US010367903B2

a2y United States Patent (10) Patent No.: US 10,367,903 B2

Li 45) Date of Patent: *Jul. 30, 2019
(54) SECURITY SYSTEMS FOR MITIGATING (56) References Cited
ATTACKS FROM A HEADLESS BROWSER -
EXECUTING ON A CLIENT COMPUTER U.S. PATENT DOCUMENTS
- . < 5,509,076 A 4/1996 Sprunk
(71) Applicant: (S:lfpe SSecurlty, Inc., Mountain View, 6654707 B2 11/2003 Wynn
(US) (Continued)

(72) Inventor: Zhiwei Li, Mountain View, CA (US) FOREIGN PATENT DOCUMENTS

(73) Assignee: Shape Security, Inc., Mountain View, AU 2014237075 9/7014
CA (US) CN 101471818 5/2011
(Continued)

*3) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days. OTHER PUBLICATTONS

This patent 1S Subject to a terminal dis- NOA, mailed on Feb. 16, 2017, re: Justin D. Call, U.S. Appl. No.
claimer. 14/822,287, filed Aug. 10, 2015.
(Continued)

(21) Appl. No.: 15/968,573 Primary Examiner — Shanto Abedin

(22) Filed: May 1, 2018 (74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLP
(65) Prior Publication Data (57) ABSTRACT
US 2018/0255154 Al Sep. 6, 2018 Computer systems and methods 1n various embodiments are

configured for improving the security and efliciency of
server computers interacting through an intermediary com-

Related U.S. Application Data
puter with client computers that may be executing malicious

(63) Continuation of application No. 14/718,736, filed on and/or autonomous headless browsers or “bots”. In an
May 21, 2015, now Pat. No. 9,986,058. embodiment, a computer system comprises a memory; one

or more processors coupled to the memory; a processor logic

(51) Int. Cl. coupled to the memory and the one or more processors, and
HO4L 29/08 (20006.01) configured to: intercept, from a server computer, one or
HO4L 29/06 (2006.01) more original instructions to be sent to a browser of a client
Goor 21/56 (2013.01) computer; send the one or more original structions to the

(52) U.S. CL browser and one or more telemetry instructions, wherein the
CPC HO4L 672819 (2013.01); GOG6F 21/566 telemetry instructions are configured, when executed, to
(2013.01); HO4L 63/1466 (2013.01); generate a set of telemetry data indicating one or more

(Continued) objects that were referenced by the browser and to send the

(58) Field of Classification Search set of telemetry data to the intermediary computer; receive
CPC HO4IL, 67/2819: HO4L, 63/1466; HO4L the set of telemetry data and determine whether the browser

63/168; HO4L 63/1416; HO4L 63/302: 1s legitimate or illegitimate based on the set of telemetry
GOGF 21/566 data.

(Continued) 20 Claims, 5 Drawing Sheets

410 INTERCEPT, FROM A WEB SERVER COMPUTER, A -
WEB PAGE WITH A SET OF ORIGINAL INSTRUGCTIONS
THAT DEFINE ONE OR MORE OBJECTS AND/OR [
QPERATIONS, TO BE PROCESSED, PARSED, AND/OR
EXECUTED BY A BROWSER ON A CLIENT COMPUTER

'

420 INJECT, INTQ THE SET OF ORIGINAL INSTRUCTIONS,
ONE OR MORE TELEMETRY INSTRUCTIONS, WHICH ARE

400 IS THE
BROWSER
LEGITIMATE?

CONFIGURED TO CAUSE {IF EXECUTED) A BROWSER
RUNNING ON THE CLIENT COMPUTER TO RETURN DATA
INDICATING WHICH CHECKPOINTS WERE REACHED BY THE
BROWSER, IF ANY

r

430 SEND THE ONE OR MORE ORIGINAL INSTRUCTIONS 470 STOP SENDING. SEND
AND THE ONE OR MORE TELEMETRY INSTRUCTIONS TO FEWER ANDIOR SEND LESS
THE BROWSER AGGRESSIVE, TELEMETRY
v INSTRUCTIONS AND/OR
440 RECEIVE TELEMETRY DATA FROM THE BROWSER THAT COUNTERMEASURES TO THE
MAY BE USED TO DETERMINE WHETHER THE BROWSER IS A NO BROWSER

¥

4£0 SEND COUNTERMEASURES
AND/OR ADDITIONAL AND/OR
MORE AGGRESSIVE
TELEMETRY INSTRUCTIONS TO
THE BROWSER

LEGITIMATE BROWSER OR A BOT

US 10,367,903 B2

Page 2
(52) U.S. Cl. 2006/0174323 Al /2006 Brown
CPC HO4L 63/168 (2013.01); GO6F 2221/2133 2006/0195588 Al 8/2006 Pennington
(2013.01); HO4L 67/02 (2013.01) Zoooo0Iss A 10O fﬁg
(58) Field of Classification Search 5007/0011295 Al (9007 Hansen
USPC s 7 26/22-23 2007/0064617 Al 3/2007 Reves
See application file for complete search history. 2007/0074227 Al 3/2007 Naidu
2007/0088955 Al 4/2007 Lee
(56) References Cited 2007/0234070 Al 10/2007 Horning
2008/0208785 Al 8/2008 Trefler
U.S. PATENT DOCUMENTS 2008/0320567 Al 12/2008 Shulman
2009/0070459 Al 3/2009 Cho
. 2009/0099988 Al 4/2009 Stokes
E*?S?’ﬁi? E} Sﬁﬁggg 81;;;‘; 2009/0199297 Al 82009 Jarrett
7,117,429 B2 10/2006 Vedullapalli 2009/0241174 Al 972009 Rajan
7202553 Bl 72008 Ti 2009/0292791 Al 11/2009 Livshits
7424720 B2 9/2008 Chagoly 2009/0292984 Al 11/2009 Bauchot
7,464,326 B2 12/2008 Kawai 2010/0083404 Al 4/2010 Mani
7.849.502 Bl 12/2010 Bloch et al. 2010/0106611 Al 4/2010 Paulsen
2970610 B1 15011 Mitchell 2010/0142382 Al 6/2010 Jungck et al.
7.895,653 B2 2/2011 Calo 2010/0186089 Al 7/2010 Fu
8,086,756 B2 12/2011 Kamyshenko ggfgfgggégg if %8;8 indrew
8,086,957 B2 12/2011 Bauchot . : L
8,170,020 B2 5/2012 Oliver 2010/0235910 Al 92010 Ku
e 121104 Bl 52017 Helfand 2010/0287132 Al 11/2010 Hauser
¢ 105053 Bl 62017 Vue 2011/0035733 Al 2/2011 Horning
2 453 1726 BRI 57013 Ganelin 2011/0107077 Al 5/2011 Henderson
Q533480 B? 9/9013 Pravets 2011/0154308 Al 6/2011 Lobo
¢ 555228 Bl 10/2013 Wan 2011/0225234 A1 9/2011 Amit
281103 Bl 109013 Srvistava 2011/0231305 Al 9/2011 Winters
Q572490 Bl 11/2013 7hu 2011/0255689 Al 10/2011 Bolotov
8,580,405 Bl 112013 Estan 2011/0320816 Al 12/2011 Yao
8,621,197 B2 12/2013 Suryanarayana 20r2§003657‘5 Al 2§20¢-2 Lyer
8,650,648 B2 2/2014 Howard et al. 2012/0090030 AL 4/2012 Rapaport
Q677481 Bl 3/2014 Tee 2012/0198528 Al 82012 Baumhof
620330 B 47014 Sinn 2012/0216251 Al 82012 Kumar
8,713,631 Bl 4/2014 Pavlyushchik 2012/0254727 Al 10/2012 Jain
¢ 713684 B? 4/2014 Bettini 2012/0255006 Al 10/2012 Aly et al.
35726394 B? 5/9014 Maor 2012/0324236 Al 12/2012 Srivastava
¢ 710284 Bl 52014 Gardner 2013/0047255 Al 2/2013 Dalcher
e 757908 B? 62014 Shulman 2013/0086679 Al 4/2013 Beiter
e 767062 BY 62014 Ben.Artri 2013/0091582 Al 4/2013 Kellerman
$943270 Bl 97014 Ka 2013/0219256 Al 82013 Lloyd
040085 Bl 05014 Colton 2013/0219492 Al 82013 Call
Q260981 BY 10/2014 Call 2013/0227397 Al 82013 Tvorun
8,954,583 B1* 2/2015 ZhoU ...ccoooocvvvrerrnn... HO4L 67/42 20¢3§0263264 Al 10§20¢3 Kl;mh
19224 3030300043 AL 122013 Zare
1 1 1 daIc<l
8,997,226 B1* 3/2015 Call .ovvoovvrveree.... GO6F %;5/35 Ia0na0051 A1 ah0la e
| 2014/0040787 Al 2/2014 Mills
oOst B2 o2y Vaor 2014/0096194 Al 4/2014 Bhogavilli
e oo 2014/0208198 Al 7/2014 Ayoub
3%32% Eé 1%82 ?:/[Cl'fn 2014/0282872 Al* 9/2014 Hansen HO4L 63/102
1 d
58, | - 726/3
ooy Be 210 fhatullin etal 2014/0283069 Al 9/2014 Call
0356054 B> 25016 Zhow 2014/0298469 Al 10/2014 Marion
0256050 Bl 07016 Leggska 2014/0304816 Al 10/2014 Klein
9,537,888 B1* 1/2017 McClintock HOAL 63/145 50iaiisoens ‘A1 1asoia oo
0,609,006 B2 3/2017 Call : L 14 Sastkumar
0672408 Bl 45017 Ao 2015/0058992 Al 2/2015 El-Moussa
5630600 Bl 57017 Karaoafi 2015/0067031 Al 3/2015 Acharya
0 o146 140 B> 25017 Horacan 2015/0067866 Al 3/2015 Ibatullin
0620850 B> 89017 Ramanort 2015/0112892 Al 4/2015 Kaminsky
0626300 Bl 69017 Kuprﬂgzﬁ 2015/0256556 Al* 9/2015 Kaminsky HO41. 63/168
705. '-“ 726/23
3*2?}22% Eé %8; (Z:ﬁgu 2015/0262183 Al 9/2015 Gervais
0006 544 Bl 22018 Kurupafi 2015/0278491 Al 10/2015 Horning
10165004 Bl 159018 Nehts 2015/0281263 Al 10/2015 McLaughlin
50020199116 Al 12/2007 Hoene 2015/0358338 Al 12/2015 Zeitlin
2004/0088651 Al 52004 McKnight 2015/0379266 Al 12/2015 McLaughlin
2005/0108554 Al 5/2005 Rubin ggfgfggggggg i; %8;2 Ig"fﬁf
2005/0172338 Al 82005 Sandu ; ; Al
2005/0198099 Al 9/2005 Motsinger 2016/0119344 Al 4/2016 Freitas Fortuna dos Santos
2005/0216770 A1 9/2005 Rowett 2016/0147992 Al 52016 Zhao HO041. 63/102
2005/0240999 Al 10/2005 Rubin | | o 726/22
2005/0251536 A1 11/2005 Harik 2016/0342793 Al 112016 Hidayat
2005/0278626 Al 12/2005 Malik 2016/0344769 Al 11/2016 Li
2006/0053295 Al 3/2006 Madhusudan 2016/0378989 Al 12/2016 Park
2006/0101047 Al 5/2006 Rice 2017/0012960 Al 1/2017 Idika

US 10,367,903 B2
Page 3

(56)

2017/001301

2017/0048260
2017/0201540
2017/0235954
2017/0237766
2017/0257383
2017/0257385
2017/0293748
2018/0041527
2018/0205747
2018/0212993
2018/0227325
2018/0255154
2018/0270256
2019/0081977
2019/0141064

References Cited

U.S. PATENT DOCUMENTS

2 Al 1/2017 Hansen
Al 2/2017 Peddemors
Al 7/2017 Call
Al 8/2017 Kurupati
Al 8/2017 Mattson
Al 9/2017 Ficarra
Al 9/2017 Overson
Al 10/2017 Kurupati
Al 2/2018 Call
Al 7/2018 Ficarra
Al 7/2018 Call
Al 8/2018 Zhou
Al 0/2018 1.

Al 9/2018 C(all
Al 3/2019 Yang
Al 5/2019 Call

FOREIGN PATENT DOCUMENTS

EP 147302293 5/2017
WO WQ02000/72119 11,2000
WO W02002/093369 11/2002
WO WO2008/095018 8/2008
WO WO02008/095031 8/2008
WO W02008/130946 10/2008
WO WO 2017/007705 1/2017
WO WO 2017/007936 1/2017
WO WO 2017/074622 5/2017

NOA, mailed on Mar. 2, 2017, re: Justin D. Call, U.S. Appl. No.

OTHER PUBLICATIONS

14/930,198, filed Nov. 2, 2015.

NOA, mailed on Mar. 10, 2017, re: Roger S. Hoover, U.S. Appl. No.

14/470,082, filed Aug. 27, 2014.
CTNEF, mailed on Mar. 9, 2017, re: Siying Yang, U.S. Appl.
14/925,547, filed Oct. 28, 2015.

NOA, mailed on Apr. 23, 2015, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012.

CTFR, mailed on Feb. 10, 2015, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012,

CTNF, mailed on Nov. 2, 2012, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012.

CTFR, mailed on Apr. 23, 2013, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012.

CTNEF, mailed on Aug. 4, 2014, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012,

NOA, mailed

on Jun. 1, 2015, re: Justin Call, U.S.

13/527,025, filed Jun. 19, 2012,

CTNF, mailed on Feb. 26, 2015, re: Justin Call, U.S.

14/055,576, filed Oct. 16, 2013.

NOA, mailed on Aug. 21, 2015, re: Justin Call, U.S.

14/055,576, filed Oct. 16, 2013.

CTNF, mailed on Dec. 24, 2014, re: Justin Call, U.S.

14/055,583, filed Oct. 16, 2013.

NOA, mailed

on Jun. 19, 2015, re: Justin Call, U.S.

14/055,583, filed Oct. 16, 2013.

CTNE, mailed on Dec. 24, 2013, re: Justin Call, U.S.

14/055,646, filed Oct. 16, 2013.

CTFR, mailed on May 27, 2017, re: Justin Call, U.S.

14/055,646, filed Oct. 16, 2013.

NOA, mailed on Aug. 12, 2014, re: Justin Call, U.S.

14/055,646, filed Oct. 16, 2013.

NOA, mailed
14/055,646, fi

CTFR, mailed

14/055,704, fil

CTNEF, mailed on Dec. 4, 2014, re: Justin Call, U.S.

on Sep. 4, 2014, re: Justin Call, U.S.

ed Oct. 16, 2013.

ed Oct. 16, 2013.

14/055,704, filed Oct. 16, 2013.

on Apr. 9, 2015, re: Justin Call, U.S.

Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.
Appl.

Appl.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

CTNEF, mailed on Dec. 30, 2013, re: Justin Call, U.S. Appl. No.
14/055,704, filed Oct. 16, 2013.
CTFR, mailed on Apr. 22, 2014, re: Justin Call, U.S. Appl. No.
14/055,704, filed Oct. 16, 2013,
CTFR, mailed on Sep. 25, 2015, re: Marc Hansen, U.S. Appl. No.
14/055,714, filed Oct. 16, 2013,
CTNF, mailed on Mar. 16, 2015, re: Marc Hansen, U.S. Appl. No.
14/055,714, filed Oct. 16, 2013.
NOA, mailed on Jan. 13, 2016, re: Marc Hansen, U.S. Appl. No.
14/055.714, filed Oct. 16, 2013.
CTNEF, mailed on May 20, 2015, re: Justin Call, U.S. Appl. No.
14/110,659, filed Oct. 8, 2013.
NOA, mailed on Aug. 19, 2015, re: Daniel Moen, U.S. Appl. No.
14/160,107, filed Jan. 21, 2014.
CTNEF, mailed on Jun. 27, 2014, re: Justin Call, U.S. Appl. No.
14/255,248, filed Apr. 17, 2014.
NOA, mailed on Nov. 19, 2014, re: Justin Call, U.S. Appl. No.
14/255,248, filed on Apr. 17, 2014.
NOA, mailed on Dec. 24, 2014, re: Justin Call, U.S. Appl. No.
14/255,248, filed Apr. 17, 2014.
CTNEF, mailed on Sep. 1, 2015, re: Aniya Hidayat, U.S. Appl. No.
14/293,.895, filed Jun. 2, 2014.
NOA, mailed on Mar. 30, 2016, re: Artya Hidayat, U.S. Appl. No.
14/293,895, filed Jun. 2, 2014.
CTNEF, mailed on Jun. 24, 2016, re: Roger Hoover, U.S. Appl. No.
14/470,082, filed Aug. 27, 2014.
CTNF, mailed on Aug. 28, 2015, re: Roger Hoover, U.S. Appl. No.
14/4°70,082, filed on Aug. 27, 2014.
NOA, mailed on Jul. 21, 2016, re: Siving Yang, U.S. Appl. No.
14/541,062, filed on Nov. 13, 2014.
CTNEF, mailed on Feb. 23, 2016, re: Siying Yang, U.S. Appl. No.
14/541,062, filed on Nov. 13, 2014.
CTNF, mailed on May 8, 2015, re: Timothy Peacock, U.S. Appl. No.
14/570,632, filed on Dec. 15, 2014.
NOA, mailed on Dec. 18, 2015, re: Timothy Peacock, U.S. Appl.
No. 14/570,632, filed on Dec. 15, 2014.
CTNEF, mailed on Mar. 17, 2016, re: Justin Call, U.S. Appl. No.
14/672,879, filed on Mar. 30, 2015.
CTNEF, mailed on Nov. 10, 2016, re: Nwokedi Idike, U.S. Appl. No.
14/728.621, filed on Jun. 2, 2015.
CTNEF, mailed on Jul. 18, 2016, re: Justin Call, U.S. Appl. No.
14/822,287, filed on Aug. 10, 2015.
CTNEF, mailed on Mar. 14, 2016, re: Justin Call, U.S. Appl. No.
14/874.717, filed Oct. 5, 2015.
NOA, mailed on Apr. 28, 2016, re: Justin Call, U.S. Appl. No.
14/874,717, filed Oct. 5, 2015.
NOA, mailed on Nov. 9, 2016, re: Justin Call, U.S. Appl. No.
14/930,198, filed Nov. 2, 2015.
CTNEF, mailed on Jul. 21, 2016, re: Justin Call, U.S. Appl. No.
14/930,198, filed Nov. 2, 2015.
NOA, mailed on Nov. 16, 2016, re: Justin Call, U.S. Appl. No.
14/980.,409, filed Dec. 28, 2015.
CTNEF, mailed on Aug. 2, 2016, re: Justin Call, U.S. Appl. No.
14/980,409, filed Dec. 28, 2015.
CTNEF, mailed on Dec. 16, 2016, re: Marc Hansen, U.S. Appl. No.
15/148,139, filed May 6, 2016.
CTFR, mailed on Nov. 18, 2016, re: Justin D. Call, U.S. Appl. No.
14/672,879, filed Mar. 30, 2015.
CTNEF, mailed on Jun. 1, 2017, re: Siying Yang, U.S. Appl. No.
14/942.769, filed Nov. 16, 2015.
NOA, mailed on Jun. 7, 2017, re: Call, et al., U.S. Appl. No.
14/930,198, filed Jun. 7, 2017.
CTNEF, mailed on Jun. 2, 2017, re: Artya Hidayat, U.S. Appl. No.
15/224,978, filed Aug. 1, 2016.
CTNEF, mailed on Apr. 7, 2017, re: Yao Zhao, U.S. Appl. No.
14/861,906, filed Sep. 22, 2015.
CTNEF, mailed on May 25, 2017, re: Daniel G. Moen, U.S. Appl. No.
14/980,231, filed Dec. 28, 2015.
NOA, mailed on Jun. 20, 2017, re: Roger S. Hoover , U.S. Appl. No.
14/4770,082, filed Aug. 27, 2014.
CTNEF, mailed on Jul. 26, 2017, re: Ber Zhang, U.S. Appl. No.
14/859,084, filed Sep. 18, 2015.

US 10,367,903 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

CTNEF, mailed on Jun. 21, 2017, re: Zhiwer L1, U.S. Appl. No.

14/718,736, filed May 21, 2015.

CTFR, mailed on Aug. 14, 2017, re: Marc R. Hansen, U.S. Appl.

No. 15/148,139, filed May 6, 2016.

CTNEF, mailed on Aug. 30, 2017, re: Justin D. Call, U.S. Appl. No.

15/470,715, filed Mar. 27, 2017.

CTFR, mailed on Sep. 5, 2017, re: Siying Yang, U.S. Appl. No.

14/925,547, filed Oct. 28, 2015.

NOA, mailed on Oct. 11, 2017, re: James D. Call, U.S. Appl. No.

14/822,287, filed Aug. 10, 2015.

NOA, mailed on Oct. 18, 2017, re: Roger S. Hoover, U.S. Appl. No.

14/470,082, filed Aug. 27, 2014.

CTNEF, mailed on Oct. 19, 2017, re: Jarrod S. Overson, U.S. Appl.

No. 15/059,080, filed Mar. 2, 2016.

CTNE, mailed on Oct. 19, 2017, re: Wesley Hales, U.S. Appl. No.

15/011,237, filed Jan. 29, 2016.

NOA, mailed on Oct. 25, 2017, re: Michael J. Ficarra, U.S. Appl.

No. 15/060,322, filed Mar. 3, 2016.

CTNEF, mailed on Nov. 13, 2017, re: Nwokedi Idike, U.S. Appl. No.

14/728,596, filed Jun. 2, 2015.

CTNEF, mailed on Dec. 13, 2017, re: Justin D. Call, U.S. Appl. No.

15/645,787, filed Jul. 10, 2017.

NOA, mailed on Dec. 18, 2017, re: Yao Zhao, U.S. Appl. No.

14/861,906, filed Sep. 22, 2015.

NOA, mailed on Jan. 5, 2018, re: Yao Zhao, U.S. Appl. No.

14/861,906, filed Sep. 22, 2015.

NOA, mailed on Jan. 9, 2018, re: Justin D. Call, U.S. Appl. No.

15/470,715, filed Mar. 27, 2017.

NOA, mailed on Jan. 16, 2018, re: Justin D. Call, U.S. Appl. No.

14/822,287, filed Aug. 10, 2015

CTFR, mailed on Jan. 25, 2018, re: Siying Yang, U.S. Appl. No.

14/942,769, filed Nov. 16, 2015

CTNEF, mailed on Feb. 7, 2017, re: Daniel G. Moen, U.S. Appl. No.

14/980,231, filed Dec. 28, 2015.

CTFR, mailed on Jan. 10, 2018, re: Ber Zhang, U.S. Appl. No.

14/859,084, filed Sep. 18, 2015.

NOA, mailed on Jan. 25, 2018, re: Zhiweir Li, U.S. Appl. No.

14/718,736, filed May 21, 2015.

CTNEF, mailed on Feb. 8, 2018, re: Xiaoming Zhou, U.S. Appl. No.

15/651,303, filed Jul. 17, 2017.

CTNEF, mailed on Mar. 5, 2018, re: Justin D. Call, U.S. Appl. No.

15/785,309, filed Oct. 16, 2017.

CTFR, mailed on Feb. 23, 2018, re: Wesley Hales, U.S. Appl. No.

15/011,237, filed Jan. 29, 2016.

CTNEF, mailed on Mar. 30, 2018, re: Michael J. Ficarra, U.S. Appl.

No. 15/060,380, filed Mar. 3, 2016.

CTNEF, mailed on May 3, 2018, re: Marc R. Hansen, U.S. Appl. No.

15/148,139, filed May 6, 2016.

CTNEF, mailed on Apr. 19, 2018, re: Michael J. Ficarra, U.S. Appl.

No. 15/919,034, filed Mar. 12, 2018.

NOA, mailed on Apr. 30, 2018, re: Xiaoming Zhou, U.S. Appl. No.

15/651,303, filed Jul. 17, 2017.

CTNEF, mailed on May 15, 2018, re: Marc R. Hansen, U.S. Appl. No.

15/202,755, filed Jul. 6, 2016.

CTFR, mailed on May 10, 2018, re: Nwoked: Idike, U.S. Appl. No.

14/728,596, filed Jun. 2, 2015.

CTNEF, mailed on Feb. 16, 2018, re: Siying Yang, U.S. Appl. No.

15/068,468, filed Mar. 11, 2016.

NOA, mailed on May 18, 2018, re: Siying Yang, U.S. Appl. No.

14/942,769, filed Nov. 16, 2015.

CTNEF, mailed on May 23, 2018, re: Ber Zhang, U.S. Appl. No.

14/859,084, filed Sep. 18, 2015.

CTFR, mailed on May 17, 2018, re: Jarrod S. Overson, U.S. Appl.

No. 15/059,080, filed Mar. 2, 2016.

NOA, mailed on May 14, 2018, re: Xiaoming Zhou, U.S. Appl. No.

15/651,303, filed Jul. 17, 2017.

CTNEF, mailed on Jun. 7, 2018, re: Siying Yang, U.S. Appl. No.

14/925,547, filed Oct. 28, 2015.

CTNEF, mailed on Jun. 29, 2018, re: Timothy Dylan Peacock, U.S.
Appl. No. 15/137,824, filed Apr. 25, 2016.

CTNEF, mailed on Feb. 1, 2018, re: Nwokedi Idika, U.S. Appl. No.
15/204,710, filed Jul. 7, 2016.

NOA, mailed on Aug. 13, 2018, re: Daniel G. Moen, U.S. Appl. No.
14/980,231, filed Dec. 28, 2015.

CTNF, mailed Jul. 31, 2018, re: Wesley Hales, U.S. Appl. No.
15/011,237, filed Jan. 29, 2016.

Detection and Analysis of Drnive-by-Download Attacks and Mali-
cious JavaScript Code, Apr. 26, 2010.

Defending Browsers against Drive-by Downloads: Mitigating Heap-
spraying Code Injection Attacks, Jul. 9, 2009.

Intrusion Detection using Sequences of System calls, Aug. 18, 1998.
Detecting and Preventing Drive-By Download Attack via Partici-

pative Monitoring of the Web, Jul. 23, 2013.
Recent Java exploitation trends and malware, Jul. 26, 2012.

DoDOM: Leveraging DOM Invariants for Web 2.0 Application
Robustness Testing, Nov. 1, 2010.

Cujo: Eflicient Detection and Prevention of Drive-by-Download
Attacks, Dec. 6, 2010.

Design and Implementation of a Distributed Virtual Machine for
Networked Computers, 1999.

International Search Report, dated Jan. 21, 2015, PCT/US14/23635.
International Search Report, dated Sep. 22, 2016, PCT/US16/
40645,

International Search Report, dated Feb. 16, 2017, PCT/US16/
53472.

International Search Report, dated Oct. 11, 2016, PCT/US16/41337.
International Search Report, dated Jul. 1, 2016, PCT/US16/25092.
International Search Report, dated Aug. 14, 2014, PCT/US14/
27805.

International Search Report, dated Aug. 1, 2014, PCT/US14/24232.
International Search Report, dated Jul. 18, 2014, PCT/US14/23897.
International Search Report, dated Jun. 3, 2013, PCT/US13/26516.
DuPaul, Neil, “Common Malware Types: Cybersecurity 1017, Veracode,
Oct. 12, 2012, 9 pages, Oct. 12, 2012.

Friendly Bit, “Rendering a web page—step by step”, published Jan.
11, 2010, pp. 1-2, Jan. 11, 2010.

“Custom FElements: defining new elements in HITML”, Dec. 8,
2013, 15 pages, Dec. 8, 2013.

NOA, mailed on Sep. 5, 2018, re: Daniel G. Moen, U.S. Appl. No.
14/980,231, filed Dec. 28, 2015.

NOA, mailed on Sep. 17, 2018, re: Siying Yang, U.S. Appl. No.
14/942.769, filed Nov. 16, 2015.

NOA, mailed on Sep. 5, 2018, re: Michael J. Ficarra, U.S. Appl. No.
15/919,034, filed Mar. 12, 2018.

NOA, mailed on Jul. 5, 2018, re: Siying Yang, U.S. Appl. No.
15/068.,468, filed Mar. 11, 2016.

NOA, mailed on Sep. 19, 2018, re: Nwokedi Idika, U.S. Appl. No.
15/204,710, filed Jul. 7, 2016.

CTNEF, mailed on Sep. 19, 2018, re: Eli Mattson, U.S. Appl. No.
15/430,224, filed Feb. 10, 2017.

NOA, mailed on Sep. 13, 2018, re: Justin D. Call, U.S. Appl. No.
15/785,309, filed Oct. 16, 2017.

NOA, mailed on Oct. 24, 2018, re: Marc R. Hansen, U.S. Appl. No.
15/148,139, filed May 6, 2016.

CTFR, mailed on Sep. 11, 2018, re: Michael J. Ficarra, U.S. Appl.
No. 15/060,380, filed Mar. 3, 2016.

CTFR, mailed on Nov. 1, 2018, re: Marc. R. Hansen, U.S. Appl. No.
15/202.,755, filed Jul. 6, 2016.

CTFR, mailed on Nov. 30, 2018, re: Siying Yang, U.S. Appl. No.
14/925,547, filed Oct. 28, 2015.

NOA, mailed on Nov. 27, 2018, re: Nwokedi Idika, U.S. Appl. No.
15/204.,710, filed Jul. 7, 2016.

CTNEF, mailed on Oct. 5, 2018, re: Zhiwer L1, U.S. Appl. No.
15/968,573, filed on May 1, 2018.

NOA, mailed on Sep. 12, 2018, re: Justin D. Call, U.S. Appl. No.
15/645,787, filed Jul. 10, 2017.

CTNEF, mailed on Nov. 29, 2018, re: Jarrod S. Overson, U.S. Appl.
No. 15/059,080, filed Mar. 2, 2016.

NOA, mailed on Jan. 3, 2019, re: Be1 Zhang, U.S. Appl. No.
14/859,084, filed Sep. 18, 2015.

US 10,367,903 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

NOA, dated Feb. 7, 2019, re: S1ying Yang, U.S. Appl. No. 16/190,0135,
filed Nov. 13, 2018.

CTNEF, dated Jan. 24, 2019, re: Nwoked1 Idika, U.S. Appl. No.
14/728,596, filed Jun. 2, 2015.

CTFR, dated Jan. 17, 2019, re: Wesley Hales, U.S. Appl. No.
15/011,237, filed Jan. 29, 2016.

NOA, dated Feb. 6, 2019, re: Eli Mattson, U.S. Appl. No. 15/430,224,
filed Feb. 10, 2017.

NOA, dated Mar. 25, 2019, re: Siying Yang, U.S. Appl. No.
14/925,547, filed Oct. 28, 2015.

U.S. Appl. No. 16/190,015, filed Mar. 14, 2019, Sying Yang.
CTFR, dated Apr. 15, 2019, re: Jarrod S. Overson, U.S. Appl. No.
15/059,080, filed Mar. 2, 2016.

CTNE, dated May 15, 2019, re: Michael J. Ficarra, U.S. Appl. No.
15/060,380, filed Mar. 3, 2016.

NOA, dated Jun. 3, 2019, re: Siying Yang, U.S. Appl. No. 16/190,015,
filed Nov. 13, 2018.

* cited by examiner

US 10,367,903 B2

Sheet 1 of 5

Jul. 30, 2019

U.S. Patent

M B N N N EEEE!EEEEEE!EEEEEEEEEEEEEEEEEE!EEEEEEE!EEEEEEEEEEJ

vTT
J9sied

r
.
!
!
!
!
!
! S
“ 901

0cT
S|INPOIA 1dunsenes JUSWUCIIAUA
93eJ0]1S [B207 UORNI3X3
_ 1diogener 97T
il =l ANEMT]
losJed 1250
0T TANLH -
S|NPOA 5
INPOA
SNQ NOG 74
01T 3|NPOIA
lasied SSH AlIAI1D€ID]U|

91T
JUSLWUOJIAUT

zoT

g CCl

INPOIN 30T u0oI1N23X3 auiISu3

1000304 . ‘
lasied UOIsU9]1X4 gulispuay
o8eWw| |

\

0ST SIdV
WalsAS SO

00T J9smoug

r““u“u‘“““““ 4
e a8 B N N K B N N |

1 Ol3

N\

091 51dV

e e e e e e e e e e e e e e e 10] G ()

ove
23eJ01S

D> s

Jo1ndwo) ual|)

US 10,367,903 B2

ZEZ uoneingiyuo)

\r
Cop
= \
&\
@ __
= G0C — —
e 2JN10NJ1Selju] Jec 2o¢
121ndw o) 19SMOJY
AleipawJalu|
2 _ _
= O
S = .
z — Z 'Ol
= \ /
—
06C SSO
OLC mwu pue ‘1dliogener
PUE JALDSEAET “TNLH P3IPOIA

‘ allIpowu
TNL1H P=2U1P A 007 WaISAS

U.S. Patent

ore
95eJ01S

ZEZ uoneindiyuo)

US 10,367,903 B2

0€Z Jo1ndwo) AleipawJalu|

m
- : w
= ; - i
Mm ; vee === (9 :
= m 51807 9tk D1o0] w
7 : guissanolud uonaslul w
L ; o]
Q07 : 7c¢ 21807 occ :
o EBUD_H%EUE_ ; liElf 11807 : amm\mwm
< m |020]0.1d IEVSE]S ;
N - u
m. | 10201044 w _ _
= ; " U=
= m (4743 0)742 i
- JawJojsuel| 21807 :
@
- SISELEN 323y 109 ;
; ’
m : ¢ Dl
m u
; @
: :
3

U.S. Patent

US 10,367,903 B2

Sheet 4 of 5

Jul. 30, 2019

U.S. Patent

b

dASMOEG JHL

OL SNOLLONYLSNI ALLINTTAL
ANSSIHOOV 40N
JO/ANV TYNOILIAAY JO/ONV
SFUNSYIWHILNNOD ANAS 09%| | —

daSMOYSL
dHL OL S3dNSVIWHEALNNOD
dO/ANVY SNOILONHLSNI
AYLINTTIL "FAISSTHODY
SS3TANIS HO/ANY ¥IM3A
(N3ZS ONIONIS dOLS 0¥

]

SdA

¢ALVINILLIOFT
d3SMOH8E
JHL SI 0GP

A

ON

14

..rOm V d0 H3SMO0d9 JLVINLLIOTT

|V S 434SMOYE JHL 93HLIHM INING 3130 O1 a3sn 389 AVIA

LVHL Y3SMOYE FHL WOYd VIVA AYLINITAL FAIF03Y 0P

Ol

O R O R BT

d4SMOHY dHL
OL SNOILONYLSNI AdLdNF 1AL JHOW dO INO JHL ANV
SNOILONYLSNI TYNIDIFO JHOW YO INO IHL ANIS 0EY

ANV 4l H3ISMONYG
dHL AQ A3HOV3d J43M SLINIOdHNOIHO HOIHM ONILYOIANE
VLiVA NdNl3d Ol d3LNdNOD LNSITO 3HL NO ONINNNY
¥ASMOYE V (Q3LND3X3 41) ISNVD OL dFHNDIANOD
YV HOIHM "'SNOILONYLSNI AYLINTTIL FHONW ¥O INO
'SNOILONYLSNI TYNIDIYO 40 L3S FHL OLNI LOAPNI 0¢F

d41LNdNOO LNAI10 ¥V NO d4SMOdd V A d4.1N04X4
HO/ANY 'Q3SdYd 'd3SS300¥d 39 OL 'SNOILYYIdO
dO/ANV S10drg0 d40WN J0 JINO dINIJdd LVHL
SNOILONGLSNI TVYNIOIHO 40 L3SV HLIM d9Vd 8dM
V ¥ILNdNOD YIAYIS 9IM V NOYd 'LdIDHILNI0TF

US 10,367,903 B2

Sheet 5 of 5

Jul. 30, 2019

U.S. Patent

9¢S

8¢%

0CS

MYOMLIN AN

VOO0 T

NHOMLIN

0¢g
s ENYER

G Ol

01§

=

JOV443LNI
NOILVOINNNINOD

JOIN3C
OVHOLS

SNd

NOw

¥0S
d055400dd

908
AHGOWIN
NIVIA

918
- TOYLNOD
d0SdNo

1253
490IA30d LNdNI

¢S

AV 1dSIa

US 10,367,903 B2

1

SECURITY SYSTEMS FOR MITIGATING
ATTACKS FROM A HEADLESS BROWSER
EXECUTING ON A CLIENT COMPUTER

BENEFIT CLAIM

This application claims the benefit as a continuation of
application Ser. No. 14/718,736, filed May 21, 2015, the
entire contents of which 1s hereby incorporated by reference
as 1I fully set forth herein, under 35 U.S.C. § 120. The
applicant(s) hereby rescind any disclaimer of claim scope 1n
the parent application(s) or the prosecution history thereof
and advise the USPTO that the claims 1n this application
may be broader than any claim in the parent application(s).

FIELD OF THE DISCLOSURE

The present disclosure generally relates to security tech-
niques applicable to client/server systems, and relates more
specifically to techniques for improving resistance of server
computers to attacks by client computers.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therefore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion 1n this section.

Browsers are powerful computer program applications
that may request and execute 1nstructions recerved from a
web server to generate complex user interfaces that are
presented to a user through one or more devices, such as a
monitor or speakers. In response to input from a user, such
as a mouse click indicating that the user selected an object
defined 1n the instructions, such as a link, a browser may
send a request based on the selected object to the web server.
The request may be a request for data and/or include data to
be processed by the web server.

Attackers may use soltware, often referred to as a “bot”
or “headless browser”, which imitates a browser used by a
legitimate user by receiving instructions from a web server
and generating requests based on those instructions. For
example, a bot may receive a web page, gather data 1n one
or more objects defined 1n the web page, and generate a
request for another web page to gather additional data, as 1t
a user using a browser was requesting a new web page. Also
for example, a bot may generate and send a request with data
assigned to one or more parameters to simulate a user
submitting data to a web server through a browser.

Attackers may use bots to commit many types of unau-
thorized acts, crimes or computer fraud, such as content
scraping, ratings manipulation, fake account creation,
reserving rival goods attacks, ballot stulling attacks, pass-
word snooping, web site scraping attacks, vulnerability
assessments, brute force attacks, click fraud, DDoS attacks,
bidding wars, and stack fingerprinting attacks. As a specific
example, a malicious user may cause a bot to traverse
through pages of a web site and collect private and/or
proprietary data, such as who 1s connected with whom on a
particular social networking web site.

Web server administrators may wish to prevent malicious
users from attacking the site, while allowing legitimate users
to use the site as intended. However, 1t 1s dithcult to

10

15

20

25

30

35

40

45

50

55

60

65

2

determine whether a legitimate user 1s using a web browser
or whether the browser 1s 1nfected, and/or operated, by a
malicious user.

SUMMARY

The appended claims may serve as a summary of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 1illustrates functional units of a web browser.

FIG. 2 illustrates a computer system comprising a
browser, an intermediary computer, and a web infrastructure
in an example embodiment.

FIG. 3 illustrates detailed view of an intermediary com-
puter in an example embodiment.

FIG. 4 illustrates a process for determining whether a
browser 1s a legitimate browser or a bot, and adjusting the
number of browser-detection tests and/or countermeasures
used, 1n an example embodiment.

FIG. 5 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures 1llustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modity
any of the elements shown in the drawing figures. For
purposes of illustrating clear examples, one or more figures
may be described with reference to one or more other
figures, but using the particular arrangement illustrated 1n
the one or more other figures 1s not required in other
embodiments. For example, intermediary computer 230 1n
FIG. 2 may be described with reference to several compo-
nents illustrated 1n FIG. 3 and discussed 1n detail below, but
using the particular arrangement 1llustrated in FIG. 3 1s not
required 1 other embodiments. Furthermore, while the
istructions discussed 1in many example embodiments are
HyperText Markup Language (“HTML”) and JavaScript
instructions, 1n other embodiments, the instructions inter-
cepted and generated may be any other standard and/or
proprietary mstructions configured to be executed by a client
computer. HIML may include one or more implementa-

tions, such as eXtensible HyperText Markup Language
(“XHTML”).

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present mvention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview
2.0 Browsers, Bots, and Attacks
2.1 Example Browser Anatomy
2.2 Example Bot or “Headless Browser” Anatomy

US 10,367,903 B2

3

-continued

3.0 Distinguishing between Browsers Operated by Legitimate
Users and Bots
3.1 Browser Detection with Telemetry Data
3.1.1 Sections
3.1.2 Sessions
3.1.3 Checkpoints
3.1.3.1 Checkpoint Records
3.1.3.2 Checkpoint Tokens
3.1.3.2.1 Ordered Checkpoint Tokens
1.3.2.2 Scoped Checkpoint Tokens
1.3.2.3 State-Dependent Checkpoint Tokens
.1.3.2.4 Randomuzed Checkpoint Tokens
1.3.2.5 Multi-Component Checkpoint Tokens
1.3.2.6 Obfuscating Checkpoint Tokens
Mandatory Checkpoints
3.1.3.4 Optional Checkpoints
3.1.3.5 Negative Checkpoints
4.0 Example Network Topology that Detects whether a Browser is a
Legitimate Browser or a Bot
4.1 Web Infrastructure
4.2 Intermediary Computer
4.2.1 Protocol Client Logic
4.2.2 Processing Logic
4.2.3 Injection logic
4.2.4 Protocol Server Logic
4.2.5 Bot Check logic
4.2.6 Reverse logic
4.2.7 Configurations
4.2.8 Storage
4.3 Browser
Process Overview
5.1 Intercepting Instructions from a Content Server Computer
5.2 Imjecting Browser-Detection tests
5.3 Determining whether a Browser 1s a Legitimate Browser
and/or a Bot
5.3.1 Validating a Checkpoint Token
5.3.2 Determining a Likelihood that a Browser 1s a Legitimate
Browser or a Bot
5.3.3 Updating the Status of a Checkpoint
Responding to a Browser that 1s Determined to be a Bot
Responding to a Browser that is Determined to be a Legitimate
Browser
6.0 Implementation Mechanisms—Hardware Overview
7.0 Other Aspects of Disclosure

el Lo L Lo L

3.1.3.3

5.0

5.4
5.5

1.0 General Overview

In an embodiment, a computer system comprises a
memory; one or more processors coupled to the memory; a
processor logic coupled to the memory and the one or more
processors, and programmed to: intercept, from a server

computer, one or more original instructions to be sent to a
browser of a client computer; send the one or more original
istructions to the browser and one or more telemetry
instructions, wherein the telemetry instructions are config-
ured to, 1f executed, generate a set of telemetry data indi-
cating the browser interacted with one or more objects and
to send the set of telemetry data to the intermediary com-
puter; receive the set of telemetry data and determine
whether the browser 1s legitimate or illegitimate based on
the set of telemetry data.

In an embodiment, a computer system 1s configured to
improve security of server computers interacting with client
computers through an intermediary computer, and compris-
INg: ONe Or more processors; a processor logic coupled to the
one or more processors and programmed to: intercept, from
a server computer, a web page comprising HI'ML, CSS and
JavaScript instructions to be sent to a browser of a client
computer; 1mject, ito the web page, one or more browser-
detection JavaScript 1nstructions, which 1f executed, cause
one or more operations to be performed on the client
computer and send a set of telemetry data to the computer
system; send the web page with the one or more browser-
detection JavaScript instructions to the browser on the client

10

15

20

25

30

35

40

45

50

55

60

65

4

computer; receive the set of telemetry data and determine
whether the browser 1s legitimate or illegitimate based, at
least in part, on the set of telemetry data.

In an embodiment, a data processing method for improv-
ing security of a server computer interacting with a client
computer through an intermediary computer comprising:
receiving, through a browser on the client computer, a set of
instructions with one or more browser-detection instruc-
tions; executing the one or more browser-detection nstruc-
tions, and 1n response, generating a set of telemetry data
indicating the browser interacted with one or more objects 1n
a particular order; sending the set of telemetry data to the
intermediary computer.

Embodiments discussed herein provide numerous benefits
and improvements over the general 1dea of increasing the
resistance of servers to computer attacks. For example, one
or more of the embodiments discussed herein may filter out
requests from bots and/or browsers operated by malicious
users. One or more of the embodiments discussed herein
may allow a server computer to determine whether addi-
tional countermeasures should be sent to a browser to
prevent automated attacks.

2.0 Browsers, Bots, and Attacks

A web browser may be a tool through which server-based
application programs can provide client computers with
content 1n a dynamic, custom UI. For example, 1n response
to receiving a request for data from a web browser, a web
server may respond with a set of instructions that define one
or more objects with one or more object 1dentifiers. The
instructions may use the object i1dentifiers to define how
objects may be presented 1n a Ul to enable human/computer
interaction. For convenience of expression, a set of mstruc-
tions may be referred to herein as a file and/or web page. A
set of instructions, file, and/or web page need not have a
particular type or extension, and need not be stored in
persistent storage. For example, a web page may be gener-
ated dynamically based on one or more parameters. While
some files may be 1dentified as a particular type of file, such
as an “HTML file” or “JavaScript file”, a file may include
mixed content. For example, an HITML file may include

HTML, JavaScript, Cascading Style Sheets (“CSS5”), and/or

any other standard and/or proprietary set of instructions.
Furthermore, a file need not be a file stored 1n persistent
storage.

In contrast, bots traverse web pages and/or web sites to
retrieve data from, and/or submit data to, one or more web
servers with little, if any, human/computer interaction. For
example, 1n response to recerving a request for data from a
bot, a web server may respond with a set of mstructions. A
bot may parse the instructions to collect data from, and/or to
store data 1n, particular objects with particular object 1den-
tifiers. A bot may also make requests based on an object
identifier, such as the i1dentifier for a text field mput. How-
ever, unlike a browser, a bot need not execute the instruc-
tions that define how objects should be presented 1n a Ul
because the bot 1s built to operate with little, 1f any, human/
computer interaction. Thus, a bot may be a functionally-
limited browser.

2.1 Example Browser Anatomy

FIG. 1 illustrates functional units of a web browser.
Browser 100 may be a browser that 1s executed on a personal
computer, used to communicate with or otherwise concep-
tually visit a web server, and operated by a user using the
personal computer. Browser 100 1s commumnicatively
coupled with operating system (“OS”) system application

US 10,367,903 B2

S

programming nterface (“API”) layer 150 and OS frontend
API layer 160. Other embodiments may use other protocols,
modules, and/or parsers.

Browser 100 comprises protocol module 102, domain
name server (“DNS”) module 104, local storage module
106, image parser 108, CSS parser 110, HITML parser 112,
JavaScript parser 114, extension execution environment 116,
document object model (*DOM”) module 118, and
JavaScript execution environment 120. Protocol module
102, DNS module 104, and local storage module 106 may
send and/or receive data through OS System API layer 150.
For example, protocol module 102 may send and/or receive
data over any protocol, such as HTTP, to/from a server
computer through OS system API layer 150. Data received
through protocol module 102 may reference data sources by
one or more domain names. DNS module 104 may resolve
the one or more domain names referenced by interfacing
with one or more remote domain name servers through OS
system API layer 150. Local storage module may store

and/or recall data from memory through OS system API
layer 150.

Image parser 108, CSS Parser 110, HTML parser 112, and
JavaScript parser 114 may parse data received through
protocol module 102. HIML parser 112 may parse HIML
data. CSS parser 110 may parse CSS data. JavaScript parser
114 may parse JavaScript data. Image parser 108 may parse
image data. Each parser may generate and/or update objects
in a DOM maintained by DOM module 118.

Browser 100 may comprise sets of program logic imple-
menting one or more programmable engines, such as exten-
sion execution environment 116 and JavaScript execution
environment 120. Extensions may be written one or more
programming languages include JavaScript, Python, Ruby,
and/or any other language. Each programmable engine may
have access to DOM module 118 and may operate on one or
more objects from a DOM maintained by DOM module 118.
For example, JavaScript execution environment 120 may
execute JavaScript parsed by JavaScript parser 114 and 1n
response, create, update, and/or delete one or more objects
managed by DOM module 118, and/or one or more aspects
of a Ul presenting the one or more objects.

Browser 100 comprises rendering engine 122, interactiv-
ity module 124, and user interface 126. Each of the com-
ponents may cause, through OS frontend API layer 160, one
or more objects to be presented to a user using a client
computer. Rendering engine 122 may determine how objects
are presented to a user. For example, rendering engine 122
may determine the color, shape, orientation, position, and/or
any other visual and/or audio attribute of an 1mage, text field,
button, and/or any other object defined by a set of recerved
instructions. Furthermore, rendering engine 122 may cause
a button to be displayed on a monitor coupled to a client
computer through OS frontend API layer 160.

User interface 126 may determine what may be presented
to a user. For example, user interface 126 may determine that
a “submit” button should be hidden until data has been
entered 1n one or more text fields. After data has been
entered 1n the one or more text fields, user interface 126 may
notily rendering engine 122 to render the “submit” button
accordingly.

Interactivity module 124 may receive one or more mputs
through OS Frontend API layer 160. For example, in
response to a user pressing a button on a mouse coupled to
a client computer 299, the OS running on the client com-
puter may send a message to interactivity module 124,
through OS frontend API layer 160, to indicate that a user
pressed a button on a mouse. Interactivity module 124 may

10

15

20

25

30

35

40

45

50

55

60

65

6

determine that a user selected a particular button currently
presented on a monitor. Interactively module 124 may notily
user 1nterface 126 and/or rendering engine 122 to update to
update the Ul accordingly. For convenience of expression, a
browser performing an action, such as calling a function or
making a request, may mean one or more components 1n the
browser performing a the action.

2.2 Example Bot or “Headless Browser” Anatomy

A bot or “headless browser” may be a type of browser that
includes a subset of the modules and/or features included 1n
a browser used by a legitimate user, such as browser 100.
For example, a bot may include protocol module 102, DNS
module 104, local storage module 106, and HI' ML parser
112. A bot need not support a UI; thus, a bot need not include
rendering engine 122, interactivity module 124, and user
interface 126.

Less sophisticated bots need not include one or more
parsers and/or execution environments. For example, a bot
may be configured to look for data embedded 1n a DOM
defined 1n one or more HTML documents. Theretfore, the bot
may include an HI'ML parser. However, the bot need not
include one or more parsers or execution environments, such
as 1mage parser 108, CSS parser 110, JavaScript parser 114,
extension execution environment 116, and/or JavaScript
execution environment 120.

More sophisticated bots may include one or more parsers
and/or execution environments. For example, a more sophis-
ticated bot may include a JavaScript engine, such as
JavaScript Execution Environment 120, which can be used
to generate a run-time environment that executes JavaScript
received from a web server.

3.0 Distinguishing Between Browsers Operated by Legiti-
mate Users and Bots

As discussed herein, a bot may be used for various attacks
against a server computer. I a web server can determine
whether a client computer 1s executing a bot or a browser
used a legitimate user, then the web server can stop respond-
ing to the requests sent by the bot and continue to respond
to requests from browser being used by a legitimate user.
Additionally or alternatively, a web server can attack the bot
or the client computer(s) executing the bot. However, deter-
mining whether a client software application, running on a
client computer, 1s a bot or a browser operated by a legiti-
mate user can be diflicult. For convenience of expression, a
browser operated by a legitimate user may be a type of
browser referred to herein as a legitimate browser. Browsers
that are not legitimate browsers, such as bots, headless
browsers, or compromised browsers, may be referred to
herein as an illegitimate browser.

Some protocols, such as HT'TP, allow for browsers and
bots to expressly identily themselves to the server. For
example, a browser used by a legitimate user may 1nclude a
header with an attribute called “user-agent” 1n a request for
data sent to a server computer. The value associated the
“user-agent” attribute may 1dentify the type of browser or
bot sending the request. Ideally, a web server can determine
whether the value associated with the user-agent attribute 1s
a legitimate browser or a bot, and respond accordingly. For
example, a web server may respond to a request from a
legitimate browser with the data requested, and 1gnore a
request from a bot. However, a malicious bot may spool its
identity by using the same value for the “user-agent” attri-
bute as a legitimate browser.

3.1 Browser Detection with Telemetry Data

Although browsers and bots may include one or more of
the same functional units discussed herein, each browser
and/or bot may implement the functional umts differently.

US 10,367,903 B2

7

Furthermore, a browser that has been compromised by
malware or other malicious software may cause a legitimate
browser to implement the functionality of the units differ-
ently. For convenience of expression, a browser that is
compromised may also be referred to as a bot or an 1llegiti-
mate browser.

A server computer may perform one or more browser-
detection tests or methods to determine whether a browser 1s
a legitimate browser or a bot. A browser-detection test may
be used determine whether or not a client computer i1s
executing a browser, and/or which type of browser is
requesting and/or receiving the data. For example, a
browser-detection test may comprise one or more 1nstruc-
tions that are sent to a client computer, which 1 executed,
return results that indicate which type of browser, if any, the
client computer 1s executing. Failure to return one or more
expected results may indicate that the client computer 1s not
executing a browser, the browser 1s an unsupported type of
browser, and/or the client computer 1s executing a bot.
Instructions sent to a client computer to detect which type of
browser, 1f any, 1s being executed on a client computer may
be referred to herein as browser-detection instructions. A
browser-detection test may be performed 1n response to data
generated from the client computer. For example, a browser-
detection test may comprise a server computer sending
browser-detection instructions to be sent to a client com-
puter, and logic on the server computer configured to deter-
mine whether the results, 1f any, indicate that the client
computer 1s executing a particular type of browser, 11 any.

There are many ways a server computer may detect or
determine whether a browser 1s a particular type of browser,
such as a legitimate browser or a bot. For example, a server
computer may 1nject telemetry 1nstructions 1nto a web page
that define, and/or cause, a client browser and/or computer
to perform one or more operations that generate telemetry
data and send the telemetry data to the server computer
and/or other server computer, such as a remote, online
storage system. The server computer may determine
whether a browser 1s a legitimate browser or a bot based on
the telemetry data. Accordingly, a telemetry instruction may
be a type of browser-detection instruction. Other examples
of browser-detection tests and/or methods are discussed
herein.

Telemetry data 1s data collected from a client computer
that describes usages, states, behaviors, measurements, and/
or other metrics, statistics, or values that may indicate what
a client computer 1s, and/or 1s not, doing. A server computer
may use the telemetry data to classity the client computer
and/or browser running on the client computer. Additionally
or alternatively, a server computer may use the telemetry
data or determine whether the client computer 1s behaving as
expected. For example, and as discussed in detail herein,
telemetry data generated by a browser on a client computer,
and sent to a server computer, may indicate which execution
path(s) the browser took while executing instructions
received from the server computer, or how much time has
passed after a web page 1s loaded and an object 1s selected.
The server computer may use the telemetry data to classity
the browser as a legitimate browser or a bot. Additionally or
alternatively, the server computer may use the telemetry data
to determine the likelihood that the browser i1s a legitimate
browser or a bot.

In response to determining that a browser 1s a bot, the
server computer may perform one or more additional
browser detection methods and/or implement countermea-
sures 1n subsequent web pages. For example, 1n response to
determining that the browser 1s a bot, the server computer

10

15

20

25

30

35

40

45

50

55

60

65

8

may send one or more mstructions to the bot that include
disinformation and/or one or more decoy links that reference
one or more web pages with disinformation. Additionally or
alternatively, 1n response to a server computer failing to
determine that the browser 1s a legitimate browser, the server
computer may send additional, different telemetry instruc-
tions to the browser. Additionally or alternatively, in
response to determining that a browser 1s a legitimate
browser, the server computer may stop sending telemetry
instructions and/or countermeasures to the browser.

3.1.1 Sections

A section may be a web page, and/or a portion of a web
page, that includes one or more checkpoints (discussed in
detail herein) and 1s associated with a section 1dentifier. For
example, a section may comprise HI'ML and/or JavaScript
code that defines an object, which when interacted with by
a browser, causes the browser to reach a checkpoint and
execute one or more operations defined by one or more
telemetry instructions. The section identifier may be
encrypted and/or change over time.

A single section and/or web page may include one or more
other sections. And, a single section may be embedded 1n
one or more other sections, and/or 1n one or more of web
pages. However, a particular section may be associated with
the same particular section identifier regardless of which
other section(s) and/or web page(s) the particular section 1s
embedded 1n.

3.1.2 Sessions

A session may include one or more related requests sent
from a browser. For example, a browser may make one or
more requests originating from the same IP address, for a
particular section. In response, a server computer may
generate a new session 1dentifier and respond to the requests
with one or more sections, which include telemetry mnstruc-
tions that define one or more checkpoints.

The server computer may associate each section and/or
checkpoint with a session. For example, the server computer
may associate each section i1dentifier that corresponds to a
section sent to a browser during a particular session with a
session 1dentifier that corresponds to the particular session.
The server may associate valid checkpoint tokens, which are
discussed 1n detail herein, with the section(s) that are asso-
ciated with the particular session. In many examples dis-
cussed herein a checkpoint token 1s associated with, and/or
based on, a section 1dentifier. Additionally or alternatively, a
checkpoint token may be associated with, and/or based on a
session 1dentifier. For example, a checkpoint token may be
based on a concatenation of a session 1dentifier and a session
identifier. Accordingly, and as discussed herein, a server
computer may determine whether a checkpoint 1n a particu-
lar section and/or session was reached.

3.1.3 Checkpoints

A checkpoint may be one or more operations that are
performed 1n response to a browser interacting with one or
more objects, such as an input field, data structure, and/or
function. The one or more operations may cause the browser
to generate telemetry data indicating that the browser inter-
acted with the one or more objects. A browser may interact
with an object by presenting, selecting, referencing, calling,
and/or performing one or more operations associated with
the object. A checkpoint may be associated with a check-
point 1dentifier. The checkpoint identifier may be encrypted
and/or change over time.

Checkpoints may be defined by telemetry instructions,
which 1f executed by a browser, cause the browser to
generate telemetry data. Checkpoints can be created and/or
defined 1n many ways. For example, a checkpoint may be

US 10,367,903 B2

9

defined by one or more telemetry instructions that define a
particular function that should be called and/or executed by
the browser if and/or when the browser interacts with a
particular object. In response to the browser interacting with
the particular object, the browser may execute the particular
function and generate telemetry data indicating the browser
interacted with the object. Additionally or alternatively, a
checkpoint may be defined by one or more telemetry mstruc-
tions 1nserted into a block of code, such as a function. If the
block of code 1s executed, then the one or more telemetry
instructions may also be executed by the browser, causing
the browser to generate telemetry data indicating the
browser executed the particular block of code.

3.1.3.1 Checkpoint Records

At a checkpoint, a browser may generate telemetry data
indicating that a particular checkpoint was reached. For
example, when a checkpoint 1s reached, one or more telem-
etry instructions may cause the browser to generate a set of
telemetry data that includes a checkpoint 1dentifier and/or a
checkpoint token, discussed in detail herein. The set of
telemetry data generated in response to reaching a check-
point may be referred to herein as a checkpoint record. A
checkpoint record may, but need not be, a contiguous block
1n memory.

At a checkpoint, a browser may generate checkpoint
record with telemetry data indicating the state of the browser
and/or one or more objects. For purposes of illustrating a
clear example, assume a checkpoint 1s created by 1nserting
one or more telemetry 1nstructions into a particular function
definition, and the browser executing the particular function.
The one or more telemetry instructions may cause the
browser to perform a stack trace on a call stack to determine
which function(s) directly and/or indirectly called the par-
ticular function. The browser may generate a checkpoint
record with telemetry data that identifies each function that
directly and/or indirectly caused the browser to reach the
checkpoint. Additionally or alternatively, one or more telem-
etry 1nstructions may cause the browser to generate a
checkpoint record with telemetry data that indicates the
value(s) stored in one or more objects when a checkpoint 1s
reached.

A particular checkpoint may be reached multiple times.
Each time a browser reaches the same checkpoint the
browser may generate a new checkpoint record. However, a
browser may generate a {irst checkpoint record the first time
the browser reaches a particular checkpoint, and the browser
may generate a second, different checkpoint record the
second time the browser reaches the particular checkpoint.

3.1.3.2 Checkpoint Tokens

A checkpoint token may be a token that indicates a
particular checkpoint was reached. For example, a first
checkpoint may be associated with a unique checkpoint
identifier. The unique checkpoint identifier may be the
checkpoint token. Additionally or alternatively, a checkpoint
token may include data that indicates one or more browser
states and/or other telemetry data. For example, a check
point token may indicate the order in which a browser
reached one or more checkpoints, the data in one or more
objects, and/or how a browser has interacted with one or
more objects.

3.1.3.2.1 Ordered Checkpoint Tokens

A server computer may require one or more checkpoints
to be executed 1n a particular order. A server computer may
determine which checkpoints were reached and 1 which
order using one or more techniques. For example, one or
more telemetry instructions may be configured to cause a
browser to store each checkpoint record 1n an ordered list in

10

15

20

25

30

35

40

45

50

55

60

65

10

memory and send the ordered list to the server computer.
The server computer may determine the order in which each
checkpoint was reached based on the order of checkpoint
records 1n the ordered list. In an embodiment, ordered
checkpoints may represent a call stack and/or call chain that
legitimate browsers are authorized to execute.

Additionally or alternatively, a checkpoint may cause a
browser that reaches the checkpoint to generate a checkpoint
token based on an initial token, identifier, and/or value,
and/or a token generated by the browser at a previously
reached checkpoint. The generated checkpoint token may
indicate which checkpoints were reached and 1n which order.
For purposes of illustrating a clear example, assume a set of
telemetry instructions 1n a web page define a first token, X,
which 1n this example may be a section identifier. Also
assume the set of telemetry instructions in the web page
define a first checkpoint associated with a first transforma-
tion, and a second checkpoint associated with a second
transformation. The {first transformation may generate a
different result than the second transformation using the
same one or more iputs. Accordingly, a browser may
generate a second token, Y, by applying the first transior-
mation to the first token, X. The browser may generate a
third token, Z, by applying the second transformation to the
second token, Y. However, the browser may generate a token
that 1s different than Y or Z if the browser applies the first
transformation to a token that 1s different than X. Further-
more, the browser may generate token that 1s different than
Y or Z it the browser applies the second transformation to
a token that 1s different than Y, such as the 1nitial token X.

A server computer may determine which checkpoints
were executed by a browser, and in which order, based on
one or more checkpoint tokens stored in each checkpoint
record. Continuing with the previous example, 11 a server
computer recerves a checkpoint record from a browser with
the second token Y, then the server computer may determine
that the browser reached the first checkpoint 1n the section
betore any other checkpoint. If the server computer receives
a checkpoint record from a browser with the third token, Z,
then the server computer may determine that the browser
reached the second checkpoint 1n the section after reaching
the first checkpoint. Additionally or alternatively, the server
computer may determine that the browser did not reach any
other checkpoints before reaching the first checkpoint and/or
the second checkpoint. If the server computer does not
receive a checkpoint record with the second token, Y, from
a browser, then the server computer may determine that the
browser reached the first checkpoint out of order, or the
browser did not reach the first checkpoint. If the server
computer does not recerve a checkpoint record with the third
token, Z, from a browser, then the server computer may
determine that the browser reached the second checkpoint
out of order, and/or the browser did not reach the second
checkpoint.

3.1.3.2.2 Scoped Checkpoint Tokens

A server computer may determine which checkpoints a
browser reaches in which section based on one or more
checkpoint tokens stored in each checkpoint record. For
purposes ol 1illustrating a clear example, assume a first
section 1s a first web page that includes a first token and/or
first section identifier, H; a second section 1s a second web
page that includes a second token and/or second section
identifier, J; and the telemetry instructions in each section
may define a checkpoint with a particular corresponding
transformation. In response to reaching the checkpoint in the
first section, a browser may generate a first checkpoint
token, K, by applying the particular transformation to the

US 10,367,903 B2

11

first token, H. In response to reaching the checkpoint in the
second web page, the browser may generate a second
checkpoint token, L, by applying the particular transforma-
tion to the second token, J. Accordingly, 1f a server computer
receives a checkpoint record with the first checkpoint token,
K, from a browser, then the server computer may determine
that the browser reached the checkpoint 1n the first section;
otherwise, the server computer may determine that the
browser did not reach the checkpoint in the first section. If
the server computer receives a checkpoint record with the
second checkpoint token, L, from a browser, then the server
computer may determine that the browser reached the
checkpoint in the second section; otherwise, the server
computer may determine that the browser did not reach the
first checkpoint on the second web page.

The first checkpoint token and the second checkpoint
token are scoped checkpoint tokens because each checkpoint
token 1s based on a scope, such as a section and/or session,
in which the checkpoints were reached. In the example
above, the two sections are diflerent web pages or different
portions of the same web page. However, the two sections
may be the same web page sent to different browsers and/or
in different sessions. Additionally or alternatively, the first
checkpoint and the second checkpoint may be the same
checkpoint but in different sections and/or sessions.

3.1.3.2.3 State-Dependent Checkpoint Tokens

A checkpoint token may be based on interactions between
the browser and one or more objects and/or the state of the
one or more objects. For purposes of illustrating a clear
example, assume a web page includes a form with a submut
button, and the web page includes one or more telemetry
instructions that define a checkpoint that 1s reached just
betore the browser submits the data i the form to the server
computer. In response to reaching the checkpoint, a browser
may generate a checkpoint token that i1s based on the state of
the submit button. For purposes of illustrating a clear
example, assume that the checkpoint token is set to a {first
predefined token, P, 11 the browser indicates the state of the
submitted button 1s selected, and the checkpoint token 1s set
to a second predefined token,), 1f the browser indicates that
the state of the submitted button 1s not selected.

A server computer may determine the state of a browser
and/or section based on a checkpoint token. Continuing with
the previous example, 1n response to receiving a checkpoint
record with a checkpoint token that matches the first pre-
defined token, P, the server computer may determine that the
submit button was selected when the browser reached the
corresponding checkpoint. In response to receiving a check-
point record with a checkpoint token that matches the
second predefined token, (), the server computer may deter-
mine that the submit button was not selected when the
browser reached the corresponding checkpoint. Accord-
ingly, 1f the server computer recerves a checkpoint token that
matches the second predefined token,), then the server
computer may determine that the browser 1s a bot, because
a user expected to reach the checkpoint by pressing the
particular submit button. Additionally or alternatively, 1f the
server computer receirves a checkpoint token that matches
the first predefined token, P, then the server computer may
determine that the browser 1s a legitimate browser.

A state-dependent checkpoint token may be based on one
or more objects and/or one or more attributes related to one
or more sections and/or objects. For example, a checkpoint
may cause a browser to generate a state-dependent check-
point token by concatenating each value in one or more
hidden mput fields. Additionally or alternatively, a state-
dependent checkpoint token may be based on data associ-

10

15

20

25

30

35

40

45

50

55

60

65

12

ated with a particular section and/or session, such as a
section 1dentifier and/or a session identifier, the length of the
data 1n a section, the length of time a section has been loaded
and/or presented on a display, the length of the data in
another section and/or a section 1n a previous web page, a
hash code, and/or any other value that may be stored and/or
derived from a section and/or session. In an embodiment, a
state-dependent checkpoint token may include a stack trace
indicating one or more functions that directly and/or 1ndi-
rectly cause the browser to reach the checkpoint that corre-
sponds with the state-dependent checkpoint.

3.1.3.2.4 Randomized Checkpoint Tokens

A checkpoint token may be a value generated based on a
random number generator. The more values that a random
number generator 1s configured to generate, the less likely a
web browser will generate the same randomized checkpoint
token twice. Recerving the same randomized checkpoint
token may indicate that a bot 1s sending previously gener-
ated telemetry data to the server computer and/or 1s trying to
spool telemetry data. Accordingly, 1if a server computer
receives the same checkpoint token, for the same checkpoint
and/or a diflerent checkpoint, from the same browser, then
the server computer may determine that the checkpoint
token 1s invalid. In response, the server computer may
determine that the browser 1s a bot.

3.1.3.2.5 Multi-Component Checkpoint Tokens

A multi-component checkpoint token may be a check-
point token that comprises one or more of the various tokens
discussed herein. For example, a multi-component check-
point token may be a checkpoint token that includes an
ordered checkpoint token, a scoped checkpoint token, a
state-dependent checkpoint token, and a randomized check-
point token. A multi-component checkpoint token may, but
need not, be stored 1n a single contiguous block 1n memory.
A multi-component checkpoint token may be valid 1f each of
the checkpoint token components 1s valid. Additionally or
alternatively, a multi-component checkpoint token may be
invalid 1f one or more of the checkpoint token components
are mvalid.

3.1.3.2.6 Obfuscating Checkpoint Tokens

A checkpoint token and/or a checkpoint token component
may be obfuscated using one or more of the values, 1den-
tifiers, and/or checkpoint token components. For example, a
checkpoint token may be offset within a checkpoint record
by the same number of bits as the value of a randomized
checkpoint token, randomized checkpoint token component,
and/or a randomized checkpoint token component from a
different checkpoint token. Additionally or alternatively, a
checkpoint token component may be offset within a multi-
component checkpoint token based on the same number of
bits as the value of a randomized checkpoint token compo-
nent.

3.1.3.3 Mandatory Checkpoints

A checkpoint may be designated as a mandatory check-
point. A mandatory checkpoint may be a checkpoint that a
server computer requires a browser to reach 1n order for the
server computer to determine that the browser 1s a legitimate
browser and/or 1s less likely to be a bot. In response to
determining that a checkpoint token for a mandatory check-
point 1s not included 1n a set of telemetry data, and/or the
checkpoint token includes one or more invalid components,
received from a browser on a client computer, the server
computer may determine that the browser 1s, and/or 1s more
likely to be, a bot.

3.1.3.4 Optional Checkpoints

A checkpoint may be designated as an optional check-
point. An optional checkpoint may be a checkpoint that a

US 10,367,903 B2

13

server computer does not require a browser to reach 1n order
for the server computer to determine the browser 1s a
legitimate browser. However, i1 the checkpoint is reached,
the server computer may validate the corresponding check-
point token to determine whether the browser 1s, and/or 1s
more likely to be, a legitimate browser or a bot. For purposes
of 1illustrating a clear example, assume a browser sends
telemetry data to a server computer with a checkpoint token
that corresponds with an optional checkpoint, and the check-
point token 1s a multi-component checkpoint token. In
response to determining that the checkpoint token corre-
sponds to an optional checkpoint, and that one or more of the
components 1n the checkpoint token are invalid, the server
computer may determine that the browser 1s, and/or 1s more
likely to be, a bot.

3.1.3.5 Negative Checkpoints

A checkpoint may be designated as a negative checkpoint.
A negative checkpoint may be a checkpoint a server com-
puter requires a browser to not reach i order for the server
computer to determine that the browser 1s, and/or 1s more
likely to be, a legitimate browser. For example, a web page
may define a button that 1s not visually displayed to a user
using a legitimate browser. A checkpoint may be defined as
a callback function that 1s executed 1f the browser interacts
with the hidden button. A legitimate browser need not
interact with the hidden button because a legitimate browser
need not show the hidden button a legitimate user for the
user to select. However, an autonomous bot without a
display may interact with the button as part of an attack
regardless of whether or not the button i1s hidden, which
causes the bot to reach the negative checkpoint (the callback
function). The negative checkpoint may be configured to
cause the browser to generate telemetry data that includes a
checkpoint token that corresponds with, and/or i1dentifies,
the negative checkpoint, which indicates that the browser
reached the negative checkpoint. The negative checkpoint
may be configured to cause the browser to send the telemetry
data to a server computer. In response to receiving the
telemetry data and determining the negative checkpoint was
reached, the server computer may determine that the
browser 1s, and/or 1s more likely to be, a bot.

4.0 Example Network Topology That Detects Whether a
Browser 1s a Legitimate Browser or a Bot

FIG. 2 1illustrates a computer system comprising a
browser, an intermediary computer, and a web infrastructure
in an example embodiment. Referring first to FIG. 2, system
200 includes web infrastructure 203, client computer 299,
intermediary computer 230, storage 240, and configuration
232 distributed across a plurality of interconnected net-
works.

A “computer” may be one or more physical computers,
virtual computers, and/or computing devices. As an
example, a computer may be one or more server computers,
cloud-based computers, cloud-based cluster of computers,
virtual machine instances or virtual machine computing
clements such as virtual processors, storage and memory,
data centers, storage devices, desktop computers, laptop
computers, mobile devices, and/or any other special-purpose
computing devices. Any reference to “a computer” herein
may mean one or more computers, unless expressly stated
otherwise.

While each of the components listed above 1s illustrated
as 1l running on a separate, remote computer from each
other, one or more of the components listed above may be
part of and/or executed on the same computer. For example,
intermediary computer 230, configuration 232, storage 240,
and/or web infrastructure 205 may be executed on the same

10

15

20

25

30

35

40

45

50

55

60

65

14

computer, local area, and/or wide area network. Additionally
or alternatively, intermediary computer 230 may be a proxy
server and/or layer for web infrastructure 205. Additionally
or alternatively, intermediary computer 230 may be 1n line
between a router and web infrastructure 205, such that
intermediary computer 230 may intercept all network data
sent to, and/or sent from, web infrastructure 205 over one or
more protocols. Additionally or alternatively, intermediary
computer 230, and/or one or more modules comprising
intermediary computer 230 discussed herein, may be a
soltware layer between, and/or executed on, web infrastruc-
ture 205 and/or a component of web infrastructure 205.
Additionally or alternatively, intermediary computer 230,
and/or one or more modules comprising intermediary com-
puter 230 discussed herein, may be part of a server-side
application that responds to requests over one or more
standard and/or proprietary protocols, such as HI'TP and/or
any other protocol.

4.1 Web Infrastructure

Web infrastructure 205 may comprise one or more server
computers that receive requests for data from users through
one or more computers, such as client computer 299 and/or
intermediary computer 230. Web infrastructure 205 may
respond by sending data to the browser that sent the request.
As 1llustrated 1n FIG. 2, the data sent from web intrastructure
205 may include instructions: HITML, JavaScript, and CSS
210. The one or more computers in web 1nirastructure 205
may, but need not, be owned and/or managed by one or more
independent entities and may span across one Or more
computer networks.

A server computer may be a computer that receives
requests for data and responds with data. For example, a web
server computer may be an HTTP-based computer that
receives HT'TP requests and responds with data comprising
HTML, CSS, and/or JavaScript instructions. Additionally or
alternatively, a server computer may respond with data that
references data on other server computers 1n, and/or outside
of, web intrastructure 205.

4.2 Intermediary Computer

Intermediary computer 230 may be an intermediary that
may itercept instructions sent from web infrastructure 205,
parse and/or execute one or more of the intercepted 1nstruc-
tions, modily the intercepted instructions, generate and/or
add new 1nstructions, and send the modified and/or new
istructions to a client computer. For example, intermediary

computer 230 may intercept HTML, JavaScript, and CSS
210, generate modified HTML, JavaScript, and CSS 290,

and send modified HTML, JavaScript, and CSS 290 to
browser 295. Intermediary computer 230 may intercept a
request from browser 295, generate a new and/or modified
request, and send the new and/or modified request to web
infrastructure 205.

Intermediary computer 230 may be an HI'TP or SPDY
intermediary that intercepts, parses, executes, and/or pro-
cesses HTML, JavaScript, and CSS mstructions. Addition-
ally or alternatively, intermediary computer 230 may inter-
cept requests for data and/or instructions from a client
application, generate a new HTTP request, and send the
newly generated HTTP request to one or more HI'TP and/or
SPDY-based web servers. Additionally or alternatively,
intermediary computer 230 may be an intermediary for any
other standard and/or proprietary protocol. Additionally or
alternatively, intermediary computer 230 may intercept and/
or generate mstructions 1n one or more other standard and/or
proprietary languages, such as VB Script and/or DART.
Additionally or alternatively, intermediary computer 230
may 1ntercept and/or generate instruction 1 one or more

US 10,367,903 B2

15

Turing-complete browser supported programming language
capable of interfacing with, and/or generating, a document
object model and/or a browser loaded HTML/XHTML
document. Furthermore, each of the components discussed
herein, which intermediary computer 230 1s comprised of,
may be configured to perform any of the processes and/or
methods discussed herein for any standard and/or propri-
ctary protocol.

Intermediary computer 230 may be a server computer that
one or more domain name servers or other elements of the
domain name system (“DNS”) 1identify in DNS records as a
destination network address associated with one or more
internet domain names. Accordingly, intermediary computer
230 and/or intermediary computer 230 may receive requests
sent to the one or more domains from a browser or bot.
Based on using DNS to resolve the domain name 1n a request
to a network address, itermediary computer 230 may
forward the request, or a modified request, to a server
computer in web infrastructure 205, such as original web
server computer 302.

In FIG. 2, intermediary computer 230 1s programmed to
send 1nstructions to, and recerve requests from, a particular
type of client application: browser 2935. However, in an
embodiment, intermediary computer 230 may be pro-
grammed to send instructions to, receive requests from,
and/or open sockets with browsers and/or bots.

FIG. 3 illustrates detailed view of an intermediary com-
puter 1n an example embodiment. In FIG. 3, intermediary
computer 230 comprises protocol client logic 332, process-
ing logic 334, ijection logic 336, protocol server logic 338,
bot check logic 340, and reverse logic 342. In an embodi-
ment, each of the functional units of intermediary computer
230 may be implemented using any of the techniques further
described herein 1n connection with FIG. 5; for example, the
intermediary computer 230 may comprise a general-purpose
computer configured with one or more stored programs
which when executed cause performing the functions
described herein for the intermediary computer, or a special-
purpose computer with digital logic that 1s configured to
execute the functions, or digital logic that 1s used in other
computing devices. While the figures include lines that
indicate various devices and/or modules being communica-
tively coupled, each of the computers, devices, modules,
storage, and configurations may be commumcatively
coupled with each other.

4.2.1 Protocol Client Logic

Protocol client logic 332 may intercept data over any
standard or proprietary protocol. For example, protocol
client logic 332 may intercept data over HT'TP.

4.2.2 Processing Logic

Processing logic 334 may process instructions intercepted
by protocol client logic 332, which may cause processing,
logic 334 to process, parse, and/or executed instructions
and/or content received by protocol client logic 332.
Accordingly, processing logic 334 may generate one or more
data structures 1n memory. Processing one or more instruc-
tions may comprise parsing and/or executing the one or
more nstructions. After processing the instructions, process-
ing logic 334 may notily injection logic 336 to begin
rendering instructions based on the one or more data struc-
tures created by processing logic 334 that are currently in
memory.

Processing logic 334 may make requests for additional
data. For example, 1f instructions received from protocol
client logic 332 reference additional instructions stored on
another web server, then processing logic 334 may request
the additional 1nstructions through protocol client logic 332.

10

15

20

25

30

35

40

45

50

55

60

65

16

4.2.3 Imjection Logic

Injection logic 336 define one or more sections 1n a web
page and/or a session based on configuration 232, data
structures 1n memory, and/or any other data, mputs, and/or
factors. Injection logic 336 may 1nject, 1into a section, one or
more telemetry instructions that define the one or more
checkpoints, which 1f reached, may cause a browser to
perform one or more operations and send the resulting
telemetry data back to intermediary computer 230. Injection
logic 336 may send one or section with one or more
telemetry instructions to one or more client computers
through protocol server logic 338.

Injecting nstructions into a web page may mean inserting,
and/or appending instructions into the web page and/or file.
Additionally or alternatively, injecting instructions into a
web page may mean generating one or more new files with
the new instructions and iserting and/or appending one or
more references to the one or more new files 1 the web page
and/or file.

Injection logic 336 may send and/or store data i bot
check logic 340 and/or storage 240 indicating which 1den-
tifier(s) and/or checkpoint(s) are defined in each section sent
to each browser and/or client computer in one or more
sessions. For example, in response to a request for a section
of a web page for a particular session, injection logic 336
may generate a set of telemetry instructions that define a
session 1dentifier, a section identifier, and/or one or more
mandatory checkpoints, optional checkpoints, and/or nega-
tive checkpoints.

Injection logic 336 may generate and/or send one or more
valid checkpoint tokens that correspond to the one or more
checkpoints to bot check logic 340 and/or storage 240.
Injection logic 336 may associate each of the one or more
valid checkpoint tokens with the session 1dentifier and/or the
section 1dentifier, and send data describing the associations
to bot check logic 340 and/or storage 240. Accordingly,
injection logic 336 may inject telemetry instructions into a
section, which when executed by a browser may cause the
browser to send the section 1dentifier and/or session 1denti-
fier to intermediary computer 320 along with the telemetry
data generated by the browser.

Additionally or alternatively, injection logic 336 may
encrypt the one or more valid checkpoint tokens and embed
the encrypted checkpoint tokens in telemetry istructions in
a section that includes the corresponding checkpoints. When
a browser generates and sends one or more checkpoint
tokens to intermediary computer 230, the browser may also
send the one or more encrypted valid checkpoint tokens for
bot check logic 340 to decrypt and use to determine whether
one or more checkpoint tokens generated by the browser are
valid.

Injection logic 336 may further protect sections, web
pages, and/or server computers using one or more counter-
measures according to one or more countermeasure proto-
cols stored 1n configuration 232, data structures in memory,
and/or any other data, inputs, and/or factors. For example,
injection logic 336 may protect one or more objects 1n a
section using polymorphism according to one or more
polymorphic protocols stored in configuration 232, data
structures 1n memory, and/or any other data, inputs, and/or
factors.

Injection logic 336 may add checkpoints to one or more
ol objects modified according to the polymorphic protocol,
which may be used to determine whether the polymorphic
protocol 1s changing all instances of an object and/or 1s being
enforced. For example, mjection logic 336 may change an
object 1dentifier for a particular object 1n a section according

US 10,367,903 B2

17

to a polymorphic protocol 1in configuration 232. Injection
logic 336 may create a checkpoint for the object using the
original identifier, such that if a browser tries to interact with
the original object by the original identifier, then browser
will reach the checkpoint. I bot check logic 340 receives a
valid checkpoint token that corresponds with the checkpoint,
then intermediary computer may determine that the poly-
morphic protocol may be breaking one or more features in
the section and/or the browser 1s a bot.

4.2.4 Protocol Server Logic

Protocol server logic 338 may receive the instructions
generated by injection logic 336 and send the generated
instructions to client computer 299. Additionally or alterna-
tively, protocol server logic 338 may intercept requests from

client computer 299 and forward the requests to bot check
logic 340.

4.2.5 Bot Check Logic

Bot check logic 340 may receive the results from one or
more checkpoints and determine whether the browser that
sent the results 1s a legitimate browser or a bot. For example
bot check logic 340 may receive one or more session
identifiers, section identifiers, and/or checkpoint tokens
from a browser, and determine whether the checkpoint
token(s) are valid for a corresponding session and/or section.
Bot check logic 340 may determine which checkpoint
token(s) are valid based on data received from 1injection
logic 336 and/or data stored 1n storage 240. Additionally or
alternatively, injection logic 336 may encrypt and send one
or more valid checkpoint tokens 1n a set of telemetry
istructions to a browser. In response to receiving one or
more checkpoint tokens generated by the browser and the
encrypted valid checkpoint token(s) from the browser, bot
check logic 340 may determine whether the one or more
checkpoint token generated by the browser are valid and/or
whether the browser 1s a legitimate browser or a bot.

Bot check logic 340 may send data to web infrastructure
205, 1njection logic 336, and/or store data in storage 240,
indicating whether a particular browser 1s a legitimate
browser or a bot. Accordingly, 1T injection logic 336 receives
data from bot check logic 340, and/or storage 240, indicating
that a particular browser on a client computer 1s a legitimate
browser, then 1njection logic 336 may inject fewer, 1f any,
and/or less aggressive, browser-detection tests and/or coun-
termeasures 1n future sections sent to the particular browser.
IT injection logic 336 receives data from bot check logic 340,
and/or storage 240, indicating that a particular browser on a
client computer 1s a bot, then injection logic 336 mject more,
and/or more aggressive, browser-detection tests and/or
countermeasures in future sections sent to the particular
browser. Additionally or alternatively, injection logic 336
may stop sending sections to a particular browser 1t bot
check logic 340 determines that the particular browser 1s a
bot.

Checkpoints that cause a browser to perform operations
may be configured to cause the browser to send the telemetry
data to bot check logic 340 along with a request for data
and/or one or more additional sections, or separately and/or
asynchronously from a request for data and/or additional
sections.

4.2.6 Reverse Logic

Reverse logic 342 may translate requests intercepted by
protocol server logic 338, which are based on instructions
generated by injection logic 336, into requests that would
have been generated by browser 295 had browser 295
received the original instructions sent from web inirastruc-
ture 205. For example, 11 a request for a web page from
browser 295 includes a checkpoint token, then reverse logic

10

15

20

25

30

35

40

45

50

55

60

65

18

342 may generate a new request for the web page that does
not include the checkpoint token. Reverse logic 342 may
send the new request to web infrastructure 205 through
protocol client logic 332 on behalf of browser 295.

4.2.77 Configurations

Configuration 232 may be a database, a configuration {ile,
and/or any other system that stores configurations: settings,
preferences, and/or protocols. Configuration 232 may store
more than one configuration for one or more web servers in
web infrastructure 205. For example, configuration 232 may
include data indicating whether or not one or more web
pages Irom one or more server computers in web infrastruc-
ture 205 should be injected with telemetry instructions.
Additionally or alternatively, configuration 232 may include
data indicating that web pages from one or more server
computers 1n web infrastructure 205 need not be injected
with instructions that implement one or more countermea-
sures and/or other browser-detection tests.

Configuration 232 may be modified by a user and/or
administrator through one or more computers, such inter-
mediary computer 230, a computer 1n web infrastructure
203, and/or any other computer. The one or more computers
may present the user with an interface that presents the user
with a site map. The site map may comprise a graph, wherein
the nodes correspond to pages and the edges between the
nodes correspond to links. Intermediary computer 230 may
generate a site map autonomously by intercepting web pages
generated by web infrastructure 205 and intercepting
requests based on data and/or links 1n the intercepted web
pages Irom one or more browser computers.

The user may update configuration 232, through the
interface, by selecting which sections, web pages, and/or
objects to be “public” (need not have instructions that
perform one or more browser-detection tests or countermea-
sures, such as telemetry instructions) and which sections,
web page, and/or objects are “private” (may have instruc-
tions that perform one or more browser-detection tests or
countermeasures, such as telemetry instructions). For
example, the interface may recerve mput from a user 1ndi-
cating that a page 1s public. Configuration 232 may be
updated accordingly.

The user may update configuration 232 to define one or
more checkpoints and indicate which sections and/or objects
the checkpoints should be based on. Additionally or alter-
natively, the user may define what checkpoint token com-
ponents should be included in each checkpoint. For
example, a user may update configuration 232 to define a
checkpoint that should be included in a particular section
and/or web page. Configuration 232 may indicate the order
in which one or more checkpoints should be reached.
Configuration 232 one or more other properties and/or states
of a checkpoint, such as whether a checkpoint 1s mandatory,
option, and/or negative for a particular section.

Additionally or alternatively, a user, such as a developer,
that 1s creating and/or editing a web page in web 1nfrastruc-
ture 205 may embed one or more tags and/or istructions in
the web page defining one or more sections, checkpoints that
should be added to the page, and/or the expected results.
Injection logic 336 and/or processing logic 334 may parse
the tags and/or instructions and generate the telemetry
instructions and/or valid checkpoint tokens accordingly.

4.2.8 Storage

Storage 240 may store one or more expected results from
one or more browsers, which may be used by intermediary
computer 230. Additionally or alternatively, storage 240
may store data from bot check logic 340 indicating that a
particular browser 1s a legitimate browser and/or a bot.

US 10,367,903 B2

19

Storage 240 may be a database, a configuration file, and/or
any other system and/or data structure that stores data. In
FIG. 2, storage 240 1s illustrated as 1f a separate computer
from intermediary computer 230. Additionally or alterna-
tively, storage 240 may be a data structure stored 1n memory
on the one or more computers comprising intermediary
computer 230. Additionally or alternatively, storage 240
may, at least 1n part, be a data structure stored in shared
memory between one or more mtermediary computers.
Additionally or alternatively, intermediary computer 230
may, at least in part, be stored 1n volatile and/or non-volatile
memory.

4.3 Browser

Browser 295 may be a browser as described herein and
executed on a client computer, such as client computer 299.
Additionally or alternatively, browser 295 may be a bot
comprising one or more ol the components traditionally
found 1n a browser.

5.0 Process Overview

In an embodiment, a data processing method may be
configured to intercept mstructions from a server computer
that are directed toward a browser, injection one or more
instructions which when executed cause the client computer
to perform and/or overcome one or more browser-detection
tests, and/or countermeasures. In an embodiment, if results
from the one more browser-detection instructions, such as
telemetry 1instructions, indicate that a browser i1s a bot,
and/or 1s more likely to be a bot then the processing method
may be configured to 1nject one or more instructions, which
when executed cause the browser to perform and/or over-
come one or more additional and/or aggressive browser-
detection tests and/or countermeasures, and/or send a
response to a client computer. In an embodiment, 11 results
from the one more browser-detection instructions indicate
that a browser 1s a legitimate browser, and/or 1s more likely
to be a legitimate browser, then the processing method may
be configured to not inject instructions, which when
executed by a browser cause the browser to perform and/or
overcome one or more browser-detection tests and/or coun-
termeasures. Various embodiments may use standard web
protocols, such as HI'TP, and/or standard web-based 1instruc-
tions, such as HTML and/or JavaScript. Additionally or
alternatively, other standard and/or proprietary protocols
may be used. Additionally or alternatively, other standard
and/or proprietary instructions may be used.

5.1 Intercepting Instructions from a Content Server Com-
puter

FIG. 4 illustrates a process for determiming whether a
browser 1s a legitimate browser or a bot, and adjusting the
number of browser-detection tests and/or countermeasures
used, 1n an example embodiment. In step 410, an 1nterme-
diary computer intercepts, from a web server computer, a
web page with a set of instructions that define one or more
objects and/or operations, to be processed, parsed, and/or
executed by a browser on a client computer. For example,
protocol client logic 332 may receive a web page, such as
unmodified HTML, JavaScript, and CSS 210, from web
infrastructure 205. The web page may comprise HTML,
CSS, JavaScript, and/or any other type of instructions.

5.2 Injection Browser-Detection Tests

In step 420, the mntermediary computer 1njects, into the set
of original 1nstructions, one or more telemetry instructions,
which are configured to cause (1f executed) a browser
running on the client computer to return telemetry data
indicating which checkpoints were reached, 1f any. For
purposes of 1llustrating a clear example, assume that the web
page recerved 1n the previous step comprises HIML, CSS,

10

15

20

25

30

35

40

45

50

55

60

65

20

and JavaScript instructions. Processing logic 334 may parse
the instructions. Injection logic 336 may 1nject one or more
telemetry instructions into the web page, which when
executed, cause the browser to reach one or more check-
points. In this example, the telemetry instructions may be
JavaScript instruction. However, telemetry instructions may
be 1n one or more scripting language and/or programming
language executable by a browser on a client computer.
Injection logic 336 may generate a section i1dentifier for the
web page and/or a session 1dentifier. Injection logic 336 may
embed the section identifier and/or session 1dentifier 1n the
telemetry instructions. Injection logic 336 may generate one
or more valid checkpoint tokens for each checkpoint. Injec-
tion logic may encrypt and/or embed the one or more valid
checkpoint tokens 1n the telemetry instructions.

Additionally or alternatively, injection logic 336 may
generate a new file with one or more telemetry instructions.
Injection logic 336 may modily the section and/or web page
to reference the new file. IT a browser fails to request and/or
download the new file, then intermediary computer 230 may
determine that the browser 1s a bot. Additionally or alterna-
tively, mnjection logic 336 may cache the new file. When a
new web page 1s intercepted, injection logic may insert
and/or append a reference and/or link 1n the web page that
references the cached file. Additionally or alternatively, the
cached file may be updated with new, different, and/or
modified browser-detection tests over time. Accordingly an
attacker may be required to continuously and/or frequently
reverse engineer new and/or different checkpoints and/or
checkpoint tokens.

For each negative checkpoint defined 1n a set of telemetry
instructions, 1njection logic 336 may generate one or more
checkpoint tokens that would be generated by a browser 1f
the browser reached the negative checkpoint. Each negative
checkpoint token may also include data indicating that the
checkpoint 1s a negative checkpoint. Injection logic 336 may
send the checkpoint tokens associated with negative check-
points to storage 240 and/or bot check logic 340. Addition-
ally or alternatively, injection logic may encrypt the negative
checkpoint tokens and/or embed the negative checkpoint
tokens into the telemetry instructions.

In step 430, the intermediary computer sends the one or
more original instructions and the one or more telemetry
instructions to the browser. For example, injection logic 336
may send the section and/or the injected telemetry nstruc-
tions in step 420, which 1f FIG. 2 are label as modified
HTML, JavaScript, and CSS 290, to browser 295 through
protocol server logic 338.

5.3 Determining Whether a Browser 1s a Legitimate
Browser or a Bot

In step 440, the intermediary computer receives telemetry
data from the browser that may be used to determine
whether the browser 1s a legitimate browser or a bot. For
example, browser 295 may execute the injected telemetry
instructions, reach one or more checkpoints, generate one or
more checkpoint records and/or checkpoint tokens, and send
the checkpoint records and/or checkpoint tokens to interme-
diary computer 230. The browser may also send a set of one
or more embedded checkpoint tokens, which were embed-
ded 1n the telemetry 1nstructions, to intermediary computer
230. The data may be recetved by bot check logic 340
through protocol server logic 338.

In step 450, the intermediary computer determines
whether the browser 1s a legitimate browser or a bot. If bot
check logic 340 determines that a browser 1s a bot, and/or 1s
more likely to be a bot, then control may pass to step 460.
It bot check logic 340 determines that a browser 1s a

US 10,367,903 B2

21

legitimate browser, and/or 1s more likely to be a legitimate
browser, then control may pass to step 470. For example, bot
check logic 340 may retrieve the section i1dentifier and/or
session 1dentifier from 1n the telemetry data received 1n step
440. Bot check logic 340 may retrieve the valid checkpoint
token(s) in storage 240. Additionally or alternatively bot
check logic 340 may retrieve the valid checkpoint token(s)
from the telemetry data, which was original embedded 1n the
telemetry instructions that cause the browser to generate the
telemetry data. Based on one or more checkpoint tokens
received, bot check logic 340 may determine whether the
browser 1s a legitimate browser, a browser 1s a bot. Addi-
tionally or alternatively, bot check logic 340 may determine
a value that indicates whether that the browser 1s likely a
legitimate browser or a bot. If bot check logic 340 deter-
mines that a browser 1s a bot, and/or 1s more likely to be a
bot, then control may pass to step 460. If bot check logic 340
determines that a browser 1s a legitimate browser, and/or 1s
more likely to be a legitimate browser, then control may pass
to step 470.

There are many way bot check logic 340 may determine
whether a browser 1s a legitimate browser or a bot. For
example, for each mandatory checkpoint associated with the
section 1dentifier and/or session identifier received 1n the
telemetry data, bot check logic 340 may verity that browser
295 generated a valid checkpoint token that corresponds
with the mandatory checkpoint. If bot check logic 340
receives a valid checkpoint token for each mandatory check-
point, then bot check logic 340 may determine that browser
295 15 a legitimate browser; otherwise, bot check logic 340
may determine that browser 295 1s a bot.

Additionally or alternatively, for each negative check-
point associated with the section identifier and/or session
identifier received 1n the telemetry data, bot check logic 340
may verily that browser 295 did not send a checkpoint
record and/or a checkpoint token that corresponds with the
negative checkpoint. If bot check logic 340 does not receive
any checkpoint tokens that correspond to a negative check-
point, then bot check logic 340 may determine that browser
295 1s a legitimate browser; otherwise, bot check logic 340
may determine that browser 295 1s a bot.

Additionally or alternatively, for each checkpoint token
received from browser 295 that corresponds to an optional
checkpoint associated with the section identifier and/or
session 1dentifier recerved 1n the telemetry data, bot check
logic 340 may verily that browser 2935 generated a valid
checkpoint token. IT bot check logic 340 determines that
cach optional checkpoint token 1s valid, then bot check logic
340 may determine that browser 295 1s a legitimate browser;
otherwise, bot check logic 340 may determine that browser
295 1s a bot.

5.3.1 Validating a Checkpoint Token

Validating a checkpoint token may mean determining that
a checkpoint token corresponds to an actual checkpoint
defined 1n the telemetry nstructions, and/or that each com-
ponent 1n the checkpoint token 1s valid and/or matches a
predicted and/or pre-computed checkpoint token and/or
checkpoint token component. For example, if a checkpoint
token 1ncludes an ordered checkpoint token component and
the value of the ordered checkpoint token component does
not match a pre-generated value by 1njection logic 336, then
bot check logic 340 may determine that the checkpoint was
reached out of order, 1f at all, and 1s 1invalid; otherwise, bot
check logic 340 may determine that the checkpoint token 1s
valid.

If a checkpoint token includes a state-dependent check-
point token component and does not match a pre-generated

10

15

20

25

30

35

40

45

50

55

60

65

22

state and/or value based on a predicted state, then bot check
logic 340 may determine that the checkpoint was reached,
but the state of the browser was not valid and/or the
checkpoint token 1s imvalid. Otherwise, bot check logic 340
may determine that the checkpoint token 1s valid.

If a checkpoint token includes the same “random”™ value
for a random checkpoint token component as one or more
previously received and/or processed checkpoint tokens
from the same browser, then bot check logic 340 may
determine that the checkpoint token 1s mnvalid. Otherwise,
bot check logic 340 may determine that the checkpoint token
1s valid.

I a checkpoint token includes a scoped checkpoint token
component does not match and/or correspond to a section
identifier associated with the checkpoint and/or checkpoint
token, then bot check logic 340 may determine that the
checkpoint token 1s mnvalid. Otherwise, bot check logic 340
may determine that the checkpoint token 1s valid.

If a randomized checkpoint token indicates a checkpoint
token should be offset by a particular number of bits in the
corresponding checkpoint record and the checkpoint token 1s
not offset by the particular number of bits, then bot check
logic 340 may determine that the checkpoint token 1is
invalid. Otherwise, bot check logic 340 may determine that
the checkpoint token 1s valid.

5.3.2 Determining a Likelithood that a Browser 1s a
Legitimate Browser or a Bot

Bot check logic 340 may determine a likelthood that
browser 2935 1s a legitimate browser or a bot. For example,
for each optional checkpoint token recerved from browser
295 and associated with the section 1dentifier and/or session
identifier, bot check logic 340 may determine whether that
browser 295 generated a valid checkpoint token. The like-
lihood that browser 293 1s a legitimate browser may be the
ratio of valid optional checkpoint tokens that bot check logic
340 received from browser 295 compared to the total
number of optional checkpoint tokens that bot check logic
340 received from browser 2935.

5.3.3 Updating the Status of a Checkpoint

Bot check logic 340 may record how frequently a par-
ticular checkpoint 1s reached by one or more browsers and
how frequently the checkpoint 1s determined to be valid or
not. Bot check logic 340 may store the frequency data in
storage 240.

A user, such as an administrator for web 1infrastructure
205, may review the frequency data for a checkpoint 1n a
section and update configuration 232 to change the status of
the checkpoint to a mandatory checkpoint, optional check-
point, or negative checkpoint. For purposes of illustrating a
clear example, assume bot check logic 340 stores data in
storage 240 indicating that a particular optional checkpoint
in a particular section 1s reached 100% of the time that a
legitimate browser receives the section. In response to the
data, a user may update configuration 232 to indicate that the
checkpoint 1s now a mandatory checkpoint. For purposes of
illustrating another clear example, assume bot check logic
340 stores data in storage 240 indicating that a particular
optional checkpoint 1n a particular section 1s reached 0% of
the time that a legitimate browser receives the section. In
response to the data, a user may update configuration 232 to
indicate that the checkpoint 1s now a negative checkpoint.

If bot check logic 340 receives browser-detection test
results from a browser and 1s unable to find matching and/or
expected result, then the intermediary computer may deter-
mine that the browser 1s a bot, and/or 1s more likely to be a
bot. Additionally or alternatively, bot check logic 340 may
store the results 1n storage 240. An administrator may review

US 10,367,903 B2

23

the results and determine whether the other browsers that
generate the same detection test results should be classified

as a legitimate browser or a bot.

5.4 Responding to a Browser That 1s Determined to be a
Bot

In step 460, the intermediary computer sends additional
and/or more aggressive browser-detection tests and/or coun-
termeasures to the browser. For example, intermediary com-
puter 230 may stop responding to requests for data from
browser 295. Additionally or alternatively, injection logic
336 send one or more 1nstructions, which when executed,
cause the browser to write particular and/or substantial
amount of data to persistent storage, which may hamper
and/or stop the bot from executing on the client computer.

More 1nvasive browser-detection tests may be reserved
for browsers that bot check logic 340 determines to be more
likely a bot than a legitimate browser. For example, injection
logic 336 may send browser 295 one or more other browser-
detection instructions, which when executed, cause browser
295 to present an alert and/or popup that a user may
suppress, and report back to intermediary computer 230 how
much time elapsed from when the alert was presented until
the alert was suppressed. A bot may never suppress an alert
because the bot need not include a user interface. However,
a user may take between one to five seconds to read and
suppress the alert. Causing an alert to be presented to a user
may interrupt the work flow of a web page, web site, and/or
a user. A browser-detection test that interrupts the work tlow
of a web page, web site, and/or a user may be deemed a more
invasive browser-detection test than other tests.

Bot check logic 340 may record data in storage 240
indicating that browser 295 is a bot. For example, bot check
logic 340 may record the IP address, mac address, and/or
any other identifier for browser 295 1n storage 240 and
associating data with the identifier that indicates browser
295 15 a bot. Additionally or alternatively, bot check logic
340 may record, 1n storage 240, and/or identily a browser
using a browser fingerprint comprising a string bits and/or
other values generated by one or more instructions executed
by the browser. Additionally or alternatively, bot check logic
340 may record data 1n storage 240 indicating how likely a
browser 1s a legitimate browser or a bot.

Injection logic 336 may send additional browser-detec-
tion tests and/or countermeasures to browser 295 by inject-
ing the additional browser-detection tests and/or counter-
measures 1nto subsequently intercepted web pages from web
infrastructure 205 that are intended for browser 295. Addi-
tionally or alternatively, injection logic 336 may asynchro-
nously send additional browser-detection tests and/or coun-
termeasures to browser 295 using AJAX, Web Sockets,
and/or another language and/or protocol. In an embodiment,
an mntermediary computer may, but need not, mnject coun-
termeasures 1nto a section that 1s sent to a particular browser
on a particular client computer, until after the intermediary
computer determines that a particular browser 1s, and/or 1s
more likely to be, a bot.

In an embodiment, if the intermediary computer has sent
telemetry instructions to a client computer and/or browser,
but has not received valid telemetry data, then the interme-
diary computer need not respond to further requests for data
and/or sections. Additionally or alternatively, the interme-
diary computer need not forward a request for data to a
server computer in web infrastructure 205 1f the intermedi-
ary computer has sent telemetry instructions to a client
computer and/or browser and has not received valid telem-
etry data 1n response.

10

15

20

25

30

35

40

45

50

55

60

65

24

5.5 Responding to a Browser That 1s Determined to be a
Legitimate Browser

In step 470, the intermediary computer may stop sending,
send fewer, and/or send less aggressive, browser-detection
tests and/or countermeasures to the browser. For example, 1T
browser 295 1s determined to be a legitimate browser,
injection logic 336 may stop injecting browser-detection
tests, such as telemetry instructions, into section sent
browser 295.

In an embodiment, in response to determiming browser
295 1s more likely to be a legitimate browser, and before
ceasing to inject countermeasures mto web pages sent to
browser 295, injection logic 336 may send one or more
aggressive browser-detection tests. I browser 295 sends
valid results, such as valid mandatory checkpoint tokens,
then 1njection logic 336 may stop injecting browser-detec-
tion tests and/or countermeasures into sections and/or web
pages sent to browser 295 for at least a particular amount of
time.

6.0 Implementation Mechanisms-Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 5 1s a block diagram that illustrates a
computer system 300 upon which an embodiment of the
invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
MmICroprocessor.

Computer system 500 also includes a main memory 3506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing information
and 1instructions to be executed by processor 504. Main
memory 306 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 504. Such nstruc-
tions, when stored 1n non-transitory storage media acces-
sible to processor 504, render computer system 300 into a
special-purpose machine that 1s customized to perform the
operations specified in the instructions.

Computer system 300 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and 1nstructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 502 for
storing information and instructions.

Computer system 500 may be coupled via bus 302 to a
display 512, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 314, includ-
ing alphanumeric and other keys, 1s coupled to bus 502 for

US 10,367,903 B2

25

communicating information and command selections to
processor 504. Another type of user mput device 1s cursor
control 516, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 504 and for controlling cursor
movement on display 512. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 500 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1in combination with the computer system causes or
programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 1n response to
processor 504 executing one or more sequences of one or
more structions contained i maimn memory 506. Such
istructions may be read nto main memory 306 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained 1 main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or 1n combination
with software 1nstructions.

The term “‘storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation 1n a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
memory 506. Common forms of storage media include, for
example, a tloppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and inira-red data communications.

Various forms of media may be mnvolved 1n carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the mnstructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 502 carries the data to main memory
506, from which processor 504 retrieves and executes the
instructions. The instructions received by main memory 506
may optionally be stored on storage device 510 either before
or after execution by processor 504.

Computer system 300 also includes a communication
interface 518 coupled to bus 502. Communication interface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.

10

15

20

25

30

35

40

45

50

55

60

65

26

For example, communication interface 518 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 520 may provide a connection
through local network 3522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 3528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The received code may be executed by processor 504 as
it 1s received, and/or stored in storage device 310, or other
non-volatile storage for later execution.

7.0 Other Aspects of Disclosure

Using the networked computer arrangements, intermedi-
ary computer, and/or processing methods described herein,
security 1n client-server data processing may be significantly
increased. Polymorphic techniques discussed herein eflec-
tively reduce automated attacks. Consequently, one or more
various attacks, such as a demal of service (*DOS”) attack,
credential stufling, fake account creation, ratings or results
mamipulation, man-in-the-browser attacks, reserving rival
goods or services, scanning for vulnerabilities, and/or
exploitation of vulnerabilities, are frustrated because object
identifiers and/or polymorphic hooks may change over time.

In the foregoing specification, embodiments of the mven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to 1mple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
the set of claims that i1ssue from this application, in the
specific form 1n which such claims issue, including any
subsequent correction.

What 1s claimed 1is:
1. A method for improving security of a server computer
interacting with a client computer, the method comprising:
sending a set of one or more nstructions to a browser at
a client computer, wherein the set of one or more
instructions define one or more checkpoints, wherein
cach checkpoint, when reached by the browser, gener-
ates telemetry data indicating the checkpoint was
reached by the browser;

US 10,367,903 B2

27

receiving a set of telemetry data from the browser at the
client computer, the telemetry data indicating one or
more particular checkpoints of the one or more check-
points were reached by the browser;

determining, based on the telemetry data, which check-

points of the one or more checkpoints were reached by
the browser:

determining whether the browser 1s legitimate or 1llegiti-

mate based on the one or more particular checkpoints
reached by the browser.

2. The method of claim 1, wherein each checkpoint
corresponds to a particular method, and the telemetry data
generated by the checkpoint indicates that the method was
executed.

3. The method of claim 1, wherein each checkpoint
corresponds to a particular object, and the telemetry data
generated by the checkpoint indicates whether the browser
interacted with the particular object.

4. The method of claim 1, wherein each checkpoint
corresponds to a particular object, and the telemetry data
generated by the checkpoint indicates a state of the particu-
lar object.

5. The method of claim 1, wherein the set of telemetry
data 1ndicates an order 1n which the one or more particular
checkpoints were reached by the browser;

wherein determining whether the browser 1s legitimate or

illegitimate 1s performed based on the order 1n which
the one or more checkpoints were reached.

6. The method of claim 1, wherein the set of telemetry
data indicates how the one or more particular checkpoints
were reached by the browser;

wherein determining whether the browser 1s legitimate or

illegitimate 1s performed based on how the one or more
particular checkpoints were reached.

7. The method of claim 1, wherein the telemetry data
generated by each checkpoint indicates a scope in which the
checkpoint was reached;

wherein determining whether the browser 1s legitimate or

illegitimate 1s performed based on the scope 1n which
the one or more particular checkpoints were reached.

8. The method of claim 1, further comprising:

in response to determining the browser 1s legitimate:

storing a set of identification data that identifies the

browser and indicates that the browser 1s legitimate;
receiving a request for additional data from the browser;
determining from the set of identification data that the
browser 1s legitimate, and 1n response, sending one or
more new 1nstructions without additional telemetry
instructions.

9. The method of claim 1, turther comprising;:

in response to determining the browser 1s illegitimate:

storing a set of identification data that identifies the

browser and indicates that the browser 1s illegitimate;
receiving a request for additional data from the browser;
determining from the set of identification data that the
browser 1s illegitimate, and 1n response, sending one or
more new instructions with one or more new browser-
detection 1nstructions.

10. The method of claim 1, further comprising;:

in response to determining the browser 1s illegitimate:

storing a set of identification data that identifies the

browser and 1ndicates that the browser 1s illegitimate;
receiving a request for additional data from the browser;
determining from the set of identification data that the
browser 1s illegitimate, and 1n response, terminating the
request.

10

15

20

25

30

35

40

45

50

55

60

65

28

11. A computer system configured to improve security of
server computers interacting with client computers, the
computer system comprising;

a memory;
one or more processors coupled to the memory;

a processor logic coupled to the memory and the one or
more processors, and programmed to:

send a set of one or more structions to a browser at a
client computer, wherein the set of one or more nstruc-
tions define one or more checkpoints, wherein each
checkpoint, when reached by the browser, generates
telemetry data indicating the checkpoint was reached
by the browser;

recerve a set of telemetry data from the browser at the
client computer, the telemetry data indicating one or
more particular checkpoints of the one or more check-
points were reached by the browser;

determine, based on the telemetry data, which check-
points of the one or more checkpoints were reached by
the browser:

determine whether the browser 1s legitimate or illegiti-
mate based on which checkpoints were reached by the
browser.

12. The computer system of claim 11, wherein each
checkpoint corresponds to a particular method, and the
telemetry data generated by the checkpoint indicates that the
method was executed.

13. The computer system of claim 11, wherein each
checkpoint corresponds to a particular object, and the telem-
etry data generated by the checkpoint indicates whether the
browser interacted with the particular object.

14. The computer system of claim 11, wherein each
checkpoint corresponds to a particular object, and the telem-
etry data generated by the checkpoint indicates a state of the
particular object.

15. The computer system of claim 11, wherein the set of
telemetry data indicates an order 1n which the one or more
particular checkpoints were executed by the browser;

wherein determining whether the browser 1s legitimate or
illegitimate 1s performed based on the order in which
the one or more checkpoints were reached.

16. The computer system of claim 11, wherein the set of
telemetry data indicates how the one or more particular
checkpoints were reached by the browser;

wherein determining whether the browser 1s legitimate or
illegitimate 1s performed based on how the one or more
particular checkpoints were reached.

17. The computer system of claim 11, wherein the telem-
etry data generated by each checkpoint indicates a scope 1n
which the checkpoint was reached;

wherein determining whether the browser 1s legitimate or
illegitimate 1s performed based on the scope 1n which
the one or more particular checkpoints were reached.

18. The computer system of claim 11, wherein the pro-
cessor logic 1s further programmed to:

in response to determining the browser 1s legitimate:

store a set of 1dentification data that identifies the browser
and indicates that the browser 1s legitimate;

recetve a request for additional data from the browser;

determine from the set of identification data that the
browser 1s legitimate, and in response, send one or
more new 1nstructions without additional telemetry
instructions.

US 10,367,903 B2
29

19. The computer system of claim 11, wherein the pro-
cessor logic 1s further programmed to:
in response to determining the browser 1s illegitimate:
store a set of 1dentification data that 1dentifies the browser
and indicates that the browser 1s illegitimate; 5
receive a request for additional data from the browser;
determine from the set of idenftification data that the
browser 1s illegitimate, and in response, send one or
more new instructions with one or more new browser-
detection instructions. 10
20. The computer system of claim 11, wherein the pro-
cessor logic 1s further programmed to:
in response to determining the browser 1s illegitimate:
store a set of identification data that 1dentifies the browser
and indicates that the browser 1s illegitimate; 15
receive a request for additional data from the browser;
determine from the set of identification data that the
browser 1s illegitimate, and 1n response, terminate the
request.

20

	Front Page
	Drawings
	Specification
	Claims

