12 United States Patent
Ayoub et al.

US010360092B1

US 10,360,092 B1
Jul. 23, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(51)

(52)

(58)

HYBRID HARDWARE AND SOFTWARLELE
REPORTING MANAGEMENT

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

Inventors: Hani Ayoub, Majd al-Krum (IL); Adi
Habusha, Moshav Alone1 Abba (IL);
Itay Poleg, Yuvalim (IL)

Assignee: Amazon Technologies, Inc., Seattle,
WA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 105 days.

Appl. No.: 15/597,987

Filed: May 17, 2017

Int. CIL.

GO6F 11/07 (2006.01)

HO3M 13/00 (2006.01)

U.S. CL

CPC ... GO6F 11/0784 (2013.01); GO6F 11/0745

(2013.01)

Field of Classification Search
CPC GO6F 13/105; GO6F 13/24; GO6F
2213/0058; GO6F 9/5077; GO6F
2213/0026:; GO6F 13/4282

See application file for complete search history.

HARDWARE CIRCUITRY
210

RECEIVE A PACKET FOR A TRANSACTION FROM A
HOST COMPUTER VIA A HOST INTERFACE

l 202
DETECT AN ERROR ASSOCIATED WITH THE
TRANSACTION 04

!

(GENERATE AN INTERRUPT UPON DETECTING THE
ERROR 006

|

REPORT THE ATTRIBUTES, AND THE IDENTIFIER
ASSOCIATED WITH THE FUNCTION IN A MESSAGE TO

THE HOST COMPUTER VIA THE HOST INTERFACE
216

(56) References Cited

U.S. PATENT DOCUMENTS

201170185103 Al1* 7/2011 Evoy ...ccoooveeennnn, GOO6F 13/4282
710/313
2011/0296256 Al1* 12/2011 Watkins GOO6F 11/0745
714/54

2016/0098365 Al 4/2016 Bshara et al.
2016/0380694 Al* 12/2016 Guduru HO4B 10/038
398/5
2017/0177528 Al* 6/2017 Harrman GO6F 13/36

OTHER PUBLICATTIONS

PCI Express, “PClI Express Base Specification,” Revision 3.0,

PCI-SIG® (Nov. 10, 2010), 860 pages.
Zhang, Yanmin and T. Long Nguyen, “Enable PCI Express Advanced

Error Reporting in the Kernel,” Proceedings of the Linux Sympo-
sium, vol. 2, Ottawa, Ontario (Jun. 27-30, 2007), pp. 297-304.

* cited by examiner

Primary Examiner — Guy J Lamarre

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A hybnid approach using hardware and software 1s used for
report management in peripheral component interconnect
(PCI) express devices. The device hardware detects an error
associated with a transaction with a host computer. The
device software identifies a function associated with the
error and determines various attributes of the error. The
device soitware then exposes the attributes of the error in the
PCI express and the advanced error reporting (AER) capa-
bilities. The error can be reported 1n a message transaction
to the host computer.

21 Claims, 11 Drawing Sheets

SOFTWARE MODULE
213

DETERMINE A CURRENT STATE OF THE DEVICE ﬂ

l

IDENTIFY A FUNCTION ASSOCIATED WITH THE ERROR
BASED ON ONE OR MORE FIELDS OF A PACKET
HEADER AND THE CURRENT STATE OF THE DEW(%IQ

!

DETERMINE ATTRIBUTES ASSOCIATED WITH THE
ERROR 91

!

STORE THE ATTRIBUTES, AND AN IDENTIFIER
ASSOCIATED WITH THE FUNCTION 14

US 10,360,092 B1

1 'Old
- \\uﬁllrr..//
1 | gD vdS NOLLY dNOLANOD
[T-INJAA [T-NJAd
= B
&xxxﬁiaﬁ}/ §§§§§§§§§§§§§§§§§ ” -_lt
5 e ?/\J
o) 2
,_w TOVdS NOLLVINOLINOD | moﬁm_“ mﬂﬁﬂmwéﬁzoo w
= [1-N]dd ZL1 014A 1014d
7 L m
g R

- Obl 801
y— S3IA4d
~
g\
ery
e 90}
=
— _

o1

XATINOD 1OOY
cOl
- 4ILNdINOD LSOH

U.S. Patent

US 10,360,092 B1

Sheet 2 of 11

Jul. 23, 2019

U.S. Patent

¢ 9Old
R O1¢
31
u. SUALSIOTA
TINAON TIVM.LIOS .
NOLLVANDIANO)) dALV TN
174 4
KAOWAN
Cl
JOSSADOUd
O1¢
XALINDAID TAVMM@AVH

— ¢
80¢

32IA3A |

0cc
007¢C 14074
. M o |
AMOWAN LSOH JOSSAD0Ud 1SOH
c0c¢
¥3LN4INOD 1SOH

US 10,360,092 B1

Sheet 3 of 11

Jul. 23, 2019

U.S. Patent

¢ Ol

cle
SHAALSIDHYE HIOVdS

NOLLVINDIINO))

Ol¢
HOLVIHNAD

LI dHLLN]

H

90¢

30¢ dIDVNVIN

HOLIALAd dOddH HIVAIHLNI

NOLLIVSNV UL

Ol¢
AALINDAEL) HdVMAAAVH

US 10,360,092 B1

Sheet 4 of 11

Jul. 23, 2019

U.S. Patent

¥y 9Ol
COv
90t vOv
TTNAON DNILIOJT 4 TNAON 41NAON
ONISSADOUd MOMIA FALILINAAL YANMO
1T
TINAON TIVMLIOS

US 10,360,092 B1

Sheet 5 of 11

Jul. 23, 2019

U.S. Patent

¢0S

009

(d'1L) LAMDVd YAV T NOLLDVSNVY].

a4 9ld
,,, ; a 28 - o
v.ivd
025 o 3TS TS
.H SSAAAAY dAMO] DV]L dl ¥4.1S3N0ad
ss e v 0 s 00 71is Cls
SNLV.LS (1) YEALLNAAL YALATdNOD
Oﬁm T 9 & & ¥ & WOW @lqw. L I
HLONAT AdA L LYINNEO]
VS 9Old
70¢ 206
S AVOTAVd VIV(JAavAH 1L

tMAd

CMd

[Mdd

OMd

US 10,360,092 B1

Sheet 6 of 11

Jul. 23, 2019

U.S. Patent

009

A

9 Old
€009 q009 2009 PO0%S
AA.LDALAd YOI A4.LDdLad Aa.L)dLad QALDALAA LSHNOTY | *c* o
A19VLOIII0) | dO¥dd TVIVA-NON | ¥Oddd 1v.Lvd A4.Ld0ddNSN()

AALSIDAY SILLVLS HOIAA(

US 10,360,092 B1

Sheet 7 of 11

Jul. 23, 2019

004

U.S. Patent

L Old

91L
AALSIDHA DOT d4dVAH

PlL
HALSIDHE TOdLNOD ANV SALLI'TTEVdVD) d0ddd d4ONVAAY

clL
AALSIDHYE ASVIN O dEH H1dV.LI)Fdd00

O1L
JALSIDAY SALV.LS YOTd ATEV.LITII0D

30L

L [LFTTTTITEr] L L L

90L
JALSIDHYE ASVIN JOTTH ATV . LOTTHTOON]]

vOL
AHLLSIOHA SLLV.LS dOddH ' 1dV. LOHAA0IN])

COL
dHAVAH ALI'AVdVD) QHAANGLXH SSFAdXH [D)d

JALONALSs AL'TTIIVAY) dAANALXd DNLLIOdHY JOddd AdONVAAY SdddXd [)d

US 10,360,092 B1

708

Sheet 8 of 11

Jul. 23, 2019

008

U.S. Patent

d8 9l

TVIVA W44

1100 1100

TVIVANON ¥4

NOD Wdd 0000 1100

208

HdAL dOddH

908

V8 Ol

1000 1100

HAOD) dDOVSSIN

038

. 3TS 9TS
HA0D dOVSSHN V.1 Al YA.LSINOTY
:% e 0 5089 ¢ 0 ...w...q...m: :@i@...w; &8 &9
HLONAT AdA], LVINHOH

cMd

IMAd

OMd

US 10,360,092 B1

Sheet 9 of 11

Jul. 23, 2019

U.S. Patent

6 Old

b16 NOILIONNA FHL HLIM qaLVIDOSSY
VAIILINACL NV ANV ‘SHLASRLLY 9HL TI01S

1

.

16
HOVATAINI LSOH HHL VIA dH4.LNdNOD LSOH HJH.L

OL dDOVSSHAN V NI NOLLON/(1 HHI HLIM dHLVIDOSSY
YHALLNAAL HHL ANV ‘SHLACGMLLY JHL LI0dEy

16 R (02:0: G
JHL HLIM ALVIOOSSVY SALOETALLY ANINIHLAC

1

0 ﬁmusmﬂ HHL 40 ALV.LS INEMAE)D) HHL ANV JH2AdVHH
LHNOVd V 40 SA'THId Hd0ONW d0 dNO NO ddSvd
JOUId HHL HIIM dA.LVIOOSSY NOLLONNA V AALINAAI

ﬁ

306
JOIAHA HHLL 40O 4LV.LS INHJHE)O V ANINTALAJ

81C
— ATOAON TIVMLIOS

|

906 HOWIH
HHL ONLLOHLAT NOdN LdNEHEINI NV ALV YN

_ |

06 NOLLOVSNVAL
HdHL HLIMA dA1LVIDOSSY dOddd NV LO)ALH(

€06

HIOVIIALNI LSOH V VIA dd.L1dNOD LSOH
V NO¥A NOLLDVSNVAL V ¥0d LdXDVd V dATHOHSY

017
AELINDEID HIVMTIVH

0} Old

US 10,360,092 B1

900F | o0V

= =3 INAON S 1NAON

= INDNGDVYNVIN NOILYENDIANOD

—

—

~—

Qs

-

e

79

N

= rL0!

&

]

L

m mirivi———

E 2107 T
A0VdddLN] AHOWAN
AJOMLAN

000F

S0OIA(] AJOMLEN

U.S. Patent

¢001
21907

ONISSJd00dd

8001

JOV4H3ILN| SNG

U.S. Patent Jul. 23, 2019 Sheet 11 of 11 US 10,360,092 B1

Node Node
1102b 1102a

I 1100
- m—— D e — - — —
- TN - - T s
p N\
| To Other \
/
ﬁ%éi | Switch Fﬁ%‘gr —pp Networks |
/ 11043 1108 /
| /
/
" -

-
P
”
/

|
Node l‘ Switch ’
1102d | \ 1104d \
' \
\ Switch
1104b \

\

\
\ \

_____ __ \
Node N .
1102¢ S~ !

MEMORY 1118
DATA STORE(s) 1130

APPLICATION(S) 1132
DRIVER(S) 1134

PROCESSOR(S) 1120
| STORAGE 1127

70 DEVICE 1126

2

&
LLJ
O
-
i1
-
X
e
<
i
L
<.

FIG. 11

US 10,360,092 Bl

1

HYBRID HARDWARE AND SOFTWARLELE
REPORTING MANAGEMENT

BACKGROUND

In certain systems, error reporting to a host computer by
a device may be performed by device hardware. For
example, the device hardware may expose the error type and
the severity using peripheral component interconnect (PCI)
express and advanced error reporting (AER) capabilities.
However, such error reporting by the device hardware may
not provide flexibility or scalability. For example, any
changes 1n the device for feature upgrades, bug fixes, etc.
may require a re-spin of the device hardware and may come
at the cost of additional time and money.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments 1n accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 illustrates a logical diagram of an apparatus
comprising a host computer and a device.

FIG. 2 illustrates a block diagram of an apparatus com-
prising a host computer and a device, in one embodiment of
the disclosed technologies.

FI1G. 3 illustrates a block diagram of hardware circuitry of
the device, 1n one embodiment of the disclosed technologies.

FI1G. 4 illustrates a block diagram of a software module of
the device, 1n one embodiment of the disclosed technologies.

FIG. SA illustrates an example of a transaction layer
packet (TLP), 1n one embodiment of the disclosed technolo-
g1es.

FIG. 5B 1llustrates an example TLP header for a transac-
tion, 1n one embodiment of the disclosed technologies.

FIG. 6 1llustrates an example device status register, 1n one
embodiment of the disclosed technologies.

FIG. 7 1llustrates a peripheral component interconnect
(PCI) express advanced error reporting (AER) extended
capability structure, 1n one embodiment of the disclosed
technologies.

FIG. 8A illustrates a TLP header for a message transac-
tion, 1n one embodiment.

FIG. 8B illustrates a table showing different error types
corresponding to the message code for reporting detection of
errors based on the severity of the error, 1n one embodiment.

FIG. 9 illustrates a method for error reporting manage-
ment using hardware circuitry and a software module of the
device, 1n one embodiment.

FIG. 10 illustrates an example of a network device,
according to certain aspects of the disclosure; and

FIG. 11 illustrates an example architecture for features
and systems described herein that includes one or more
service provider computers and/or a user device connected
via one or more networks, according to certain aspects of the
disclosure.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified 1n order not to
obscure the embodiments being described.

10

15

20

25

30

35

40

45

50

55

60

65

2

In a server system, a host computer may be coupled to a
device using a host interface, e.g., a peripheral component
interconnect (PCI) express interface. The device may
include a network interface card, sound card, video card,
storage device, etc. In some instances, the device may be
exposed as a PCI express device to the host computer using
a PCI express configuration space. The device may be
capable of exposing multiple physical functions (PFs) to the
host computer using the PCI express interface. Furthermore,
cach PF may be capable of exposing multiple virtual func-
tions (VFs) to the host computer 1n a virtualized environ-
ment. Generally, such devices can support PCI express
capability and advanced error reporting (AER) capability for
reporting of errors using the configuration space. In some
instances, the device hardware may use these capabilities to
expose various error attributes for an error. For example, the
device hardware may send an error type and severity of the
error 1n a message to the host computer. However, imple-
menting the AER capabilities 1n hardware may be complex
and may not be cost eflective. In addition, as the number of
functions implemented by the device changes, such report-
ing by the hardware may not be scalable without moditying
the hardware. For example, addition of VFs implemented by
the device, configuration changes, feature upgrades or bug
fixes, etc., may require a re-spin of the device hardware
resulting 1n additional costs and time.

Embodiments of the disclosed technologies can provide a
hybrid approach for report management by a device using
both device hardware and device software. The device may
be coupled to a host computer using a host interface. The
host interface may utilize any suitable bus protocol, e.g., PCI
express, 1ndustry standard architecture (ISA), extended
industry standard architecture (EISA), video electronics
standards association (VESA), accelerated graphics port
(AGP), sernial advanced technology attachment (SATA),
umversal serial bus (USB), etc. The host computer may be
configured to send a packet for a transaction to the device
using the host interface. The packet may include a packet
header and a payload. For example, the packet header is the
information associated with the packet. In some embodi-
ments, the packet may include a transaction layer packet
(TLP). The device hardware may be configured to generate
an 1nterrupt for the transaction and send the interrupt to the
device firmware. The device firmware may include software
executed on the device and can be used interchangeably with
the device solftware. According to the embodiments, the
device software can determine certain attributes associated
with the transaction that caused the interrupt and identify an
owner associated with the transaction. For example, the
owner may be a software component associated with the
transaction, such as a function or a process, which can be a
requester or a completer of the transaction. The device
software can log the attributes and an identifier associated
with the owner. The device hardware can report the attri-
butes and the 1dentifier associated with the owner to the host
computer via the host interface. Thus, according to the
embodiments, the device hardware and the device software
in collaboration with each other can provide a hybnd
approach for report management. Such a hybrid approach
may provide flexibility and ease of use as compared to
hardware only approach for report management.

In some instances, the device hardware may detect an
error on the transaction. For example, the device may be
coupled to the host computer using a PCI express interface.
The device may be capable of exposing multiple physical
functions (PFs) or virtual functions (VFs) to the host com-
puter using its PCI express configuration space. For

US 10,360,092 Bl

3

example, each function may be an addressable entity in the
PCI express configuration space. In some embodiments, the
device hardware may perform a first level of error classifi-
cation based on the protocol layer and may generate an
interrupt for the transaction upon detecting the error. In
certain embodiments of the disclosed technologies, the
device soltware can determine a current state of the device
upon recerving the mterrupt from the device hardware. 11 the
current state of the device does not allow error processing,
the device soltware may 1gnore the error completely or may
process the error at a later point in time. If the current state
of the device allows error processing, the device software
can 1dentify an owner associated with the error based on the
packet header. For example, the owner may be a VF or a PF
associated with the error. The device software may perform
a second level of error classification and can determine
various attributes associated with the error. For example, the
various attributes may include a type of the error (e.g.,
correctable or uncorrectable) and severty of the error (e.g.,
tatal or nonfatal). In certain embodiments, the device soit-
ware may be configured to expose the attributes and the
identifier associated with the function 1n PCI express capa-
bility and/or advanced error reporting (AER) capabaility for
the function using the PCI express configuration space. The
device hardware can report the various attributes and the
identifier associated with the function determined by the
device software in a message to the host computer. For
example, the message may include a TLP message. The host
computer may receirve the error message from the device and
may associate the error to a fault function associated with a
hypervisor executing on the host computer.

FIG. 1 illustrates a logical diagram of an apparatus 100
comprising a host computer 102 and a device 108. In some
embodiments, the apparatus 100 may be part ol a server
computer. For example, the server computer may be used to
provide services such as cloud computing, analytics, web
services, storage, databases, applications, deployment ser-
vices, etc. to client computers. The device 108 may include
a network interface card (NIC), sound card, video card,
storage device (e.g., serial advanced technology attachment
(SATA) drive, solid state drive (SSD)), etc. The device 108
may be coupled to the host computer 102 using a host
interface 106. For example, the host interface 106 may
include a PCI express interface. It will be understood that
even though some embodiments of the disclosed technolo-
gies will be discussed using the PCI express protocol, the
embodiments can support other bus protocols, e.g., SATA,
universal serial bus (USB), ISA, FISA, VESA, AGP, etc.,
without deviating from the scope of the disclosed technolo-
gies.

The host computer 102 may include a root complex 104.
The root complex 104 may connect a processor and memory
subsystem of the host computer 102 to switches or PCI
express endpoints. For example, the device 108 may func-
tion as a PCI express endpoint which may communicate
directly with the root complex 104 or through a switch. In
some 1mplementations, the root complex 104, switches and
the endpoints may be part of a PCI express switch fabric
which may be configured by the root complex 104. For
example, the root complex 104 may be responsible to
generate a transaction on behalf of the processor of the host
computer 102 to configure, write or read from the device
108. In some implementations, the root complex 104 may be
part of the processor on the host computer 102.

The device 108 may include configuration spaces 110 and
112. Generally, the configuration space, also called PCI
express configuration space, may include a set of registers

10

15

20

25

30

35

40

45

50

55

60

65

4

that may be memory mapped to an address space 1n the host
computer 102. For example, the set of registers may include
a base address register (BAR) which may specily a base
address for a region of memory assigned to that address
space. The configuration space may be configured by the
root complex 104 using a configuration space address spe-
cific to the device 108. In some instances, the configuration
spaces for the device 108 may include capabilities supported
by the device 108. For example, the device 108 may be
capable of exposing multiple physical functions {PF[0],
PF[1], ..., PF[N-1]} using the configuration space 110 and
multiple virtual functions {VF[0], VF[1], . . ., VF[M-1]}
using the configuration space 112. The configuration space
110 may include configuration spaces for all the physical
functions PF[0], PF[1], . . . , PF[N=1] supported by the
device 108. In some implementations, the configuration
space 110 can be implemented as hardware registers or can
be emulated in software. A PF may represent a PCI express
device with single root input output virtualization (SR-IOV)
capability. The SR-1IOV capability can enable a single root
function (e.g., a single Ethernet port) to appear as multiple,
separate, physical devices. A physical device with the SR-
IOV capability can be configured to appear in the PCI
configuration space as multiple functions. The PFs can
configure and manage the SRIOV functionality by assigning
virtual functions. In some implementations, each of the

PF[0O], PF[1], . . . , PF[N-1] may be capable of exposing
virtual functions {VF[0], VF[1], . . ., VF[M-1]} using the
configuration space 112, e.g., {PF[0] VF[O], . . ., PF[N-1]

VF[M-1]}, where N and M are positive integers. For
example, the configuration space 112 may include configu-
ration spaces for each of the virtual functions {PF[O0]
VF[0], . . ., PF[N-1] VF[M-1]} supported by the device
108. In some 1mplementations, each device function on the
PCI express bus can be addressable using an eight-bit PCI
bus, five-bit device, and three-bit function numbers for the
device (also referred to as the bus/device/function, BDF or
B/D/F). In some embodiments, each PF or VF may be
capable of exposing PCI express capability and advanced
error reporting (AER) capability using their respective PCI
express configuration space. For example, for a given func-
tion, the PCI express capability can allow access to the
device control and status registers, and the AER capability
can allow access to the device status, mask and severity
registers among other registers. In some 1mplementations,
the configuration space 112 can be emulated 1n software.

FIG. 2 illustrates a block diagram of an apparatus 200
comprising a host computer 202 and a device 208, in one
embodiment. The apparatus 200 may be similar to the
apparatus 100 as discussed with reference to FIG. 1.

The host computer 202 may include a host processor 204,
and a host memory 206 coupled to the host processor 204.
In some 1mplementations, functionality of a root complex,
¢.g., the root complex 104, as discussed with reference to
FIG. 1, may be integrated with the host processor 204. In
some other implementations, the host computer 202 may
include the root complex as a discrete component which
may be communicatively coupled to the host processor 204
and to the host memory 206. The host memory 206 may
include RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (EEPROM), flash memory or any suit-
able storage media. In some instances, the host computer
202 may include an x86 CPU platiorm, e.g., Xeon, Pentium,
Atom, Athlon, etc. The host processor 204 may be config-
ured to execute a hypervisor or a virtual machine manager
(VMM) on the host computer 202. The hypervisor can
emulate a single device as multiple virtual devices 1n a

US 10,360,092 Bl

S

virtualized environment. For example, the hypervisor may
be configured to create and manage one or more virtual
machines or functions on the host computer 202. A virtual
machine may be any suitable emulation of a computer
system. In some instances, the hypervisor may initiate a
transaction which may be directed to an address space
associated with the one of the PFs or VFs implemented by
the device 208.

The device 208 may be communicatively coupled to the
host computer 202 via a host interface 220. For example, the
host interface 220 may include a PCI express interface. In
some 1mplementations, the device 208 may include hard-
ware circuitry 210 communicatively coupled to a processor
212. The processor 212 may be communicatively coupled to
memory 214. The memory 214 may include emulated con-
figuration registers 216 and a software module 218. Even
though the embodiments have been discussed using the PCI
express protocol, it will be noted that the device 208 can
implement any bus protocol, e.g., PCI, industry standard
architecture (ISA), extended ISA (EISA), multi-channel,
USB, SATA, etc., without deviating from the scope of the
disclosed technologies. In some embodiments, the device
208 may be an SR-IOV compliant device, which can allow
the device 208 to appear to be multiple physical PCI express
devices to the host computer 202. Using the SRI-OV capa-
bility, the device 208 can implement multiple PFs or VFEs in
a virtualized environment.

The hardware circuitry 210 may be configured to receive
a packet for a transaction from the host computer 202 via the
host 1nterface 220. In some embodiments, the packet may
include a transaction layer packet (TLP). The PCI express
protocol may be implemented 1n the transaction layer, the
data link layer and the physical layer of the open systems
interconnection (OSI) model layers. For example, a packet
may be created by the transaction layer and may be
appended by the data link layer and the physical layer for
transmission between a requester and a completer. In some
embodiments, the requester or the completer can initiate a
transaction and can alternatively be called an owner of the
transaction. The PCI express protocol can support memory
transactions, mput/output (I/O) transactions, configuration
transactions and message transactions that originate at the
transaction layer. Configuration transactions can be used by
the root complex to configure the system upon power-up.
Message transactions can be used to send interrupts and
error conditions, as well as other information through the
PCI express fabric.

The hardware circuitry 210 may include physical con-
figuration registers for the device 208. For example, the
physical configuration registers may include base address
registers (BARs) and other relevant configuration registers.
The host processor 204 (or the root complex) may perform
write transactions to the configuration registers to configure
or control the device 208. The host processor 204 may
perform read transactions to the configuration registers to
identily the type and capabilities of the device 208. In some
embodiments, the hardware circuitry 210 may be configured
to detect an error associated with the transaction and to
generate an interrupt upon detecting the error. The hardware
circuitry 210 may be configured to perform a first level of
error classification based on a protocol layer. In one 1mple-
mentation, the hardware circuitry 210 may classily the error
based on the PCI express protocol layer the error corre-
sponds to, e.g., physical layer (PHY), data link layer (DL),
transaction layer ('1L) or media access control (MAC) layer.
The TL 1s the upper layer where the packet 1s formed. Some
non-limiting examples of the TL errors may include mal-

10

15

20

25

30

35

40

45

50

55

60

65

6

tformed TLP, unsupported requests, data corruption, end-to-
end cyclical redundancy check (ECRC) check failure,
receiver overtlow, unexpected completion, etc. The DL layer
1s the middle layer which can sequence the packets that are
generated by the transaction layer. Some non-limiting
examples of the DL layer errors may include data link layer
protocol errors, replay time-out, sequence number check for
TLPs, link cyclical redundancy check (LCRC) failure for
TLPs, etc. The PHY layer is responsible for link training and
transaction handling at the mterface level. Some non-limit-
ing examples of the PHY layer errors may include receiver
errors, link errors, etc. In some implementations, the MAC
layer may be a sublayer of the PHY layer.

In some embodiments, the memory 214 may include

static random access memory (SRAM), dynamic random
access memory (DRAM), synchronous DRAM (SDRAM),

double data rate (DDR) SDRAM, read only memory
(ROM), electrically erasable programmable read-only
memory (EEPROM), flash memory or other memory tech-
nology, compact disc (CD)-ROM, or any other medium
which can be used to store the desired information and
which can be accessed by the processor 212. In some
implementations, the software module 218 may include
computer readable medium comprising instructions that can
be executed by the processor 212 to implement certain
functionalities. The computer readable medium may be
non-transitory. Some embodiments of the disclosed tech-
nologies can support live updates of the firmware. For
example, the live update may allow upgrading or changing
the software module 218 dynamically or during run time.

The emulated configuration registers 216 may be used to
provide configuration space for any number of PFs or VFs
implemented by the device 208. For example, the emulated
configuration registers 216 may include BARs and other
relevant configuration registers emulated 1n the memory. In
some 1mplementations, each function may include 1ts own
set of configuration registers. For example, the emulated
configuration registers 216 may be part of the configuration
space 110 or 112 as discussed with reference to FIG. 1. In
some 1implementations, the emulated configuration registers
216 may include PCI express extended capability registers.
For example, the emulated configuration registers 216 may
include Advanced Error Reporting (AER) capability regis-
ters and other extended capability registers. In some 1mple-
mentations, the emulated configuration registers 216 may be
part of the firmware. Some embodiments can allow live
updates of the emulated configuration registers 216, e.g., the
emulated configuration registers 216 can be dynamically
replaced and/or modified. For example, the PCI express
extended capabilities may be added or removed in the
emulated configuration registers 216. In some implementa-
tions, the device 208 may include multiple emulated con-
figuration spaces suitable for different virtual machines,
different operating systems, and/or different device types.
The emulated configuration registers 216 may be stored 1n
the memory 214 as a text file, source code, object code, as
a script, and/or 1n some other format that 1s readable by the
device 208.

The processor 212 may be configured to receive the
interrupt from the hardware circuitry 210 and use interrupt
handling mechanisms by the processor 212 to handle the
interrupt received at the processor 212 using the software
module 218. The 1nstructions from the soitware module 218
may be configured to determine a current state of the device.
For example, the current state of the device may be deter-
mined by reading one or more registers in the device. The
instructions from the software module 218 may be further

US 10,360,092 Bl

7

configured to 1dentily an owner associated with the trans-
action. In some embodiments, based on the current state of
the device (e.g., not busy), the mstructions from the software
module 218 may read the packet header for the transaction
to 1dentily the owner associated with the transaction. For
example, the packet header for the transaction may be
logged 1n a register, e.g., a packet header register. The packet
header register may be an internal or proprietary register that
may not be exposed to the host processor 204 using the PCI
express configuration space. In some implementations, the
owner may be a PF or a VF exposed using the configuration
space 110 or 112. The 1nstructions executing on the proces-
sor 212 from the software module 218 may be further
configured to determine attributes associated with the trans-
action that caused the interrupt. In some 1mplementations,
the attributes may i1dentily a cause of the mterrupt. For
example, 1n some 1nstances, the cause of the iterrupt may
be an error associated with the transaction. The attributes
may include a type of the error and severity of the error. In
some 1nstances, the attributes may further include a classi-
fication of the error based on the protocol layer. According
to some embodiments, the software module 218 may be
turther configured to store the attributes and to store an
identifier associated with the function. For examples, the
software module 218 may expose the attributes and the
identifier associated with the function in both the PCI
express and the AER capabilities for the given PF or VE. In
some embodiments, the PCI express and the AER capabili-
ties for the given PF or VF may be implemented using the
emulated configuration registers 216 that can be dynami-
cally modified. In some instances, 1f the device state indi-
cates a specific state (e.g., a busy state), the software module
218 may completely 1gnore the error or process the error at
a later point 1n time.

The hardware circuitry 210 may be further configured to
report the attributes and to report the i1dentifier associated
with the owner to the host computer 202 via the host
interface 220. For example, the hardware circuitry 210 may
report the attributes and the identifier associated with the
function to the host computer 202 using a TLP message
transaction. Thus, the embodiments of the disclosed tech-
nologies can provide more flexibility by using a hybnd
approach for report management as compared to a hardware
only approach. Furthermore, using the hybrid approach, the
embodiments can allow error reporting associated with the
VFs as compared to error reporting that may be limited to
only PFs using hardware only approach. In addition, the
report management using this hybrid approach can be scaled
to any number of VFs without modifying the device hard-
ware. For example, use of the emulated configuration reg-
isters 216 implemented i the memory 214 can allow
flexibility 1n exposing the PCI express error capabilities or
the AER capabilities for any number of VFs. Further, some
embodiments can be used for hybrid hardware and software
reporting of other functionalities, e.g., power management,
without deviating from the scope of the disclosed technolo-
gies. For example, some embodiments of the disclosed
technologies can be used to enable the device software to
assist with classification of power level states for each
emulated function once the device hardware implements
transitions of actual hardware states as instructed by the
firmware.

FIG. 3 illustrates a block diagram of the hardware cir-
cuitry 210 of the device 208, in one embodiment. The
hardware circuitry 210 may include a transaction interface
manager 306, an error detector 308, an interrupt generator
310 and configuration space registers 312. Note that the

10

15

20

25

30

35

40

45

50

55

60

65

8

block diagram as shown 1n FIG. 3 1s for 1llustrative purposes
only, and the hardware circuitry 210 may include more or
fewer components than shown in FIG. 3 without deviating
from the scope of the disclosed technologies.

The transaction interface manager 306 may be configured
to communicate with the host computer 202 for a transaction
using the host interface 220. The transaction may 1nclude a
memory transaction, a configuration transaction or a mes-
sage transaction. For example, the transaction interface
manager 306 may receive a packet from the host processor
204 for a read or a write transaction. The transaction may be
initiated by a hypervisor running on the host processor 204
and may be directed to an address space associated with one
of the PFs or VFs implemented by the device 208. The
transaction interface manager 306 may be configured to
determine a type of the transaction and a destination for the
transaction, 1.e., where the transaction 1s directed to. For
example, the memory transaction may include a write or a
read transaction to a memory address associated with a VF
or a PF. The configuration transaction may include a write or
a read transaction to the configuration space registers 312, or
to the emulated configuration registers 216 1n the memory
214. In some embodiments, the transaction interface man-
ager 306 may include a bufler (not shown) to log the
incoming transaction until the hardware circuitry 210 1s
available to process the transaction. The packet may include
a packet header and a packet payload. An example transac-
tion layer packet (TLP) 1s shown 1n FIG. SA.

FIG. SA1llustrates a transaction layer packet (TLP) 500 1n
one embodiment. The TLP 500 may include a TLP header
502 and a data payload 504. The TLP header 502 may
include information associated with the TLP 500 that may be
at the beginning of the TLP 3500, end of the TLP 500 or
spread across the TLP 500 without deviating from the scope
of the disclosed technologies. In some 1implementations, the
TLP 500 may optionally include an end-to-end cyclic redun-
dancy check (ECRC) field (not shown) appended to the data
payload 504. In some implementations, a link CRC (LCRC)
and a sequence number may be appended by the data link
layer to the TLP packet 500 to provide a data link layer
packet (DLLP). The TLP 500 may be used to transier
information between a requester and a completer. For
example, the TLP 500 may be used to perform a read or a
write transaction to a memory mapped location or an /O
mapped location. Based on the type of the transaction (e.g.,
read request, write request, completion, message request,
etc.), configuration of various fields of the TLP header 502
may vary. In some implementations, the TLP header 502
may include three or four double words (e.g., DWO0O, DWI,
DW2, DW3), where each DW can be 32 bits (1.e., four
bytes). An example TLP header 1s described with reference
to FIG. 3B.

FIG. 5B illustrates an example TLP header 502 for a
transaction, 1n one embodiment. The TLP header 502 may
include a plurality of fields including fields such as a format
506 and a type 508 and several others. A length 510 field
may 1ndicate length of the data payload 504. In some
instances, the length 510 field may be reserved, e.g., for
message transactions or certain completion transactions.
Configuration of some of the fields may be based on the
format 506 and the type 508. For example, the format 506
may provide information on the size of the TLP header 502
and whether the TLP 500 includes the data payload 504
following the TLP header 502. The type 508 may provide
information on whether the transaction 1s for a request, for
a completion, or for another type of transaction. The
requester may be a function that can 1nitiate a transaction in

US 10,360,092 Bl

9

the PCI express domain. The request may include a read or
a write request for a memory transaction, an I/O transaction
or a configuration transaction. For example, the processor
204 may support generation of the configuration transaction
as a requester to configure or setup a device function on the
device 208. In some embodiments, the request may 1nclude
a message transaction for an event signaling or general
purpose messaging by the device 208. For example, the
message transaction may be used to report an error associ-
ated with a transaction by sending a TLP message to the host
processor 204 when the error 1s detected by the hardware
circuitry 210. In some 1nstances, the device 208 may imple-
ment a type of function that can be a completer of the
configuration transaction or the memory transaction. For
example, a completion transaction may be used by the
device 208 to return read data or to acknowledge completion
ol a configuration write transaction.

A completer 1dentifier (ID) 512 field may be used to
identify a completer of the transaction request. In some
implementations, the completer ID 512 may include a com-
pleter’s bus number, device number and a function number.
A status 514 field may indicate the status for a completion.
For example, the status 514 may indicate successtul comple-
tion, unsupported request, completer abort, or other suitable
completion status. In some 1nstances, a memory transaction,
an I/0 transaction or a configuration transaction may include
a requester ID 516 and a tag 518. The requester ID 516 may
include a requester’s bus number, device number and a
function number that can be used to identily the requester.
The requester ID 516 can be unique for each PCI express
function, and together with the tag 518 can provide a
transaction ID for each transaction. A lower address 520
ficld may include lower bits of the memory address. Data
522 field may include data for the transaction, e.g., read data.
It will be understood that the TLP header 502 may include
other fields which are not shown 1n FIG. 5B for the purposes
of simplicity.

Referring back to FIG. 3, the error detector 308 may be
configured to detect an error associated with the transaction.
Some common errors may include malformed TLP error,
corrupted or poisoned data error, end-to-end cyclical redun-
dancy check (ECRC) error, completion transaction error, etc.
In some 1nstances, the malformed TLP may result from the
data pavload 504 exceeding maximum payload size or due
to discrepancy between actual data length and the data
length 510 specified 1n the TLP header 502. The completion
transaction error may include unsupported request error,
unexpected completion, completion time-out, etc. In one
implementation, the error detector 308 may perform {irst
level of error classification corresponding to different pro-
tocol layers based on the protocol supported by the device
208. For example, for the PCI express protocol, the error
detector 308 may classity the error to correspond to the PHY
layer, DL layer, TL layer or the MAC layer. In some
embodiments, when the error 1s detected, the TLP header
502 corresponding to the transaction may be recorded 1n a
packet header register (not shown). For example, the packet
header register may be a proprietary register that can store
the information associated with the TLP header 502 and any
other relevant information about the packet. In some
embodiments, the mformation stored in the packet header
register can be used by the device firmware to determine the
attributes associated with the error and perform a second
level of error classification.

The interrupt generator 310 may be configured to generate
an mterrupt 1f an error 1s detected by the error detector 308.
According to some embodiments, the interrupt may be sent

10

15

20

25

30

35

40

45

50

55

60

65

10

to the processor 212 for processing by the software module
218. For example, the interrupt may be sent by the interrupt
generator 310 to the processor 212 via an nterrupt line or
may be mapped into the address space of the processor 212.
In some implementations, a plurality of interrupts from
different sources may connect to an interrupt line of the
processor 212 through an optional interrupt controller (not
shown).

The configuration space registers 312 may include hard-
ware registers mapped to memory locations to provide
configuration space for any number of PFs implemented by
the device 208. For example, the configuration space regis-
ters 312 may be part of the configuration space 110 as
discussed with reference to FIG. 1. In some implementa-
tions, each function may include 1ts own set of configuration
registers. For example, the configuration space registers 312
may include BARs for each PF and other relevant configu-
ration registers. The configuration space registers 312 may
be defined based on the bus protocol supported by the device
208. Some embodiments can support enhanced configura-
tion access mechanism (ECAM) for the PCI express proto-
col. For example, 1n some implementations, the configura-
tion space registers 312 may include extended configuration
space for PCI express parameters and capabilities.

FIG. 4 illustrates a block diagram showing components of
the software module 218, 1n one embodiment. The software
module 218 may include an owner identifier module 402, an
error processing module 404 and a reporting module 406.
Note that the block diagram as shown in FIG. 4 1s for
illustrative purposes only, and the software module 218 may
include more or fewer components than shown i FIG. 4
without deviating from the scope of the disclosed technolo-
g1es.

The owner 1dentifier module 402 may be configured to
identily an owner associated with the transaction. In some
instances, the owner 1dentifier module 402 may {first deter-
mine a current state of the device upon receiving an interrupt
from the hardware circuitry 210 before processing the
transaction to 1dentity the owner. For example, determining
the current state of the device may include reading one or
more registers i the device at a particular point 1n time. In
some 1nstances, the current state of the device may indicate
a specific state that may not allow further processing of the
transaction. For example, if the device state indicates a busy
state of the processor 212 then the processing of the trans-
action can be ignored or postponed to a later point 1n time
(e.g., when not busy). If the current state of the device allows
processing of the transaction at that point in time, the owner
identifier module 402 can proceed with processing the
interrupt to identily the function associated with the trans-
action. For example, 1n some instances, the imterrupt may be
generated by the hardware circuitry 210 upon detecting an
error associated with the transaction. The hardware circuitry
210 may have received a packet for the transaction from the
host computer 202. The packet may be the TLP 500 as
discussed with reference to FIG. SA. In some implementa-
tions, the owner 1dentifier module 402 may read the packet
header register associated with the transaction to parse
various fields of the packet header register, e.g., address,
format, type, requester 1D, completer ID, etc. The owner
identifier module 402 may determine an 1dentifier associated
with the owner based on the one or more fields of the packet
header register. As discussed with reference to FIG. 3, the
packet header register may be written by the hardware
circuitry 210 to log information associated with the packet.

In some implementations, the owner i1dentifier module
402 may 1dentily a function associated with the error based

US 10,360,092 Bl

11

on the one or more fields of the packet header register. For
example, the owner associated with the transaction can be a
VF or a PF. In one implementation, the owner 1dentifier
module 402 may first determine a type of the transaction
based on the format 506 and the type 508 fields. I the
transaction type indicates a completion TLP, the owner
identifier module 402 may use the requester 1D from the
packet header register to 1dentily the function. If the trans-
action type 1s not a completion TLP, the owner 1dentifier
module 402 may compare an address from the address field
of the packet header register with the BARs associated with
the PFs and the VFs implemented by the device 208 to
determine 11 the address lies within one of the BARs. If there
1s a match with one of the BARs, the PF or the VF associated
with the matched BAR may be identified as the owner of the
transaction. In some embodiments, an 1dentifier associated
with the owner can be represented using the bus/device/
function, BDF or B/D/F. In some implementations, the
soltware module 218 may also include an 1nterrupt service
routine or an interrupt handler to process the interrupt
received from the hardware circuitry 210.

The error processing module 404 may be configured to
determine attributes associated with the transaction that
caused the interrupt. For example, 1n some instances, the
cause of the iterrupt may be the error associated with the
transaction. The error processing module 404 may be further
configured to perform a second level of error classification.
For example, for PCI express protocol, the error processing
module 404 may further classify the error corresponding to
the transaction layer and the application layer. The error
processing module 404 may further determine the attributes
associated with the error based on the second level of error
classification. In some embodiments, the attributes may
include a type of the error and severity of the error. The type
of the error may include a correctable error or an uncorrect-
able error. Correctable errors may include error conditions
where the hardware can recover without any loss of infor-
mation. Some non-limiting examples ol the correctable
errors may include a bad TLP or a bad DLLP. For example,
the bad TLP may result from a bad LCRC (link cyclical
redundancy check) or an incorrect sequence number, and the
bad DLLP may result from a replay timer timeout or a
receiver error (e.g., framing error). In some embodiments,
the error processing module 404 may fix the correctable
error without reporting the error. Uncorrectable errors may
include error conditions that can impact functionality of the
host interface 220. The uncorrectable errors may further be
classified as fatal or nonfatal. The nonfatal uncorrectable
errors can cause a particular transaction to be unreliable but
the link may be otherwise fully operational. The fatal
uncorrectable errors can render the particular link and
related hardware unreliable. Some non-limiting examples of
the uncorrectable nonfatal errors may include poisoned TLP
received, unsupported request, completion timeout, com-
pleter abort, unexpected completion or ECRC failure. Some
non-limiting examples of the uncorrectable nonfatal errors
may include DLL protocol error, receiver overtlow, flow
control protocol error or malformed TLP.

The reporting module 406 may be configured to store the
attributes and to store an identifier associated with the
owner. For example, 1n some 1nstances, the 1dentifier asso-
ciated with the owner, may be used to identily a VF or a PF
associated with the transaction, e.g., using the bus/device/
function. In some 1mplementations, an i1dentifier associated
with a virtual function may be called a VF identifier and an
identifier associated with a physical function may be called
a PF identifier. Some embodiments can support baseline

10

15

20

25

30

35

40

45

50

55

60

65

12

error reporting capability and advanced error reporting
(AER) capability for a given function. In some embodi-
ments, storing the attributes and the 1dentifier for the given
function may include exposing the attributes and the i1den-
tifier 1n the PCI express capabilities or the AER capabilities
for the given function using a PCI express configuration
space. For example, 1n some mstances, the reporting module
406 may be configured to expose the attributes associated
with the error 1n both the PCI express capability and the
AER capability for the given function using the PCI express
configuration space.

Some embodiments of the disclosed technologies can
support a PCI express capability structure to identify a type
of the PCI express device function and also to provide access
to PCI express specific control and status registers. In some
embodiments, the reporting module 406 can populate rel-
cvant register fields 1n the PCI express capability structure to
expose the attributes associated with the error and the
function associated with the error. The PCI express capa-
bilities, device capabilities, device status and device control
registers required for all PCI express device functions
among other registers can be stored in the configuration
space 312 discussed with reference to FIG. 3, or as part of
the emulated configuration registers discussed 216 with
reference to FIG. 2. A PCI express capabilities register may
be used to identily a PCI express device function type and
associated capabilities. For example, a device/port type field
in the PCI capability register can indicate a specific type of
a given PCI express function, e.g., a PCI express endpoint,
legacy PCI express endpoint, root port of PCI express root
complex, etc. A device capability register may be used to
identify PCI express device function specific capabilities. A
device control register may be used to control PCI express
device specific parameters. For example, the device control
register may include respective reporting enable bits for
cach class of error (e.g., correctable, nonfatal or fatal) that
may be used for error reporting of the corresponding error
messages (e.g., ERR_COR, ERR_NONFATAL, ERR_FA-
TAL, unsupported request errors). A device status register
may be used to provide information about PCI express
device (function) specific parameters. An example device
status register 1s discussed with reference to FIG. 6.

FIG. 6 1llustrates an example device status register 600, 1n
one embodiment of the disclosed technologies.

The device status register 600 may provide status of
different types of errors detected by the hardware circuitry
210. The device status register 600 may 1nclude a correct-
able error detected 600q field, a nonfatal error detected 6005
field, a fatal error detected 600c¢ field, and an unsupported
request detected 6004 field, among other fields which are not
shown here for the purposes of simplicity. The correctable
error detected 600a field may 1ndicate status of the correct-
able errors detected. The nonfatal error detected 6005 field
may indicate status of the nonfatal error detected. The fatal
error detected 600c¢ field may indicate status of the fatal error
detected. The unsupported request detected 6004 field may
indicate that the function received an unsupported request.
In some implementations, the errors may be logged 1n the
device status register 600 regardless of whether error report-
ing 1s enabled or not for the respective error in the device
control register for a specific function.

Some embodiments of the disclosed technologies can
support advanced error reporting capability of PCI express
device functions for reporting error to the host computer
202. For example, referring back to FIG. 4, 1n some embodi-
ments, the reporting module 406 may also be configured to
store the function identifier and the attributes associated with

US 10,360,092 Bl

13

the transaction using the PCI express advanced error report-
ing extended capability. An example PCI express advanced
error reporting extended capability structure i1s shown 1n
FIG. 7.

FIG. 7 illustrates a PCI express advanced error reporting,
extended capability structure 700, 1n one embodiment of the
disclosed technologies. The PCI express advanced error
reporting extended capability structure 700 may include a
PCI express extended capability header 702, an uncorrect-
able error status register 704, an uncorrectable error mask
register 706, an uncorrectable error severity register 708, a
correctable error status register 710, a correctable error mask
register 712, an advanced error capabilities and control
register 714 and a header log register 716. Note that the PCI
express advanced error reporting extended capability struc-
ture 700 may include other registers which are not shown
here for the purposes of simplicity.

The PCI express extended capability header 702 may
include a PCI express extended capability identifier to
indicate the nature and format of the extended capability. In
some 1mplementations, an extended capability identifier 1n
the PCI express extended capability header 702 may be set
to “0001h” to indicate advanced error reporting capability.

The uncorrectable error status register 704 may indicate
error detection status of individual errors on a PCI Express
device function using respective status bits. An individual
error status bit that 1s set may indicate that a particular error
was detected. Some examples of the uncorrectable error
status bits may include poisoned TLP status, completion
timeout status, completer abort status, malformed TLP sta-
tus, receiver overtlow status, uncorrectable internal error
status, efc.

The uncorrectable error mask register 706 may be used to
control reporting of individual errors by the device function
to the host computer 202 via a PCI express error message.
The uncorrectable error mask register 706 may include a
mask bit per error bit of the uncorrectable error status
register 704. A masked error (1.e., respective bit set in the
uncorrectable error mask register 706) may not be reported
to the host computer 202 and may not be recorded in the
header log register 716.

The uncorrectable error severity register 708 can be
configured to control whether an individual error 1s reported
as a nonfatal error or fatal error. For device functions
implementing the AER capability, the uncorrectable error
severity register 708 can allow each uncorrectable error to
be programmed as fatal or nonfatal. For example, an error
can be reported as fatal when the corresponding error bit 1n
the uncorrectable error severity register 708 1s set. If the bit
1s clear, the corresponding error can be considered nontatal.

The correctable error status register 710 may be config-
ured to report error status of individual correctable error
sources on a PCI express device function. When an indi-
vidual error status bit 1s set, it may indicate that a particular
error occurred. Some examples of the correctable error
status bits may include receiver error status, bad TLP status,
bad DLLP status, corrected internal error status, etc.

The correctable error mask register 712 may be used to
control reporting of individual correctable errors by the
device function to the host computer 202 via a PCI express
error message. The correctable error mask register 712 may
include a mask bit per error bit of the correctable error status
register 710. A masked error (1.¢., respective bit set 1n the
correctable error mask register 712) may not be reported to
the host computer 202.

10

15

20

25

30

35

40

45

50

55

60

65

14

The advanced error capabilities and control register 714
may include controls for ECRC generation and checking and
multiple header recording among other fields.

The header log register 716 may contain the header for the
TLP corresponding to a detected error. In some embodi-
ments, the header log register 716 may expose some of the
information associated with the transaction that was stored
in the packet header register by the hardware circuitry 210
upon detecting an error.

Referring back to FIG. 4, in some embodiments, the
reporting module 406 may be configured to populate various
ficlds of the relevant AER capabilities in the PCI express
advanced error reporting extended capability structure 700
based on the attributes associated with the transaction, e.g.,
the error classification corresponding to the protocol layer,
error type and severity, for the given function. For example,
if the detected error 1s an “unsupported request error”, the
reporting module 406 may set an “unsupported request error
status” bit 1n the uncorrectable error status register 704 and
an “‘unsupported request error severity” bit 1n the uncorrect-
able error severity register 708 to indicate a type and severity
of the error associated with a VF or PF identified by the
owner 1dentifier module 402. In some embodiments, the PCI
express advanced error reporting extended capabaility struc-
ture 700 can be stored in the configuration space 312
discussed with reference to FIG. 3 or as part of the emulated
configuration registers discussed 216 with reference to FIG.
2. Thus, 1n different embodiments, exposing various attri-
butes associated with the transaction using the device soft-
ware/lirmware can provide a flexible approach as compared
to hardware only approach since software can be easily
upgraded for implementing additional VFs, different con-
figurations, feature upgrades, bug fixes, etc. In addition, the
embodiments of the disclosed technology can allow live
updates or configuration of various registers i the PCI
express capability structure (not shown) or the PCI express
advanced error reporting extended capability structure 700
by implementing the PCI express capabilities in software.
Furthermore, some embodiments can allow addition of new
error types 1 the AER extended capabilities without modi-
tying the device hardware. For example, the new error types
can be added to the reserved fields 1n the appropriate status
and seventy registers. Additionally, when a new PCI express
engineering change notice (ECN) 1s released; the embodi-
ments may be able to support the PCI express protocol to
provide hybrid report management without requiring modi-
fication of the device hardware.

In some embodiments, the reporting module 406 may also
be configured to report an error to the root complex or the
host processor 204 using an error message transaction. For
example, the reporting module 406 may provide the relevant
error information associated with the transaction to the
hardware circuitry 210 that can be used to generate the error
message transaction. For example, the relevant error infor-
mation may be obtained from the PCI express AER extended
capability structure 700, as discussed with reference to FIG.
7. An example message transaction 1s shown 1n FIG. 8A.

FIG. 8A 1illustrates a TLP header 800 for a message
transaction, 1 one embodiment. Referring back to FIG. 3,
the message transaction comprising the TLP header 800 may
be sent by the transaction interface manager 306 to the host
computer 202 via the host iterface 220. The TLP header
800 may include a message code 802 1n addition to the
format 506, type 508, length 510, requester ID 516 and the
tag 518, as discussed with reference to FIG. 5B. Note that
the DW2 and DW3 for the TLP header 800 may be reserved.

The requester 1D 516 field may include the requester’s bus

US 10,360,092 Bl

15

number, device number and the function number that can
uniquely 1dentity the requester. For example, the function
number in the requester 1D 516 may include the VF i1den-
tifier or the PF 1identifier identified by the owner i1dentifier
module 402 that can be used to identify the function asso-
ciated with the error. The message code 802 may also
identify an error type as shown i FIG. 8B.

FIG. 8B illustrates a table 804 showing different error
types corresponding to the message code 802, in one
embodiment.

The table 804 shows an error type 806 corresponding to
the message code 802. The error type 806 may correspond
to the severity of the detected error. For example, the
message code “0011 0000” may indicate that an “ERR_
COR” message 1s 1ssued upon detecting a correctable error
associated with a given function i1dentified by the requester

ID 516. The message code “0011 0001 may indicate that an
“ERR_NONFATAL” message 1s 1ssued upon detecting a
nontatal uncorrectable error associated with a given function
identified by the requester 1D 516. The message code “0011
0011”7 may indicate that an “ERR_FATAL” message 1is
1ssued upon detecting a fatal uncorrectable error associated
with a given function i1dentified by the requester ID 516. The
reporting module 406 may be configured to provide the
message code 802 based on the error type 806.

The host computer 202 may be configured to receive the
message transaction from the device 208 associated with the
error. In some 1nstances, the host computer 202 may asso-
ciate the error to a fault function associated with the hyper-
visor executing on the host processor 204. For example, the
fault function may correspond to the VF or the PF associated
with the transaction.

FIG. 9 1illustrates a method 900 for error reporting man-
agement using the hardware circuitry 210 and the software
module 218, 1n one embodiment.

In step 902, the hardware circuitry 210 may receive a
packet for a transaction from a host computer 202 via a host
interface 220. In some embodiments, the packet may include
the TLP 500 comprising the TLP header 502. The host
interface 220 may include a PCI express interface. Referring
back to FIG. 3, the TLP packet 300 may be receirved by the
transaction interface manager 306. The transaction may
include a memory ftransaction, an I/O transaction or a
configuration transaction.

In step 904, the hardware circuitry 210 may detect an
error associated with the transaction. Referring back to FIG.
3, the error detector 308 may detect an error associated with
the transaction and may perform a first level error classifi-
cation. For example, the error detector 308 may classify the
error corresponding to the PHY layer, DL layer, TL layer or
the MAC layer. In some embodiments, when the error 1s
detected, information from the TLP header 502 associated
with the transaction and the first level error classification
may be recorded in a packet header register.

In step 906, the hardware circuitry 210 may generate an
interrupt upon detecting the error associated with the trans-
action. Referring back to FIG. 3, the interrupt generator 310
may generate an interrupt upon detecting the error by the
error detector 308. The interrupt may be sent to the processor
212 for processing by the software module 218.

In step 908, the software module 218 may determine a
current state of the device. Referring back to FIG. 4, the
owner 1dentifier module 402 may determine a current state
of the device upon recerving the mterrupt from the hardware
circuitry 210. For example, determining the current state of
the device may include reading one or more registers in the
device at a particular point 1n time.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

In step 910, the software module 218 may identily a
function associated with the error based on the one or more
fields of the packet header and the current state of the device.
Referring back to FI1G. 4, the current state of the device may
indicate a specific state that may or may not allow error
processing. For example, if the device state indicates a busy
state of the processor 212 then the error processing can be
ignored or postponed to a later point in time (e.g., when not
busy). If the current state of the device allows error pro-
cessing at that point 1n time, the owner identifier module 402
can proceed with processing the error to 1dentity the func-
tion associated with the error. The owner 1dentifier module
402 may 1dentify the function by reading the packet header
register that may have recorded information associated with
the TLP header 502 for the transaction with the error. For
example, the owner identifier module 402 may read a
requester 1D and address fields of the packet header register
and compare with the BARs associated with different PFs
and VFs to 1dentify the PF or the VF associated with the
error. For example, 1n one instance, the address of the
transaction can be 0xF4000010 and the BARs associated
with different PFs and VFs may include [OxF1000000-
OxEF1200000], [0xF2000000-0xEF2200000], [0xF3000000-
0xF3100000] and [0xF4000000-0xF4100000]. The owner
identifier module 402 may compare the address of the
transaction with the BARs and determine that the function

associated with the transaction i1s the PF or the VF corre-
sponding to the BAR [0xF4000000-0xF4100000], since the

address (e.g., OxF4000010) lies within [0xF4000000-
0xEF4100000].

In step 912, the software module 218 may determine
attributes associated with the error. For example, the attri-
butes may include an error type or severity of the error.
Referring back to FIG. 4, the error processing module 404
may classity the error to be the correctable error type or the
uncorrectable error type. In some embodiments, the error
processing module 404 may fix the correctable error without
reporting the error. The error processing module 404 may
turther classity the uncorrectable error for severity as fatal or
nonfatal uncorrectable error. In some embodiments, the error
processing module 404 may classily the error based on the
protocol layer, e.g., PHY layer, TL layer, MAC layer, DL
layer.

In step 914, the software module 218 may store the
attributes and an 1dentifier associated with the function.
Referring back to FIG. 4, the reporting module 406 may log
the attributes of the error in the appropriate status register
based on the type and severnity of the detected error. For
example, with reference to FIG. 6, the detected error may be
logged 1n the device status register 600 for the functions
supporting the PCI express capabilities. In addition or alter-
natively, as discussed with reference to FIG. 7, the detected
error may be logged 1n the uncorrectable error status register
704 or the correctable error status register 710, as appropri-
ate, for the functions supporting the AER capabilities. Fur-
ther, severity of the uncorrectable error may be logged 1n the
uncorrectable error severity register 708.

In step 916, the hardware circuitry 210 may report the
attributes and the 1dentifier associated with the function 1n a
message to the host computer via the host interface. As
discussed with reference to FIG. 8A, a TLP message trans-
action comprising the TLP header 800 may be sent to the
host computer 202 via the host interface 220. The requester
ID 516 may include a VF identifier or the PF identifier to
identify the function associated with the error. The message
code 802 may indicate the appropriate error type 806 for the
detected error. In some 1nstances, the host computer 202

US 10,360,092 Bl

17

may associate the error to a fault function associated with the
hypervisor executing on the host processor 204.

Even though the embodiments have been discussed for
hybrid hardware and software reporting of the error attri-
butes, 1t will be noted that the embodiments can be used for
hybrid hardware and software reporting of other function-
alities, e.g., power management, without deviating from the
scope ol the disclosed technologies. For example, some
embodiments of the disclosed technologies can be used to
enable the device software to assist with classification of
power level states for each emulated function once the
device hardware implements transitions of actual hardware
states as 1nstructed by the firmware. Thus, the embodiments
can provide a more flexible approach for report management
by allowing live updates and ease of implementation with
the use of software as compared to hardware only approach.
In addition, this hybrid approach can be easily scaled to any
number of functions without modifying the hardware, thus
providing a cost effective solution.

FIG. 10 1llustrates an example of a network device 1000.
Functionality and/or several components of the network
device 1000 may be used without limitation with other
embodiments disclosed elsewhere 1n this disclosure, without
limitations. In some embodiments, the network device 1000
may utilize functionalities and/or several components of the
device 208. A network device 1000 may facilitate processing
ol packets and/or forwarding of packets from the network
device 1000 to another device. As referred to herein, a
“packet” or “network packet” may refer to a vaniable or fixed
unit of data. In some instances, a packet may include a
packet header and a packet payload. The packet header may
include information associated with the packet, such as the
source, destination, quality of service parameters, length,
protocol, routing labels, error correction information, etc. In
certain 1mplementations, one packet header may indicate
information associated with a series ol packets, such as a
burst transaction. In some implementations, the network
device 1000 may be the recipient and/or generator of pack-
ets. In some implementations, the network device 1000 may
modily the contents of the packet before forwarding the
packet to another device. The network device 1000 may be
a peripheral device coupled to another computer device, a
switch, a router or any other suitable device enabled for
receiving and forwarding packets.

In one example, the network device 1000 may include
processing logic 1002, a configuration module 1004, a
management module 1006, a bus interface module 1008,
memory 1010, and a network interface module 1012. These
modules may be hardware modules, software modules, or a
combination of hardware and software. In certain instances,
modules may be interchangeably used with components or
engines, without deviating from the scope of the disclosure.
The network device 1000 may include additional modules,
not 1illustrated here, such as components discussed with
respect to the nodes disclosed 1n FIG. 11. In some imple-
mentations, the network device 1000 may include fewer
modules. In some i1mplementations, one or more of the
modules may be combined into one module. One or more of
the modules may be 1n communication with each other over
a communication channel 1014. The communication chan-
nel 1014 may 1include one or more busses, meshes, matrices,
fabrics, a combination of these communication channels, or
some other suitable communication channel.

The processing logic 1002 may include application spe-
cific integrated circuits (ASICs), field programmable gate
arrays (FPGAs), systems-on-chip (SoCs), network process-
ing units (NPUs), processors configured to execute mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

18

tions or any other circuitry configured to pertorm logical
arithmetic and floating point operations. Examples of pro-
cessors that may be included 1n the processing logic 1002
may include processors developed by ARM®, MIPS®,
AMD®, Intel®, Qualcomm®, and the like. In certain imple-
mentations, processors may 1nclude multiple processing
cores, wherein each processing core may be configured to
execute 1nstructions idependently of the other processing
cores. Furthermore, 1n certain implementations, each pro-
Cessor or processing core may implement multiple process-
ing threads executing instructions on the same processor or
processing core, while maintaining logical separation
between the multiple processing threads. Such processing
threads executing on the processor or processing core may
be exposed to solftware as separate logical processors or
processing cores. In some 1mplementations, multiple pro-
CEessors, processing cores or processing threads executing on
the same core may share certain resources, such as for
example busses, level 1 (LL1) caches, and/or level 2 (L2)
caches. The instructions executed by the processing logic
1002 may be stored on a computer-readable storage
medium, for example, in the form of a computer program.
The computer-readable storage medium may be non-transi-
tory. In some cases, the computer-readable medium may be
part of the memory 1010. In some cases, mstructions from
the software module 218 may be stored 1n the memory 1010
as part of the computer-readable medium.

The memory 1010 may include either volatile or non-
volatile, or both volatile and non-volatile types of memory.
The memory 1010 may, for example, include random access
memory (RAM), read only memory (ROM), Electrically
Erasable Programmable Read-Only Memory (EEPROM),
flash memory, and/or some other suitable storage media. In
some cases, some or all of the memory 1010 may be internal
to the network device 1000, while 1n other cases some or all
of the memory may be external to the network device 1000.
The memory 1010 may store an operating system compris-
ing executable instructions that, when executed by the
processing logic 1002, provides the execution environment
for executing instructions providing networking functional-
ity for the network device 1000. The memory may also store
and maintain several data structures and routing tables for
facilitating the functionality of the network device 1000.

In some implementations, the configuration module 1004
may include one or more configuration registers. Configu-
ration registers may control the operations of the network
device 1000. In some 1mplementations, one or more bits 1n
the configuration register can represent certain capabilities
of the network device 1000. Configuration registers may be
programmed by instructions executing in the processing
logic 1002, and/or by an external enftity, such as a host
device, an operating system executing on a host device,
and/or a remote device. The configuration module 1004 may
further include hardware and/or software that control the
operations of the network device 1000.

In some 1mplementations, the management module 1006
may be configured to manage different components of the
network device 1000. In some cases, the management mod-
ule 1006 may configure one or more bits in one or more
configuration registers at power up, to enable or disable
certain capabilities of the network device 1000. In certain
implementations, the management module 1006 may use
processing resources ifrom the processing logic 1002. In
other implementations, the management module 1006 may
have processing logic similar to the processing logic 1002,
but segmented away or implemented on a different power
plane than the processing logic 1002.

US 10,360,092 Bl

19

The bus interface module 1008 may enable communica-
tion with external entities, such as a host device and/or other
components 1n a computing system, over an external com-
munication medium. The bus interface module 1008 may
include a physical interface for connecting to a cable, socket,
port, or other connection to the external communication
medium. The bus interface module 1008 may further include
hardware and/or software to manage incoming and outgoing,
transactions. The bus interface module 1008 may implement
a local bus protocol, such as Peripheral Component Inter-

connect (PCI) based protocols, Non-Volatile Memory
Express (NVMe), Advanced Host Controller Interface

(AHCI), Small Computer System Interface (SCSI), Seral
Attached SCSI (SAS), Serial AT Attachment (SATA), Par-
allel ATA (PATA), some other standard bus protocol, or a
proprietary bus protocol. The bus interface module 1008
may include the physical layer for any of these bus proto-
cols, icluding a connector, power management, and error
handling, among other things. In some 1implementations, the
network device 1000 may include multiple bus interface
modules for communicating with multiple external entities.
These multiple bus interface modules may implement the
same local bus protocol, different local bus protocols, or a
combination of the same and different bus protocols.

The network interface module 1012 may include hard-
ware and/or software for communicating with a network.
This network interface module 1012 may, for example,
include physical connectors or physical ports for wired
connection to a network, and/or antennas for wireless com-
munication to a network. The network imterface module
1012 may further include hardware and/or software config-
ured to implement a network protocol stack. The network
interface module 1012 may communicate with the network
using a network protocol, such as for example TCP/IP,
Infiniband, RoCE, Institute of FElectrical and Electronics
Engineers (IEEE) 802.11 wireless protocols, User Datagram
Protocol (UDP), Asynchronous Transfer Mode (ATM),
token ring, frame relay, High Level Data Link Control
(HDLC), Fiber Distributed Data Interface (FDDI), and/or
Point-to-Point Protocol (PPP), among others. In some
implementations, the network device 1000 may include
multiple network interface modules, each configured to
communicate with a different network. For example, 1n these
implementations, the network device 1000 may include a
network interface module for communicating with a wired
Ethernet network, a wireless 802.11 network, a cellular
network, an Infiniband network, etc.

The various components and modules of the network
device 1000, described above, may be implemented as
discrete components, as a System on a Chip (SoC), as an
ASIC, as an NPU, as an FPGA, or any combination thereof.
In some embodiments, the SoC or other component may be
communicatively coupled to another computing system to
provide various services such as trathic monitoring, tratlic
shaping, computing, etc. In some embodiments of the tech-
nology, the SoC or other component may include multiple
subsystems as disclosed with respect to FIG. 11.

FIG. 11 illustrates a network 1100, illustrating various
different types of network devices 1000 of FIG. 10, such as
nodes comprising the network device, switches and routers.
In certain embodiments, the network 1100 may be based on
a switched architecture with point-to-point links. As 1llus-
trated in FIG. 11, the network 1100 includes a plurality of
switches 1104a-11044d, which may be arranged 1n a network.
In some cases, the switches are arranged 1n a multi-layered
network, such as a Clos network. A network device 1000 that
filters and forwards packets between local area network

10

15

20

25

30

35

40

45

50

55

60

65

20

(LAN) segments may be referred to as a switch. Switches
generally operate at the data link layer (layer 2) and some-
times the network layer (layer 3) of the Open System
Interconnect (OSI) Reference Model and may support sev-
eral packet protocols. Switches 1104a-11044 may be con-
nected to a plurality of nodes 11024-1102/2 and provide
multiple paths between any two nodes.

The network 1100 may also include one or more network
devices 1000 for connection with other networks 1108, such
as other subnets, LANs, wide area networks (WANs), or the
Internet, and may be referred to as routers 1106. Routers use
headers and forwarding tables to determine the best path for
forwarding the packets, and use protocols such as internet
control message protocol (ICMP) to communicate with each
other and configure the best route between any two devices.

In some examples, network(s) 1100 may include any one
or a combination of many different types of networks, such
as cable networks, the Internet, wireless networks, cellular
networks and other private and/or public networks. Inter-
connected switches 1104a-11044 and router 1106, if present,
may be referred to as a switch fabric, a fabric, a network
tabric, or simply a network. In the context of a computer
network, terms “fabric” and “network™ may be used inter-
changeably herein.

Nodes 1102¢-1102/2 may be any combination of host
systems, processor nodes, storage subsystems, and I/O chas-
s1s that represent user devices, service provider computers or
third party computers.

User devices may include computing devices to access an
application 1132 (e.g., a web browser or mobile device
application). In some aspects, the application 1132 may be
hosted, managed, and/or provided by a computing resources
service or service provider. The application 1132 may allow
the user(s) to interact with the service provider computer(s)
to, for example, access web content (e.g., web pages, music,
video, etc.). The user device(s) may be a computing device
such as for example a mobile phone, a smart phone, a
personal digital assistant (PDA), a laptop computer, a net-
book computer, a desktop computer, a thin-client device, a
tablet computer, an electronic book (e-book) reader, a gam-
ing console, etc. In some examples, the user device(s) may
be 1n communication with the service provider computer(s)
via the other network(s) 1108. Additionally, the user
device(s) may be part of the distributed system managed by,
controlled by, or otherwise part of the service provider
computer(s) (e.g., a console device integrated with the
service provider computers).

The node(s) of FIG. 11 may also represent one or more
service provider computers. One or more service provider
computers may provide a native application that 1s config-
ured to run on the user devices, which user(s) may interact
with. The service provider computer(s) may, 1n some
examples, provide computing resources such as, but not
limited to, client entities, low latency data storage, durable
data storage, data access, management, virtualization, cloud-
based software solutions, electronic content performance
management, and so on. The service provider computer(s)
may also be operable to provide web hosting, databasing,
computer application development and/or implementation
platforms, combinations of the foregoing or the like to the
user(s). In some embodiments, the service provider com-
puter(s) may be provided as one or more virtual machines
implemented in a hosted computing environment. The
hosted computing environment may include one or more
rapidly provisioned and released computing resources.
These computing resources may include computing, net-
working and/or storage devices. A hosted computing envi-

US 10,360,092 Bl

21

ronment may also be referred to as a cloud computing
environment. The service provider computer(s) may include
one or more servers, perhaps arranged i1n a cluster, as a
server farm, or as individual servers not associated with one
another and may host the application 1132 and/or cloud-
based soltware services. These servers may be configured as
part of an integrated, distributed computing environment. In
some aspects, the service provider computer(s) may, addi-
tionally or alternatively, include computing devices such as
for example a mobile phone, a smart phone, a personal
digital assistant (PDA), a laptop computer, a desktop com-
puter, a netbook computer, a server computer, a thin-client
device, a tablet computer, a gaming console, etc. In some
instances, the service provider computer(s), may communi-
cate with one or more third party computers.

In one example configuration, the node(s) 11024-1102/
may 1include at least one memory 1118 and one or more
processing units (or processor(s) 1120). The processor(s)
1120 may be implemented in hardware, computer-execut-
able 1nstructions, firmware, or combinations thereof. Com-
puter-executable instruction or firmware implementations of
the processor(s) 1120 may include computer-executable or
machine-executable mstructions written in any suitable pro-
gramming language to perform the various functions
described.

In some 1nstances, the hardware processor(s) 1120 may be
a single core processor or a multi-core processor. A multi-
core processor may include multiple processing units within
the same processor. In some embodiments, the multi-core
processors may share certain resources, such as buses and
second or third level caches. In some 1nstances, each core 1n
a single or multi-core processor may also include multiple
executing logical processors (or executing threads). In such

a core (e.g., those with multiple logical processors), several
stages of the execution pipeline and also lower level caches
may also be shared.

The memory 1118 may store program instructions that are
loadable and executable on the processor(s) 1120, as well as
data generated during the execution of these programs.
Depending on the configuration and type of the node(s)
1102a-1102/, the memory 1118 may be volatile (such as
RAM) and/or non-volatile (such as ROM, flash memory,
etc.). The memory 1118 may include an operating system
1128, one or more data stores 1130, one or more application
programs 1132, one or more drivers 1134, and/or services
for implementing the features disclosed herein.

The operating system 1128 may support nodes 1102a-
1102/ basic functions, such as scheduling tasks, executing
applications, and/or controller peripheral devices. In some
implementations, a service provider computer may host one
or more virtual machines. In these implementations, each
virtual machine may be configured to execute i1ts own
operating system. Examples of operating systems include
Unix, Linux, Windows, Mac OS, 10S, Android, and the like.
The operating system 1128 may also be a proprietary
operating system.

The data stores 1130 may include permanent or transitory
data used and/or operated on by the operating system 1128,
application programs 1132, or drivers 1134. Examples of
such data include web pages, video data, audio data, images,
user data, and so on. The information 1n the data stores 1130
may, 1n some implementations, be provided over the net-
work(s) 1108 to user devices 1104. In some cases, the data
stores 1130 may additionally or alternatively include stored
application programs and/or drivers. Alternatively or addi-
tionally, the data stores 1130 may store standard and/or
proprietary software libraries, and/or standard and/or pro-

10

15

20

25

30

35

40

45

50

55

60

65

22

prietary application user interface (API) libraries. Informa-
tion stored 1n the data stores 1130 may be machine-readable
object code, source code, mterpreted code, or intermediate
code.

The drivers 1134 include programs that may provide
communication between components 1n a node. For
example, some drivers 1134 may provide communication
between the operating system 1128 and additional storage

1122, network device 1124, and/or 1/O device 1126. Alter-

natively or additionally, some drivers 1134 may provide
communication between application programs 1132 and the
operating system 1128, and/or application programs 1132
and peripheral devices accessible to the service provider
computer. In many cases, the drivers 1134 may include
drivers that provide well-understood functionality (e.g.,
printer drivers, display drivers, hard disk drivers, Solid State
Device drivers). In other cases, the drivers 1134 may provide
proprietary or specialized functionality.

The service provider computer(s) or servers may also
include additional storage 1122, which may include remov-
able storage and/or non-removable storage. The additional
storage 1122 may include magnetic storage, optical disks,
solid state disks, flash memory, and/or tape storage. The
additional storage 1122 may be housed in the same chassis
as the node(s) 1102q¢-1102/2 or may be in an external
enclosure. The memory 1118 and/or additional storage 1122
and their associated computer-readable media may provide
non-volatile storage of computer-readable instructions, data
structures, program modules, and other data for the com-
puting devices. In some implementations, the memory 1118
may include multiple different types of memory, such as
SRAM, DRAM, or ROM.

The memory 1118 and the additional storage 1122, both
removable and non-removable, are examples of computer-
readable storage media. For example, computer-readable
storage media may include volatile or non-volatile, remov-
able or non-removable media implemented 1n a method or
technology for storage of information, the information
including, for example, computer-readable mstructions, data
structures, program modules, or other data. The memory
1118 and the additional storage 1122 are examples of
computer storage media. Additional types of computer stor-

age media that may be present 1n the node(s) 1102a-1102/
may include, but are not limited to, PRAM, SRAM, DRAM,

RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, DVD or other optical storage, mag-
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, solid state drives, or some other
medium which can be used to store the desired information
and which can be accessed by the node(s) 1102a-1102/.
Computer-readable media also includes combinations of any
of the above media types, including multiple units of one
media type.

Alternatively or additionally, computer-readable commu-
nication media may include computer-readable instructions,
program modules or other data transmitted within a data
signal, such as a carrier wave or other transmission. How-
ever, as used herein, computer-readable storage media does
not include computer-readable communication media.

The node(s) 1102a-1102/ may also include 1/O device(s)
1126, such as a keyboard, a mouse, a pen, a voice input
device, a touch mput device, a display, speakers, a printer,
and the like. The node(s) 11024-1102/ may also include one
or more communication channels 1136. A communication
channel 1136 may provide a medium over which the various
components of the node(s) 1102¢-1102/ can communicate.

US 10,360,092 Bl

23

The communication channel or channels 1136 may take the
form of a bus, a ring, a switching fabric, or a network.
The node(s) 1102¢-1102/2 may also contain network
device(s) 1124 that allow the node(s) 1102a-1102/ to com-
municate with a stored database, another computing device
or server, user terminals and/or other devices on the
network(s) 1100. The network device(s) 1124 of FIG. 11

may 1nclude similar components discussed with reference to
the network device 1000 of FIG. 10.

In some implementations, the network device 1124 1s a
peripheral device, such as a PCl-based device. In these
implementations, the network device 1124 includes a PCI
interface for communicating with a host device. The term
“PCI” or “PCl-based” may be used to describe any protocol
in the PCI family of bus protocols, including the original
PCI standard, PCI-X, Accelerated Graphics Port (AGP), and
PCI-Express (PCle) or any other improvement or derived
protocols that are based on the PCI protocols discussed
herein. The PCI-based protocols are standard bus protocols
for connecting devices, such as a local peripheral device to
a host device. A standard bus protocol 1s a data transfer
protocol for which a specification has been defined and
adopted by various manufacturers. Manufacturers ensure
that compliant devices are compatible with computing sys-
tems 1implementing the bus protocol, and vice versa. As used
herein, PCI-based devices also include devices that commu-
nicate using Non-Volatile Memory Express (NVMe). NVMe
1s a device interface specification for accessing non-volatile
storage media attached to a computing system using PCle.
For example, the bus interface module 1008 may implement
NVMe, and the network device 1124 may be connected to
a computing system using a PCle mterface.

A PCl-based device may include one or more functions.
A “Tunction” describes operations that may be provided by
the network device 1124. Examples of functions include
mass storage controllers, network controllers, display con-
trollers, memory controllers, serial bus controllers, wireless
controllers, and encryption and decryption controllers,
among others. In some cases, a PCl-based device may
include more than one function. For example, a PCl-based
device may provide a mass storage controller and a network
adapter. As another example, a PCI-based device may pro-
vide two storage controllers, to control two ditflerent storage
resources. In some implementations, a PCI-based device
may have up to eight functions.

In some implementations, the network device 1124 may
include single-root 1/0 virtualization (SR-IOV). SR-IOV 1s
an extended capability that may be included 1n a PCl-based
device. SR-IOV allows a physical resource (e.g., a single
network interface controller) to appear as multiple resources
(e.g., sixty-four network interface controllers). Thus, a PCI-
based device providing a certain functionality (e.g., a net-
work interface controller) may appear to a device making,
use of the PCI-based device to be multiple devices providing,
the same functionality. The functions of an SR-IOV-capable
storage adapter device may be classified as physical func-
tions (PFs) or virtual functions (VFs). Physical functions are
tully featured functions of the device that can be discovered,
managed, and manipulated. Physical functions have con-
figuration resources that can be used to configure or control
the storage adapter device. Physical functions include the
same configuration address space and memory address space
that a non-virtualized device would have. A physical func-
tion may have a number of virtual functions associated with
it. Virtual functions are similar to physical functions, but are
light-weight functions that may generally lack configuration
resources, and are generally controlled by the configuration

10

15

20

25

30

35

40

45

50

55

60

65

24

of their underlying physical functions. Each of the physical
functions and/or virtual functions may be assigned to a
respective thread of execution (such as for example, a virtual
machine) running on a host device.

The modules described herein may be software modules,
hardware modules or a suitable combination thereof. If the
modules are software modules, the modules can be embod-
ied on a non-transitory computer readable medium and
processed by a processor in any of the computer systems
described herein. It should be noted that the described
processes and architectures can be performed either in
real-time or 1n an asynchronous mode prior to any user
interaction. The modules may be configured in the manner
suggested 1 FIG. 10, FIG. 11, and/or functions described
herein can be provided by one or more modules that exist as
separate modules and/or module functions described herein
can be spread over multiple modules.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain 1llustrated embodiments thereol are shown in the
drawings and have been described above 1n detail. It should
be understood, however, that there 1s no intention to limait the
disclosure to the specific form or forms disclosed, but on the
contrary, the mtention 1s to cover all modifications, alterna-
tive constructions, and equivalents falling within the spirt
and scope of the disclosure, as defined in the appended
claims.

The use of the terms “a” and “an” and *“‘the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially 1 the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including,”
and “containing’” are to be construed as open-ended terms
(1.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “connected” 1s to be construed as
partly or wholly contained within, attached to, or joined
together, even 11 there 1s something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein and each separate value 1s incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed 1n any suitable
order unless otherwise indicated herein or otherwise clearly
contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better 1lluminate embodiments of the
disclosure and does not pose a limitation on the scope of the
disclosure unless otherwise claimed. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice of the disclosure.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s intended to
be understood within the context as used in general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

US 10,360,092 Bl

25

Various embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the disclosure. Variations of those embodiments
may become apparent to those of ordinary skill in the art
upon reading the foregoing description. The inventors
expect skilled artisans to employ such variations as appro-
priate and the inventors intend for the disclosure to be
practiced otherwise than as specifically described herein.
Accordingly, this disclosure includes all modifications and
equivalents of the subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination of the above-described elements 1n all
possible variations thereof 1s encompassed by the disclosure
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

What 1s claimed 1s:

1. A device, comprising:

hardware circuitry, the hardware circuitry including:

a transaction 1nterface manager configured to receive a
packet for a transaction, the packet received via a
host interface from a host computer communica-
tively coupled to the device, the packet comprising a
packet header comprising one or more fields;

an error detector configured to detect an error associ-
ated with the transaction, wherein the error 1s
detected based on the received packet; and

an interrupt generator configured to generate an inter-
rupt upon detecting the error;

memory storing instructions or data that, when read by the

device, implement an emulated configuration register

in the memory, the emulated configuration register
emulating a hardware configuration register and being

reconiigurable to add or remove capabilities for a

function associated with an address space of the emu-

lated configuration register; and

a processor coupled to the hardware circuitry, the proces-

sor configured to execute instructions stored in the

memory that cause the processor to, 1 response to
receiving the mterrupt:

determine a current state of the device;

determine, based on the one or more fields of the packet
header and the current state of the device, that the
transaction 1s directed to the address space of the
emulated configuration register;

identify, based on the determining that the transaction
1s directed to the address space of the emulated
configuration register, the function as being associ-
ated with the error;

determine attributes associated with the error; and

store, 1n a location accessible to the transaction inter-
face manager, the attributes and an i1dentifier asso-
ciated with the function,

wherein the transaction interface manager 1s further con-

figured to report the attributes and the 1dentifier asso-

ciated with the function in a message to the host
computer via the host interface.

2. The device of claim 1, wherein the host interface
includes a peripheral component interconnect (PCI) express
interface, and wherein the function 1s a physical function or
a virtual function mapped to a PCI express configuration
space.

3. The device of claim 1, wherein determining the current
state of the device includes reading one or more registers 1n
the device at a point 1n time, and wherein the instructions
turther cause the processor to postpone the identifying of the
function associated with the error 1f the current state of the
device indicates a specific state.

10

15

20

25

30

35

40

45

50

55

60

65

26

4. A device, comprising:
hardware circuitry configured to generate an interrupt for
a transaction received from a host computer, the host
computer coupled to the device via a host interface,
wherein the interrupt 1s generated based on detection,
by the hardware circuitry, of an error on a packet for the
transaction;
memory storing instructions or data that, when read by the
device, implement an emulated configuration register
in the memory, the emulated configuration register
emulating a hardware configuration register and being
reconfigurable to add or remove capabilities for a
function associated with an address space of the emu-
lated configuration register;
a processor configured to execute instructions stored in
the memory, wherein the instructions when executed
cause the processor to, 1n response to receiving the
interrupt:
determine attributes associated with the transaction that
caused the iterrupt;

determine, based on information from the packet, that
the transaction 1s directed to the address space of the
emulated configuration register;

identily, based on the determining that the transaction
1s directed to the address space of the emulated
configuration register, the function as being an owner
associated with the transaction; and

store, 1n a location accessible to the hardware circuitry,
the attributes and an identifier associated with the
OWner,

wherein the hardware circuitry i1s further configured to
report the attributes and the identifier associated with
the owner to the host computer via the host interface.

5. The device of claim 4, wherein the attributes associated
with the transaction are associated with an error, and
wherein the attributes include a type of the error and a
severity of the error.

6. The device of claim 5, wherein the transaction com-
prises a communication according to a multi-layered com-
munication protocol, wherein the hardware circuitry 1s fur-
ther configured to classify the error as corresponding to a
particular layer of the multi-layered communication proto-
col, and wherein the attributes determined by the processor
include a further classification of the error based on the
particular layer.

7. The device of claim 5, wherein the host computer
associates the error to a fault function associated with a
hypervisor executing on the host computer.

8. The device of claim 5, wherein the type of the error
includes a correctable error or an uncorrectable error.

9. The device of claim 8, wherein the severity of the error
includes a nonfatal uncorrectable error or a fatal uncorrect-
able error.

10. The device of claim 4, wherein the host interface
includes a peripheral component interconnect (PCI) express
interface, and wherein the owner 1s a physical function or a
virtual function.

11. The device of claim 10, wherein the physical function
or the virtual function 1s an addressable entity in a PCI

express configuration space, and wherein the PCI express
configuration space includes the emulated configuration
register.

12. The device of claim 11, wherein the PCI express
configuration space includes one or more hardware configu-
ration registers.

US 10,360,092 Bl

27

13. The device of claim 10, wherein the transaction
includes a transaction layer packet (TLP) comprising a TLP
header, wherein the TLP header includes a plurality of fields.

14. The device of claim 13, wherein the plurality of fields
includes a requester 1dentifier and an address associated with
the transaction, and wherein 1dentifying the owner 1s based
on value of the requester identifier and the address associ-
ated with the transaction.

15. The device of claim 13, wherein the hardware cir-
cuitry reports the attributes and the 1dentifier associated with
the owner to the host computer 1n a TLP message.

16. The device of claim 10, wherein storing the attributes
and the identifier associated with the owner includes expos-
ing the attributes and the identifier associated with the owner
in advanced error reporting (AER) capabilities for a given
owner using a PCI express configuration space.

17. The device of claim 10, wherein storing the attributes
and the identifier associated with the owner includes expos-

ing the attributes and the 1dentifier associated with the owner
in PCI express capabilities for a given owner using a PCI
express configuration space.

18. The device of claim 4, wherein the device 1s a network
interface card.

19. The device of claim 4, wherein the device 1s a storage
device.

20. A computer-implemented method comprising:

receiving, by a processor on a device, an mterrupt from

hardware circuitry on the device, wherein the interrupt

10

15

20

25

1s generated by the hardware circuitry upon detecting 30

an error on a packet for a transaction, the packet
received via a host interface from a host computer

28

communicatively coupled to the device, the packet
comprising a packet header;
executing, by the processor, instructions stored 1n
memory of the device, the instructions causing the
processor to generate an emulated configuration regis-
ter 1n the memory, the emulated configuration register
emulating a hardware configuration register and being
reconfigurable to add or remove capabilities for a
function associated with an address space of the emu-
lated configuration register;
wherein the instructions further cause the processor to, 1n
response to the receiving of the interrupt, perform
processing comprising:
determining a current state of the device;
determining, based on the packet header and the current
state of the device, that the transaction 1s directed to
the address space of the emulated configuration
register;
identifying, based on the determining that the transac-
tion 1s directed to the address space of the emulated
configuration register, the function as being associ-
ated with the error;
determining attributes associated with the error; and
storing, 1n a location accessible to the hardware cir-
cuitry, the attributes and an 1dentifier associated with
the function, wherein the hardware circuitry reports
the attributes and the identifier associated with the
function to the host computer via the host iterface.
21. The computer-implemented method of claim 20,
wherein the attributes associated with the error include a
type of the error and a severity of the error.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

