US010372414B2

a2 United States Patent (10) Patent No.: US 10,372,414 B2

Patel et al. 45) Date of Patent: Aug. 6, 2019
(54) FRACTIONAL POINTER LOOKUP TABLE 5910910 A 6/1999 Steele, Jr.
6,094,669 A 7/2000 Mahurin
(71) Applicant: Advanced Micro Devices, Inc., ga’;‘g}%g Ei L %883 ?beﬂ?ﬂlll
] . dn ¢l al.
Sunnyvale, CA (US) 8,808,215 B2* 11/2014 Aminooco..... GOGE 7/5375
. 708/504
(72) Inventors: Chintan S. Patelj_Bee Caxf'e, TX (US); 10.146.504 B2 12/2018 Mihnle
Alan Dodson Smith, Austin, TX (US) 2003/0149713 Al 8/2003 Kurd
_ 2005/0289209 Al1* 12/2005 Robison GO6F 7/535
(73) Assignee: Advanced Micro Devices, Inc., Santa 708/650
Clara, CA (US) 2009/0006509 Al1* 1/2009 Amincooevvvevnnnn., GO6F 7/52
708/200
(*) No‘[ice: Subjec‘[to any d_iS(_“;l;.glinl;&':r:j ‘[he term Of‘[hjs 2018/0107730 Al * 4/2018 Parker GO6F 17/30442

patent 1s extended or adjusted under 35

S -
U.S.C. 154(b) by 0 days. cited by examiner

(21) Appl. No.: 15/796,521 Primary Examiner — David H Malzahn
(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
(22) Filed: Oct. 27, 2017 Kowert and Goetzel PC; Rory D. Rankin
(65) Prior Publication Data (57) ABSTRACT
US 2019/0129693 Al May 2, 2019 Systems, apparatuses, and methods for implementing a
fractional pointer lookup table are disclosed. A system
(51) Int. Cl. includes a fractional pointer lookup table and control logic
GOol 7/535 (2006.01) coupled to the table. The control logic performs an access to
GO6F 7/498 (2006'O;~) the table with a numerator and a denominator, wherein the
GO6r 16/901 (2019.01) numerator and the denominator are integers. The control
(52) US. Cl. logic recetves a result of the lookup, wherein the result 1s
CPC s GOot 7/4988 (2013.01); GOGF 16/9017 either a rounded-up value of a quotient of the numerator and
(2019.01) denominator or a rounded-down value of the quotient. In one
(58) Field of Classification Search embodiment, the control logic provides a fractional pointer
None o _ to the table with each access and recerves a fractional pointer
See application file for complete search history. limit from the table. The control logic initializes the frac-
(56) References Cited tional pointer to zero, increments the fractional pointer after

cach access to the table, and resets the fractional pointer to
U.S PATENT DOCUMENTS zero when the fractional pointer reaches the fractional
o | pointer limait.

5,386,376 A 1/1995 Girard et al.
5,696,712 A 12/1997 Prabhu et al. 17 Claims, 13 Drawing Sheets

Allocation | Numberof
Sfage Tokens
Counter ! 2 A ;Iﬂkefn
Qcahion Roufer
" 2 z Schedule 405
Average 1.67 Control
- Logic
. 44{
Aliocation | Numberof e —
Stage Tokens
y 5 Toren ,
> Counter 1, Alfocation Fractional
4198 z 2 Schedute —nl Pointer
3 3 4208 43¢
Average p
Lookup Table
442
Aliceation | Number of & Tokens Per
Stage Tokens Round in
U ——— Token Free Pool
. Counter { Alfocation 432
415G Schedule
4200

US 10,372,414 B2

Sheet 1 of 13

Aug. 6, 2019

U.S. Patent

00}

1 F 4+ + + + %A 8 F + + + + % FFF+ + + +

L |

+ = 8 F F o o F R+ F g

..||..............|.....|.|......|......|.......||....
l."r.r.—..—..—.‘l.'.‘..—..r.—..—.‘TTi.r.—..—..—.‘-l.—..r.-..—.l."r.r.—..—..—.‘-l.—-.—.i.—..—."rii.—..—..—.

*

Ol |
(SIBUABCT IS0

+ = 8 F F &+ F F R FF R ST F o F

+

PEr a e m mm e e e e E e e g T e A m e e e e gt m e g e et
rr sl R T TTTELRTTRTT N R, rr T ErEr R TT TR EEEEER RN, -
O o N N T O R R R R S T N R R R R R I N

GelL
ISJOIIIOD)
ABIOSICT

* ok ok ok ok DRk ko ko ko kY bk F ok ko kDb kb

P T T i e L L L I
 d A d hF F ko rAdod F F ok dAdhhd o+ o+ dAdd o hF A Fw ok od o+ Rk dh ok F o+ kA A dh Ak
L] +

1 ¥ + + + + +

1 F + + + + + 1

(SIBUABCT AJOSIN

L I L O I

+ + + F 1

L NN N I I I A N A N I L L N I N I I O I L NI B O L L L N B D O O O)

+ & 0 4 4+ + + + + &1

GCl

SOBUBI OV

* =+ F kA hF FFFEF Y FFFEFA A FF YRR F LY+ F

U I
L |
-

"+
4
a.

4 & R R R B S T E R LALERLSATLRELERR

- m a2 2 R AR R B L B S 1A R R S AL BES S SR S R E R S S L 4 R B E BB ST AESE LSS ES LR RS ERESATEE R R B R L4

[l
4
[l
[l
4
4

-
+
+
+
+
L
L
Ll
-
L
+
+
+*
*
*
L
L
+
+
+
+
+
L
Ll
-
L
+
+
+*
*
*
Ll
L
+
+
+*
+
*

I

e T A T I T e s it T i e o o e e T e e e A A N i
A L1 1 R A N N T e T N oo
b ok ¥+ F o F FdoAd A FFF A hFFFF A A A F A F FFF A F -k ke od o+ F

L]

f + ++ + 1+ FFE TR

f 4+ + + +F 17 F A

f + + +Fr+ 1+ FFEFrEET L

f + ++ %+ 1T+ttt

+ % & b 4+ + + + + +

it
UGE

"
-
+
+*
+
+
L
T
Ll
+
L
+
+
+
*
L
"
+

ok d o w ko ok k kwoad Yk ok ko hd hh ok ko w h Y ok Eh o F kR F ke

A 4 4+ + + + % F 2 o+ FFEE R+ 4+

LA B N N N N R RSB E BB EBEEEREEEEEEBE BB EEBEEIBERBEBEREEEBEESEEBEEBEEBEBEEEREREEBEEEBEBEEEBERBEBERBEERBEIERIERLRNBIEINRSIEEINEIINE.

LI |
% T
y .

+ +
L
-

* ok ko d P F ko ok d Nk F ok ok ok d Pk kA D F kot

4 &4 r 2 2 2 2 2 2 ¥ ¥ - 2 2 82 & 4 428 82224 F Fa2 =882 2T L ESE S S SESEFF T A NS A AF R

T T T T T
b O T I T . D D O

. r
[a a

+ + + + % % b =+ + + F + +

F+=+ % + + ¢ 1 %+ + + + + + ¢+ &+ + + + + 1 F++ + + + & F4

+ + + & 1

L L O N I L

LA N L N N N RN B L D L B D L R L L L D L L D L

JUC BUISS800I A

LI I N NN N B LS E B E B BB EBEEEEBEEENBNEENERENE.NENIE.I

US 10,372,414 B2

Sheet 2 of 13

Aug. 6, 2019

U.S. Patent

+ = & § = § 4 % F & F R A g R A g R § 4 % F SRS

L T R T

F 4+ + F F + % 4% + & F + +F + + FF+ %4 + +F + +

N N I N N

+ + F+ + kA F A F A F R F A

* % k= F e+ FrhF kR d S

- T T T T TT T T TER TTER T TTT TT T T TR T TR T

£ 1

L P O, P O, N LIRS

L P, I . D - L B P

¢ i

44 rF
N
o+ o+
HL IMQ
F
-
d
)
+ b
mFrFrPTEFP PSP FrP*sT e PR FrTIL P A, PR rFrPFParr e rTre oo g
4T A rTr T T rrr T T A rr Tt T rr T AT T T AT T
B A T N I S A I N I N B - L
+.
4
.
[]
+
L]
[]
-+
2 f+ r d + 4+ B 4] 4
LE
. n
" a
5 d
-
a 4
-+
[4
- .
. .
- A
L +,
- #
2 : b : +
L
" I
) d
B
a +
-+
n
d
+,
4
.
- 4
+
-+
F +.
-
. .
e :
N e e e N N N R N NN O NN,
Lt -+
L v i
- . +
+ o
LI

T L L P L L P L DL L L L

F+ + F+ + 1 + + % F+ +F + + &+ + 14+ F+ F+F + +++ + 1+ +Fo+ &PF + +F + +F

+ + d + + d + + k&t ok ht At A+ At FE R

LN N RN I, !

. - - - - .l -
I N N I L B] el e e L e !

-
+
+*
=
d
+

GOC
JUBH

F+ ++ + 44+ % FF % & F -+ + A4+ FPF+ + ¢4 F 9+ F+FF + +FF+ +F 5%+ % F+ +F

* ok rh ok rh ok ko rh ok ko

00¢

US 10,372,414 B2

Sheet 3 of 13

Aug. 6, 2019

U.S. Patent

T TTrTTTrrTYrTTYTTTTTTTTTTTTTTTTT TT T T T YT T T T T T TYT T YT TTYTTOTOTTTOTTTTTTTTTTTTTTTTTTTTTTTT T T
+ + + + + F + +F + A+ FFFFFEFFFEFEFFEFFEFEFFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFE

&£ Ol

+ + + + F F o+ FFFFFFFAFFFEFEFAFEAFEFFEAFFEFEFEFFEAFEFEAFEAFEFFEFEFEAFEAFEFEAFEFEFEAFEAFEFEAFEAFEFEFEFEFEAFEFEFAFEAFEFEAFEAFEFEAFEFEFEAFEFEFEFEFEFEAFEAFEFEFEAFEFAFEAFEFEAFEFEFAFEAFEFEFEAFEFEFEAFEFFEFEFAFEAFEFAFEAFEFEAFEAFEFEFEAFFEAFEAFFEAFEAFEFAFEAFEFAFEAFEFEFEAFEFEFEAFEFEFEFFEAFEAFEFEFEFEFFFFF

+ + + + + + ¥ + + F F F F FFFFFFFFFFFFF

LR R T T T T T O T T RO I T SO S T T SO R T R T A T R R T R RO T O T S T T N I B B |
L N

OgE
(Sligyng

+ + + ¥ F F+ F FF o FFFFFEFFEAFFFAFEFFEAFEFEFEFEFEFF

J&UIO A
U

o o1==T,

+ + + F FF o F A FFFFFFEFEFEFFEFEFEFEFE

+ 4+ + F + + F +F ok FFFFEFFEFEFFEFFFEFE A+

+

LR L B T T T T T T O T T SO S T R R T R R T R R RO T R R T T OO T T TR RO N Y T R T B B R B |
N L

+

+

.
++-I-++-I-++-I-+++++++++.+-+.+.+-+.+.+

4
00 28

+

YO |

+ + + + + + + + + + + + + + F +t At FFEF

L N L N L N L N L

.
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
+*
+

L I2JUN0Y

+ + + + + + + + +F + F F A+ FFFFFFEFFFEFFEFEFFFEFFEFF

+ + + + + + + + + + + + + + + +F F + +E

+ + + + F FFFFFFFFEFFEAFFAFEAFEFFEAFEFFEAFEFEFEFEFFFF

.
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+

L 2JUNon

+ + + + + + + + +F + F F A+ FFFFFFEFFFEFFEFEFFFEFFEFF

+ + + + + + + + + + + + + + + + +FF+E

* + + + + + + F F F F A+ FFFFFFEFEFEFEFFEFEFEFEFEFEFEEFFF

+ + + % + + + + + F+ + + A
+ + + + + + + + + F + + + + + + + + +

+ + + + + + + F+ ++ A+ttt

+ + + + + + + Ft+t +rt+ ottt ottt ettt ottt ettt ottt ettt ottt ottt

L N L N L B L N L L L R

+*

+

+

+*

+

+

+

. +
- +
+*

+

+

+*

+

+

+

+

+

+*

+

+ * + + + + + Ft+ T

e,

+ + + + + + + + + + F F F FFFFFFFFEFFFEFFEF

&
-]
&

cF ok FF o FFFFFFFFEFFFEFFFEFF T

+ + + + + + + +

HOLE
e

+ + + + + + + + + + F F F FFFFFFFFEFFFEFFEF

s T T T T TTTTTTTTTTTYTTTTTTTTTT T

+ + + + + + + + F F A+ FFFFFEFFFEFFFEF S

vOLE

JHESH

+ + + + + + + ++ ++F+ ot

+ * + + + + + + ottt

+ + + + + + + + + F + + + + + + + + +

US 10,372,414 B2

Sheet 4 of 13

Aug. 6, 2019

U.S. Patent

11

GEp
00 8844

Ui DUNOM

I8 SUSNOL O

rr

g
| guing e
L jeucoBi- |

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

0
wliomi
JOUHION

GOy
IS0

D02
SINpYyIS |
LORBIONY

Hayo]

| susyoi abels
| joJequunpy | uoReookY

WMHW A A A A AR
Bige | dnyoo

7 ebrIaAtY
gozt « 3
SINPRYIS Z &
HORRIOHY z ;
LUEaNO |
SUSKHO | abels

JO ILCUHTN UOREDOHY

rr

vOCy
DNLBYIS
LOHRO0)Y

Uays |

= SUBYO§ sbr)s
L O IBQUINN | UCHESOHY

111
...

aa
Ll

JBJN0N

HS Lt

JGJUNON

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

7GLy
IBIUNOS

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

SOTF
LS

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

...............................

g0t
H#DHD)

111111111111111111111111111111

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

S

U.S. Patent

Aug. 6, 2019 Sheet 5 of 13

205

Oetect Muitiple Active Ulients

Targeting a Common Destination

510

Allocate a First Number of Flow
{ontrol Tokens fo Each of the
Active Clients, wherein the First
Number of Tokens & Less than &

| Second Number of Tokens Needed |

fo Saturate the BQﬁQWfafm fo the
Common Destination

2715

Aflocate a Third Number of Fow
Controf Tokens o a Free FPogl,

wherein the Third Number of

Tokens is Equal to the Difference |

| Between the Second Number and |

the Fust Number

aaa
11

Dynamically Alocale Fiow (onirol

Tokens from the Free Pool o fhe

| Active Clients based on an Activity |
f Level of cach Clen aé

FIG. 5

US 10,372,414 B2

500
5

U.S. Patent Aug. 6, 2019 Sheet 6 of 13 US 10,372,414 B2

600
5

605

Define a Token Thrashold Per
hent which is the Maxamum
Number of Tokens that can be

Aliocated by a Router to a Given |
: Client per Round ;

G610

| Assign a Programmable Arbitration |
5 Weight to Each Client ff

tilize the Programmable |
- Arbitration Weignt fo Modily Each §
Client’s Token Threshold

FiG. 6

U.S. Patent

Aug. 6, 2019

Utilize a Per-Client Programmabie |
Aroitration Weight fo Specify a
Reset Value of a Corresponding
Fer-Client Counter

initiafize a Head-of-Line Paoinfer and|
a Second P{:sé'nfer'm Fointtoa |
Given Client

Sheet 7 of 13

{00
F.}

7 stherea T
] 0Ken Avallable] .~

+
w n
4
L] -
-
+'| T
=
+ r =
4+ &
L]

725

- Head-of-Line

. Pointed-to-Counter .
T, 2 e

.+.+‘ ’-'. -'+
s fhe
o VO

1
Y

Relgase a Token fo the Given Client |
and Decrement the Given Ulient's |

Counter by One and Move the
Second Counter fo the Nexd Counter §

720

Wait Unfil the Next Cycle

| Resst the Counter to a Value based ong
| the Programmabie Arbitrafion Weight }
1 and Mowve the Head-of-Lingand |
| Second Pointers to the Next Counter |

Bring the Second FPointer Back fo the
Head-of-Line Poinfer :

7 stherea T
.| Oken Available? .~

Yes |
' 750

L Isthe T

" Lounter Pointed to

- DV the Second Pointer "
T, 207

Release a Token fo the Given Client |
ang Decrement the Given Client’s §

Counter by One

US 10,372,414 B2

Move the Second Poinfer to the
Next Counter

" Hasthe T~._ Yes
<__ ogcond Pointer Reached >
~the Last Counter?~~

U.S. Patent Aug. 6, 2019 Sheet 8 of 13 US 10,372,414 B2

B00

Caiculate a Threshold Number of |
{okens for Aliocation to a Given |

{fient per Round

sthe

<_ {hreshold # of Tokens an >

e ifBger Vale? -

- Allocate the Infeger Number of §
' {okens fo the Given Clent for each

r

| Calculale an Average Toxken |
| Allocafion for the Given Client over |
f the Last N Round i

825

A 5the e
" Average Token . INO
~ Atfocaton > Threshoid #.

Y@é'iﬁ 830

Allocate a Number of Tokens Equal
{0 the Rounded-Up Vaiys ofthe |

Afiocate a Number of Tokens tqual
{o the Rounded-Down Vaiug of the |
{freshold Number %

Wait Unfil the Round is Complete |

FiG. 8

U.S. Patent Aug. 6, 2019 Sheet 9 of 13 US 10,372,414 B2

860

-

908

Caloulafe & Numeraf@r and a
Denominator

+++
-

| Initialize N to 1 and the Fractional §
f Poinfer to

+++

915

" Has the ™

Numeratoror &S

~. Denominator " 92
e Changed? -~ = :
| Initialize N to 1 and the Fractional §
No lgo o Pointerto U :
925 | : - _

aa

Access a Lookup Table Using the |
Numerator, Uenominalor, and
Fractional Poinfer

Retum, from the Lookup Table, a
Hesult and the New Valug of N

Fraciional Pointer = (Fractional
Fointer+ 11 % N

FIG. 9

U.S. Patent Aug. 6, 2019 Sheet 10 of 13 US 10,372,414 B2

1000
5

Caiculate & Number of Tokens to |
Alfocate to a Ulient per Round, |
wherein the Number of Tokens is |

Represented as a Ratio of a
Numerator over a Denominaior

fitia

lize a Fractional Pointer to Zero,
and an N Value to One ff:

Ferform a Lookup fo a Lookup
{able Using the Numerator,
Denominator, and Fractional

Fointer

Refum, from me Lookup fabie, a
Trhreshold Numberand anew N |
Vallie

| Allocate the Threshold Number of |
fokens to the Client for the Current

+

The Next Token Allocation Round

Begins

No " Dossthe

~ Frachionai Pointer >
7 the N Value?

LK

ot

+

. 1

h
+++ .
+ .
F
- .
1]
K .
-
* ¥ ’ :
-
+) :
h . L]
+ i .
+ 'I
; !
+ o ¥
+ .
.
+ .
.
+ :
4 :
...

Eommm ry

U.S. Patent Aug. 6, 2019 Sheet 11 of 13 US 10,372,414 B2

LOOKUD [able
1100

Fractional
Fointer

' Numerator | Denominator

Combination
index

3
Numerator, |
;}inag;gnafe;ﬁ . . 8 e | 8 Resuit
ﬁg _f?r}a, - o ¢ % - @ e AN
ointer N Vaiue
5
&
8
&

FIG. 11

U.S. Patent Aug. 6, 2019 Sheet 12 of 13 US 10,372,414 B2

1200
p

1205

Calculate a Numerator from an
Arbifrafion Weight Applied to &

Caicuiate a Denominator from a
Total Number of Reguestors that
are Using a Shared Resource

A7 47T TTATETAT L AATETATLTETTETLE ArTrTATTATLTAALTETATTATLIA TR ARt aT e A1 1TA LT EETaAE®mRTATLETLETTART

1215

inifialize a Fractional Pointer

Perform an Access to a Loorup
Table Using the Numerator,
- Denominalor, and Fractional §
 Fointer as an index info e Lookup §
5 Table éé

- Recelive a Result rom the Lookup, |
- whersm the Resudt indicates how
much of the Shared Resource fo
- Alfocate to the Given Requestor, |
- and wherein Qver Time the Resuft §
- Averages outlo a Value Eguallo |
the Numeralor Divided by the
Denominator

123

L Increment the Fraciional Pointer |
- and Resel the Fractional Pointerii §

the Fractional Poinfer Keaches the §
5 Limit ?

FIG. 12

U.S. Patent

Aug. 6, 2019 Sheet 13 of 13

1300

Determing How Many Clienis are
Currently Active

aaa

Number of Tokens which is the
Maximum Number of Tokens

Bandwidth from the Clientto ifs
Destination

Determineg, for Each Chent, 3
Second Number of Tokens o

| Allocate per Unit Time which is the |

Minimum Number of Tokens fo

o

Define a Toxen Threshold per
{lient which is the Maximum
Number of Tokens that can be

Allocated by the Router to a Given

4

Assign an Arbitration Weight fo
Each Client

' Calculate the 7

Weignt, wheremn the [oken
Thresnold 1s Kept in etween the
First Number and the Second
MNumber

Allocate a Number of Tokens per |
Client, per Unit Time, wherein he |

Number of Tokens Alfocaled per

 Client, per Unit Time is s the Token |
f frreshoid

' Determine, for Each Client, a First §

| Needed per Unif Time fo Saturate |

‘ oken Threshoid per |
 Client based on a Number of Active |
- Clients and the Client's Arbitration |

US 10,372,414 B2

1300
-

US 10,372,414 B2

1
FRACTIONAL POINTER LOOKUP TABLE

BACKGROUND
Description of the Related Art

Computing systems are increasingly integrating large
numbers of different types of components on a single chip or
a multi-chip module. The complexity and power consump-
tion of a system increases with the number of different types
of components. Often, these components are connected
together via switches, routers, communication buses,
bridges, buflers, controllers, coherent devices, and other
links. The combination of these interconnecting components
1s referred to herein as a “‘communication fabric”, or “fabric”
for short. Generally speaking, the fabric facilitates commu-
nication by routing messages between a plurality of com-
ponents on an integrated circuit (i.e., chip) or multi-chip
module. Examples of messages communicated over a fabric
include memory access requests, status updates, data trans-
fers, coherency probes, coherency probe responses, and the
like.

In a fabric that employs token flow control, tokens
released by a receiver provide the transmitter with guaran-
teed bufler availability at the receiver. When the receiver
calculates a desired amount of tokens to release to the
transmitter, the desired amount might not be an integer
value. However, 1t 1s typically not possible for the receiver

to allocate a fractional token to the transmitter. Accordingly,
the receiver 1s not able to release the desired amount of

tokens to the transmitter.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description 1n conjunction with the accompa-
nying drawings, in which:

FIG. 1 1s a block diagram of one embodiment of a
computing system.

FIG. 2 1s a block diagram of another embodiment of a
computing system.

FIG. 3 1s a block diagram of one embodiment of a token
flow control router for implementing a weighted round-robin
arbiter.

FIG. 4 1s a block diagram of one embodiment of a token
flow control router using a fractional pointer with a lookup
table.

FIG. 5§ 1s a generalized flow diagram illustrating one
embodiment of a method for dynamic builer management 1n
multi-client token flow control routers.

FIG. 6 1s a generalized flow diagram illustrating one
embodiment of a method for dynamically allocating tlow
control tokens to clients.

FIG. 7 1s a generalized flow diagram 1illustrating one
embodiment of a method for implementing a weighted
round-robin arbiter 1n a token tlow control router.

FIG. 8 1s a generalized flow diagram illustrating one
embodiment of a method for managing non-integer token
thresholds.

FIG. 9 1s a generalized flow diagram illustrating one
embodiment of a method for utilizing a fractional pointer to
access a lookup table.

FIG. 10 1s a generalized flow diagram illustrating another
embodiment of a method for utilizing a fractional pointer to
access a lookup table.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 illustrates one embodiment of a fractional pointer
lookup table.

FIG. 12 1s a generalized flow diagram illustrating one
embodiment of a method for determining how much of a
shared resource to allocate to a requestor.

FIG. 13 1s a generalized flow diagram illustrating one
embodiment of a method for determining a token threshold
per client.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some 1nstances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown 1n detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown 1n the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, methods, and computer-
readable mediums for implementing a fractional pointer
lookup table are disclosed herein. In one embodiment, a
system 1ncludes a fractional pointer lookup table and control
logic coupled to the table. The control logic performs an
access to the table with a numerator and a denominator,
wherein the numerator and the denominator are integers.
The control logic receives a result of the lookup, wherein the
result 1s either a rounded-up value of a quotient of the
numerator and denominator or a rounded-down value of the
quotient. In one embodiment, the control logic provides a
fractional pointer to the table with each access and receives
a fractional pointer limit from the table. The control logic
initializes the fractional pointer to zero, increments the
fractional pointer after each access to the table, and resets
the fractional pointer to zero when the fractional pointer
reaches the fractional pointer limiat.

In one embodiment, a system includes at least one or more
processing units, a communication fabric, and one or more
memory devices. The fabric 1s coupled to the processing
unit(s) and memory device(s), and the fabric includes a
plurality of routers. Each router includes a fractional lookup
table and control logic to determine how many tokens to
allocate to each of 1ts clients.

Referring now to FIG. 1, a block diagram of one embodi-
ment of a computing system 100 1s shown. In one embodi-
ment, computing system 100 includes at least processing
units 110A-B, fabric 115, mput/output (I/0) interfaces 120,
memory device(s) 130, display controller 1335, and other
device(s) 140. In other embodiments, computing system 100
can include other components and/or computing system 100
can be arranged differently. Processing units 110A-B are
representative ol any number and type of processing units.
For example, 1n one embodiment, processing unit 110A 1s a
central processing unit (CPU) and processing unit 110B 1s a
graphics processing unit (GPU). In other embodiments,
processing units 110A-B can include other numbers and
types of processing units (e.g., digital signal processor
(DSP), field programmable gate array (FPGA), application
specific itegrated circuit (ASIC)).

Fabric 115 1s representative of any communication inter-
connect and any protocol for communicating among the
components of the system 100. Fabric 115 provides the data

US 10,372,414 B2

3

paths, switches, routers, multiplexers, controllers, and other
logic that connect the processing units 110A-B, I/O inter-
taces 120, memory device(s) 130, and other device(s) 140 to
cach other. Fabric 115 handles the request, response, and
data traflic, as well as probe traflic to facilitate coherency.
Fabric 1135 also handles interrupt request routing and con-

figuration access paths to the various components of system
100. Fabric 115 can be bus-based, including shared bus
configurations, cross bar configurations, and hierarchical
buses with bridges. Fabric 115 can also be packet-based, and
can be hierarchical with bridges, cross bar, point-to-point, or
other interconnects. From the point of view of fabric 115, the
other components of system 100 can be referred to as
“clients”. Fabric 115 1s configured to process requests gen-
erated by various clients and pass the requests on to other
clients.

In one embodiment, fabric 115 includes a plurality of
routers. The routers can also be referred to as crossbars,
switches, or arbitration points. In one embodiment, trans-
mission and receipt of packets through the routers of fabric
115 are flow controlled using a token based scheme. In one
embodiment, each transmitter uses tokens to keep a count of
the command and data buffers available 1n each wvirtual
channel (VC) at the receiver, where a token represents a
guaranteed bufler at the receiver. In one embodiment, the
receiver distributes a programmable number of tokens dur-
ing 1nitialization. When a request 1s sent, the transmitter
decrements the token count. When the router routes the
packet forward to the next hop, or the destination, the router
de-allocates a packet entry and then a token becomes
available.

In one embodiment, multiple clients send requests to a
common destination through a given router, and each client
needs T tokens per unit time to saturate bandwidth to the
destination. The unit of time for tracking token usage can be
based on a number of clock cycles or otherwise. Rather than
allocating T tokens to each client, T, . tokens are allo-
cated to each client. The value of T, . 1s at least one but less
than T . Also, a free pool of tokens 1s available in the
given router for the clients, where the number of free pool
tokensis'1.=T, -1, .. Freepooltokens can be distributed
to any of the clients at the given router’s discretion. The total
buflering requirement 1n the given router 1s (N-1)*T . +
T requests, where N 1s the number of clients sending
requests to the common destination. This embodiment pro-
vides significant buller savings in the given router when
compared to the state-oi-the-art where the total bullering
requirement 1s N*T requests.

Memory device(s) 130 are representative of any number
and type ol memory devices. For example, the type of
memory 1n memory device(s) 130 can include Dynamic
Random Access Memory (DRAM), Static Random Access
Memory (SRAM), NAND Flash memory, NOR flash
memory, Ferroelectric Random Access Memory (FeRAM),
or others. Memory device(s) 130 are accessible by process-
ing units 110A-B, I/O intertaces 120, display controller 135,
and other device(s) 140 via fabric 115. I/O mterfaces 120 are
representative of any number and type o1 I/O interfaces (e.g.,
peripheral component interconnect (PCI) bus, PCI-Extended
(PCI-X), PCIE (PCI Express) bus, gigabit Ethernet (GBE)
bus, universal serial bus (USB)). Various types of peripheral
devices can be coupled to I/O mtertaces 120. Such periph-
eral devices include (but are not limited to) displays, key-
boards, mice, printers, scanners, joysticks or other types of
game controllers, media recording devices, external storage
devices, network interface cards, and so {forth. Other

10

15

20

25

30

35

40

45

50

55

60

65

4

device(s) 140 are representative of any number and type of
devices (e.g., multimedia device, video codec).

In various embodiments, computing system 100 can be a
computer, laptop, mobile device, server or any of various
other types of computing systems or devices. It 1s noted that
the number of components of computing system 100 can
vary from embodiment to embodiment. There can be more
or fewer of each component than the number shown in FIG.
1. It 1s also noted that computing system 100 can include
other components not shown 1n FIG. 1. Additionally, 1n other
embodiments, computing system 100 can be structured 1n
other ways than shown 1n FIG. 1.

Turning now to FIG. 2, a block diagram of another
embodiment of a computing system 200 1s shown. As shown

in FIG. 2, system 200 1includes clients 205, 210, 215, and 225

coupled to router 220. In one embodiment, clients 205, 210,
and 213 target client 225 through router 220. It 1s assumed
for the purposes of this discussion that T, _ tokens are
needed on each interface per unit time to saturate bandwidth
on the interface. In 1solation, each of the three clients 205,
210, and 215 can consume the full bandwidth provided by
router 220 toward client 225 and theretore need T, _tokens
cach. This requires router 220 to be sized to include 3*T,
buflers even though router 220 only needs T, tokens to

FRLEd X

tully utilize the bandwidth provided by client 225.

Further, once the multiple clients 205, 210, and 215 are
active, there 1s typically no ability to control the bandwidth
sharing 11 each client 1s statically allocated maximum band-
width. Assuming a fair arbitration policy 1n router 220, all
three clients would get equal bandwidth. This might not be
desirable 11 clients 205, 210, and 215 have different system-
level prionities. In one embodiment, a dynamic token allo-
cation scheme 1s implemented by router 220 which allows
for area savings as well as the ability to regulate bandwidth
distribution.

In one embodiment, nstead of statically allocating T, .
tokens to each of clients 205, 210, and 215, router 220
allocates T, . tokens to each of clients 205, 210, and 215.
Depending on the embodiment, router 220 can allocate
tokens to clients 205, 210, and 215 by conveying corre-
sponding signals on the main data interface or on a separate
channel. The minimum value of T, . 1s 1, and the maximum
valueof 1,,,,1s T, .. In addition, router 220 allocates T,
tfree pool tokens where 1,=T,, -1, These free pool
tokens can be distributed to any of the clients 205, 210, and
215 at the discretion of router 220. Router 220 1s also
capable of recalling tokens that 1t deems are not in use. The
total buflering requirement 1 router 220 based on this
approach 1s 2*1, . +T1 . Accordingly, in one embodiment,
router 220 includes one or more buflers sized to store a
number of requests equal to the minimum value per client
T . plus a number of requests equal to the number of tokens
in the free pool T,. It T, =1, then the total buffering
requirement 1s equal to the size of T, _+2 requests. This
embodiment provides significant builer savings when com-
pared to the state-of-the-art where the total buflering
requirement 1s 3*T___ requests.

In one embodiment, router 220 defines a token threshold
per client as T,, , with T, maintained between T, _ and
T .. T, defines the maximum number of tokens per unit
time or per token allocation round that can be allocated by
router 220 for a given client. Router 220 can then dynami-
cally change T, . depending on the activity levels of each of
the clients 205, 210, and 215. In one embodiment, router 220
chooses equality by raising T, umiformly across all active

clients. In another embodiment, router 220 statically priori-

US 10,372,414 B2

S

tizes certain clients over others. This can be achieved by
assigning a programmable arbitration weight, W __.. to each
client.

In one embodiment, router 220 uses W __, to modity T, .
For example, 11 two clients are contending for the same
shared resource, and 1f one of the clients has a higher W,
than the other, then router 220 modifies the T, of each
client accordingly. In another embodiment, router 220 uses
W_ . to affect token consumption from the free pool. As
multiple clients become active, and start drawing tokens
from the free pool, biasing the token distribution using W _ .
can achieve the desired bandwidth distribution.

In one embodiment, router 220 implements a weighted
round-robin arbiter to distribute tokens to clients 205, 210,
and 215. For example, a weighted round-robin arbiter can be
implemented by having W_ . specilty the reset value of a
counter, with the counter representing the number of tokens
to allocate to a client per round. If the value of a counter 1s
greater than zero, then the corresponding client 1s asking for
a token. For every token that 1s allocated, the counter
corresponding to the client 1s decremented by one. A pointer,
HeadoilLine, 1s utilized to point to the client which will
receive the next available token. Headoil.ine moves on to
the next client when the counter for a given client 1s zero.
Once HeadoilLine moves away from a client, the counter
corresponding to this client i1s reset. Router 220 can also
support priority escalation for certain clients by changing
T, at a different rate than the other clients. Once router 220
detects that a client 1s no longer active, router 220 can signal
the client to release back tokens until it reaches T, . ., which
brings router 220 back to steady-state where 1t has tokens in
the Free Pool. Router 220 includes any suitable combination
of software and/or hardware to implement the techniques
described herein.

In one embodiment, 1 more than one token becomes
available at the same time, router 220 gives one token to the
client poimnted to by HeadoilLine, and router 220 gives
another token to the next client having a counter greater than
zero after the client pointed to by HeadoilLine. In one
embodiment, the HeadoilLine pointer moves only when the
client being pointed to has its counter hit zero.

Referring now to FIG. 3, a block diagram of one embodi-
ment of a router 305 for implementing a weighted round-
robin arbiter 1s shown. In one embodiment, router 305
includes a set of per-client token counters 315A-N which are
initialized at the beginning of each round-robin token allo-
cation round. In one embodiment, router 305 initializes each
counter 315A-N to the same value to distribute tokens
uniformly to clients 310A-N. In another embodiment, router
305 mitializes counters 315A-N to different values based on
a priority or other metric assigned to the corresponding
clients 310A-N. For example, in this embodiment, each
counter 315A-N 1s mitialized to a given value based on a
programmable arbitration weight assigned to the corre-
sponding client 310A-N. It 1s noted that router 305 can
dynamically change the scheme utilized for token allocation
to clients 310A-N depending on changing conditions or in
response to being reprogrammed by software.

In one embodiment, the number of tokens allocated 1n
token free pool 320 1s based on the available bufler space in
butler(s) 330. As requests are forwarded from router 305 and
space becomes available 1 bufler(s) 330, tokens are added
to token free pool 320. In one embodiment, counters
315A-N are mitialized to values by splitting up the tokens 1n
token free pool 320 among clients 310A-N based on pro-
grammable arbitration weights assigned to clients 310A-N.
After the counters 315A-N are initialized, round-robin allo-

arbH?

10

15

20

25

30

35

40

45

50

55

60

65

6

cation of tokens can be implemented. Accordingly, during
round-robin allocation, head-of-line pointer 3235 starts by
pointing to one of the counters 315A-N and then allocating
tokens to the corresponding client 310A-N as long as the
counter value 1s greater than zero. For each token allocated
to a client, the corresponding counter i1s decremented. When
the counter value 1s equal to zero, head-oi-line pointer 3235
resets the counter, and then head-of-line pointer 325 moves
to the next counter. Head-oi-line pointer 325 moves through
the counters 315A-N 1n a round-robin fashion, allocating
tokens to clients whose counters are non-zero. When the
current round of token allocation ends, another round of
token allocation commences.

Turning now to FIG. 4, a block diagram of one embodi-
ment of a token tlow control router 405 using a fractional
pointer 430 with lookup table 425 1s shown. In one embodi-
ment, token flow control router 405 1ncludes three counters
415A-C to track the number of tokens to allocate to three
clients 410A-C coupled to router 405. It 1s assumed for the
purposes of this discussion that clients 410A-C are targeting
a common destination. In other embodiments, token flow
control router 405 can include other numbers of counters for
other numbers of clients.

For most networks, the number of tokens needed to
saturate bandwidth T tends to be small. When balancing
bandwidth between clients 410A-C by setting T,, 1n
between T, _and T, . . using integer division to determine
T, results in 1naccuracies which can skew the balance
heavily. For example, in one embodiment, 11 clients 410A-C
have T, _of 5, 6 and 7, respectively, then router 405 would
set the T, . of clients 410A-C to be 1.67, 2 and 2.33 tokens,
respectively. However, since tokens can only be integers,
this 1s not feasible. One solution would be to use rounding

to the nearest integer, which would make the T,, . be 2 for

cach of clients 410A-C. This would result 1n client 410A
getting 40% (25) of i1ts requested bandwidth, client 4108
getting 33% (%) of i1ts requested bandwidth, and client 410C
getting 29% (27) of 1ts requested bandwidth.

It 1s assumed for the purposes of this embodiment that
there are six tokens 1n free pool 435 to allocate per round-

robin stage to clients 410A-C. Rather than allocating two
tokens per round to each client 410A-C, control logic 440 of
router 405 utilizes fractional pointer 430 to access lookup
table 425 to achieve a token allocation closer to the band-
width requested by clients 410A-C. The schedules 420A-C
correspond to the tokens allocated to clients 410A-C so as to
divide the bandwidth fairly among clients 410A-C based on
theirr bandwidth requests. Accordingly, two tokens will be
allocated to client 410A for the first two allocation stages as
shown 1n token allocation schedule 420A, with one token
allocated to client 410A for the third allocation stage. This
allocation pattern results 1n client 410A receiving an average
of 1.67 tokens per allocation stage. This allocation pattern
can continue for each set of three allocation stages.

For client 4108, token allocation schedule 420B indicates
that two tokens should be allocated per stage. For client
410C, token allocation schedule 420C 1ndicates the number
of tokens allocated per stage, which 1s two tokens for the first
two stages and then three tokens for the third stage. This
allocation pattern results 1n client 410C receiving an average
of 2.33 tokens per allocation stage. This allocation pattern
can continue for each set of three allocation stages. It should
be understood that the example token allocation patterns
shown 1 FIG. 4 are indicative of one particular embodi-
ment. In other embodiments, other numbers of tokens can be

FriEFe e

US 10,372,414 B2

7

available, other numbers of clients can be coupled to router
405, and/or the tokens can be divided among clients using
other allocation patterns.

Referring now to FIG. 5, one embodiment of a method
500 for dynamic bufler management in multi-client token
flow control routers 1s shown. For purposes of discussion,
the steps 1n this embodiment and those of FIGS. 6-9 and
11-12 are shown 1n sequential order. However, 1t 1s noted
that 1n various embodiments of the described methods, one
or more of the elements described are performed concur-
rently, in a different order than shown, or are omitted
entirely. Other additional elements are also performed as
desired. Any of the various systems or apparatuses described
herein are configured to implement method 500.

A token flow control router detects multiple active clients
targeting a common destination (block 505). In response to
detecting the multiple active clients targeting the common
destination, the router allocates a first number of flow
control tokens to each of the active clients, wherein the first
number of tokens 1s less than a second number of tokens
needed to saturate the bandwidth to the common destination
(block 510). It 1s noted that the first number of tokens 1s
greater than or equal to one token. Next, the router allocates
a third number of tflow control tokens to a free pool, wherein
the third number of tokens 1s equal to the diflerence between
the second number and the first number (block 515). Then,
the router dynamically allocates tokens from the free pool to
t
C

ne active clients (block 520). In one embodiment, the router
ynamically allocates tokens from the free pool to the active
clients based on an activity level of each client. In another
embodiment, the router dynamically allocates tokens from
the free pool to the active clients based on a priority level
assigned to each client. In a further embodiment, the router
dynamically allocates tokens from the free pool to the active
clients based on an activity level of each client and a priority
level assigned to each client. In other embodiments, the
router can utilize other techniques for dynamically allocat-
ing tokens from the free pool to the active clients. After
block 520, method 500 ends.

Turning now to FIG. 6, one embodiment of a method 600
for dynamically allocating flow control tokens to clients 1s
shown. A router defines a token threshold per client which
1s the maximum number of tokens that can be allocated by
the router to a given client per round (block 605). Also, the
router assigns a programmable arbitration weight to each
client (block 610). Then, the router utilizes the program-
mable arbitration weight to modity the token threshold per
client (block 615). For example, in one embodiment, 11 two
clients are contending for the same shared resource and 1f a
first client has a higher arbitration weight than the second
client, then the token threshold for the first client will be
increased while the token threshold for the second client 1s
decreased or remains the same. In another embodiment, the
router utilizes the arbitration weight to affect token con-
sumption from a iree pool of tokens. As multiple clients
become active and start drawing tokens from the free pool,
biasing the token distribution using the arbitration weights
of the clients can help achieve a desired bandwidth distri-
bution. After block 615, method 600 ends.

Referring now to FIG. 7, one embodiment of a method
700 for implementing a weighted round-robin arbiter 1n a
token flow control router 1s shown. A router utilizes a
per-client programmable arbitration weight to specily a reset
value of a corresponding per-client counter (block 705). The
router 1nitializes a head-of-line pointer and a second pointer
to point to a given client (block 710). In one embodiment,
the head-of-line and second pointers are 1mitialized to point

10

15

20

25

30

35

40

45

50

55

60

65

8

to the client with the highest arbitration weight. In another
embodiment, the head-of-line and second pointers are ini-
tialized to point to a randomly selected client.

In one embodiment, the router 1s only able to allocate a
single token during a given period of time (e.g., per clock
cycle) to a given client. In this embodiment, 11 there 1s more
than one token available 1n a given clock cycle, the client
pointed to by the head-of-line pointer will be given a first
token, and then the second pointer will move through the
counters and tokens will be released to other clients in the
given clock cycle as long as there are available tokens. In
other embodiments, the router can allocate more than a
single token per clock cycle to a given client. In these
embodiments, 1f there are multiple tokens available 1 a
clock cycle, then the router will allocate multiple tokens to
the client as long as the client’s counter 1s non-zero. How-
ever, for the remainder of the discussion of method 700, it
will be assumed that the router i1s only able to allocate a

single token per clock cycle to a given client.

After block 710, 1f there 1s a token available for allocation
(conditional block 715, “yes” leg), then the router deter-
mines 11 the counter pointed to by the head-of-line pointer 1s
greater than zero (conditional block 725). If there are no
tokens available for allocation (conditional block 7135, “no”
leg), the router waits until the next cycle (block 720) and
then returns to conditional block 715. If the counter of the
given client pointed to by the head-oi-line pointer 1s equal to
zero (conditional block 725, “no™ leg), then the counter 1s
reset to a value based on the programmable arbitration
weight and the head-of-line and second pointers are moved
to the next counter (block 730). After block 730, method 700
returns to conditional block 723.

If the counter of the given client pointed to by the
head-of-line pointer i1s greater than zero (conditional block
725, “yes” leg), then the router releases a token to the given
client, decrements the given client’s counter by one, and
moves the second pointer to the next counter (block 735).
Next, the router determines 1f there 1s another token avail-
able (conditional block 740).

If there 1s not another token available (conditional block
740, “no” leg), then the second pointer 1s brought back to the
head-of-line pointer (block 745). After block 745, the router
waits until the next cycle (block 720) before method 700
returns to conditional block 715. If there 1s another token
available (conditional block 740, “yes™ leg), then the router
determines if the counter pointed to by the second pointer 1s
greater than zero (conditional block 750). If the counter
pointed to by the second pointer 1s greater than zero (con-
ditional block 750, “yes” leg), then the router releases a
token to the given client and decrements the given client’s
counter by one (block 755). After block 755, the router
determines 11 the second pointer has reached the last counter
(conditional block 760). If the counter pointed to by the
second pointer 1s equal to zero (conditional block 750, “no”
leg), then the router determines 1f the second pointer has
reached the last counter (conditional block 760).

If the second pointer has not reached the last counter
(conditional block 760, “no” leg), then the router moves the
second pointer to the next counter, and then the router
determines 1f there is still another token available (condi-
tional block 740). If the second pointer has reached the last
counter (conditional block 760, “yes” leg), then the second
pointer 1s brought back to the head-of-line pointer (block
745). Alter block 745, the router waits until the next cycle
(block 720) before method 700 returns to conditional block
715.

US 10,372,414 B2

9

Turning now to FIG. 8, one embodiment of a method 800
for managing non-integer token thresholds 1s shown. A
router calculates a threshold number of tokens for allocation
to a given client per round (block 805). If the threshold
number of tokens 1s an integer value (conditional block 810,
“yes” leg), then the router allocates the iteger number of
tokens to the given client for each round (block 815).

If the threshold number of tokens i1s a non-integer value
(conditional block 810, “yes” leg), then the router calculates
an average token allocation for the given client over the last
N rounds, wherein N 1s a programmable value (block 820).
If the average token allocation 1s greater than the threshold
number of tokens (conditional block 825, “ves” leg), then
the router allocates a number of tokens equal to the rounded-
down value of the threshold number (block 830). Otherwise,
if the average token allocation 1s less than or equal to the
threshold number of tokens (conditional block 825, “no”
leg), then the router allocates a number of tokens equal to the
rounded-up value of the threshold number (block 835). After
blocks 830 and 835, the router waits until the round 1s
complete (block 840), and then method 800 returns to block
820. In one embodiment, the round 1s complete when the
number of available tokens in the free pool reaches a
programmable threshold. It 1s noted that multiple instances
of method 800 can be performed 1n parallel for routers with
multiple clients.

Referring now to FIG. 9, one embodiment of a method
900 for utilizing a fractional pointer to access a lookup table
1s shown. An apparatus (e.g., router 305 of FIG. 3) calculates
a numerator and a denominator (block 905). In one embodi-
ment, the numerator represents a shared resource and the
denominator represents a fraction of the shared resource for
a corresponding requestor. In another embodiment, the
numerator 1s calculated based on an arbitration weight
assigned to a client and the denominator 1s calculated based
on a number of clients requesting access to a shared
resource. In a further embodiment, the numerator 1s a
maximum value, and the denominator 1s a throttle weight
which 1s used to throttle a given parameter. In other embodi-
ments, the numerator and the denominator can be calculated
differently based on other factors. Also, the apparatus ini-
tializes an N value to 1 and a fractional pointer to O (block
910). The N value can also be referred to as the fractional
pointer limait.

Next, the apparatus determines 11 either the numerator or
the denominator has changed (conditional block 915). If
neither the numerator nor the denominator have changed
(conditional block 915, “no” leg), then the apparatus
accesses a lookup table using the numerator, denominator,
and fractional pointer (block 9235). If either the numerator or
the denominator has changed (conditional block 915, “yes™
leg), then the apparatus 1mitializes the N value to 1 and a
fractional pointer to O (block 920). After block 920, the
apparatus accesses a lookup table using the numerator,
denominator, and fractional pointer (block 925). The lookup
table returns a result and the new value of N (block 930). IT
the numerator divided by the denominator 1s a non-integer
value, then the result will be either the rounded-up value of
the quotient or the rounded-down value of the quotient. The
value of the {fractional pointer determines whether the
rounded-up or rounded-down value 1s returned for the
lookup. If the quotient 1s a non-integer value, the result will
average out to the actual quotient value when taken over
multiple lookups.

Next, the fractional pointer 1s incremented and compared
to N (block 935). If, after being incremented, the fractional
pointer 1s equal to N, then the fractional pointer is reset to

5

10

15

20

25

30

35

40

45

50

55

60

65

10

0. Then, the apparatus waits until the token allocation round
1s over (block 940), and then method 900 returns to condi-
tional block 915. It 1s noted that method 900 can be
performed by the apparatus 1n cases when a shared resource
can only be allocated or consumed 1n integer portions. The
lookup table determines whether the rounded-up or rounded-
down value 1s allocated for each lookup, and over time, the
average value provided by the lookup table will converge to
the value of the numerator divided by the denominator.

Turning now to FIG. 10, another embodiment of a method
1000 for utilizing a fractional pointer to access a lookup
table 1s shown. A router calculates a number of tokens to
allocate to a client per round, wherein the number of tokens
1s represented as a ratio of a numerator over a denominator
(block 1005). It 1s noted that in some instances, the numera-
tor will not be divided evenly by the denominator, 1n which
case the desired number of tokens to be allocated to the
client per round 1s a non-integer number. However, 1n one
embodiment, it 1s not possible to allocate a fractional token
to a client, and so method 1000 1s performed such that when
calculated over a plurality of rounds, the average number of
tokens allocated per round to the client 1s equal to the actual
value of the numerator over the denominator.

Next, the router mitializes a fractional pointer to zero and
an N value to one (block 1010). Then, the router performs
a lookup to a lookup table using the numerator, denominator,
and fractional pointer (block 1015). The lookup table returns
a threshold number and a new N value (block 1020). Next,
the router allocates the threshold number of tokens to the
client for the current round of token allocation (block 1025).
Then, the router increments the fractional pointer (block
1030). Once the next token allocation round begins (block
1035), 11 the fractional pointer 1s equal to the N value
(conditional block 1040, “yes” leg), the fractional pointer 1s
reset to zero (block 1045), and then method 1000 returns to
block 1015. Otherwise, i the fractional pointer 1s less than
the N value (conditional block 1040, “no” leg), then method
1000 returns to block 1015.

Referring now to FIG. 11, one embodiment of a fractional
pointer lookup table 1100 i1s shown. In various embodi-
ments, systems and apparatuses can utilize lookup table
1100 to increase the precision of an integer divider where the
answer 1s an 1nteger. In one embodiment, a router includes
one or more 1nstances of lookup table 1100 for determining
how many tokens to allocate to a given client or port per
allocation round. In some cases, the router prefers to allocate
a non-integer number of tokens per round to the given client
or port. However, in one embodiment, only an integer
number ol tokens can actually be allocated per round.
Accordingly, through the use of lookup table 1100, the
router 1s able to achieve an average token allocation per
round that over time 1s equal to the desired non-integer
number of tokens. This 1s achieved by performing lookups
to lookup table 1100, with lookup table 1100 indicating
when to use the rounded-up value for token allocation and
when to use the rounded-down value for token allocation.

Each lookup to lookup table 1100 will provide a numera-
tor, denominator, and fractional pointer, with the combina-
tion of these three values providing the index into table
1100. The output of a lookup to table 1100 will be the result
and the N value. The result 1s the rounded-up or rounded-
down value which represents the number of tokens the
router should allocate to the given client for the next round
of token allocation. The N value can also be referred to as
the fractional pointer limit. After a lookup to table 1100 for
a given numerator, denominator, fractional pointer combi-
nation, the fractional pointer 1s incremented by one before

US 10,372,414 B2

11

the next lookup 1s performed. If, after being incremented, the
fractional pointer 1s equal to the N wvalue, the fractional
pointer 1s reset to zero prior to the next lookup.

In one embodiment, the constant values that are included
lookup table 1100 are pre-calculated based on the expected
numerator and denominator values that will be generated
during operation of the router. In one embodiment, the size
of lookup table 1100 1s minimized by the router reducing the
numerator and denominator values prior to performing the
lookup. This helps to reduce the total number of entries 1n
lookup table 1100. For example, if the numerator 1s 4 and the
denominator 1s 2, rather than looking up table 1100 with 4
and 2, these values can be reduced to 2 and 1. Similarly, 1f
the numerator 1s 12 and the denominator 1s 8, these values
can be reduced to 3 and 2. Other numerator and denominator
values can be reduced 1n a similar manner prior to perform-
ing the lookup of lookup table 1100. In other embodiments,
such a reduction 1n the numerator and denominator i1s not
performed and the lookup 1s done using the receirved
numerator-denominator.

In one embodiment, the router includes a lookup table
1100 for each destination of the router. For example, 11 the
router has four destinations, the router would have four
lookup tables, with one lookup table per destination. In
another embodiment, the router includes a single lookup
table 1100, and the lookups for all of the destination are
performed to the single lookup table 1100. Lookup table
1100 can have any number of entries, with the number
varying according to the embodiment. In one embodiment,
the entries 1n lookup table 1100 are hard-coded rather than
being programmable. As shown i FIG. 11, lookup table
1100 includes entries for the numerator-denominator pair of
4, 3 and for the numerator-denominator pair of 7, 5. It should
be understood that lookup table 1100 can have any number
of other entries which are not shown 1n FIG. 11 to avoid
obscuring the figure.

When the numerator and denominator patir 1s 4, 3, the first
lookup to lookup table 1100 for this pair will be with a
fractional pointer of 0. This lookup will output a result of 1
and an N value of 3. As a consequence of this lookup, the
router will allocate 1 token to the corresponding client. Next,
the router will increment the fractional pointer from 0 to 1,
and then the next lookup for the 4, 3 pair will output a result
of 1 and an N value of 3. After the second lookup, the router
will allocate 1 token to the corresponding client. Next, the
router will increment the fractional pointer from 1 to 2, and
then the next lookup for the 4, 3 pair will output a result of
2 and an N value of 3. After the third lookup, the router will
allocate 2 tokens to the corresponding client. The router will
increment the fractional pointer from 2 to 3, and then reset
the fractional pointer to 0 since the {fractional pointer
reached the N value (1.e., fractional pointer limit). Then, the
lookups will follow the same pattern again for the next 3
lookups to lookup table 1100 for the numerator and denomi-
nator pair of 4, 3. For each set of 3 lookups, the router will
allocate a total of 4 tokens, resulting in an average of 1.33
tokens per round.

When the numerator and denominator pair 1s 7, 3, the first
lookup to lookup table 1100 for this pair will be with a
fractional pointer of 0. This lookup will output a result of 1
and an N value of 5. After this lookup, the router will
allocate 1 token to the corresponding client. Next, the router
will increment the fractional pointer from O to 1, and then the
next lookup to table 1100 for the 7, 5 pair will output a result
of 1 and an N value of 3. After the second lookup, the router
will allocate 1 token to the corresponding client. Next, the
router will increment the fractional pointer from 1 to 2, and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

then the next lookup to table 1100 for the 7, 5 pair will
output a result of 1 and an N value of 5. After the third
lookup, the router will allocate 1 token to the corresponding
client. Next, the router will increment the fractional pointer
from 2 to 3, and then the fourth lookup to table 1100 for the
7, 5 pair will output a result of 2 and an N value of 5. After
the fourth lookup, the router will allocate 2 tokens to the
corresponding client. Next, the router will increment the
fractional pointer from 3 to 4, and then the fifth lookup to
table 1100 for the 7, 5 pair will output a result of 2 and an
N value of 5. After the fifth lookup, the router will allocate
2 tokens to the corresponding client and the fractional
pointer will increment to 5 and then rollover back to O since
it reached the N value of 5. The next five lookups to table
1100 for the 7, 5 pair will follow the same pattern. As a result
ol these five lookups to table 1100 for the 7, 5 pair, the router
has allocated a total of 7 tokens to the client for an average
of 1.4 tokens per round.

It 1s noted that 1n other embodiments, lookup table 1100
can be implemented 1n other suitable manners. For example,
in another embodiment, a lookup table does not have to
provide the N value for each lookup since the N value will
not change for lookups with the same numerator and
denominator pair. Also, 1n a further embodiment, the router
can assume that the N value 1s equal to the denominator. In
a still further embodiment, the fractional pointer value can
be treated as a remainder value and be incremented by the
amount of the remainder when the numerator 1s divided by
the denominator. Other modifications to lookup table 1100
and to the types of lookups that can be performed are
possible and are contemplated.

In another embodiment, after reading through a set of
entries 1n lookup table 1100 for a given numerator, denomi-
nator pair, the router can store or cache the results in
registers, logic, cache, or another storage location to avoid
having to perform additional lookups for the given numera-
tor, denominator pair. For example, for the given numerator,
denominator pair of 4, 3, the result follows the pattern of 1,
1, and 2 tokens for every set of 3 lookups. In this example,
the router could store this pattern and then just follow the
pattern when allocating tokens to the corresponding client
for as long as the numerator, denominator pair remains 4, 3.

Turning now to FIG. 12, one embodiment of a method
1200 for determining how much of a shared resource to
allocate to a requestor 1s shown. An apparatus (e.g., router
305 of FIG. 3) calculates a numerator from an arbitration
weight applied to a given requestor (block 1205). In some
cases, the apparatus can calculate the numerator by multi-
plying the arbitration weight by an amount of a shared
resource (e.g., a number of tokens) which 1s available for the
grven requestor. Also, the apparatus calculates a denomina-
tor from a total number of requestors that are using a shared
resource (block 1210). It 1s noted that the total number of
requestors can be biased using the arbitration weights of the
individual requestors. Also, the apparatus 1nitializes a frac-
tional pointer (block 1215). In one embodiment, the frac-
tional pointer 1s 1nitialized to zero.

Next, the apparatus performs an access to a lookup table
using the numerator, denominator, and fractional pointer as
an 1index into the lookup table (block 1220). The apparatus
receives a result from the lookup, wherein the result indi-
cates how much of the shared resource to allocate to the
grven requestor, and wherein over time, the result averages
out to a value equal to the numerator divided by the
denominator (block 1225). In some embodiments, the appa-
ratus also receives an N value from the lookup table,
wherein the N value specifies the fractional pointer limut.

US 10,372,414 B2

13

Then, the apparatus increments the fractional pointer and
resets the fractional pointer 1f the fractional pointer reaches
the limit (block 1230). After block 1230, method 1200
returns to block 1220. It 1s noted that method 1200 can be
performed by the apparatus in cases where the shared
resource can only be allocated or consumed in an integer
number of portions. In one embodiment, the index into the
lookup table determines whether a rounded-up or rounded-
down value of the shared resource i1s allocated, and over
multiple lookups, the results provided by the table will
average out to a non-integer number.

Turning now to FIG. 13, one embodiment of a method
1300 for determining a token threshold per client 1s shown.
A router determines how many of its clients are currently
active (block 1305). Also, the router determines, for each
client, a first number of tokens to allocate per unit time
which 1s the maximum number of tokens needed to saturate
bandwidth from the client to its destination (block 1310). In
one embodiment, the unit of time i1s an allocation round for
the round-robin arbiter allocating tokens to the clients. In
other embodiments, the unit of time can be based on other
events (e.g., clock cycles) or other metrics. Next, the router
determines, for each client, a second number of tokens to
allocate per umit time which 1s the minimum number of
tokens to allocate per client (block 1315).

Also, the router defines a token threshold per client which
1s the maximum number of tokens that can be allocated by
the router to a given client per unit time (block 1320).
Additionally, the router assigns an arbitration weight to each
client (block 1325). Then, the router calculates the token
threshold per client based on a number of active clients and
the client’s arbitration weight, wherein the token threshold
1s kept 1n between the first number and the second number
(block 1330). Next, the router allocates a number of tokens
to each client per unit time, wherein the number of tokens
allocated per client, per unit time 1s less than or equal to the
token threshold (block 1335). After block 1335, method
1300 ends. It 1s noted that the router can update the token
threshold per client as the number of active clients changes
and/or 1f the arbitration weight assigned to a given client
changes.

In various embodiments, program instructions of a soft-
ware application are used to implement the methods and/or
mechanisms described herein. For example, program
istructions executable by a general or special purpose
processor are contemplated. In various embodiments, such
program 1nstructions can be represented by a high level
programming language. In other embodiments, the program
instructions can be compiled from a high level programming
language to a binary, intermediate, or other form. Alterna-
tively, program instructions can be written that describe the
behavior or design of hardware. Such program instructions
can be represented by a high-level programming language,
such as C. Alternatively, a hardware design language (HDL)
such as Verilog can be used. In various embodiments, the
program 1nstructions are stored on any of a variety of
non-transitory computer readable storage mediums. The
storage medium 1s accessible by a computing system during
use to provide the program instructions to the computing
system for program execution. Generally speaking, such a
computing system includes at least one or more memories
and one or more processors configured to execute program
instructions.

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
ent to those skilled 1n the art once the above disclosure 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

14

tully appreciated. It 1s intended that the following claims be
interpreted to embrace all such variations and modifications.

What 1s claimed 1s:
1. A system comprising:
a table; and
control logic coupled to the table;
wherein the control logic 1s configured to:
perform an access to the table using a numerator, a
denominator, and a fractional pointer, to obtain a
result corresponding to a non-integer quotient of a
division operation of the numerator and the denomi-
nator, wherein the numerator, denominator, frac-
tional pointer, and result are integers; and
receive the result of the access, wherein the result 1s:
a rounded-up value of the quotient of the numerator
and denominator responsive to detecting a {first
condition; and

a rounded-down value of the quotient of the numera-
tor and the denominator responsive to detecting a
second condition;

wherein over a plurality of accesses to the table, a

plurality of integer results corresponding to the plural-

ity ol accesses averages out to a non-integer value
which converges to the quotient.

2. The system as recited 1in claam 1, wherein the first
condition 1s the fractional pointer being equal to a first value,
and wherein the second condition 1s the fractional pointer
being equal to a second value.

3. The system as recited 1n claim 2, wherein:

the fractional pointer 1s mitialized to zero;

the fractional pointer 1s imncremented by one after each

access to the table; and

the fractional pointer 1s reset to zero when the fractional

pointer reaches a fractional pointer limit.

4. The system as recited in claim 1, wherein the result
specifies a number of tokens to allocate to a given requestor.

5. The system as recited 1n claim 1, wherein:

the numerator corresponds to a shared resource; and

the denominator corresponds to a fraction of the shared

resource for a corresponding requestor.

6. The system as recited in claim 5, wherein the result
indicates how much of the shared resource to allocate to the
corresponding requestor.

7. A method comprising;

performing an access to the table using a numerator, a

denominator, and a fractional pointer, to obtain a result
corresponding to a non-integer quotient of a division
operation of the numerator and the denominator,
wherein the numerator, denominator, fractional pointer,
and result are integers; and

recerving the result of the access, wherein the result is:

a rounded-up value of the quotient of the numerator and
denominator responsive to detecting a first condi-
tion; and

a rounded-down value of the quotient of the numerator
and the denominator responsive to detecting a sec-
ond condition;

wherein over a plurality of accesses to the table, a

plurality of integer results corresponding to the plural-

ity of accesses averages out to a non-integer value
which converges to the quotient.

8. The method as recited in claim 7, wherein the first
condition 1s the fractional pointer being equal to a first value,
and wherein the second condition 1s the fractional pointer
being equal to a second value.

US 10,372,414 B2

15

9. The method as recited 1n claim 8, wherein:
the fractional pointer 1s 1mitialized to zero;

the fractional pointer 1s incremented by one after each
access to the table; and

the fractional pointer 1s reset to zero when the fractional
pointer reaches a fractional pointer limat.

10. The method as recited 1n claim 7, wherein the result
specifles a number of tokens to allocate to a given requestor.

11. The method as recited in claim 7, wherein:

the numerator corresponds to a shared resource; and

the denominator corresponds to a fraction of the shared
resource for a corresponding requestor.

12. The method as recited 1n claim 11, wherein the result
indicates how much of the shared resource to allocate to the
corresponding requestor.

13. An apparatus comprising:

a plurality of requestors; and

a communication fabric;

wherein the communication fabric 1s configured to:
receive requests from the plurality of requestors;

perform an access to the table using a numerator, a
denominator, and a fractional pointer, to obtain a
result corresponding to a non-integer quotient of a
division operation of the numerator and the denomi-
nator, wherein the numerator, denominator, frac-
tional pointer, and result are integers; and

10

15

20

25

16

receive the result of the access, wherein the result 1s:
a rounded-up value of the quotient of the numerator
and denominator responsive to detecting a first
condition; and
a rounded-down value of the quotient of the numera-
tor and the denominator responsive to detecting a
second condition;
wherein over a plurality of accesses to the table, a
plurality of integer results corresponding to the plural-
ity of accesses averages out to a non-integer value
which converges to the quotient.

14. The apparatus as recited 1n claim 13, wherein the first
condition 1s the fractional pointer being equal to a first value,
and wherein the second condition 1s the fractional pointer
being equal to a second value.

15. The apparatus as recited in claim 14, wherein:

the fractional pointer 1s mitialized to zero;

the fractional pointer 1s imncremented by one after each

access to the table; and

the fractional pointer 1s reset to zero when the fractional

pointer reaches a fractional pointer limit.

16. The apparatus as recited in claim 13, wherein the
result specifies a number of tokens to allocate to a given
requestor.

17. The apparatus as recited 1n claim 13, wherein:

the numerator corresponds to a shared resource; and
the denominator corresponds to a fraction of the shared
resource for a corresponding requestor.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

