US010372465B2

a2y United States Patent (10) Patent No.: US 10,372,465 B2

Balkan et al. 45) Date of Patent: Aug. 6, 2019
(54) SYSTEM AND METHOD FOR GOG6F 16/245 (2019.01); GOGF 16/2453
CONTROLLING BATCH JOBS WITH (2019.01); GO6F 16/2455 (2019.01)
PLUGINS (58) Field of Classification Search
None

(71) Applicant: ORACLE INTERNATIONAL

See application file for complete search history.
CORPORATION, Redwood Shores,

CA (US)
(36) References Cited
(72) Inventors: Colleen M. Balkan, Madison, CT (US); _ﬁ
Andre J. Marais, Lake Zurich, IL U.S. PAIENT DOCUMENTS
(US); Brian P. Conlon, Grayslake, IL 6370571 BL* 42000 Pi
. 370, gos, Jr. ... G06Q 10/107
(US); Robert D. O’Connell, Jr., Budd 2003/0016798 Al* 1/2003 Cashiola HO4M 15/00
Lake, NI (US); John Glenn H. Santos, 379/115.01
Pleasant Hill, CA (US); William C. 2017/0372246 Al* 12/2017 Storey G06Q 10/06316
Hedges, San Bruno, CA (US) * cited by examiner
(73) Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores, Primary Examiner — (Qing Yuan Wu
CA (US) (74) Attorney, Agent, or Firm — Kraguljac Law Group,
LLC
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 391 days. (57) ABSTRACT
(21) Appl. No.: 15/389,873 Systems, methods, and other embodiments associated with
’ controlling batch jobs with plugins are described. In one
(22) Filed: Dec. 23, 2016 embodiment, a method includes querying a batch definition
database to retrieve a record identification plugin including
(65) Prior Publication Data a first declarative statement defining parameters of the

record 1dentification plugin and a database query statement
used by the record identification plugin to select records
within a database. The example method may also include
querying the batch definition database to retrieve a process

US 2018/0181415 Al Jun. 28, 2018

(51) Int. CL

GO6l’ 9/46 (2006.01) ds oluein includ 4 declarat;
GO6F 9/48 (2006.01) recor. S plugin including a secon e-:c gratlve statement
GO6F 3/048 2013'03“ defining how the process records plugin 1s to process the
GOGF 9/445 (2018.035) selected records. The example method may also include
GO6F 167245 (2019'035) interpreting the first declarative statement to control execu-
GO6F 16/2453 (2019'03‘) tion of a batch process to select the records within the
GO6F 16/2455 (201 9'03“) database. The example method may also include interpreting
GOGF /455 (2018.0:h) the second declarative statement to control execution of the
(52) U.S. Cl (oD batch process to process the records to create a batch job
S result.
CPC GOoF 9/44526 (2013.01); GO6F 3/048
(2013.01); GO6F 9/45512 (2013.01); GO6F
9/466 (2013.01); GO6F 9/4881 (2013.01); 20 Claims, 8 Drawing Sheets
1Dﬂ—\
‘/,-—102
| /—1113
/,--112
1

BATCH DEFINITION DATABASE

I/.--—-HE I/,:-—11B /-—120

RECCRD

IDENTIFICATION
PLUGIN

FROCESS
RECORDS PLUGIN

BATCH CONTROL
RECORD

U.S. Patent Aug. 6, 2019 Sheet 1 of 8 US 10,372,465 B2

100
O\

102
BATCH JOB DEFINITION INTERFACE

104
.~ DEFINE RECORD IDENTIFICATION PLUGIN: __ OBTAIN BILLING INFO...

104
t/DE—;INE QUERY STATEMENT: SELECT ... FROM ... WHERE ...

108

DEFINE RECORD PROCESSING PLUGIN CREATE BILLING FILE

b b bt

ANALYSIS MODULE FOR BATCH JOB CREATION |
112

BATCH JOB CREATION FUNCTIONALITY

114

BATCH DEFINITION DATABASE

118

RECORD
IDENTIFICATION
PLUGIN

PROCESS
RECORDS PLUGIN

BATCH CONTROL
RECORD |

U.S. Patent Aug. 6, 2019 Sheet 2 of 8 US 10,372,465 B2

200 —

202
DISPLAY BATCH JOB DEFINITION INTERFACE

204
RECEIVE FIRST DECLARATIVE DEFINITION, DATABASE QUERY
STATEMENT, SECOND DECLARATIVE DEFINITION
206
CONSTRUCT RECORD IDENTIFICATION PLUGIN AND PROCESS RECORDS |
PLUGIN
208
CONSTRUCT BATCH JOB TO REFERENCE RECORD IDENTIFICATION
PLUGIN AND PROCESS RECORDS PLUGIN
210

SCHEDULE BATCH PROCESS

U.S. Patent Aug. 6, 2019 Sheet 3 of 8 US 10,372,465 B2

300
O\

114

BATCH DEFINITION DATABASE

116 118 1
BATCH CONTROL mESﬁﬁ%ﬁ% o PROCESS |
RECORD RECORDS PLUGIN

PLUGIN

QUERY

210 BATCH PROCESS (BATCH JOB)

INTERPRETED RECORD
IDENTIFICATION PLUGIN

INTERPRETED PROCESS
RECORDS PLUGIN

} ;
' ! 320 I !
| : RECORDS :

} |
| QUERY i -E\\ ;
. (EXTRACT RECORDS) | o
e i

1 314
DATABASE

FIG. 3

U.S. Patent Aug. 6, 2019 Sheet 4 of 8 US 10,372,465 B2

400
N\

402
QUERY BATCH DEFINITION DATABASE TO RETRIEVE RECORD
IDENTIFICATION PLUGIN
| 404
QUERY BATCH DEFINITION DATABASE TO RETRIEVE PROCESS RECORDS
PLUGIN
406
INTERPRET FIRST DECLARATIVE STATEMENT OF RECORD
IDENTIFICATION PLUGIN TO CONTROL EXECUTION OF BATCH PROCESS
408

INTERPRET SECOND DECLARATIVE STATEMENT OF PROCESS RECORDS
PLUGIN TO CONTROL EXECUTION OF BATCH PROCESS

U.S. Patent Aug. 6, 2019 Sheet 5 of 8 US 10,372,465 B2

500
N

502
BATCH PROCESS (BATCH JOB)
312
INTERPRETED RECORD INTERPRETED PROCESS
IDENTIFICATION PLUGIN RECORDS PLUGIN |

1 ““““““““ 314

U.S. Patent

600 —

Aug. 6, 2019

Sheet 6 of 8 US 10,372,465 B2

610

BATCH PROCESS (BATCH JOB)

310

INTERPRETED RECORD
| IDENTIFICATION PLUGIN

INTERPRETED PROCESS |

312

RECORDS PLUGIN

EXTRACT FILE

FIG. 6

|
|
\
e
=
ﬁi
l"-...-"*
|
& |
=
S

U.S. Patent Aug. 6, 2019 Sheet 7 of 8 US 10,372,465 B2

700
702
NON-TRANSITORY COMPUTER-READABLE MEDIUM
704 —
001001 0100001 0101111 0101111 0000000
00000 0110010 010100 0110011 0000000
] \
706 .‘, \\
Y, \ 708
DEVICE
PROCESSOR-
EXECUTABLE SEADER
INSTRUCTIONS
716
714 PROCESSOR
EMBODIMENT
)

FIG. 7

U.S. Patent Aug. 6, 2019 Sheet 8 of 8 US 10,372,465 B2

800
-\

802 804

PROCESS DATA

806
COMPUTER
808
| PROCESSOR '
810
BUS
812 813 814
/O ANALYSIS MEMORY

CONTROLLERS MODULE

816

/O INTERFACES

- -

/O PORTS

NETWORK
DEVICES DISKS
820 824

FIG. 8

US 10,372,465 B2

1

SYSTEM AND METHOD FOR
CONTROLLING BATCH JOBS WITH
PLUGINS

BACKGROUND

Many users, such as businesses, are using computing
services that are provided from a remote service provider,
such as a services provided by a distributed network envi-
ronment (e.g., a cloud service). In an example, a utility
company accesses a cloud computing environment 1n order
to consume services provided by the cloud computing
environment. For example, the utility company uploads
meter read data, customer data, billing data, and/or a variety
of other data to the cloud computing environment. Such data
1s stored within databases or other storage structures of the
cloud computing environment. The utility company may
invoke various services of the cloud computing environment
to perform operations upon the data. For example, a billing
service, operating within the cloud computing environment,
1s used to extract selected data from a database such as
customer information data, meter read data, and energy rate
data. The billing service provides billing functionality that
processes the extracted data and generates bills that are
emailed to customers.

There are services and functionality of the cloud comput-
ing environment that are accessed in real-time, such as
billing 1information obtained by a customer support repre-
sentative while handling a client call. In order to reduce
network bandwidth, processing and storage sources, and/or
overall system load, 1t 1s desirable to perform certain func-
tionality at ofl-peak times (e.g., during the night or week-
end). Such functionality 1s performed by batch jobs that can
perform specified tasks 1f the computing system supports
batch processing. A batch job 1s a computer program con-
figured for a specific task that 1s compiled and executed
without manual 1ntervention.

Unfortunately, typical cloud computing environments do
not host or provide application programming development
environments, such as a Java integrated development envi-
ronment (IDE). Thus, users cannot create applications such
as batch jobs capable of performing tasks within the cloud
computing environment.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
systems, methods, and other embodiments of the disclosure.
It will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, or other shapes) 1n the figures
represent one embodiment of the boundaries. In some
embodiments one element may be implemented as multiple
clements or that multiple elements may be implemented as
one element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore,
clements may not be drawn to scale.

FIG. 1 1illustrates an embodiment of a system associated
with controlling batch jobs with plugins, where a record
identification plugin and a process records plugin are cre-
ated.

FI1G. 2 illustrates one embodiment of a method associated
with controlling batch jobs with plugins, where a record
identification plugin and a process records plugin are cre-
ated.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 illustrates an embodiment of a system associated
with controlling batch jobs with plugins, where a batch

process executes a batch job.

FIG. 4 illustrates one embodiment of a method associated
with controlling batch jobs with plugins, where a batch
process executes a batch job.

FIG. 5 illustrates an embodiment of a system associated
with controlling batch jobs with plugins, where a batch job
updates records within a database.

FIG. 6 illustrates an embodiment of a system associated
with controlling batch jobs with plugins, where a batch job
writes data to an extracted file.

FIG. 7 illustrates an embodiment of a non-transitory
computer-readable medium.

FIG. 8 illustrates an embodiment of a computing system
configured with the example systems and/or methods dis-
closed.

DETAILED DESCRIPTION

Systems and methods are described herein that provide
for controlling batch jobs with plugins in a computing
system. A user, such as a business, may want to implement
custom logic to process data within a particular computing
environment, such as a remote computing environment. One
example environment may be a distributed computing net-
work, such as a cloud computing network, that provides
services to users such as cloud services for billing custom-
ers, tracking inventory, tracking equipment health, etc.
Unfortunately, the remote computing environment may not
provide development environments, such as a Java inte-
grated development environment (IDE), through which the
user could create custom programs. Thus, the user may be
unable to implement custom logic within the remote com-
puting environment. For example, the user may lack the
tools to create Java code that 1s compiled mto a Java
program that can determine health statistics of industrial
equipment utilizing equipment health data stored within the
remote computing environment. Accordingly, the user may
be unable to create/code programs for execution within the
remote computing environment because the user does not
have access to development tools within the remote com-
puting environment to write, test, and deploy programs, such
as batch jobs.

Accordingly, 1n one embodiment, a system 1s described
that 1s configured to construct and execute batch jobs that are
controlled with plugins. In particular, the plugins are
declarative statements that do not need to be compiled, as
opposed to programming code that needs to be compiled to
be executed. The declarative statements of the plugin define
how a batch job 1s to select and process data to perform some
function without manual intervention. Declaratively defin-
ing the batch job and controlling execution of batch jobs
with declarative plugins reduces processing and storage
resources of a computing system that would otherwise be
used to compile programming code ito a batch job and
execute the batch job.

For example, a batch job definition interface 1s provided
to a user. The batch job definition 1nterface may be acces-
sible through the remote computing environment, and dis-
played on a computing device of the user. The user can
utilize the batch job definition interface to declaratively
define a record identification plugin and a database query
statement used to retrieve records within a database main-
tained by the remote computing environment. For example,
the database query statement may be used to retrieve cus-
tomer billing data from the database.

US 10,372,465 B2

3

With reference to FIG. 1, one embodiment of a system
100 associated with controlling batch jobs with plugins 1s
illustrated. The system 100 includes an analysis module 110
for batch job creation, which can be configured to execute on
a computer, such as computer 806 of FIG. 8. For example,
an analysis module 813, of FIG. 8, includes the analysis
module 110. The analysis module 110 1s mitiated based upon
a command received from a user to create a batch job for
execution within a computing environment, such as a remote
computing environment, such as a distributed network envi-
ronment, a cloud computing environment, etc.

The user can utilize the batch job definition interface to
declaratively define a process records plugin used to process
the records selected by the record 1dentification plugin using,
the data query statement. For example, one type of process
records plugin may be defined and used to generate a bill
from selected customer billing data. In one embodiment, the
defined plugins are stored within a batch definition database
as a library of plugins that are selectable for controlling
batch jobs. In this way, the user can declaratively define the
plugins by writing declarative statements/definitions as
opposed to programming code.

A batch job 1s defined based upon the record 1dentification
plugin, the data query statement, and the process records
plugin 1n a declarative manner without the need for an
application programming environment, such as a Java IDE.
Declaratively defining the batch job reduces development
time because the user does not have to develop program-
ming code from scratch, compile the code, test the code, eftc.
but can merely use declarative definitions and predefined
functionality provided through the job definition interface.
Declaratively defining the batch job reduces the need for
programming code development expertise because creating
declarative statements does not require such knowledge.
Declaratively defining the batch job and controlling execu-
tion of the batch job with declarative plugins reduces
processing and storage resources of a computing system that
would otherwise be used to compile programming code into
a batch job and execute the batch job.

A batch process for the batch job can be efliciently
executed by querying the batch definition database to
retrieve the record identification plugin. The record identi-
fication plugin includes a first declarative statement/defini-
tion defining parameters of the record identification plugin
and 1ncludes the database query statement used by the record
identification plugin to select records within the database. In
one embodiment, the batch process 1s an 1stance of execut-
able code that performs functionality defined by the batch
job. The batch process retrieves plugins that control how the
batch process implements the batch job. In this way, the
batch job defines what functionality 1s to be performed, and
the batch process 1s executed to perform that functionality
based upon the plugins. In this way, the plugins control
execution of the batch process, and thus control or define
how the batch job 1s implemented by the batch process.

In one embodiment to control execution of a batch job, the
batch defimition database 1s queried to retrieve the process
records plugin. The process records plugin includes a second
declarative statement/definition defining how the process
records plugin 1s to process records selected by the record
identification plugin. The second declarative definition
defines custom logic and/or reference predefined function-
ality provided by a billing service of the remote computing
environment such as billing statement creation functionality
for creating bills for customer. The batch process 1s executed

10

15

20

25

30

35

40

45

50

55

60

65

4

to perform the batch job without compiling programming
code because the plugins are not defined through program-
ming code.

The first declarative definition and the second declarative
definition are interpreted to select records from the database,
and process the records to generate and output a batch job
result. For example, customer billing data of a customer may
be selected and evaluated to generate a billing document
(batch job result) for the customer. The declarative defini-
tions are interpreted into a script, as opposed to being
complied 1into complied code, which 1s an improvement to
computing systems that do not provide features to compile
batch code.

In one embodiment, execution of the batch process to
perform the batch job can be deferred to a time where
resource utilization 1s lower than normal. For example, a
computing system ol a business may utilize a substantial
amount of resources during daytime operation in order to
access and 1nteract with the remote computing environment.
For example, resources may be used to access stored cus-
tomer data, create customer repair work order, etc. Accord-
ingly, execution of the batch process can be scheduled
outside normal daytime operation, such as during the night,
so that consumption of network bandwidth, processing and
storage resources, and/or other resources does not interfere
with resource usage during daytime operation. Without the
ability to write custom batch jobs for automated execution 1n
the remote computing environment at a later time, the
business would have to waste substantial amounts of time
and resources manually implementing individual real-time
logic commands.

In one embodiment, the analysis module 110 generates
and provides on a display screen a batch job definition
interface 102 to the user. For example, the analysis module
110 utilizes a processor 808, memory 814, input/output (1/0)
controllers 812, 1/O 1interfaces 816, and/or 1I/O ports 818
accessible over a bus 810 of the computer 806 to generate
and provide the batch job definition mterface 102 to the user.
In an example where the analysis module 110 1s hosted on
the computer 806 such as a client device that 1s external to
the remote computing environment, the batch job definition
interface 102 1s rendered on a screen associated with the
computer 806. In another example where the analysis mod-
ule 110 1s not hosted on the client device, the batch job
definition interface 102 1s rendered on a client device
separate from the computer 806. For example, the computer
806 sends information over a network to the client device for
rendering the batch job definition nterface 102 on a screen
associated with the client device.

In an example of batch job creation, the user defines a
plugin type referring to where an executable resides. For
example, the plugin type includes an algorithm type for
validating a telephone format. The user defines a plugin that
1s an mstance of the plugin type, where the plugin includes
values for parameters of the plugin type. For example, the
plug includes an algorithm of the algorithm type, where a
validation parameter 1s set to accept or not accept dashes
and/or parenthesis for a valid telephone format. The plugin
type refers to a script that includes selection and processing
functionality that the plugin type will invoke during execu-
tion of a batch job. The plugin will fill 1n values for
parameters used by the script.

In another example of batch job creation, the analysis
module 110 includes batch job creation functionality 112,
such as executable code, an algorithm, etc. that executes
using the processor 808, the memory 814, etc. The batch job
creation functionality 112 populates the batch job definition

US 10,372,465 B2

S

interface 102 with a first iterface 104 including function-
ality used to receive a first declarative definition defining
parameters for a record idenfification plugin 118. For
example, the parameters are used to define what billing
information to extract from a database 314 of FIG. 3 and
how to extract such data. The first interface 104 includes
functionality used to receive a database query statement
used by the record 1dentification plugin 118 to select records
within the database 314. For example, the database query
statement 1ncludes a structured query language (SQL) state-
ment used to select billing information and/or other infor-
mation from the database 314. The batch job creation
tfunctionality 112 populates the batch job definition interface
102 with a second interface 108 used to receive a second
declarative definition defining how a process records plugin
120 1s to process records selected by the record 1dentification
plugin 118.

In this way, the batch job creation functionality 112 of the
analysis module 110 receives the first declarative definition,
the database query statement, and the second declarative
definition through the batch job definition interface 102. The
batch job creation functionality 112 constructs the record
identification plugin 118 based upon the first declarative
definition and the database query statement. For example,
input of the first declarative definition and the database
query statement are formatted and/or combined with any
references to predefined functionality that will be used by
the record identification plugin 118 for storage within a
record of a batch definition database 114.

The batch job creation functionality 112 constructs the
process records plugin 120 based upon the second declara-
tive definition. For example, input of the second declarative
definition are formatted and/or combined with any refer-
ences to predefined functionality that will be used by the
process records plugin 120 for storage within a record of the
batch definition database 114. The record identification
plugin 118 and the process records plugin 120 are stored
within the batch defimition database 114, such as locally
stored within the computer 806 or remotely stored on
another computer or storage device.

The batch job 1s constructed to reference the record
identification plugin 118 and the process records plugin 120.
For example, a template record, associated with batch
execution program code that i1s executable by a batch
process runmng the batch job, 1s provided through the batch
10b definition interface 102. For example, the batch process
includes an executable program that executes the batch
execution program code, which references and utilizes the
record identification plugin 118 and the process records
plugin 120 within the batch definition database 114 during
execution. Responsive to receiving a copy command for the
template record, the template record 1s duplicated to create
a batch control record 116 referencing the batch execution
program code.

The batch control record 116 1s configured to reference
the record identification plugin 118 and/or the process
records plugin 120 so that during execution of the batch
process, the batch execution program code can identify and
utilize the record i1dentification plugin 118 and the process
records plugin 120. The batch control record 116 1s stored
within the batch definition database 114. In an example, the
batch execution program code 1s a program that will invoke/
interpret the record identification plugin 118 and/or the
process records plugin 120 during execution of the batch
process, which 1s stored within the batch definition database
114 as the batch job. The batch execution program code
includes a Java program executable by the remote comput-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ing network. The batch job 1s stored as the batch control
record 116, the record i1dentification plugin 118, and/or the
process records plugin 120. The batch control record 116 1s
a record within a database table that defines the batch job,
and references the record 1dentification plugin 118 and/or the
process records plugin 120 of what to select and how to
process the selected data from the database 314.

In an example, the batch job definition interface 102 1s
populated with a variety of other information, predefined
functionality that can be associated with the batch job. The
predefined functionality includes predefined error handling,
batch job restart functionality, and/or other functionality
provided by services of the remote computing environment
within which the batch job will be run. For example, field
and value pairs of records that are to be selected by the
database query statement 1s displayed through the batch job
definition interface 102 so that the user can visualize what
information will be retrieved during execution of the batch
j0b. Once the batch job has been constructed, the batch job
1s scheduled for execution such as through the batch process
304 of FIG. 3.

With reference to FIG. 2, one embodiment of a computer
implemented method 200 associated with controlling batch
jobs with plugins 1s illustrated. In one embodiment, the
method 200 1s performed by the analysis module 110
utilizing various computing resources ol the computer 806,
such as the processor 808 for executing instructions within
the batch job creation functionality 112, memory 814 and/or
disks 824 for storing the instructions of the batch job
creation functionality 112 and/or the batch definition data-
base 114, and/or network hardware for commumnicating
information between the computer 806 and a client device
over a network. The method 200 can be triggered based upon
various triggers, such as receipt of a request to construct a
batch job. For example, a user of a client device may log into
a cloud service 1n order to create a batch job for accessing
and processing client data stored within a cloud computing
environment of the cloud service.

At 202, the batch job definition interface 102 1s generated
and displayed on a display screen. The batch job definition
interface 102 1s populated with the first interface 104 that has
functionality used to receive a first declarative definition,
defining parameter of the record identification plugin 118,
and the database query statement used by the record 1den-
tification plugin 118 to select records within the database
314. For example, the user may desire to create a batch job
that can be used to i1dentity credit cards whose expiration
dates have expired within the last 30 days, and to send
notifications to customers to update the expiration dates.
Accordingly, the user can input, through the first interface
104, the first declarative definition. The first declarative
definition defines parameters regarding how and what infor-
mation 1s to be selected from the database 314. The user can
also mput, through the first interface 104, the database query
statement such as a SQL select statement used to query the
database 314 to retrieve credit card information and cus-
tomer contact information.

The batch job definition interface 102 1s populated with
the second interface 108 that has functionality used to
receive a second declarative defimtion defimng how the
process records plugin 120 1s to process records 320 selected

by the record identification plugin 118. For example, the
second declarative definition includes declarative statements
that define how the credit card information and the customer
contact mformation 1s to be processed i order to send
notifications to customers to update the expiration dates. In
an example, the second declarative definition does not

US 10,372,465 B2

7

include programming code, but includes declarative defini-
tions, script, etc. In this way, the first declarative definition,
the second declarative defimition, and the data query state-
ment are received, at 204, such as by the analysis module
110 that 1s included within the analysis module 813 of the
computer 806.

At 206, the record 1dentification plugin 118 1s constructed
based upon the first declarative definition and the database
query statement, and the process records plugin 120 1is
constructed based upon the second declarative definition.
For example, the plugins are constructed as data structures
by applying values within the declarative definitions to
parameters of plugin type templates for selecting and pro-
cessing data. The record identification plugin 118 and the
process records plugin 120 are stored within the batch
definition database 114, such as within records of a database
table.

At 208, the batch job, referencing the record 1dentification
plugin 118 and the process records plugin 120, 1s constructed
and/or stored as the batch control record 116 within the batch
definition database 114. For example, batch control record
116 corresponds to an executable that will retrieve and
interpret the record 1dentification plugin 118 and the process
records plugin 120 for execution of the batch job. At 210, a
batch process (e.g., the batch process 304), used to execute
the batch job, 1s scheduled for execution.

With reference to FIG. 3, one embodiment of a system
300 associated with controlling batch jobs with plugins 1s
illustrated. The system 300 includes an analysis module 302
for batch job execution, which 1s configured to execute on a
computer, such as computer 806 of FIG. 8. For example,
analysis module 813, of FIG. 8, includes the analysis module
302. The analysis module 302 is mnitiated based upon an
indication that a batch job 1s to be executed. For example,
the 1indication corresponds to a generated instructions from
a timer expiring, a scheduler sending a scheduler command
that the batch job 1s to be executed, a user submitted
command indicating that the batch job 1s to be executed, etc.

The analysis module 302 includes instructions used to
control execution of the batch process 304. The batch
process 304 1s used to run the batch job based upon the batch
control record 116, the record identification plugin 118,
and/or the process records plugin 120 within the batch
definition database 114. For example, the analysis module
302 queries 306 the batch definition database 114 to retrieve
the batch control record 116 that refers to batch execution
program code. The batch execution program code includes
a program that 1s configured to interpret and utilize the
record 1dentification plugin 118 and/or the process records
plugin 120 during runtime execution of the batch process
304. In one embodiment, the program 1s a Java program.

The batch control record 116 defines the batch job and
identifies what data to select for controlling the batch job and
how to process the selected data. For example, the batch
control record 116 identifies the record 1dentification plugin
118 and/or the process records plugin 120 associated with
the batch job. Accordingly, the analysis module 302 queries
306 the batch definition database 114 to retrieve the record
identification plugin 118 and/or the process records plugin
120 as plugins 308. In an example, the plugins 308, retrieved
by the analysis module 302 from the batch definition data-
base 114, 1s extracted 1n a text format or any other data
format.

In one embodiment, the batch process 304 1s executed in
a multi-threaded manner 1n order to 1mprove processing.
Threads are assigned to sets of records for parallel process-
ing. For example, the batch definmition database 114 1is

10

15

20

25

30

35

40

45

50

55

60

65

8

queried to 1identify strategy instructions for the batch job. In
an example, the strategy instructions include a thread level
select strategy that specifies that the record identification
plugin 118 1s to select, but not load 1nto memory, records 320
from the database 314. The record 1dentification plugin 118
returns an identifier of the records for processing by one or
more threads of the process records plugin 120. For
example, the record 1dentification plugin 118 returns a range
of data within the database 314, which can be easily divided
into groups of records for thread assignment. The thread
level select strategy 1s used when there 1s a large amount of
data that 1s numerically divisible for splitting and assigning
to threads, which substantially reduces usage of the memory
because the records 320 are not loaded 1nto the memory. For
example, the thread level select strategy 1s beneficial when
retrieving records ol account numbers or other numeric data
that 1s easily identifiable and divisible.

In another example, the strategy instructions include a job
level select strategy that specifies that the record identifica-
tion plugin 118 1s to select and load records 320 from the
database 314 into memory. In this way, the records 320 are
assigned from the memory to the one or more threads of the
process records plugin 120. Thread assignment of records of
non-numeric data may be easier when the records 320 are
within memory. For example, the job level select strategy 1s
used when the records 320 pertain to data that 1s not easily
divisible, such as non-numeric data that 1s not easily i1den-
tifiable and divisible within the batch definition database
114. In this way, execution of the batch process 304 1s
controlled based upon the strategy instructions, such as
whether the batch process 304 uses the record identification
plugin 118 to load the records 320 1into memory for assign-
ment to threads or merely selects the records 320 for
assignment to threads.

Various job types of batch jobs are executed to perform
various types ol functionality. For example, the batch defi-
nition database 114 1s queried to i1dentily a job type of the
batch job. In an example, the job type 1s an ad-hoc job type
used to implement logic, of the process records plugin 120,
upon the records 320 selected by the record identification
plug 118. For example, the batch job, having the ad-hoc job
type, processes the records 320 and update 504 one or more
records within the database 314, as illustrated 1in FIG. 5.

In another example, the job type 1s an extract job type
used to extract data 604 from the records 320 selected by the
record 1dentification plugin 118 and store the data 604 within
an extract file 608 of FIG. 6. The data 604 1s extracted mto
a data area 602. That 1s, the data 604 1s stored into the data
area 602 by the record identification plugin 118 for further
processing by the process records plugin 120 or stored into
the data area 602 by the process records plugin 120 after
processing the data 604. A file path, a file name, and/or a data
format for the extract file 608 are specified by the job type.
In this way, the data 604 1s written 606 1nto the extract file
608 according to the data format, such as a text format, a
comma delimited format, a fixed position format, extensible
markup language (XML), etc. The extract file 608 1s stored
using the file path and the file name. In this way, the record
identification plugin 118 and/or the process records plugin
120 do not need to understand how to write the data 604 to
the extract file 608 (e.g., what file path to use, what file name
to use, etc.) because such processing i1s performed by the
batch process 610.

During execution of the batch process 304, the record
identification plugin 118 and/or the process records plugin
120 are extracted from the batch definition database 114 as
the plugins 308. The plugins 308 are interpreted to create an

US 10,372,465 B2

9

interpreted record identification plugin 310 and an inter-
preted process records plugin 312. For example, the first
declarative statement of the record identification plugin 118
1s extracted as text and interpreted as the interpreted record
identification plugin 310, such as a script. The script 1s used
to control execution of the batch process 304 to select the
records 320 within the database 314 using the database
query statement as a query 316. The second declarative
statement 1s extracted as text and interpreted as the inter-
preted process records plugin 312, such as a second script.
The second script 1s used to control execution of the batch
process 304 to process the records 320 to generate and
output a batch job result.

In an example, the first declarative statement and the
second declarative statement 1s interpreted into script that 1s
executed by the batch execution program code of the batch
process 304. In this way, execution of the batch process 304
(e.g., execution of the script) 1s performed through non-
compiling declarative statement interpretation that interprets
declarative statements for execution and does not compile
programming code. For example, the record identification
plugin 118 and the process records plugin 120 are not
program code that needs to be compiled but are instead
textual declarative statements that are interpreted and
executed without compiling.

During execution of a thread of the batch process 304, a
current work unit 1s evaluated to determine whether the
current work unit 1s a first work unit for the thread or a last
work unit for the thread. Responsive to the current work unit
being the first work unit for the thread, a first parameter 1s
set to a first value indicative of the current work unit being
the first work unit. Responsive to the current work unit being
the last work umit for the thread, a second parameter (e.g., or
the first parameter) 1s set to a second value indicative of the
current work unit being the last work unit. In this way, the
thread 1s able to determine whether more work 1s to be
performed and/or whether there 1s an opportunity to perform
additional work because execution of the thread 1s complete.

In one embodiment, the database query statement, the
interpreted record 1dentification plugin 310, and/or the inter-
preted process records plugin 312 includes a dynamic com-
ponent. For example, the database query statement includes
a query to find all credit cards that have expired within a
dynamic time span such as a last 30 days. Accordingly, a
dynamically selected value 1s provided to the dynamic
component during execution of the batch process 304. For
example, the batch process 304 determines a particular date
that 1s 30 days prior to a current date, and provides that
particular date to the database query statement for querying,
the database 314.

During execution of the batch process 304, error handling
1s provided. For example, responsive to identifying an error
with the execution of the batch process 304, error handling
1s performed to address the error. The error 1s addressed by
creating a record of the error within a file or database,
providing a notification of the error to the user, etc. In an
example, the batch process 304 1s restarted (e.g., automati-
cally restarted) after performance of the error handling.

In another example, a batch job tracking interface 1s
displayed. The batch job tracking interface 1s populated with
execution progress ol the batch process 304. For example,
the batch job tracking interface 1s populated with a batch job
identifier of the batch job. The batch job tracking interface
1s populated with a tree or other structure that 1s populated
with thread information for threads of the batch process 304.
The batch job tracking interface 1s populated with thread-run
instance mformation of the threads of the batch process 304.

10

15

20

25

30

35

40

45

50

55

60

65

10

The batch job tracking interface 1s populated with warning
and/or error information of abnormal execution of the batch

process 304 (e.g., a warning that no records were selected
from the database 314).

In an example, the batch process 304 1s executed based
upon the record 1dentification plugin 118 and not the process
records plugin 120. For example, the record identification
plugin 118 1s retrieved from the batch definition database
114. The record identification plugin 118 is interpreted nto
the interpreted record 1dentification plugin 310 for use by the
batch process 304 during execution, such as to retrieve the
records 320 from the database 314. In this way, merely a
single plugin or less than all available plugins are used. For
example, this may be useful when a utility company wants
to allow a customer to select a credit card to use from the
database 314, but not allow the customer to process the
credit card. In this way, the utility company can control how
the credit card 1s processed with a bank.

In an example, the record i1dentification plugin 118 and/or
the process records plugin 120 are easily updated by making
modifications to the records of the batch definition database
114 within which the record identification plugin 118 and the
process records plugin 120 are stored. The plugins are easily
updated because the record identification plugin 118 and/or
the process records plugin 120 are declarative definitions/
statements there 1s no need to change programming code
and/or recompile programming code. For example, respon-
sive to receiving a parameter change request (e.g., credit
card information 1s now to be sent to a new bank by the
process records plugin 120), the batch definition database
114 1s updated based upon the parameter change request.

With reference to FIG. 4, one embodiment of a computer-
implemented method 400 associated with controlling batch
j0bs with plugins 1s 1llustrated. The method 400 1s performed
by the analysis module 302 utilizing various computing
resources ol the computer 806. For example, the processor
808 15 utilized for executing 1nstructions within the batch job
creation functionality 112. Memory 814 and/or disks 824 are
utilized for storing the instructions of the batch process 304
and/or storing the batch defimtion database 114. Network
hardware 1s utilized for communicating information
between the computer 806 and a client device over a
network. The method 400 1s triggered based upon an indi-
cation that a batch job 1s to be executed. The indication
includes a generated instruction associated with a timer
expiring, a scheduler sending a scheduler command that the
batch job 1s to be executed, a user submitted command
indicating that the batch job 1s to be executed, a request to
execute a batch job, etc.

At 402, 1n response to recerving an instruction to execute
a batch job, the batch definition database 114 1s queried 306
to retrieve the record identification plugin 118 including a
first declarative statement defining parameters of the record
identification plugin 118 and the database query statement
used by the record 1dentification plugin to select records 320
within the database 314. In an example, the instruction
includes a batch job identifier of the batch job. The batch
definition database 114 i1s queried using the batch job
identifier to 1dentily the batch control record 116. The batch
control record 116 includes references, such as identifiers, to
the record 1dentification plugin 118 and the process records
plugin 120. Accordingly, the references are used to query the
batch defimition database 114 to retrieve the record identi-
fication plugin 118 and the process records plugin 120. In an
example, the database query statement 1s used to select
industrial equipment operational status information.

US 10,372,465 B2

11

At 404, the batch definition database 114 1s queried 306
to retrieve the process records plugin 120 including the
second declarative statement defiming how the process
records plugin 120 1s to process the records 320 selected by
the record 1dentification plugin 118. For example, the indus-
trial equipment operational status information 1s to be evalu-
ated to 1dentily industrial equipment that 1s operating 1n a
degrade state.

At 406, the system using at least the processor, interprets
the first declarative statement of the record identification
plugin 118 to control execution of the batch process 304 to
select the records 320 within the database 314 using the
database query statement. For example, the first declarative
statement 1s interpreted into script, such as the interpreted
record 1dentification plugin 310, which can be run by batch
execution program code of the batch process 304.

At 408, the system using at least the processor, interprets
the second declarative statement of the process records
plugin 120 to control execution of the batch process 304 to
process the records 320 to create a batch job result. The
batch process 304 controls the execution of the batch job,
which generates and outputs the batch job result. For
example, the second declarative statement 1s interpreted into
script, such as the interpreted process records plugin 312,
which can be run by batch execution program code of the
batch process 304.

With reference to FIG. 5, one embodiment of a system
500 associated with controlling batch jobs with plugins 1s
illustrated. The system 500 utilizes the analysis module 302
for batch job execution of a batch process 302 for a batch job
having an ad-hoc job type. In particular, the interpreted
record 1dentification plugin 310 (e.g., interpreted script from
the first declarative definition/statement) 1s run by batch
execution program code of the batch process 502. The
interpreted record 1dentification plugin 310 1s run to select
the records 320 within the database 314, such as to select
meter reading data). The interpreted process records plugin
312 (e.g., mterpreted script from the second declarative
definition/statement) 1s run by the batch execution program
code to update 504 the records 320 selected within the
database 314. For example, the interpreted process records
plugin 312 is run to upload new meter reading data to the
database 314.

With reference to FIG. 6, one embodiment of a system
600 associated with controlling batch jobs with plugins 1s
illustrated. The system 600 utilizes the analysis module 302
for batch job execution of a batch process 610 for a batch job
having an extract job type. In particular, the interpreted
record 1dentification plugin 310 (e.g., interpreted script from
the first declarative definition/statement) 1s run by batch
execution program code of the batch process 610. The
interpreted record identification plugin 310 1s run to select
the records 320 within the database 314, such as to select
meter reading data. The interpreted process records plugin
312 (e.g., interpreted script from the second declarative
definition/statement) 1s run by the batch execution program
code to write data 604 1nto data area 602. For example, the
interpreted process records plugin 312 1s run to write cus-
tomer billing data into the data area 602 based upon 1mple-
menting logic upon the meter reading data.

The batch process 610 determines a file name, a file path,
a data format, and/or other information for the extract file
608 into which the data 604 1s to be wrtten 606. For
example, the extract file 608 may correspond to a customer
bill. The batch process 610 writes 606 the data 604 from the
data area 602 into the extract file 608 according to the data
format. For example, the data format includes a comma

10

15

20

25

30

35

40

45

50

55

60

65

12

delimited format, an XML format, etc. The batch process
610 applies the file name and the file path to the extract file
608. For example, the extract file 608 1s stored, with the file
name, in a storage location referenced by the file path. In this
way, the interpreted process records plugin 312 does not
need to understand the particulars of writing 606 the data
604 to the extract file 608, but merely processes the records
320 and stores the data 604 resulting from the processing
into the data area 602.

FIG. 7 1s an 1illustration of a scenario 700 mnvolving an
example non-transitory computer-readable medium 702. In
one embodiment, one or more of the components described
herein are configured as program modules, such as the
analysis module 106, stored in the non-transitory computer-
readable medium 702. The program modules are configured
with stored instructions, such as processor-executable
mstructions 712, that when executed by at least a processor,
such as processor 716, cause the computing device to
perform the corresponding function(s) as described herein.
For example, functionality of the analysis module 106,
stored 1n the non-transitory computer-readable medium 702,
may be executed by the processor 716 as the processor-
executable instructions 712 to perform an embodiment 714
of the method 200 of FIG. 2.

The non-transitory computer-readable medium 702
includes the processor-executable instructions 712 that when
executed by a processor 716 cause performance of at least
some ol the provisions herein. The non-transitory computer-
readable medium 702 includes a memory semiconductor
(e.g., a semiconductor utilizing static random access
memory (SRAM), dynamic random access memory
(DRAM), and/or synchronous dynamic random access
memory (SDRAM) technologies), a platter of a hard disk
drive, a flash memory device, or a magnetic or optical disc
(such as a compact disk (CD), a digital versatile disk (DVD),
or floppy disk). The example non-transitory computer-read-
able medium 702 stores computer-readable data 704 that,
when subjected to reading 706 by a reader 710 of a device
708 (e.g., aread head of a hard disk drive, or a read operation
invoked on a solid-state storage device), express the pro-
cessor-executable nstructions 712.

In some embodiments, the processor-executable nstruc-
tions 712, when executed cause performance of operations,
such as at least some of the example method 200 of FIG. 2
and/or at least some of the example method 400 of FIG. 4,
for example. In some embodiments, the processor-execut-
able mstructions 712 are configured to cause implementation
of a system, such as at least some of the example system 100
of FIG. 1, at least some of the example system 300 of FIG.
3, at least some of the example system 500 of FIG. 5, and/or
at least some of the example system 600 of FIG. 6, for
example.

FIG. 8 illustrates an example computing device that 1s
configured and/or programmed with one or more of the
example systems and methods described herein, and/or
equivalents. The example computing device may be the
computer 806 that includes a processor 808, a memory 814,
and I/O ports 818 operably connected by a bus 810. In one
example, the computer 806 may include logic of the analysis
module 813 (e.g., analysis module 110 of FIG. 1 and/or
analysis module 302 of FIG. 3) configured to facilitate the
system 100, the method 200, the system 300, the method
400, the system 500, and/or the system 600 shown in FIGS.
1-6. In different examples, the logic of the analysis module
813 may be implemented in hardware, a non-transitory
computer-readable medium 702 with stored instructions,
firmware, and/or combinations thereof. While the logic of

US 10,372,465 B2

13

the analysis module 813 i1s 1llustrated as a hardware com-
ponent attached to the bus 810, 1t 1s to be appreciated that in
other embodiments, the logic of the analysis module 813
could be implemented in the processor 808, stored 1in
memory 814, or stored in disk 824.

In one embodiment, logic of the analysis module 813 or
the computer 806 1s a means (e.g., structure: hardware,
non-transitory computer-readable medium, firmware) for
performing the actions described. In some embodiments, the
computing device may be a server operating in a cloud
computing system, a server configured 1 a Software as a
Service (SaaS) architecture, a smart phone, laptop, tablet
computing device, and so on.

The means may be implemented, for example, as an
application specific itegrated circuit (ASIC) programmed
to 1implement rule based source sequencing for allocation.
The means may also be implemented as stored computer
executable mstructions that are presented to computer 806 as
data 804 that are temporarily stored in memory 814 and then
executed by processor 808.

The logic of the analysis module 813 may also provide
means (e.g., hardware, non-transitory computer-readable
medium 702 that stores executable instructions, firmware)
for performing rule based source sequencing for allocation.

Generally describing an example configuration of the
computer 806, the processor 808 may be a variety of various
processors including dual microprocessor and other multi-
processor architectures. The memory 814 may include vola-
tile memory and/or non-volatile memory. Non-volatile
memory may include, for example, read-only memory
(ROM), programmable read-only memory (PROM), and so
on. Volatile memory may include, for example, random
access memory (RAM), static random-access memory
(SRAM), dynamic random access memory (DRAM), and so
on.

The disks 824 may be operably connected to the computer
806 via, for example, the I/O interface 816 (e.g., card,
device) and the I/O ports 818. The disks 824 may be, for
example, a magnetic disk drive, a solid state disk drive, a
floppy disk dnive, a tape drive, a Zip drive, a tlash memory
card, a memory stick, and so on. Furthermore, the disks 824
may be a CD-ROM dnive, a CD-R drive, a CD-RW drive, a
DVD ROM, and so on. The memory 814 can store a process
802 and/or a data 804, for example. The disk 824 and/or the
memory 814 can store an operating system that controls and
allocates resources of the computer 806.

The computer 806 may interact with iput/output (I/O)
devices via the I/0 interfaces 816 and the I/O ports 818. The
I/0 devices may be, for example, a keyboard, a microphone,
a pointing and selection device, cameras, video cards, dis-
plays, the disks 824, the network devices 820, and so on. The
I/0 ports 818 may include, for example, serial ports, parallel
ports, and USB ports.

The computer 806 can operate 1 a network environment
and thus may be connected to the network devices 820 via
the I/0 interfaces 816, and/or the I/O ports 818. Through the
network devices 820, the computer 806 may interact with a
network. Through the network, the computer 806 may be
logically connected to remote computers (e.g., the computer
806 may reside within a distributed computing environment
to which clients may connect). Networks with which the
computer 806 may interact include, but are not limited to, a
local area network (LAN), a new area network (WAN), and
other networks.

In another embodiment, the described methods and/or
theirr equivalents may be implemented with computer
executable instructions. Thus, in one embodiment, a non-

10

15

20

25

30

35

40

45

50

55

60

65

14

transitory computer readable/storage medium 1s configured
with stored computer executable instructions of an algo-
rithm/executable application that when executed by a
machine(s) cause the machine(s) (and/or associated compo-
nents) to perform the method. Example machines include
but are not limited to a processor, a computer, a server
operating 1n a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, and so on). In one embodiment, a computing device
1s implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods.

In one or more embodiments, the disclosed methods or
their equivalents are performed by either: computer hard-
ware configured to perform the method; or computer instruc-
tions embodied 1n a module stored in a non-transitory
computer-readable medium where the instructions are con-
figured as an executable algorithm configured to perform the
method when executed by at least a processor of a comput-
ing device.

While for purposes of simplicity of explanation, the
illustrated methodologies in the figures are shown and
described as a series of blocks of an algorithm, 1t 1s to be
appreciated that the methodologies are not limited by the
order of the blocks. Some blocks can occur in different
orders and/or concurrently with other blocks from that
shown and described. Moreover, less than all the 1llustrated
blocks may be used to implement an example methodology.
Blocks may be combined or separated into multiple actions/
components. Furthermore, additional and/or alternative
methodologies can employ additional actions that are not
illustrated 1n blocks. The methods described herein are
limited to statutory subject matter under 35 U.S.C § 101.

The following includes defimtions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The
examples are not intended to be limiting. Both singular and
plural forms of terms may be within the definitions.

References to “one embodiment™, “an embodiment”, “one
example”, “an example”, and so on, indicate that the
embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, ele-
ment, or limitation, but that not every embodiment or
example necessarily includes that particular feature, struc-
ture, characteristic, property, element or limitation. Further-
more, repeated use of the phrase “in one embodiment™ does
not necessarily refer to the same embodiment, though 1t may.

A “data structure”, as used herein, 1s an organization of
data 1n a computing system that 1s stored 1n a memory, a
storage device, or other computerized system. A data struc-
ture may be any one of, for example, a data field, a data file,
a data array, a data record, a database, a data table, a graph,
a tree, a linked list, and so on. A data structure may be
formed from and contain many other data structures (e.g., a
database includes many data records). Other examples of
data structures are possible as well, 1n accordance with other
embodiments.

“Computer-readable medium” or “computer storage
medium™, as used herein, refers to a non-transitory medium
that stores instructions and/or data configured to perform
one or more of the disclosed functions when executed. Data
may function as mstructions in some embodiments. A com-
puter-readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-
volatile media may include, for example, optical disks,
magnetic disks, and so on. Volatile media may include, for
example, semiconductor memories, dynamic memory, and

US 10,372,465 B2

15

so on. Common forms of a computer-readable medium may
include, but are not limited to, a floppy disk, a tlexible disk,
a hard disk, a magnetic tape, other magnetic medium, an
application specific integrated circuit (ASIC), a program-
mable logic device, a compact disk (CD), other optical
medium, a random access memory (RAM), a read only
memory (ROM), a memory chip or card, a memory stick,
solid state storage device (SSD), tlash drive, and other media
from which a computer, a processor or other electronic
device can function with. Each type of media, i1 selected for
implementation in one embodiment, may include stored
instructions of an algorithm configured to perform one or
more of the disclosed and/or claimed functions. Computer-
readable media described herein are limited to statutory
subject matter under 35 U.S.C § 101.

“Logic”, as used herein, represents a component that 1s
implemented with computer or electrical hardware, a non-
transitory medium with stored instructions of an executable
application or program module, and/or combinations of
these to perform any of the functions or actions as disclosed
herein, and/or to cause a function or action from another
logic, method, and/or system to be performed as disclosed
herein. Equivalent logic may include firmware, a micropro-
cessor programmed with an algorithm, a discrete logic (e.g.,
ASIC), at least one circuit, an analog circuit, a digital circuit,
a programmed logic device, a memory device containing
instructions of an algorithm, and so on, any of which may be
configured to perform one or more of the disclosed tunc-
tions. In one embodiment, logic may include one or more
gates, combinations ol gates, or other circuit components
configured to perform one or more of the disclosed func-
tions. Where multiple logics are described, 1t may be pos-
sible to incorporate the multiple logics mto one logic.
Similarly, where a single logic 1s described, 1t may be
possible to distribute that single logic between multiple
logics. In one embodiment, one or more of these logics are
corresponding structure associated with performing the dis-
closed and/or claimed functions. Choice of which type of
logic to implement may be based on desired system condi-
tions or specifications. For example, iI greater speed 1s a
consideration, then hardware would be selected to 1imple-
ment functions. If a lower cost 15 a consideration, then stored
instructions/executable application would be selected to
implement the functions. Logic 1s limited to statutory sub-
ject matter under 35 U.S.C. § 101.

An “operable connection”, or a connection by which
entities are “operably connected”, 1s one 1 which signals,
physical communications, and/or logical communications
may be sent and/or received. An operable connection may
include a physical interface, an electrical interface, and/or a
data interface. An operable connection may include differing
combinations of interfaces and/or connections suilicient to
allow operable control. For example, two entities can be
operably connected to communicate signals to each other
directly or through one or more intermediate entities (e.g.,
processor, operating system, logic, non-transitory computer-
readable medium). Logical and/or physical communication
channels can be used to create an operable connection.

“User”, as used herein, includes but 1s not limited to one
or more persons, computers or other devices, or combina-
tions of these.

While the disclosed embodiments have been illustrated
and described 1n considerable detail, it 1s not the intention to
restrict or in any way limit the scope of the appended claims
to such detail. It 1s, of course, not possible to describe every
conceilvable combination of components or methodologies
for purposes of describing the various aspects of the subject

10

15

20

25

30

35

40

45

50

55

60

65

16

matter. Therefore, the disclosure 1s not limited to the specific
details or the illustrative examples shown and described.
Thus, this disclosure 1s intended to embrace alterations,
modifications, and variations that fall within the scope of the
appended claims, which satisiy the statutory subject matter
requirements of 35 U.S.C. § 101.

To the extent that the term “includes” or “including” 1s
employed in the detailed description or the claims, it 1s
intended to be inclusive 1n a manner similar to the term
“comprising”’ as that term 1s interpreted when employed as
a transitional word 1n a claim.

To the extent that the term “or” 1s used 1n the detailed
description or claims (e.g., A or B) it 1s intended to mean “A
or B or both”. When the applicants intend to indicate “only
A or B but not both” then the phrase “only A or B but not
both” will be used. Thus, use of the term “or” herein 1s the
inclusive, and not the exclusive use.

What 1s claimed 1s:

1. A non-transitory computer-readable medium storing
computer-executable instructions that when executed by a
processor of a computer causes the processor to:

control execution of a batch process for a batch job by:

querying a batch definition database to retrieve a record
identification plugin comprising a first declarative
definition and a database query statement used by the
record 1dentification plugin to select records within a
database for processing by the batch job;

querying the batch definition database to retrieve a
process records plugin comprising a second declara-
tive definition defining how the process records
plugin 1s to process the records selected by the record
identification plugin;

interpreting the first declarative defimition of the record
1dentification plugin to control execution of the batch
process to select the records within the database
using the database query statement; and

interpreting the second declarative definition of the
process records plugin to control execution of the
batch process to process the records selected by the
record 1dentification plugin to create a batch job
result.

2. The non-transitory computer-readable medium of claim
1, wherein the execution of the batch process 1s performed
through non-compiling declarative definition interpretation
that does not compile programming code.

3. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:

query the batch defimtion database to identily strategy

istructions for the batch job, wherein the strategy

instructions are either:

(1) a thread level select strategy speciiying that the
record 1dentification plugin 1s to select, but not load
into a memory, the records from the database and
return an 1dentifier of the records for processing by
one or more threads of the process records plugin; or

(11) a job level select strategy specitying that the record
identification plugin 1s to load the records into the
memory for assignment of the records from the
memory to the one or more threads of the process
records plugin; and

control execution of the batch process based upon the

strategy 1nstructions i1dentified by the query.

4. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:

US 10,372,465 B2

17

query the batch definition database to identify a job type
of the batch job, wherein the job type 1s either:

(1) an ad-hoc job type used to implement logic, of the
process records plugin, upon the records selected by
the records identification plugin; or

(11) an extract job type used to extract data from the
records selected by the record identification plugin
and store the data within an extract file; and

control execution of the batch process based upon job

type.

5. The non-transitory computer-readable medium of claim
4, wherein the computer-executable instructions cause the

processor to:
responsive to the job type being the extract job type:

(1) extract the data from the database into a data area
using the records identification plugin;

(1) determine a file path, a file name, and a data format
for the extract file based upon the job type; and

(111) store the data into the extract file according to the
data format, wherein the extract file 1s stored using
the file path and the file name.

6. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:
query the batch definition database to i1dentify a batch
control record that references batch execution program
code that 1s executed by the batch process; and
interpret the first declarative definition and the second
declarative definition into a script that 1s executed by
the batch execution program code.
7. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:
construct the batch job by:

displaying a batch job definition interface populated
with:

(1) a first interface with functionality used to receive
the first declarative definition for the record iden-
tification plugin and the database query statement;
and

(11) a second interface with functionality used to
receive the second declarative definition for the
process records plugin; and

responsive to recerving the first declarative defimition,
the database query statement, and the second
declarative defimtion through the batch job defini-
tion interface:

(1) constructing the record 1dentification plugin based
upon the first declarative definition and the data-
base query statement;

(11) constructing the process records plugin based
upon the second declarative definition;

(111) storing the record identification plugin and the
process records plugin within the batch definition
database; and

(1v) constructing the batch job to reference the record
identification plugin and the process records
plugin.

8. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:

during execution of a thread of the batch process:

(1) responsive to a current work unit being a first work
unit for the thread, set a first parameter to a first value
indicative of the current work unit being the first
work unit; and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

(11) responsive to the current work unit being a last
work unit for the thread, set a second parameter to a
second value indicative of the current work unit
being the last work unit.

9. The non-transitory computer-readable medium of claim
1, wherein the computer-executable instructions cause the
processor to:

responsive to recerving a first parameter change request

for the record identification plugin, update the batch

definition database based upon the first parameter
change request; and

responsive to receiving a second parameter change

request for the process records plugin, update the batch

definition database based upon the second parameter
change request.

10. A computing system, comprising;:

a processor connect to memory;

an analysis module stored on a non-transitory computer

readable medium and configured with istructions that

when executed by the processor cause the processor to:
control execution of a batch process for a batch job by:
(1) querying a batch definition database to retrieve a
record identification plugin comprising a first
declarative definition and a database query state-
ment used by the record identification plugin to
select records within a database; and
(1) interpreting the first declarative definition of the
record 1dentification plugin to control execution of
the batch process to select the records within the
database using the database query statement; and
(111) executing the batch process to generate and
output a batch job result that 1s controlled by at
least the 1nterpreted first declarative definition and
the records selected.

11. The computing system of claim 10, wherein the
execution of the batch process 1s performed through non-
compiling declarative definition interpretation that does not
compile programming code.

12. The computing system of claim 10, wherein the
instructions cause the processor to:

query the batch definition database to i1dentily strategy

instructions for the batch job, wherein the strategy

instructions are either:

(1) a thread level select strategy specitying that the
record 1dentification plugin is to select, but not load
into a memory, the records from the database and
return an identifier of the records for processing by
one or more threads of a process records plugin of
the batch process; or

(11) a job level select strategy speciiying that the record
identification plugin 1s to load the records into the
memory for assignment of the records from the
memory to the one or more threads of the process
records plugin; and

control execution of the batch process based upon the

strategy 1nstructions i1dentified by the query.

13. The computing system of claim 10, wherein the
instructions cause the processor to:

query the batch definition database to identify a job type

of the batch job, wherein the job type 1s either:

(1) an ad-hoc job type used to implement logic, of a
process records plugin of the batch process, upon the
records selected by the records identification plugin;
or

(11) an extract job type used to extract data from the
records selected by the record identification plugin
and store the data within an extract file; and

US 10,372,465 B2

19

control execution of the batch process based upon job

type.

14. The computing system of claim 13, wherein the
instructions cause the processor to:

responsive to the job type being the extract job type:

(1) extract the data from the database into a data area
using the records i1dentification plugin;

(1) determine a file path, a file name, and a data format
for the extract file based upon the job type; and
(1) store the data into the extract file according to the

data format, wherein the extract file i1s stored using
the file path and the file name.

15. A computer-implemented method, the computer-
implemented method involving a computing device com-
prising a processor, and the computer-implemented method
comprising;

executing, on the processor, instructions that cause the

computing device to perform operations that:
construct a batch job by:
displaying a batch job definition intertace populated
with:

(1) a first terface with functionality used to
receive a first declarative definition and a data-
base query statement used by a record identifi-
cation plugin to select records within a database
for processing by the batch job; and

(11) a second interface with functionality used to
receive a second declarative definition defining
how a process records plugin 1s to process the
records selected by the record identification
plugin; and

responsive to receiving the first declarative defini-
tion, the database query statement, and the second
declarative definition through the batch job defi-
nition interface:

(1) constructing the record identification plugin
based upon the first declarative defimtion and
the database query statement;

(1) constructing the process records plugin based
upon the second declarative definition;

(111) storing the record 1dentification plugin and the
process records plugin within a batch definition
database; and

5

10

15

20

25

30

35

40

20

(1v) constructing the batch job to reference the
record 1dentification plugin and the process
records plugin; and

schedule a batch process to execute the batch job.
16. The computer-implemented method of claim 185,
wherein the instructions cause the computing device to:
provide, through the batch job definition interface, a
template record of batch execution program code that 1s
executable by the batch process;
responsive to receiving a copy command for the template
record, duplicate of the template record to create a
batch control record, within the batch definition data-
base, that refers to the batch execution program code;
and
associate the record 1dentification plugin and the process
records plugin with the batch control record.
17. The computer-implemented method of claim 16,
wherein the instructions cause the computing device to:
control execution of the batch process for the batch job
by:
(1) querying the batch definition database to retrieve the
batch control record; and
(11) utilizing the batch control record to i1dentify the
batch execution program code for execution by the
batch process.
18. The computer-implemented method of claim 185,
wherein the instructions cause the computing device to:
display, through the batch job definition interface, field
and value pairs of records that are to be selected by the
database query statement.
19. The computer-implemented method of claim 185,
wherein the instructions cause the computing device to:
execute the batch process through non-compiling declara-
tive definition interpretation that does not compile
programming code.
20. The computer-implemented method of claim 19,
wherein the instructions cause the processor to:
responsive to identifying an error with the execution of
the batch process, perform erroring handling to address
the error; and
restart the batch process after performance of the erroring
handling.

	Front Page
	Drawings
	Specification
	Claims

