identily item-level invalidity.

FIG. 2D 1s a block diagram illustrating a node of a
database cluster updating imvalidity data based on accessed
transaction records.

FIG. 3 1s a block diagram 1llustrating a node of a data
cluster updating a system change number and a global
journal 1n response to performing a patch-up operation.

FIG. 4 1s a block diagram that illustrates a computer
system upon which an embodiment of the invention may be
implemented.

FIG. 5 1s a flowchart illustrating a process by which a host
node may determine when to perform a patch-up operation,
according to an embodiment.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present mvention.

General Overview

Techniques are described herein for converting coarser-
granularity invalidity data for an IMCU to finer-granularity
invalidity data for the IMCU. The process of performing
such a conversion on the invalidity data is referred to herein
as a “patch-up operation”. After a patch-up operation, 1tems
within the IMCU that were not actually invalid cease to be
treated as invalid. For example, in one embodiment a
patching operation converts block-level mvalidity data to
row-level ivalidity data. In such an embodiment, prior to

US 10,372,699 B2

3

the patching of the invalidity data, all rows 1n a block are
treated as ivalid when a single row within the block 1s
updated. After the patching of the invalidity data, only the
updated row 1s treated as invalid, while 1tems from all other
rows within the block are treated as valid.

In an embodiment where the mvalidity data 1s maintained
at block-level granularity, a particular node storing block-
level invalidity data may detect a patch-up triggering event.
Examples of events that may trigger patch-up operations are
described 1n greater detail hereatter. In response to detecting
the patch-up triggering event, the particular node identifies,
in the block-level invalidity data, blocks that have been
marked as invalid. For each invalid block, the particular
node 1dentifies which specific items in the block have
actually changed. The particular node then updates item-
level invalidity data to indicate that the specific items are no
longer valid. The particular node also updates block-level
invalidity data to indicate that the identified blocks are no
longer 1nvalid.

System Overview

Referring to FIG. 1, database cluster 100 has two nodes
102 and 122. Nodes 102 and 122 respectively have one or
more processors 108 and 128, and local volatile memory 104
and 124. In addition, nodes 102 and 122 are respectively
executing database server instances 106 and 126. While 1n
the 1llustrated embodiment each node 1s executing a single
database server 1instance, in alternative embodiments a
single node may execute more than one database server
instance.

Database server instances 106 and 126 execute database
commands that are submitted to a database server by one or
more database applications (not shown). The data used by
those applications 1s primarily 1n database 162.

Database 162 contains database objects such as table 164.
Table 164 includes three columns c1-c3, and six rows r1-r6
for a total of eighteen data items shown as: R1C1, R1C2,
R1C3, R2C1, R2C2, R2C3, R3C1, R3C2, R3C3, R4(Cl1,

R4C2, R4C3, RSC1, R5C2, R5C3, R6C1, R6C2, and R6C3.

Although the data items are logically arranged 1n a table
when viewed by a user, 1n the embodiment 1llustrated in

FIG. 1, data items for table 164 are stored as row-major
blocks 170, 180, 190 on disk. Database 162 contains trans-
action records 150 for storing the most recent updates to data

items 1n the blocks.
Block 170 stores data items R1C1, R1C2, R1C3, R2(C1,

R2C2, R2C3

Block 180 stores data items R3C1, R3C2, R3C3, R4(1,
R4C2, R4C3

Block 190 stores data items R5C1, R5C2, R5C3, R6(1,
R6C2, R6C3

Each of nodes 102 and 122 1s able to independently access
any block 170, 180, 190 of table 164. After accessing a
particular block, the block may be cached 1n a local bufler
cache 118 and 138. It 1s much faster for any given database
server istance to access data items of table 164 from blocks
that are stored 1n 1ts local volatile memory. If a node updates
a block and the modifications to that block are not reflected
on disk, that particular bufler cache 1s referred to as “dirty.”
I1 the node has a copy of a block 1n a local bufler cache and
the copy of the bock 1s the same as the on-disk copy, then
the bufler cache 1s said to be “clean.”

For the purpose of 1illustration, database 162 i1s shown as
stored on a single shared disk, but in alternative embodi-
ments, database 162 may be spread across multiple disks to
which each of nodes 102 and 122 have access.

10

15

20

25

30

35

40

45

50

55

60

65

4

In-Memory Columnar Units (IMCUS)

In an embodiment, mirror format data 1s organized, within
volatile memory 104 and 134 1n IMCU 114 and 134. Mirror
format data may include copies of all of the persistent format
data, or a subset thereof. Thus, although nodes 102 and 122
are depicted as including copies of each data entry in blocks
170, 180, and 190, 1n an embodiment node 102 only contains
a copy of a subset of the data in database 162. Data stored
in IMCU 114 may be specified by a user of node 102 as
“in-memory enabled” data from database 162.

In an embodiment, the mirror format data in IMCU 114
and 134 1s used to satisiy queries. By using mirror format
data, node 102 and 122 are able to supply data items that are
unavailable 1 bufler cache 118 and 138 without needing to
access database 162 1n persistent storage.

Even 1n situations where the data required by a database
operation 1s not included in the mirror format data in IMCU
114 and 134, the mirror format data may be used to evaluate
predicates, and thereby speed up the database operations in
the same manner as conventional indexes. For example,
assume that table 200 has thousands of rows, and 1n only
three of those rows does column ¢l have the value “joe”.
Under these circumstances, a database server may receive a
database command that requests the values, from column c3,
of all rows where c1="j0¢e”.

In this example, the data that needs to be returned by the
database command 1s from column c¢3, which 1s not in the
mirror format data. However, the data in IMCU 114 and 134
for column 1 may be used to quickly identify the three rows
where c1="j0¢e”. This operation can be performed efliciently
because the data items required to evaluate the predicate
(values from c1) are stored contiguously 1n volatile memory.
Once those rows have been i1dentified, the database server
may retrieve from disk only those blocks needed to obtain
the data from those three rows.

Journals

According to one embodiment, IMCUs are treated as
read-only. Treating an IMCU as read-only reduces overhead,
particularly 1n situations where the IMCU 1s 1n a compressed
format. If not treated as read-only, every time any item
within the IMCU 1s updated, the entire IMCU would have to
be decompressed, updated, and recompressed.

According to one embodiment, because the IMCU 1s
treated as read-only and therefore will not itself retlect
changes made after the IMCU 1s created, every database
operation aflecting data stored in IMCU 114 or 134 1s
tracked 1n a private journal (110 or 130) maintained for the
transaction that 1s performing the operation. A transaction 1s
a sequence of database operations that are treated as a single
unit. Using the private journal, a node may track transaction-
specific changes to items that have MF copies in the node’s
IMCU without actually changing those MF copies in the
IMCU.

Any given transaction 1s able to access its own private
journal to see all changes that 1t itself has made, but no other
transactions can see those changes until the transaction
commits. For example if node 102 1s executing a transaction
X associated with private journal 110, private journal 110 1s
only accessible by transaction X until transaction X com-
mits. Once the transaction X commits, the aggregate
changes from private journal 110 are pushed to a corre-
sponding global journal.

Invalidity Data

To ensure that each node 1s aware of the IMCU data that
1s no longer valid, each IMCU has a corresponding snapshot
metadata unit (SMU) (116 and 136) that stores, among other
things, invalidity data. According to one embodiment, each

US 10,372,699 B2

S

SMU i1ncludes a plurality of bitmaps that indicate which
portions of the IMCU are 1invalid, where each bitmap of the

plurality of bitmaps indicates invalidity at a diflerent level of

granularity.
For example, in FIG. 1, SMU 116 for IMCU 114 includes
a block-level invalidity bitmap 115, and a row-level 1nva-

lidity bitmap 117. Block-level invalidity bitmap 115 indi-
cates which blocks 1n database 162 have invalid data items
within IMCU 114. Row-level mnvalidity bitmap 117 indi-
cates which rows 1n database 162 have invalid data items
within IMCU 114. In the illustrated embodiment, SMU 116

also mcludes a journal bitmap 119. The journal bitmap 119
indicates which invalid rows have their updated information
stored 1n a journal. In the state illustrated 1n FIG. 1, no bits

are set 1 any of the bitmaps 115, 117 or 119. Consequently,
all data withun IMCU 114 1s valid.

Invalidity data 1s updated i1n response to changes to
database 162. For example, when a node desires to update a
block (the “target block™), the node requests a write lock on
the target block. In response to the write lock request, other
nodes will be asked to release any shared locks that they
hold on the target block. One or more of those other nodes
may be hosting IMCUSs that contain that data from the target
block. When a host node of an IMCU releases 1ts shared lock
on a block of data that 1s mirrored 1n 1ts IMCU to allow
another node to obtain a write lock, the host node assumes
that the node that obtained the wrte lock will be changing
one or more of the data items in the block. Consequently, 1n
response to releasing its shared lock, the host node updates
the block-level invalidity data to indicate that data in the
IMCU which corresponds to the block 1s 1nvalid. The host
node also requests a new shared lock. The new shared lock
will be granted only after the node that obtained the write
lock releases the write lock.

For example, 11 node 122 obtained a write lock on block
170 which contains rows 1 and 2, node 102 would be asked
to release a shared lock on block 170. In response, node 102
would update block level invalidity data 115 1n SMU 116 to
indicate that data in IMCU 114 corresponding to block 170
1s no longer valid. Node 102 then requests a new shared lock
on block 170. Thus, each host node uses block-level inva-
lidity data to indicate changes made by nodes other than the
host node.

In contrast, each host node uses the row-level mvalidity
data to indicate changes made locally. Specifically, when a
transaction 1n a node that hosts an IMCU performs an update
to rows 1n the database that are mirrored in the IMCU, the
host node updates the row-level mnvalidity data for the
IMCU to indicate that data, in the IMCU, {from those
particular rows, 1s no longer valid. For example, i1 node 102
commits a transaction that affected data in row 3 (which 1s
contained 1n block 180), node 102 would update row-level
invalidity data 117 in SMU 116 to indicate that data in
IMCU 114 corresponding to row 3 1s no longer valid, but
other rows 1n block 180 would continue to be treated as
valid.

Timestamps

Database systems typically assign commit timestamps to
transactions at the time the transactions commit. The commit
timestamps are assigned such that the order of the commit
timestamps reflects the order in which the respective trans-
actions committed. Timestamps may also be used for other
purposes. For example, for a new transaction to see a
consistent state of the database, the transaction may be
assigned a “‘snapshot time”. The database server then
ensures that the transaction sees all changes made by trans-

10

15

20

25

30

35

40

45

50

55

60

65

6

actions that committed before that snapshot time, and no
changes made by transactions that committed after that
snapshot time.

In addition to commit timestamps and snapshot times, a
“populate timestamp™ and a “last-patch timestamp” may be

maintained for each IMCU. The populate timestamp of an
IMCU indicates the state of the database that 1s reflected 1n
the IMCU. More specifically, the data items 1n an IMCU
reflect all changes that were committed to those data 1tems
betore the time 1ndicated by the populate timestamp of the
IMCU, and no changes that were committed to those data
items after time indicated by the populate timestamp. In
FIG. 1, timestamp 120 represents the populate timestamp of
IMCU 114.

The last-patch timestamp of an IMCU indicates the time
at which the last patch-up operation was performed on the
invalidity data for the IMCU. If no patch-up operation has
been performed yet on an IMCU, then the populate time-
stamp of the IMCU 1s used as the last-patch timestamp. With
cach patch-up operation, the last-patch timestamp i1s updated
to reflect the time at which the patch-up operation was
performed.

Transaction Records

According to one embodiment, database 162 stores trans-
action records 150 that provide information about transac-
tions that have aflected database 162. Transaction records
may include undo records and/or a journal of transactions.
Undo records are records that indicate how to undo changes
that have been made to data blocks. Undo records may be
used to allow transactions to see a consistent view of the
database.

For example, when a transaction starts, a database server
may assign a “‘snapshot time” to the transaction. During
execution of the transaction, the transaction must be pro-
vided versions of the data that (a) retlect all changes made
to the data before the snapshot time, and (b) reflect no
changes made to the data after the snapshot time. In situa-
tions where the data 1items that must be seen by a transaction
have been updated since the snapshot time assigned to the
transaction, undo records may be applied to the current
version ol the block to remove the changes that were made
alter the snapshot time. For example, assume that a trans-
action TX1 1s assigned a snapshot time of T1, and has to read
items 1n block X. Assume further that block X was changed
by a transaction TX2 that committed at time 12. Before
block X can be provided to transaction TX1, undo records
are applied to block X to remove the changes that were made
by transaction TX2 at time T2.

Patch-Up Operations

Patch-up operations are operations in which coarser-
grained invalidity data 1s converted into finer-grained 1nva-
lidity data. In embodiments described above, the host node
of an IMCU keeps track of invalidation on a row-by-row
basis for local updates, and on a block-by-block basis for
updates made by other nodes. In many examples given
hereafter, patch-up operations involve converting block-
level mnvalidity data into row-level invalidity data. However,
the techmiques described herein are not limited to any
particular coarser/finer granularity combination.

An example of a patch-up operation shall be given with
reference to FIGS. 2A, 2B, 2C, 2D, and 3. FIG. 2A 1s a block
diagram 1illustrating node 102 of a database cluster. Accord-
ing to one embodiment, host nodes may perform patch-up
operations independently of patch-up operations on other
host nodes. Therefore, to simplify the illustration of a
patch-up operation, the other nodes of the cluster are not

shown 1n FIGS. 2A, 2B, 2C, 2D, and 3. The methods

US 10,372,699 B2

7

described 1n the present disclosure are not limited to any
particular number of nodes in the database cluster, and
embodiments may include hundreds or thousands of nodes.

Referring to FIG. 2A, block-level invalidity bitmap 115
indicates that, within IMCU 114, data items from two blocks
are currently considered invalid. Blocks that are indicated to
be invalid in the block-level mvalidity bitmap 1135 are

referred to herein as “marked-invalid blocks”. In FIG. 2A,
the marked-invalid blocks are blocks 170 and 190. The
correlation between the bits of block-level invalidity bitmap
115 and blocks 170 and 190 1s illustrated in FIG. 2B.
Specifically, the topmost bit 1n the block-level invalidity data
of SMU 116 corresponds to the top two rows 1n IMCU 114
which correspond to the data stored 1n block 170 1n database
162. Similarly, the bottommost bit 1 the block-level 1nva-
lidity data of SMU 116 corresponds to the bottom two rows
in IMCU 114 which correspond to the data stored in block
190 1n database 162.

When node 102 executes a transaction that reads data
items from IMCU 114, the data 1tems that correspond to the
marked-invalid blocks need to be obtained from a source
other than IMCU 114. Those items may be retrieved, for
example, from global journal 112, bufler cache 118, or
database 162. FIGS. 2C, 2D and 3 illustrate how the
invalidity data in SMU 116 may be converted from block-
level invalidity (indicated by block-level mvalidity bitmap
115) to row-level mvalidity (indicated by row-level mvalid-
ity bitmap 117).

As explained above, node 102 may invalidate blocks 170
and 190 1n SMU 116 1n response to determining that other
nodes made changes to the corresponding blocks 1n database
162. For example, if a different node obtained a write lock
on block 170 1n order to perform one or more transactions,
node 102 may invalidate block 170 in SMU 116. Blocks may
be invalidated in SMU 116 regardless of the number of
items, within the blocks, that were actually updated. Thus, 1f
changes were only made to row 2, node 102 still updates the
bit, within block-level bitmap 115, to indicate block 170 1s
invalid even though row 1 was not changed.

In response to a patch-up triggering event, node 102
performs a patch-up operation. As part of the patch-up
operation, node 102 accesses transaction records 150 to
obtain finer-grained update information for the marked-
invalid blocks. In the present example, the finer-grained
update information 1s information that indicates which rows
within the marked-invalid blocks were actually changed.
FIG. 2C 1s a block diagram illustrating node 102 accessing
transaction records 150 to obtain the finer-grained update
information for blocks 170 and 190. How the node 102
obtains the finer-grained update information from transac-
tion records 150 shall be described 1n greater detail hereatter.

FI1G. 2D 1s a block diagram 1llustrating node 102 updating,
invalidity data based on accessed transaction records. Spe-
cifically, node 102 identifies the rows that were updated 1n
the marked-invalid blocks 170 and 190. In the example
depicted 1 FIG. 2D, only row 2 of block 170 and row 5 of
block 190 were actually changed. Consequently, node 102
updates the block-level bitmap 115 to indicate that blocks
170 and 190 are no longer invalid, and updates the row-level
bitmap 117 to indicate that rows 2 and 5 are mvalid. Thus,
in FIG. 2D rows 2 and 5 are marked as invalid in the second
column of SMU 116 while the blocks 170 and 190 are no
longer marked as invalid in the first column of SMU 116.
Determining Finer-Grained Update Information Based on
Undo Records

As mentioned above, during a patch-up operation, a node
uses transaction records to obtain finer-grained update infor-

10

15

20

25

30

35

40

45

50

55

60

65

8

mation for the marked-invalid blocks. According to one
embodiment, a host node does so by taking advantage of the
undo records that were generated when changes were made
to the marked-invalid blocks. Specifically, according to one
embodiment, the host node obtains the current time of the
logical clock maintained by the host node. The time thus
obtained 1s then used as the patch-up timestamp. After
obtaining the patch-up timestamp, the host node obtains the
undo records needed to revert the marked-up blocks from
their current state (the state indicated by the patch-up
timestamp) to the state indicated by the last-patch time-
stamp. Imitially, when no patch-up operation has yet been
performed, the population timestamp of an IMCU 1s used as
the last-patch timestamp.

Analyzing Undo Records to Determine Changed Rows

According to one embodiment, after obtaining the undo
records needed to revert the marked-up blocks from their
current state to the state indicated by the last-patch time-
stamp, the host node does not actually need to revert the
blocks to that prior state. Rather, the host node analyzes the
content of the undo records to determine which specific
items within the marked-invalid blocks were actually
updated. Based on the information obtained thereby, the host
node (a) sets the bits of the row-level invalidity bitmap 117
for the rows that were updated, (b) clears the bits of the
block-level bitmap 115 that correspond to the marked-
invalid blocks, and (¢) updates the last-patch timestamp 120
to the patch-up timestamp.

Comparing Versions ol Blocks to Determine Changed Rows

According to an alternative embodiment, the undo records
are used to revert the marked-invalid blocks to the state
indicated by the last-patch timestamp. The reverted copy of
cach row 1 a marked-invalid block 1s then compared to 1ts
corresponding current copy (the copy that reflects the state
indicated by the patch-up timestamp). In one embodiment,
this may be accomplished by causing the host node to
execute a versions query. Based on these comparisons, it
may be determined which rows within each block were
changed.

Referring again to FIG. 2C, during the patch-up opera-
tion, node 102 obtains from transaction records 150 the undo
records needed to revert blocks 170 and 190 to the state
associated with last-patch timestamp 120 (SCN-A). To
determine which items (rows) within the blocks were
changed, node 102 may compare a snapshot of the rows
within blocks 170 and 190 at last-patch timestamp 120 with
the rows within blocks 170 and 190 at the patch-up time-
stamp. Node 102 may then invalidate the identified items
(rows).

In an embodiment in which node 102 compares the two
version of each row in the marked-invalid blocks to each
other, node 102 compares entries for any given row until a
change in the row 1s identified. For example, 11 node 102 1s
identifving imnvalidations at a row level, node 102 only needs
to find one changed entry in a row to determine that the row
1s mnvalid. Thus, once a change 1n a row 1s i1dentified, node
102 may begin comparing entries in the next row of the
block until a changed entry 1s 1dentified or the entire row has
been compared without any changed entries being 1dentified.
Patch-Up Through Redo Records

The transaction records 150 maintained by a database
system typically includes redo records as well as undo
records. In an embodiment, node 102 uses redo records,
rather than undo records, to 1dentity changes 1n the database
between last-patch timestamp 120 and the patch-up time-
stamp. Redo records 1dentity changes made to the database
12, and are typically generated each time an update opera-

US 10,372,699 B2

9

tion 1s performed on database 162. However, redo records
are often not organized in such a way as to allow the host
node 102 to quickly locate all redo records aflecting a
particular block. Therefore, 1dentitying which rows, within
marked-invalid blocks, that were changed between the last-
patch timestamp and the patch-up timestamp using redo
records may incur greater overhead than using undo records.
Updating the Global Journal

As explamned above, block-to-row patch-up operations
involve (a) determining which rows within the marked-
invalid blocks were changed, (b) making those changed
rows 1nvalid, and (c¢) marking the mark-invalid blocks to
indicate that the blocks are valid again. During the process
of determining which rows within the marked-invalid blocks
were changed, the host node may obtain information about
what the specific changes were, and when those changes
were made. Information about those specific changes may
not currently be retlected 1n the global journal, since those
changes may have been made by nodes other than the host
node.

According to one embodiment, information about what
the changes were (including the changed values them-
selves), and when the changes were made, that 1s obtained
by host node 102 during each patch-up operation 1s stored in
the global journal 112 associated with the IMCU 114. By
recording those changes in global journal 112, when a query
needs data from a row that 1s invalid in IMCU 114, the query
may obtain the information needed for that row from global
journal 112 instead of having to try to find the information
in builer cache 118 or read the data from disk.

FIG. 3 1s a block diagram illustrating node 112 updating
global journal 112 in response to performing a patch-up
operation. Specifically, while performing a patch-up opera-
tion, node 102 uses the transaction records 1350 (either undo
records or redo records) to determine what changes were
made to the marked-invalid blocks, and then updates global
journal 112 accordingly. The update to global journal 112
may contain the changed values and identify the transactions
that updated the rows that are marked invalid in row-level
bitmap 117. For example, in an embodiment where node 102
uses undo records to 1dentify transactions that changed rows
in particular blocks, node 102 may also store both the
changed values and transaction 1dentifiers 1n global journal
112. For example, in FIG. 3, global journal 112 contains
TXN-R2 and TXN-RS which identily transactions that
allected rows 2 and 3 respectively.

In response to updating global journal 112 to identily the
changes made to the invalid rows, node 102 may also update
journal bitmap 119 to indicate that global journal 112
currently contains transaction data with respect to those
invalid rows. For example, rows 2 and 5 are marked 1n
journal bitmap 119 1n FIG. 3 1n order to indicate that global
journal 112 contains transaction data for changes made to
rows 2 and 3. Thus, 1f node 102 receives a query that
requires data from eirther row 2 or row 5, node 102 may
determine, based on row-level bitmap 117, that the data 1s
invalid in IMCU 114, and based on journal bitmap 119 that
the data 1s available in global journal 112.

Patch-Up Triggering Events

Patch-up operations are performed 1n response to a patch-
up triggering event. Patch-up triggering events may vary
from 1mplementation to implementation. For example, 1n
some cases the mere passage of time may be a patch-up
triggering event. Such is the case, for example, 11 patch-ups
are performed daily or at some other interval. On the other
hand, patch-up operations may be triggered when a specific
event occurs, such as when the host node executes a query

10

15

20

25

30

35

40

45

50

55

60

65

10

that targets data that 1s mirrored in the IMCU, or when a
transaction that updated data items that are mirrored 1n the
IMCU commuits.

In an embodiment where executing a query that targets
data that 1s mirrored 1n the IMCU 1s a patch-up triggering
event, the host node initially determines whether the snap-
shot time of the query 1s at or before the last-patch time-
stamp. IT so, then no patch-up needs to be performed to
process the query. The query may be processed using only
the row-level bitmap as an indication of which data within
the IMCU 1s 1invalid. On the other hand, if the snapshot time
of the query 1s higher than the last-patch timestamp, then a
patch-up operation 1s performed. As explained above, after
performance of the patch-up operation, the last-patch time-
stamp 1s updated to the current time, which will match or be
greater than the snapshot time of the query.

In an embodiment where patch-up operations are per-
formed when a transaction that updates data items that are
mirrored in the IMCU commits, every such commit need not
trigger a patch-up operation. For example, according to one
embodiment, such commaits only trigger patch-up operations
when the number of marked-invalid blocks reaches a thresh-
old. For example, patch-up operations may be triggered by
commits only when ten or more bits of block-level bitmap
117 are set. As another example, patch-up operations may be
triggered by commits only when 10% or more of the bits of
block-level bitmap 117 are set.

Patch-up triggering events may also include a release of
a lock by another node, updates being written to database
162 on disk, and a determination by node 102 that more than
a threshold number of blocks are i1dentified in SMU 116 as
invalid.

Patch-Up 1n Response to Threshold

In an embodiment, node 102 determines whether to
perform a patch-up operation 1n response to determining that
the number of blocks identified as mnvalid 1n SMU 116
exceeds a particular threshold. For example, node 102 may
store data i1dentifying a first threshold number. Node 102
may determine whether the number of invalid blocks in
block-level 1nvalidity data in SMU 116 exceeds the first
threshold number. If the number of blocks 1n block-level
invalidity data in SMU 116 1s less than the first threshold
number, node 102 may not perform a patch-up operation. I
node 102 determines that the number of invalid blocks 1n
block-level invalidity data in SMU exceeds the first thresh-
old number, node 102 may perform the patch-up operation.

Node 102 may make the determination whether to per-
form a patch-up operation based on the first threshold
number periodically or 1n response to one or more events.
For example, when node 102 invalidates a block in response
to a lock on the block being received by another node, node
102 may perform the step of determining whether the
number of invalid blocks 1n SMU 116 exceeds the first
threshold number.

Patch-Up 1n Response to Query and Threshold

As mentioned above, node 102 may perform the patch-up
operation in response to receiving a query regardless of the
number of mvalid blocks 1n block-level mvalidity data in
SMU 116. In an alternative embodiment, node 102 makes a
determination as to whether to perform a patch-up operation
(a) 1n response to recerving a query, and (b) when a threshold
1s exceeded. For example, node 102 may be configured to,
in response to recerving a query, make a determination as to
whether the number of mvalid blocks in block-level inva-
lidity data in SMU 116 exceeds the first threshold number.

Additionally and/or alternatively, node 102 may make a

US 10,372,699 B2

11

determination as to whether to perform a patch-up operation
1n response to recerving a query only 1f the query targets data
in a marked-invalid block.

Foreground Versus Background Patch-Up

In an embodiment, when node 102 performs a patch-up
operation 1n response to a query that targets data that i1s
mirrored 1n the IMCU, node 102 determines whether to
suspend execution of the query until the patch-up operation
1s completed, or to execute the query without waiting for
completion of the patch-up operation. Node 102 may make
this decision based on a variety of factors, including but not
limited to characteristics of the query (the query’s priority,
the amount of work mvolved, etc.) and the predicted dura-
tion of the delay that the query will experience 11 execution
of the query i1s suspended.

According to one embodiment, node 102 may determine
to suspend execution of a query because the query targets a
marked-invalid block. In such a situation, node 102 updates
the mvalidity data 1n SMU 116 before responding to the
query. Thus, 11 block 170 had been marked as invalid but the
query only requested information regarding row 1, updating
the mvalidity data in SMU before responding to the query
would allow node 102 to respond to the query with accurate
information from IMCU 114.

In an embodiment, node 102 stores a threshold value 1n
order to determine whether to perform the patch-up opera-
tion before responding to the query. For example a second
threshold value may identify a number of invalid blocks. IT
the number of blocks 1n block-level invalidity data in SMU
116 1s less than or equal to the second threshold number,
node 102 may perform the patch-up operation before
responding to the query. If the number of blocks in block-
level mvalidity data in SMU 116 1s greater than the second
threshold number, node 102 may perform the patch-up
operation after responding to the query.

Embodiments may include any combination of the above-
described thresholds. For example, 1n an embodiment with
only the second threshold, a patch-up operation 1s performed
in response to each query with only a determination as to
whether to run the patch-up operation in the foreground
before responding to the query or in the background after
responding to the query.

Patch-Up Determination Example

Referring to FIG. 5, it 1s a flowchart that illustrates a
process by which a host node determines whether to perform
a patch-up operation, according to one embodiment.

At step 500, a node receives a query that targets data
mirrored 1n an IMCU hosted by the node. In an embodiment,
the query has been assigned a query snapshot timestamp
which 1dentifies a snapshot time for the query such that the
query 1s able to see changes made by all transactions that
have committed as of the time of the query snapshot
timestamp, but 1s not able to see changes made by any
transactions that have committed after the query snapshot
timestamp.

At step 502, the node determines whether the query
snapshot 1s greater than the last-patch timestamp. For
example, 1f the query 1s only able to see transactions that
have committed before a time T3 and the last-patch time-
stamp 1s at a time T4, then the node determines that the
query snapshot 1s not greater than the last-patch timestamp.
If the query snapshot 1s not greater that the last-patch
timestamp, then all of the block level invalidity data from
betfore the query snapshot time has been patched due to the
patch-up operation that was performed at the last-patch
timestamp. Thus, the method may move to step 5304 and the
node may process the query without performing any patch-

10

15

20

25

30

35

40

45

50

55

60

65

12

up operation. When the node processes the query, the node
may 1gnore any block-level invalidity data, because all
block-level invalidity data from before the query snapshot
time has been patched and any current block-level invalidity
data would have been generated after the query snapshot
(1.e. between the last-patch time and a current time).

If the query snapshot timestamp 1s greater than the last
patch timestamp, then the method may move to step 506. At
step 506, the node determines whether any targets of the

query correspond to a block that 1s marked invalid. For
example, 1n FIG. 2A, blocks 170 and 190 are marked as

invalid. If a query targets information from rows 3 and 4
which are 1n block 180, node 102 may determine that the
targets of the query do not correspond to a block that 1s
marked as mnvalid. If the node determines that the targets of
the query do not correspond to a block that 1s marked as
invalid, then a patch-up operation would not affect the
current query. Thus, the method may move to step 506 and
the node may process the query without performing the
patch-up operation.

If the node determines that one or more targets of the
query correspond to a block that 1s marked invalid, the
method may move to step 508. At step 508, the node
determines whether the number of blocks that are marked as
invalid exceeds a first threshold. For example, a first thresh-
old may be set to ensure that a patch-up operation 1s not
performed at every query, but instead at times when a
patch-up operation would be most beneficial. If the number
of blocks marked as invalid do not exceed the first threshold,
then the method may move to step 506 and the node may
process the query without performing the patch-up opera-
tion.

I1 the node determines that the number of blocks that are
invalid exceeds the first threshold, the method may move to
step 510. At step 510, the node determines whether the
number of blocks that are marked as invalid exceeds a
second threshold. For example, a second threshold may be
set to ensure that large scale patch-up operations do not slow
down the processing of the query too severely. If the node
determines that the number of blocks that are marked as
invalid does not exceed the second threshold, then the
method may move to step 512 and the node may perform a
foreground patch-up operation before responding to the
query. If the node determines that the number of blocks that
are marked as invalid exceeds the second threshold, then the
method may move to step 514 and the node may respond to
the query using the block level invalidity while performing
the patch-up operation 1n the background.

Benefits of Patch-Up Operatlens

Patch-up operations result in numerous benefits. For
example, when a query targets data that 1s mirrored 1n an
IMCU, the query must obtain data from elsewhere only for
those rows that were actually changed, rather than for all
rows that belong to blocks that were changed. In addition,
when a certain percentage of an IMCU becomes invalid, the
IMCU may have to be rebuilt. When block-level mvalidity
information 1s converted to row-level invalidity information,
the percentage of the IMCU that 1s mvalid decreases.
Theretfore, patch-up operations may result in IMCU rebuild-
ing operations being performed less Ifrequently. As yet
another example, when IMCU rebuilding operations are
performed, the old copy of the IMCU may be used to
provide some of the data for the new copy of the IMCU. Due
to patch-up operations, more data can be used during the
rebuilding process can be obtained from the old copy of the

IMCU (because more of the old IMCU 1s valid), than would

US 10,372,699 B2

13

have been possible without patch-up operations. Conse-
quently, the overhead associated with IMCU rebuild opera-
tions 1s reduced.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FI1G. 4 1s a block diagram that 1llustrates a
computer system 400 upon which an embodiment of the
invention may be implemented. Computer system 400
includes a bus 402 or other communication mechanism for
communicating information, and a hardware processor 404
coupled with bus 402 for processing information. Hardware
processor 404 may be, for example, a general purpose
mICroprocessor.

Computer system 400 also imncludes a main memory 406,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 402 for storing imnformation
and instructions to be executed by processor 404. Main
memory 406 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 404. Such nstruc-
tions, when stored in non-transitory storage media acces-
sible to processor 404, render computer system 400 1nto a
special-purpose machine that 1s customized to perform the
operations specified in the istructions.

Computer system 400 further includes a read only
memory (ROM) 408 or other static storage device coupled
to bus 402 for storing static information and instructions for
processor 404. A storage device 410, such as a magnetic
disk, optical disk, or solid-state drive 1s provided and
coupled to bus 402 for storing information and instructions.

Computer system 400 may be coupled via bus 402 to a
display 412, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 414, includ-
ing alphanumeric and other keys, 1s coupled to bus 402 for
communicating information and command selections to
processor 404. Another type of user iput device 1s cursor
control 416, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 404 and for controlling cursor
movement on display 412. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 400 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 400 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 400 in response to

10

15

20

25

30

35

40

45

50

55

60

65

14

processor 404 executing one or more sequences of one or
more instructions contained i main memory 406. Such
istructions may be read mmto main memory 406 from
another storage medium, such as storage device 410. Execu-
tion of the sequences of instructions contained 1n main
memory 406 causes processor 404 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software 1nstructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate i a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 410. Volatile media includes dynamic
memory, such as main memory 406. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 402. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be mnvolved in carrying one
or more sequences of one or more instructions to processor
404 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the mnstruc-
tions into 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 400 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 402. Bus 402 carries the data to main memory
406, from which processor 404 retrieves and executes the
instructions. The instructions recerved by main memory 406
may optionally be stored on storage device 410 erther before
or after execution by processor 404.

Computer system 400 also includes a communication
interface 418 coupled to bus 402. Communication 1nterface
418 provides a two-way data communication coupling to a
network link 420 that 1s connected to a local network 422.
For example, communication interface 418 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tatton, communication interface 418 sends and receirves
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 420 typically provides data communication
through one or more networks to other data devices. For
example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data
equipment operated by an Internet Service Provider (ISP)

US 10,372,699 B2

15

426. ISP 426 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 428. Local
network 422 and Internet 428 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 420 and through communication interface 418,
which carry the digital data to and from computer system
400, are example forms of transmission media.
Computer system 400 can send messages and receive
data, including program code, through the network(s), net-
work link 420 and communication interface 418. In the
Internet example, a server 430 might transmit a requested
code for an application program through Internet 428, ISP
426, local network 422 and communication interface 418.
The recerved code may be executed by processor 404 as
it 1s received, and/or stored in storage device 410, or other
non-volatile storage for later execution.
In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
the set of claims that i1ssue from this application, 1n the
specific form 1n which such claims 1ssue, including any
subsequent correction.
What 1s claimed 1s:
1. A method comprising:
maintaiming, on persistent storage, a database that 1s
accessible to a plurality of database server instances;

wherein each database server instance of the plurality of
database server instances 1s executing on a correspond-
ing node ol a plurality of nodes;

storing a persistent-format copy of a mirrored data set

persistently, within the database, on a plurality of
coarse-granularity items;

storing a mirror-format copy of the mirrored data set 1n an

in-memory-unit within volatile memory of a particular
node of the plurality of nodes;

storing, within the particular node, invalidity data that

indicates which information, within the mirror-format
copy, 1s 1nvalid;

wherein the mirror-format copy of the mirrored data 1s

divided into courser-granularity items;

wherein each courser-granularity item in the mirror-for-

mat copy 1s divided into finer-granularity items;

wherein the mvalidity data includes:

finer-granularity invalidity data that indicates, on a
per-finer-granularity-item basis, mnvalidity of the
information within the mirror-format copy at a first
level of granularity; and

coarser-granulanty invalidity data that indicates, on a
per-courser-granularity-item basis, invalidity of the
information within the mirror-format copy at a sec-
ond level of granularity that 1s coarser than the first
level of granularity; and

in response to a patch-up-triggering event, a particular

database server instance executing on the particular

node performing a patch-up operation on the mvalidity

data by:

reading the coarser-granularity invalidity data to deter-
mine one or more marked-invalid coarse-granularity
items indicated to be invalid by the coarser-granu-
larity invalidity data;

10

15

20

25

30

35

40

45

50

55

60

65

16

determining a particular set of fine-granularity items to
mark as ivalid by determining which fine-granular-
ity items, within each of the one or more marked-
invalid coarse-granularity items, are invalid;
revising the finer-granularity invalidity data to indicate
that the particular set of fine-granularity items are
invalid; and
revising the coarser-granularity invalidity data to indi-
cate that the one or more marked-invalid coarse-
granularity items are not invalid.
2. The method of claim 1, further comprising:
1dentifying one or more undo records associated with each
of the one or more marked-invalid coarse-granularity
items:; and
determiming the particular set of fine-granularity items
based, at least 1n part, on the one or more undo records.
3. The method of claim 2, further comprising:
identifying a last-patch timestamp associated with the
invalidity data; and
obtaining a patch-up timestamp;
wherein the step of identifying one or more undo records
includes identifying a particular set of undo records that
are for changes made, to the one or more marked-
invalid coarse-granularity items, between the last-patch
timestamp and the patch-up timestamp; and
wherein the step of determiming the particular set of
fine-granularity items are determined based, at least 1n
part, on the particular set of undo records.
4. The method of claim 2, further comprising:
identifying a last-patch timestamp associated with the
invalidity data; and
obtaining a patch-up timestamp;
wherein the step of identifying one or more undo records
includes 1dentitying a particular set of undo records that
are for changes made, to the one or more marked-
invalid coarse-granularity 1items, between the last-patch
timestamp and the patch-up timestamp;
using the particular set of undo records to create versions,
of the one or more marked-invalid coarse-granularity
items, that reflect the last-patch timestamp;
performing a comparison between the versions that reflect
the last-patch timestamp and versions that reflect the
patch-up timestamp; and
wherein the step of determiming the particular set of
fine-granularity items are determined based, at least 1n
part, on the comparison.
5. The method of claim 1, further comprising:
identifying a last-patch timestamp associated with the
invalidity data;
obtaining a patch-up timestamp; and
in response to performing the patch-up operation on the
invalidity data, updating the last-patch timestamp to
match the patch-up timestamp.
6. The method of claim 1, further comprising:
receiving, at the particular node from a particular com-
puting device, a particular query;
identifying a last-patch timestamp associated with the
invalidity data;
determining that a query snapshot time associated with
the particular query 1s greater than the last-patch time-
stamp:;
performing the patch-up operation in response to deter-
mining that the query snapshot time associated with the
particular query i1s greater than the last-patch time-
stamp.

US 10,372,699 B2

17

7. The method of claim 1, further comprising:

storing, within the particular node, a first threshold value;

wherein the patch-up triggering event comprises deter-
mining that the coarser-granularity invalidity data indi-
cates invalidity of a number of coarse-granularity 1tems
greater than the first threshold value; and

performing the patch-up operation in response to deter-
mining that the coarser-granularity invalidity data indi-
cates invalidity of a number of coarse-granularity 1tems
greater than the first threshold value.

8. The method of claim 7, turther comprising;:

wherein the patch-up triggering event comprises receiv-
ing, at the particular node from a particular computing
device, a particular query; and

performing said determining that the coarser-granularity
invalidity data indicates invalidity of a number of
coarse-granularity items greater than the first threshold
value 1n response to receiving the particular query.

9. The method of claim 8, further comprising;:

storing, within the particular node, a second threshold
value;

wherein the patch-up triggering event comprises deter-
mining that the coarser-granularity invalidity data indi-
cates invalidity of a number of coarse-granularity 1tems
that 1s less than or equal to the second threshold value
and, 1 response to the determining, performing the
patch-up operation before responding to the particular
query; and

identifying the specific fine-granularity items as mvalid to
the particular computing device in response to the
particular query.

10. The method of claim 8, further comprising;:

storing, within the particular node, a second threshold
value;

determining that the coarser-granularity invalidity data
indicates invalidity of a number of coarse-granularity
items that i1s greater than the second threshold value
and, 1n response to the determining, responding to the
particular query before performing the patch-up opera-
tion; and

identifying each coarse-granularity item in the one or
more marked-invalid coarse-granularity items as
invalid to the particular computing device 1n response
to the particular query.

11. The method of claim 7, further comprising:

receiving, at the particular node, a request to commit one
or more transactions that change data in the mirrored
data set; and

performing said determining that the coarser-granularity
invalidity data indicates invalidity of a number of
coarse-granularity items that 1s greater than the first
threshold value 1n response to receiving the request to
commit the one or more transactions to the database.

12. The method of claim 1:

wherein the invalidity data comprises a bitmap which
identifies the plurality of coarse-granularity items of the
database and one or more contiguous fine-granularity
items of the database corresponding to the plurality of
coarse-granularity items of the database;

wherein revising the coarser-granularity invalidity data
comprises changing one or more bits corresponding to
cach coarse-granulanity 1tem of the one or more
marked-invalid coarse-granularity items from one or
more bits that indicate mvalidity to one or more bits
that indicate validity; and

wherein revising the finer-granularity invalidity data com-
prises changing one or more bits indicating validity and

10

15

20

25

30

35

40

45

50

55

60

65

18

corresponding to fine-granularity items of the plurality
of coarse-granularity 1tems that contain data that
changed between a snapshot time and a current time
from one or more bits that indicate validity to one or
more bits that indicate 1nvalidity.

13. The method of claim 1, wherein the snapshot time

comprises a time for a query such that the query 1s able to
see changes made by all transactions that have committed as
of the snapshot time, but 1s not able to see changes made by
any transactions that have committed after snapshot time.

14. One or more non-transitory computer-readable media

storing instructions which, when executed by one or more
Processors, cause:

maintaining, on persistent storage, a database that 1is
accessible to a plurality of database server instances;
wherein each database server instance of the plurality of
database server mstances 1s executing on a correspond-
ing node of a plurality of nodes;
storing a persistent-format copy of a mirrored data set
persistently, within the database, on a plurality of
coarse-granularity items;
storing a mirror-format copy of the mirrored data set 1n an
in-memory-unit within volatile memory of a particular
node of the plurality of nodes;
wherein the mirror-format copy of the mirrored data is
divided 1nto courser-granularity items;
wherein each courser-granularity item in the mirror-for-
mat copy 1s divided into finer-granularity items;
storing, within the particular node, invalidity data that
indicates which information, within the mirror-format
copy, 1s 1nvalid;
wherein the mvalidity data includes:
finer-granularity invalidity data that indicates, on a
per-finer-granularity-item basis, mvalidity of the
information within the mirror-format copy at a first
level of granularity; and
coarser-granularity invalidity data that indicates, on a
per-coarser-granularity-item basis, invalidity of the
information within the mirror-format copy at a sec-
ond level of granularity that 1s coarser than the first

level of granularity;
receiving, at the particular node from a particular com-
puting device, a particular query; and
in response to recerving the particular query, a particular
database server instance executing on the particular
node performing a patch-up operation on the mvalidity
data.

15. The one or more non-transitory computer-readable

media of claim 14, wherein performing the patch-up opera-
tion on the mvalidity data comprises:

reading the coarser-granularity invalidity data to deter-
mine one or more marked-invalid coarse-granularity
items indicated to be invalid by the coarser-granularity
invalidity data;

for each coarse-granularity item 1n the one or more
marked-invalid coarse-granularity items, determining
which specific fine-granularity items, within the coarse-
granularity 1tem, are mnvalid;

revising the finer-granularity invalidity data to indicate
the specific fine-granularity items, within the one or
more marked-invalid coarse-granularity items, that are
invalid; and

revising the coarser-granularity invalidity data to indicate
that the one or more marked-invalid coarse-granularity
items are not nvalid.

US 10,372,699 B2

19

16. The one or more non-transitory computer-readable
media of claim 14, wherein the 1nstructions, when executed
by the one or more processors, further cause:

storing, within the particular node, a first threshold value;

identifying a last-patch timestamp associated with the

invalidity data;

determining that a query snapshot time associated with

the particular query 1s greater than the last-patch time-
stamp:;

in response to determining that a query snapshot time

associated with the particular query 1s greater than the
last-patch timestamp, determining that the coarser-
granularity invalidity data indicates invalidity of a
number of coarse-granularity items greater than the first
threshold value; and

performing the patch-up operation in response to deter-

mining that the coarser-granularity invalidity data indi-
cates invalidity of a number of coarse-granularity 1tems
greater than the first threshold value.

17. The one or more non-transitory computer-readable
media of claim 16, wherein the instructions, when executed
by the one or more processors, further cause:

storing, within the particular node, a second threshold

value;
determining that the coarser-granularity invalidity data
indicates invalidity of a number of coarse-granularity
items that 1s less than the second threshold value and,
in response to the determining, performing the patch-up
operation before responding to the particular query; and

identifying the specific fine-granularity items as mnvalid to
the particular computing device in response to the
particular query.

18. The one or more non-transitory computer-readable
media of claim 16, wherein the instructions, when executed
by the one or more processors, further cause:

storing, within the particular node, a second threshold

value;

determining that the coarser-granularity invalidity data

indicates invalidity of a number of coarse-granularity
items that 1s greater than the second threshold value
and, 1 response to the determining, responding to the
particular query before performing the patch-up opera-
tion; and

identifying each coarse-granularity item in the one or

more marked-invalid coarse-granularity 1tems as
invalid to the particular computing device in response
to the query.

19. A system comprising;

a memory;

one or more processors communicatively coupled to the

memory and configured to:
maintain, on persistent storage, a database that 1s acces-
sible to a plurality of database server instances;

10

15

20

25

30

35

40

45

50

20

wherein each database server instance of the plurality
ol database server instances 1s executing on a cor-
responding node of a plurality of nodes;
store a persistent-format copy ol a mirrored data set
persistently, within the database, on a plurality of
coarse-granularity items;
store a mirror-format copy of the mirrored data set in an
in-memory-unit within volatile memory of a particu-
lar node of the plurality of nodes;
wherein the mirror-format copy of the mirrored data 1s
divided into courser-granularity items;
wherein each courser-granularity item in the mirror-
format copy 1s divided into finer-granularity items;
store, within the particular node, invalidity data that
indicates which information, within the mirror-for-
mat copy, 1s mvalid;
wherein the invalidity data includes:
finer-granularnity mvalidity data that indicates, on a
per-finer-granularity-item basis, invalidity of the
information within the mirror-format copy at a
first level of granularity; and
coarser-granularity invalidity data that indicates, on
a per-coarser-granularity-item basis, ivalidity of
the information within the mirror-format copy at a
second level of granularity that 1s coarser than the
first level of granularity;
receive, at the particular node from a particular com-
puting device, a request to commit one or more
transactions to the database; and
in response to recerving the request to commit the one
or more transactions to the database, a particular
database server instance executing on the particular
node performing a patch-up operation on the 1nva-
lidity data.
20. The system of claim 19, wherein performing the
patch-up operation on the invalidity data comprises:
reading the coarser-granularity invalidity data to deter-
mine one or more marked-invalid coarse-granularity
items indicated to be invalid by the coarser-granularity
invalidity data;
for each coarse-granularity item in the one or more
marked-invalid coarse-granularity items, determining
which specific fine-granularity items, within the coarse-
granularity item, are invalid;
revising the finer-granularity invalidity data to indicate
the specific fine-granularity items, within the one or
more marked-invalid coarse-granularity items, that are
invalid; and
revising the coarser-granularity invalidity data to indicate

that the one or more marked-invalid coarse-granularity
items are not mvalid.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,372,699 B2 Page 1 of 1
APPLICATION NO. : 15/264978

DATED : August 6, 2019

INVENTOR(S) : He et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 15, Line 47, in Claim 1, delete “courser-"’ and insert -- coarser- --, therefor.

In Column 15, Line 48, in Claim 1, delete “courser-"’ and insert -- coarser- --, therefor.

In Column 15, Line 56, in Claim 1, delete “per-courser” and insert -- per-coarser --, theretfor.
In Column 18, Line 27, in Claim 14, delete “courser-" and insert -- coarser- --, therefor.

In Column 18, Line 28, in Claim 14, delete “courser-" and insert -- coarser- --, therefor.

In Column 20, Line 11, in Claim 19, delete “courser-" and insert -- coarser- --, therefor.

In Column 20, Line 12, in Claim 19, delete “courser-"’ and insert -- coarser- --, theretor.

Signed and Sealed this
Fourth Day ot August, 2020

Andrei Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

