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PIELCEWISE SMOOTH REGULARIZATION
OF DATA

BACKGROUND

Data can include distortions that can make it fragmentary,
uncertain, or noisy. Data analysis 1s utilized to remove such
distortions. Regularization of data imposes prior constraints
on the data to optimize a function associated with the data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram illustrating one
example of a system for piecewise smooth regularization of
data.

FIGS. 2A-2C 1llustrate one example of piecewise smooth
regularization of 1image data in an optical flow algorithm.

FIG. 3 1s a block diagram illustrating one example of a
processing system for implementing the system for piece-
wise smooth regularization of data.

FIG. 4 1s a block diagram illustrating one example of a
computer readable medium for piecewise smooth regular-
1zation of data.

FIG. § 1s a flow diagram 1illustrating one example of a
method for piecewise smooth regularization of data.

DETAILED DESCRIPTION

Piecewise smooth regularization of data 1s disclosed. Data
can 1nclude distortions that can make 1t fragmentary, uncer-
tain, or noisy. Data analysis 1s utilized to remove such
distortions. Regularization of data imposes prior constraints
on the data to optimize a function associated with the data.
Piecewise smoothness of data 1s a prior constraint that may
be imposed 1n a variety of data analysis situations, including,
optimization of a multivanate function.

An optical tlow analysis 1s an example of a technique that
provides a solution to a multivariate function to be opti-
mized. The optical tlow analysis takes two or more sequen-
tial 1mages from a video stream, and for each given image
in the video stream, the technique creates a vector field that
represents the velocity of each pixel 1n the first image. Video
streams generally include rigid objects that follow simple
geometric paths, such as straight and/or curved lines. In such
an 1nstance, the velocity of each pixel may change abruptly
at the boundary of the rigid object, but change smoothly
within the boundary of the nigid object. Accordingly, the
vector field representing the optical flow may be assumed to
be piecewise smooth.

As described 1 various examples herein, piecewise
smooth regularization of data 1s performed in situations
where the 1nitial estimates of solutions are sparse. Generally,
solutions to such regularization of data are achieved by
balancing a data fidelity factor and a regularization factor.
The data fidelity factor may be that the solution include
certain 1nitial conditions, including fidelity with the maitial
sparse estimates. The regularization factor may be, for
example, that the solution be piecewise smooth. As
described herein, two filtering techniques are applied to
available data to find an approximate, non-iterative solution
to a multivariate function to be optimized, where the solu-
tion trades ofl data fidelity and piecewise-smooth regular-
ization. A joint edge-aware filter 1s utilized 1n combination
with a normalized convolution algorithm. An edge-aware (or
bilateral) filter 1s generally utilized to smooth objects 1n the
initial estimate of the solution without softening the bound-
aries of such objects. The joint edge-aware filter utilizes the
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structure of a guide data to direct the smoothing of a second
input data. If the guide data and input data are the same, the
result 1s 1dentical to that obtained by applying the edge-
aware filter. The normalized convolution algorithm 1s an
interpolation process to fill in missing or uncertain data 1n
the 1mtial estimate of the solution.

In one example, a combination of the normalized convo-
lution algorithm and the joint edge-aware filter may be
applied to input data to generate output data. The mnput data
1s recerved via a processing system, the mput data being
associated with a certainty function indicative of confidence
of each data element 1n the input data. Guide data 1s received
via the processing system, where the guide data includes
information indicative of piecewise smoothness of the input
data. A joint edge-aware filter provides piecewise smoothing
of the mput data and the certainty function, the joint edge-
aware lilter being applied via the processing system. The
joint edge-aware filter 1s first applied to the input data based
on the guide data to provide filtered data, the filtered data
being 1ndicative of the piecewise smoothness of the input
data. The jomnt edge-aware filter i1s then applied to the
certainty function based on the guide data to provide filtered
certainty, the filtered certainty being indicative of piecewise
smoothness of the certainty function. A normalized convo-
lution algorithm 1s applied, via the processing system, to the
filtered data and the filtered certainty to provide the output
data, the output data being indicative of a piecewise smooth
regularization of the mput data.

In the following detailed description, reference 1s made to
the accompanying drawings which form a part hereof, and
in which 1s shown by way of illustration specific examples
in which the disclosure may be practiced. It 1s to be
understood that other examples may be utilized, and struc-
tural or logical changes may be made without departing
from the scope of the present disclosure. The following
detailed description, theretfore, 1s not to be taken 1n a limiting
sense, and the scope of the present disclosure 1s defined by
the appended claims. It 1s to be understood that features of
the various examples described herein may be combined, in
part or whole, with each other, unless specifically noted
otherwise.

FIG. 1 1s a functional block diagram illustrating one
example of a system 100 for piecewise smooth regulariza-
tion of data. The system 100 receives input data, the input
data being associated with a certainty function indicative of
confidence of each data element 1n the input data. Guide data
1s recerved via the processing system, the guide data includ-
ing information indicative of piecewise smoothness of the
input data. Based on the guide data, the mput data is
processed by a joint edge-aware filter to provide filtered
data. The certainty function i1s processed by the joint edge-
aware filter, based on the guide data, to provide filtered
certainty. A normalized convolution algorithm 1s applied to
the filtered data and the filtered certainty to provide output
data indicative of a piecewise smooth regularization of the
input data.

System 100 includes mput data 102 associated with a
certainty function 102A, guide data 104, a joint edge-aware
filter 106, filtered data 108, filtered certainty 110, a normal-
1zed convolution algorithm 114, and output data 116. In one
example, system 100 includes an applicability function 112.
Input data 102 comprises of a plurality of data elements. In
one example, the mput data 102 may be associated with an
input data function to be optimized based on the mput data
102. In one example, the input data function associated with
input data 102 may be a multivariate function to be opti-
mized under a piecewise smooth constraint. For example, an
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optical flow analysis takes two or more sequential 1mages
from a video stream, and for each given image 1n the video
stream, the technique creates a vector field that represents
the velocity of each pixel in the given image. In this
example, the input data function represents an initial esti-
mate of the velocity vector of each pixel 1n the optical tlow.

Input data 102 1s associated with a certainty function
102A. The certainty function 102A 1s indicative of conii-
dence of each data element 1n the 1nput data. In one example,
where the mput data function associated with the iput data
1s a multivariate function to be optimized under a piecewise
smooth constraint, the certainty function may be a scalar
field acting on each data element in the dataset. In one
example, the mnput data may be an image, and each data
point may be a pixel, and the certainty function may be
indicative of an 1image quality of each pixel of the image. For
example, the 1mage may 1nclude known bad pixels. In such
a case, the certainty function would carry a value of 0 for the
bad pixels to indicate complete uncertainty (or very low
confidence), and a value of 1 for good pixels to indicate
complete certamnty (or very high confidence). For the
example of optical flow, the 1mtial velocity estimate 1is
certain for a small number of the pixels 1n the 1mage, so the
certainty function would carry a value of 1 for the small
number of pixels where the mitial estimated velocity 1s
certain. Intermediate values of certainty function between O
and 1 may also be utilized.

In one example, input data 102 includes at least one data
clement with a certainty function value indicative of low
confidence. For example, where the mput data 1s an 1mage,
the 1mage may include at least one bad pixel. For another
example, an optical flow analysis may contain at least one
pixel where an 1nitial velocity 1s not possible due to a lack
of local structure or texture. Accordingly, the certainty
function assigned to the bad or uncertain pixel may be O,
indicative ol low confidence.

System 100 includes guide data 104 including informa-
tion 1ndicative of piecewise smoothness of the input data. In
one example, where the input data represents the vector field
showing the velocity of each pixel between temporally
adjacent 1mages 1n the video stream, the objects 1n the 1mage
may be assumed to be rigid and the velocity vector may be
assumed to be smooth within the boundary of the object, and
change abruptly at the boundaries. Accordingly, the first
image 1n a sequence of 1mages undergoing analysis may be
used as guide data that 1s indicative of piecewise smoothness
of the mput data.

Input data 102 and certainty function 102A are both
filtered via the joint edge-aware filter 106 based on the guide
data 104. Generally, a bilateral or edge-aware filter 1s used
to smooth 1mput data without softeming edges of objects
represented 1n the mput data. The joint edge-aware filter 106
utilizes the structure of the guide data 104 to direct the
smoothing of the input data 102 to provide filtered data 108.
If the guide data 104 and the input data 102 are the same, the
result 1s 1dentical to the output of a bilateral or edge-aware
filter. In one example, the joint edge-aware filter 106 may
utilize the structure of a guide 1mage to direct the smoothing
of an input 1image. For example, 1n an optical flow algorithm,
the joint edge-aware filter 106 may allow the velocity field
to spread out within homogeneous regions specified by the
guide data 104.

The joint edge-aware filter 106 also utilizes the structure
of the guide data 104 to direct the smoothing of the certainty
function 102A to provide filtered certainty 110. In one
example, the joint edge-aware filter 106 may utilize the
structure of a guide 1mage to direct the smoothing of the

10

15

20

25

30

35

40

45

50

55

60

65

4

certainty function. For example, in an optical flow algo-
rithm, the 1image may include pixels for which an 1nitial
velocity estimate 1s not possible, typically due to a lack of
local structure or texture. In such a case, the certainty
function may carry a value of 0 for the pixels lacking a
certain velocity estimate, and a value of 1 for pixels where
the 1mitial velocity estimate 1s considered reliable. The joint
edge-aware filter 106 may allow the values of 0 and 1 to
spread out within homogeneous regions specified by the
guide data 104.

In one example, the joint edge-aware filter 106 provides
piecewise smoothing of the input data based on local 1nfor-
mation at each data element. In one example, the joint
edge-aware filter 106 provides piecewise smoothing of the
input data based on a spatial/intensity measure of each data
clement 1n the iput data, where the spatial/intensity mea-
sure 1s mdicative of a maximal spatial extent of the piece-
wise smoothing at each data element along with a maximal
difference 1n 1intensity between a given pixel and those pixels
in 1ts immediate neighborhood. For example, when the mnput
data 102 1s an i1mage, the spatial/intensity measure for a
given pixel may be based on values (e.g. intensity) of pixels
that are proximate to the given pixel. Values of pixels close
to the given pixel may be weighed more heavily than the
values of pixels that are far away, and pixels close n
intensity to the given pixel may be weighted more heavily
than pixels with very different intensity, even when those
pixels are close to the given pixel. Thus both spatial locality
and 1intensity (or color) similarity are used to weight the
smoothing.

In one example, system 100 includes an applicability
function 112 associated with the input data, the applicability
function 112 indicative of how the input data may be
interpolated. In one example, the certainty function value of
the at least one data element may be indicative of low
confidence. In one example, the applicability function 112
associates a weight with each given data element 1n the mnput
data, the weight being inversely proportional to a distance of
the given data element from the at least one data element.
For example, the applicability function 112 may be an
1sotropic function, such as a Gaussian, that weighs pixels
close to an uncertain pixel more heavily than those that are
turther away.

The normalized convolution algorithm 114 1s applied to
the filtered data 108 and the filtered certainty 110 to generate
the output data 116, where the output data 116 1s indicative
ol a piecewise smooth regularization of the mput data 102
based on the certainty function 102A. In one example, the
normalized convolution algorithm 114 1s applied based on
the applicability function 112. The normalized convolution
algorithm may be utilized as an interpolation process to fill
in data elements with a low confidence in the input data 102.

Normalized convolution may be implemented as

f=a

C#d

where 1 1s a function or data set being interpolated, a 1s the
applicability function, ¢ 1s the certainty function, and *
represents a convolution operator.

In one example, system 100 may implement the combi-
nation of the joint edge-aware filter 106 and the normalized
convolution algorithm 114 via the following set of opera-
tions:

Image=Input DataxCertainty Function
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where the 1nput data 1s a vector field and this vector field 1s
multiplied pointwise by the certainty function which 1s a
scalar field.

Filtered Data = Joint edge aware Filter{Guide Data, Image)
Filtered Certainty =

Joint edge aware Filter{Guide Data, Certainty Function)

Filtered Data

Output Data = ,
P L Filtered Certainty + C

where C 1s a small constant that prevents division by zero.
Note that this algorithm combines both joint, edge-aware
filtering with a normalized convolution algorithm. The last
operation implements the normalized convolution, nterpo-
lating data elements with a low confidence but not the data
clements with a high confidence.

FIGS. 2A-2C 1llustrate one example of piecewise smooth
regularization of image data in an optical flow algorithm.
FIG. 2A 1llustrates a first frame 200 1n the optical flow
analysis, and FIG. 2B illustrates a second frame 202 1n the
optical tlow analysis. The 1mitial flow analysis 204 1 FIG.
2C 1s a vector field showing the velocity as a vector at each
point 1n the first frame 200. The FIG. 204 encodes velocity
with a grayscale code 214, with the hue representing direc-
tion and hue saturation representing vector length (i.e.,
speed). The vector at a given pixel shows the velocity of that
pixel i the first frame 200. Following the direction and
magnitude of the vector at a given pixel yields the location
in the second frame 202 where the given pixel winds up. In
this example, all white squares 1n frame 200 move one unit
in either the horizontal direction or vertical direction or both,
resulting i frame 202. So all vectors 1n this example have
length 1 or length 1.414214.

Certainty 206 1mn FIG. 2C 1s a scalar field showing the
certainty of the mitial flow analysis 204 at each point frame
200. A value of 1, shown as white, means a high level of
confidence, and a value of O, shown as black, means a low
level of confidence. The first frame 200 may be used as
guide data, based on an assumption that the objects 1n the
first frame 200 are rigid and that velocities 1n the first frame
200 are piecewise smooth, changing rapidly at the edges of
the objects.

The 1nput data 1s the 1mitial flow analysis 204, and the
certainty function 1s the certainty 206. The spatial measure
and range measure are parameters that represent a balance
between data fidelity (e.g. mitial flow analysis 204 where
certainty 1s high) and adherence to the regularization objec-
tives (e.g., piecewise smooth constraint).

In one example, the regularization may be performed as
tollows: the mitial flow analysis 204 1s multiplied, point by
point, with the scalar field certainty 206. This discards
everything but the certain data, yielding the image 210
representing the flows in frame 200 which are certain. The
image 210 1s filtered with a joint edge aware filter using the
first frame 200 as the guide data 208.

This allows the velocity field to spread out within homo-
geneous regions specified by the guide data 208. This
produces the filtered data. The certainty 206 1s also filtered
with a joint edge aware filter using the guide data 208. This
allows the certainty field to spread out within homogeneous
regions speciiied by the guide data 208. This produces the
filtered certainty. The quotient (filtered data/filtered cer-
tainty+C) 1s computed. This 1s analogous to a normalized
convolution that mterpolates regions of uncertainty but not
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regions of certainty. In this example, the certain region 1s
sparse. But because of the joint edge-aware filtering steps,
this normalized convolution techniques incorporates the
piecewise smooth regularization constraint. The small con-
stant 1n the quotient prevents division by zero. The piece-
wise smooth output data 1s the final tlow 212.

FIG. 3 1s a block diagram illustrating one example of a
processing system 300 for implementing the system 100 for
piecewise smooth regularization of data. Processing system
300 includes a processor 302, a memory 304, input devices
318, and output devices 320. Processor 302, memory 304,
iput devices 318, and output devices 320 are coupled to
cach other through communication link (e.g., a bus).

Processor 302 includes a Central Processing Unit (CPU)
or another suitable processor. In one example, memory 304
stores machine readable instructions executed by processor
302 for operating processing system 300. Memory 304
includes any suitable combination of volatile and/or non-
volatile memory, such as combinations of Random Access
Memory (RAM), Read-Only Memory (ROM), flash
memory, and/or other suitable memory.

Memory 304 stores input data 306 for processing by
processing system 300. In one example, memory 304 stores
input data and an associated multivariate function to be
optimized under a piecewise smooth constraint for process-
ing by processing system 300. Memory 304 stores certainty
function 308, guide data 310, and applicability function 314
for processing by processing system 300. In one example,
applicability function 314 for the input data 1s indicative of
how the certainty function may be interpolated. In one
example, the applicability function 314 specifies a convo-
lutional filter used to interpolate uncertain pixels using data
from certain pixels. Such a filter will typically weight nearby
pixels more heavily than distant pixels, for example, with
weight being inversely proportional to a distance of the
given data element from a first data element, or with a
Gaussian or other isotropic function. Memory 304 also
stores mstructions to be executed by processor 302 including
instructions for a joint edge-aware filter 312, and a normal-
1zed convolution algorithm 316, which 1n this case 1s just the
division of the results of the joint edge-aware filter applied
to the mput data and to the input certainty function, as
previously described and illustrated with reference to FIG. 1.

In one example, processor 302 utilizes the guide data 310
and executes instructions of joint edge-aware filter 312 to
filter input data 306 to provide filtered data. Processor 302
also utilizes the guide data 310 and executes instructions of
joint edge-aware filter 312 to filter certainty function 308 to
provide filtered certainty.

In one example, the processor 302 utilizes the guide data
310, and local information at each data element, and
executes instructions of joint edge-aware filter 312 to pro-
vide piecewise smoothing of the mput data. In one example,
processor 302 executes mstructions of joint edge-aware filter
312 to provide piecewise smoothing of the input data based
on a spatial/intensity measure of each data element in the
input data, where the spatial/intensity measure 1s indicative
of a maximal spatial extent of the piecewise smoothing and
maximal itensity or range extent at each data element. In
one example, processor 302 executes instructions of joint
edge-aware filter 312 to provide piecewise smoothing of the
input data based on both a spatial and a range measure,
where the range measure 1s a heuristic mntended to prevent
smoothing across object boundaries 1n the mput data.

Processor 302 utilizes applicability function 314 to
execute istructions of a normalized convolution algorithm
316 to the filtered data and the filtered certainty to provide
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the piecewise smooth output data. This algorithm divides the
output of the joint edge aware filter applied to the input data
by the output of the joint edge aware filter applied to the
certainty data (with a small constant added 1n the denomi-
nator to prevent division by zero).

Input devices 318 include a keyboard, mouse, data ports,
and/or other suitable devices for inputting information into
processing system 300. In one example, input devices 318
are used to mput feedback from users for evaluating the
input data 302, certainty function 304, guide data 310,
applicability function 314, the small constant C to be used
in the normalized convolution algorithm 316, the spatial
measure, and/or the range measure. Output devices 320
include a monitor, speakers, data ports, and/or other suitable
devices for outputting information from processing system
300. In one example, output devices 320 are used to output
the piecewise smooth output data. In one example, input
data 306 1s received via mput devices 318. The processor
302 regularizes the input data 306, and provides the output
data via output devices 320.

FIG. 4 1s a block diagram illustrating one example of a
computer readable medium for functional summarization of
non-textual content based on a meta-algorithmic pattern.
Processing system 400 includes a processor 402, a computer
readable medium 408, a joint edge-aware filter 404, and a
normalized convolution algorithm 406. Processor 402, com-
puter readable medium 408, the joint edge-aware filter 404,
and the normalized convolution algorithm 406 are coupled
to each other through communication link (e.g., a bus).

Processor 402 executes instructions included 1in the com-
puter readable medium 408. Computer readable medium
408 includes mput data receipt instructions 410 to receive
input data. Computer readable medium 408 includes cer-
tainty function identification instructions 412 to identity the
certainty function associated with the mput data. In one
example, computer readable medium 408 includes the mput
data receipt mstructions and input data function identifica-
tion instructions, where the input data function 1s a multi-
variate function to be optimized under a piecewise smooth
constraint, and the certainty function 1s a scalar field acting
on each data element in the dataset. In one example, com-
puter readable medium 408 includes at least one data
clement with a certainty function value indicative of low
confidence. For example, where the input data 1s an 1image,
the 1mage may include at least one bad pixel. Accordingly,
the certainty function assigned to the bad pixel may be O,
indicative of low confidence.

Computer readable medium 408 1includes guide data iden-
tification instructions 414 to identity the guide data. Com-
puter readable medium 408 includes joint edge-aware {il-
tering instructions 416 of the joint edge-aware filter 404 to
filter the mput data based on the guide data to provide the
filtered data. Computer readable medium 408 includes joint
edge-aware filtering instructions 416 of the joint edge-aware
filter 404 to filter the certainty function based on the guide
data to provide the filtered certainty. Computer readable
medium 408 includes applicability function identification
instructions 418 to identity the applicability function. Com-
puter readable medium 408 i1ncludes normalized convolu-
tion algorithm instructions 420 of the normalized convolu-
tion algorithm 406 to filter the filtered data and the filtered
certainty based on the applicability function to generate the
output data. In one example, computer readable medium 408
includes output data provision instructions to provide the
output data.

FIG. 5 1s a flow diagram illustrating one example of a
method for functional summarization of non-textual content
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based on a meta-algorithmic pattern. At 500, mput data
associated with a certainty function 1s received. At 502,
guide data 1s identified, the guide data including information
indicative of piecewise smoothing of the input data. At 504,
a joint edge-aware filter 1s applied to the input data to
provide filtered data. At 506, the joint edge-aware filter 1s
applied to the certainty function to provide filtered certainty.
At 508, a normalized convolution algorithm 1s applied to the
filtered data and the certainty data to generate output data. At
512, the output data 1s provided.

In one example, the normalized convolution algorithm 1s
applied based on an applicability function for the mput data,
the applicability function being indicative of how the input
data function may be interpolated. In one example, the
applicability function may weight pixels closer to a given
pixel more highly than pixels that are further away.

In one example, the joint edge-aware filter may provide
piecewise smoothing of the mput data based on a spatial/
intensity measure of each data element in the mput data, the
spatial measure being indicative of proportional spatial
extent of the piecewise smoothing at each data element, and
the intensity measure a measure or proportional intensity
differences 1n pixels

In one example, the 1input data function may be a multi-
variate function to be optimized under a piecewise smooth
constraimnt, and the certainty function may be a scalar field
acting on each data element 1n the dataset.

In one example, the mput data may be an 1mage, and the
data point may be a pixel, and the certainty function may be
a second 1image where each pixel represents the certainty of
cach pixel of the first image.

Examples of the disclosure provide a generalized system
for using a combination of a joint edge-aware filter and a
normalized convolution algorithm to regularize data subject
to a piecewise smoothing constraint. The generalized system
provides a filter-based, automatable approach to piecewise
smooth regularization of data and 1s applicable, for example,
to 1nitial estimates of a solution to a multivariate function to
be optimized, where the initial estimates of the solutions are
sparse, and dominated by large regions of uncertainty or
ambiguity. The generalized system 1s non-iterative, and 1s
therefore computationally lighter than iterative optimization
techniques. The edge-aware filter may be parallelized, and
the computational complexity of the edge-aware filter may
not depend on the spatial measure and the range measure, for
example, by using domain transform filtering.

Although specific examples have been illustrated and
described herein, a varniety of alternate and/or equivalent
implementations may be substituted for the specific
examples shown and described without departing from the
scope ol the present disclosure. This application 1s intended
to cover any adaptations or varnations of the specific
examples discussed herein. Therefore, it 1s intended that this
disclosure be limited only by the claims and the equivalents
thereof.

The mnvention claimed 1s:

1. A system comprising:

a Processor;

a storage device storing code executable by the processor,

and storing:

a first image frame of video data and a second i1mage
frame successive to the first image frame within the
video data:

input data, the processor generating the iput data that
the storage device stores by executing the code to
perform an optical tlow technique on the first frame
and the second frame, the input data generated by the
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processor being an initial flow analysis of the per-
formed optical flow technique, and associated with a
certainty function indicative of a confidence of the
imtial flow analysis for each data element of the first
frame and with an input data function representing a 5
velocity vector of each pixel 1n an optical flow; and

guide data including information indicative of piece-
wise smoothing of the input data, the guide data
being the first image, frame

wherein the processor 1s configured to: 10

apply a joint edge-aware filter, by executing the code,
to:
the input data generated by the processor, based on
the guide data to provide filtered data, the filtered
data indicative of the piecewise smoothing of the 15
input data, and
the certainty function based on the guide data to
provide filtered certainty, the filtered certainty
indicative of piecewise smoothing of the certainty
function; and 20
apply a normalized convolution technique, by execut-
ing the code, to the filtered data and the filtered
certainty to provide output data indicative of a piece-
wise smooth regularization of the input data, the
output data being a final flow analysis of the first 25
frame.

2. The system of claim 1, wherein the input data function
1s optimized based on the input data.

3. The system of claim 2, wherein the normalized con-
volution technique 1s applied based on an applicability 30
function for the input data, the applicability function 1ndica-
tive of how the mput data function may be interpolated.

4. The system of claim 2, wherein the imput data function
1s a multivaniate function to be optimized under a piecewise
smooth constraint, and the certainty function 1s a scalar field 35
acting on each data element in the dataset.

5. The system of claim 1, wherein the 1nput data 1s an
image, and the data point 1s a pixel, and the certainty
function 1s an 1mage representation of certainty of each pixel
of the image. 40

6. A method to apply piecewise smooth regularization of
data, the method comprising;

performing, by a processor, an optical flow technique on

a first image frame of video data and a second 1mage
frame successive to the first image frame within the 45
video data to generate an i1mitial flow analysis associ-
ated with a certainty function indicative of a confidence

of the 1mitial flow analysis for each data element of the
first frame and associated with an mput data function
representing a velocity vector of each pixel i an 50
optical tlow;

identifying, by the processor, guide data, wherein the

guide data includes information indicative of piecewise
smoothness of the input data, the guide data identified
as the first frame; 55
applying, by the processor, a joint edge-aware filter to:
the input data based on the guide data to provide filtered
data, the filtered data indicative of the piecewise
smoothing of the mnput data, and

10

the certainty function based on the guide data to
provide filtered certainty, the filtered certainty
indicative of piecewise smoothing of the certainty
function;

applying, by the processor, a normalized convolution

technique to the filtered data and the filtered certainty
to generate output data indicative of a piecewise
smooth regularization of the input data; and

provide, by the processor, the output data, the output data

being a final flow analysis of the first frame.

7. The method of claim 6, wherein the input data function
to be 1s optimized based on the input data.

8. The method of claim 7, wherein the normalized con-
volution technique 1s applied based on an applicability for
the mput data, the applicability function indicative of how
the iput data function may be interpolated.

9. The method of claim 7, wherein the input data function
1s a multivariate function to be optimized under a piecewise
smooth constraint, and the certainty function 1s a scalar field
acting on each data element 1n the dataset.

10. The method of claim 6, wherein the mnput data 1s an
image, and the data point 1s a pixel, and the certainty
function 1s an 1image representation of certainty of each pixel
of the image.

11. A non-transitory computer readable medium compris-
ing instructions executable by a processor to:

perform an optical flow technique on a first image frame

of video data and a second 1image frame successive to
the first image frame within the video data to generate
an 1nitial flow analysis associated with a certainty
function indicative of a confidence of the 1nitial tlow
analysis for each data element of the first frame and
with an input data function representing a velocity

vector of each pixel 1n an optical flow;

identily guide data, wherein the guide data includes
information indicative of piecewise smoothness of the
input data, the guide data i1dentified as the first image
frame:

apply a joint edge-aware filter to the input data based on

the guide data to provide filtered data;
apply a joint edge-aware filter to the certainty function
based on the guide data to provide filtered certainty;

identity an applicability function for the input data, the
applicability function indicative of how the input data
function may be interpolated; and

apply a normalized convolution technique, based on the

applicability function, to the filtered data and the f{il-
tered certainty to generate output data indicative of a
piecewise smooth regularization of the mnput data, the
output data being a final flow analysis of the first image
frame.

12. The non-transitory computer readable medium of
claim 11, wherein the input data function 1s a multivariate
function to be optimized under a piecewise smooth con-
straint, and the certainty function 1s a scalar field acting on
cach data element 1n the dataset.
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