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(57) ABSTRACT

Various embodiments provide for generation of a clock tree
for a circuit design using a mix of a set of builers and a set
of inverters. Some embodiments balance use of butlers and
inverters such that the generated clock tree leverages bullers
to lower driver count and clock tree, and leverages inverters
for lower power usage and duty cycles.
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SYSTEMS AND METHODS FOR CLOCK
TREE GENERATION WITH BUFFERS AND
INVERTERS

TECHNICAL FIELD

Embodiments described herein relate to circuit design
and, more particularly, to systems, methods, devices, and

instructions for generating a clock tree for a circuit design,
such as an itegrated circuit (IC).

BACKGROUND

Electronic design automation (EDA) software systems
commonly perform generation of a clock tree that uses a
branching network of fan-out buflers or fan-out inverters to
distribute a clock signal from a root clock signal source to
a set of clock sinks within a circuit design. The clock sinks
can comprise devices 1n the circuit design to be clocked by
a clock signal. A clock tree can vary 1n the number of builers
or mnverters to fan-out and deliver a clock signal to clock
sinks, and generally depends on the number of clock sinks
that need to receive the clock signal.

After mitially establishing positions of fan-out builers or
tan-out mverters and routing signal paths between them and
clock sinks, a conventional clock tree synthesis (CTS) tool
of an EDA software system can estimate the path delays
from clock tree root to all clock sinks and then insert
additional buflers or inverters into various branches of clock
tree as needed to reduce variations in path delays to the clock
sinks, thereby balancing the clock tree.

e

BRIEF DESCRIPTION OF THE DRAWINGS

Various ones of the appended drawings merely 1llustrate
example embodiments of the present disclosure and should
not be considered as limiting 1ts scope.

FIG. 1 1s a diagram 1llustrating an example design process
flow for generating a clock tree with buflers and inverters,
according to some embodiments.

FIGS. 2-5 are flowcharts illustrating example methods for
generating a clock tree with buflers and inverters, according
to some embodiments.

FIGS. 6-8 are diagrams illustrating example transforma-
tions that may be applied when generating a clock ftree,
according to some embodiments.

FIG. 9 1s a block diagram illustrating an example of a
software architecture that may be operating on an electronic
design automation (EDA) computing device and may be
used with methods for generating a clock tree with mixed
builers and inverters for a circuit design, according to some
embodiments.

FIG. 10 1s a diagram representing a machine 1n the form
of a computer system within which a set of 1nstructions are
executed, causing the machine to perform any one or more
of the methods discussed herein, according to some example
embodiments.

DETAILED DESCRIPTION

Clock tree design 1s a major step 1n circuit (e.g., integrated
circuit) physical design, as 1t can significantly aflect the
performance and power consumption of the circuit design.
To address complexity in clock tree synthesis (CTS), tradi-
tionally only 1inverters or only buflers are used for clock tree
generation. However, both these choices are on the extreme
side. The conventional clock tree generation using only
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2

inverters or only bullers 1s usually based on a user’s pret-
erence. Traditionally, the assumption has been that using
only 1mverters improve power consumption and duty cycles
of the clock tree, while using only buflers permits the clock
tree to have lower driver count and lower number of clock
tree levels. However, these assumptions are not accurate in
every situation. For instance, with respect to different librar-
ies and different slew levels, using buflers to generate
portions of a clock tree can result in better (e.g., lower)
power usage by the clock tree than using inverters. Addi-
tionally, in some instances, lowering driver count and clock
tree levels by using buflers may do so at the expense of
generating a clock tree solution that uses more power than
using 1nverters. As such, bufler-only clock trees and
inverter-only clock trees represent extreme solutions for
clock tree generation that fail to leverage benefits of difierent
driver types.

Various embodiments described herein generate a clock
tree of a circuit design using a mix of inverters and bufler to
exploit the benefits of both approaches (builers and invert-
ers) 1n a balanced manner. Clock tree generation, using a mix
of bufers and inverters as described herein, can lead to a
clock tree with improved quality of result (QoR) over
conventionally generated clock trees. Clock tree generation
according to an embodiment may achieve lower power
consumption, decreased driver count, reduced clock tree
levels, or some combination thereof, over conventionally
generated clock trees. Additionally, the reduction 1n driver
count and reduction 1n clock tree levels can result in less
circuit area being used by the generated clock tree.

An embodiment may utilize one of several approaches to
generating a clock tree of a circuit design. According to one
approach, any new driver created during clock tree genera-
tion (e.g., build up) may be selected from one of a bufler or
an inverter based on performance (e.g., slew, latency, power
consumption, etc.) of a resulting clock tree. This approach
takes a power-aware, mixed buflers and 1nverters, approach
to generating a clock tree.

According to another example approach, a bufler-only
clock tree may be generated and then, 1n a post-processing
operation, one or more portions of the bufler-only clock tree
may be transformed to swap buflers with inverters to
improve performance (e.g., power consumption) of a trans-
formed clock tree. According to vet another approach, an
iverter-only clock tree may be generated and then, 1n a
post-processing operation, one or more portions of the
inverter-only clock tree may be transformed to swap invert-
ers with buflers to improve performance (e.g., power con-
sumption) of a transformed clock tree. These last two
approaches can utilize a post-processing operation to swap
driver types 1in order to improve power consumption by the
generated clock tree.

As used herein, a driver of a clock tree can include,
without limitation, a bufler or an inverter. Though various
embodiments disclosed heremn may be described with
respect to buflers and inverters, other embodiments may
consider different or additional driver types during genera-
tion of a clock tree.

Reference will now be made in detail to embodiments of
the present disclosure, examples of which are illustrated in
the appended drawings. The present disclosure may, how-
ever, be embodied in many different forms and should not be
construed as being limited to the embodiments set forth
herein.

FIG. 1 1s a diagram 1illustrating an example design process
flow 100 for generating a clock tree with buflers and
inverters, according to some embodiments. As shown, the
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design process flow 100 includes a design phase 110, a
device fabrication phase 120, a design verification phase
130, and a device verfication phase 140. The design phase
110 involves an 1nitial design mput 112 operation where the
basic elements and functionality of a device are determined,
as well as revisions based on various analyses and optimi-
zation of a circuit design. This design input 112 operation 1s
where block instances are used 1n the circuit design and any
additional circuitry for the design around the blocks 1is
selected. The initial strategy, tactics, and context for the
device to be created are also generated 1n the design mput
112 operation, depending on the particular design algorithm
to be used.

In some embodiments, following an 1mtial selection of
design values in the design mput 112 operation, routing,
timing analysis, and optimization are performed in a routing
and optimization 114 operation, along with any other auto-
mated design processes. While the design process tlow 100
shows optimization 114 occurring prior to a layout istance
116, routing, timing analysis, and optimization 114 may be
performed at any time to verily operation of a circuit design.
For instance, 1n various embodiments, timing analysis 1n a
circuit design may be performed prior to routing of connec-
tions 1n the circuit design, after routing, during register
transier level (RTL) operations, or as part of a signoil 118,
as described below.

As shown, the routing and optimization 114 operation
includes a clock tree synthesis (CTS) 115 operation, which
may be performed 1n accordance with various embodiments
described herein. In particular, the CTS 115 operation can
generate a clock tree that delivers a clock signal from a clock
tree root, which comprises a clock source of a circuit design,
to a plurality of clock tree leal nodes, which comprises a
plurality of clock tree sinks within the circuit design.
According to various embodiments, the CTS 115 operation
can use different drivers (e.g., bullers or inverters) at various
branches of the generated clock tree, and can balance mixed
usage of different drivers, based on satisfaction of a set of
clock tree design constraints, which can include slew,
latency, and power consumption by the generated clock tree.
As a result, various embodiments can determine the position
of different drivers, within a hierarchy of the generated clock
tree, for fanning out a clock signal from a clock source to
clock sinks, such as flip-tlops and other clocked devices with
the circuit design.

After design iputs are used in the design mput 112
operation to generate a circuit layout, and any of the routing
and optimization 114 operations are performed, a layout 1s
generated in the layout instance 116. The layout describes
the physical layout dimensions of the device that match the
design inputs. Prior to this layout being provided to a
tabrication 122 operation, the signoil 118 1s performed on
the circuit design defined by the layout.

After signoil verification by the signofl 118, a verified
version of the layout 1s used in the fabrication 122 operation
to generate a device, or additional testing and design updates
may be performed using designer inputs or automated
updates based on design simulation 132 operations or
extraction, 3D modeling, and analysis 144 operations. Once
the device 1s generated, the device can be tested as part of
device test 142 operations, and layout modifications gener-
ated based on actual device performance.

As described 1n more detail below, a design update 136
from the design simulation 132; a design update 146 from
the device test 142 or the extraction, 3D modeling, and
analysis 144 operations; or the design mput 112 operation
may occur after the itial layout instance 116 1s generated.
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In various embodiments, whenever design inputs are used to
update or change an aspect of a circuit design, a timing
analysis and the routing and optimization 114 operation may
be performed.

FIGS. 2-5 are flowcharts 1llustrating example methods for
generating a clock tree with buflers and inverters, according
to some embodiments. It will be understood that example
methods described herein may be performed by a device,
such as a computing device executing instructions of an
EDA software system, in accordance with some embodi-
ments. Additionally, example methods described herein may
be implemented 1n the form of executable 1nstructions stored
on a computer-readable medium or in the form of electronic
circuitry. For imstance, the operations of a method 200 of
FIG. 2 may be represented by executable instructions that,
when executed by a processor of a computing device, cause
the computing device to perform the method 200. Depend-
ing on the embodiment, an operation of an example method
described herein may be repeated in different ways or
involve intervening operations not shown. Though the
operations ol example methods may be depicted and
described 1n a certain order, the order 1n which the opera-
tions are performed may vary among embodiments, includ-
ing performing certain operations in parallel.

Referring now to FIG. 2, the flowchart illustrates the
example method 200 for generating a clock tree for a circuit
design, according to some embodiments. For some embodi-
ments, the method 200 1s performed as part of a routing
processing applied to a circuit design (e.g., by an EDA
solftware system). Additionally, the method 200 may be
performed after a determination that an option for builer-
only clock tree generation or an option for inverter-only
clock tree generation (e.g., in the EDA software system) 1s
not enabled. An operation of the method 200 (or another
method described herein) may be performed by a hardware
processor (e.g., central processing unit or graphics process-
ing unit) of a computing device (e.g., desktop, server, etc.).
According to some embodiments, the method 200 1nvolves
selecting between driver types when creating new drivers
during clock tree generation.

The method 200 as illustrated begins with operation 202
receiving a request to generate a clock tree for a circuit
design. According to various embodiments, the clock tree to
be generated will include a bottom leaf level, comprising a
plurality of clock sinks of the circuit design, and include a
top root level comprising a clock signal source of the circuit
design. As noted herein, a clock sink can include a clocked
device of the circuit design that 1s to receive a clock signal
from the clock signal via the clock tree.

The method 200 continues with operation 204 responding,
to the request of operation 202 by generating the clock tree,
from the bottom leatf level of the clock tree to the top root
level of the clock tree (e.g., from the bottom up) by creating
a new driver at a position 1n the clock tree by operations
206-212, as described below. For some embodiments, opera-
tions 206-212 1s performed for each new driver created
during generation of the clock tree by operation 204. As
noted herein, the new driver may include, without limitation,
a bufller or an mverter. The clock source 1s at the top root
level and the clock sinks are at the bottom leaf level, or both
may be identified prior to, or as part of, operation 204.

Within operation 204, the method 200 continues with
operation 206 generating a first node clustering by clustering
a first set of nodes of the clock tree, at a particular level of
the clock tree, under a new buller created at the position in
the clock tree where the new driver i1s being created. The
position of the new buller may be a tree level, i the clock
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tree hierarchy, that 1s above and adjacent to the particular
level. The first node clustering may be generated 1n a first
temporary, intermediate clock tree that will be subsequently
evaluated, by operation 210, against a set of clock tree
design constraints.

Within operation 204, the method 200 continues with
operation 208 generating a second node clustering by clus-
tering a second set of nodes of the clock tree, at the particular
level of the clock tree, under a new bufler created at the
position in the clock tree where the new driver 1s being
created. The particular level of the second set of nodes and
the position of the new inverter may be the same as those of
operation 204. Accordingly, the position of the new buller
may be a tree level, 1n the clock tree hierarchy, that 1s above
and adjacent to the particular level. The second node clus-
tering may be generated 1n a second temporary, intermediate
clock tree that will be subsequently evaluated, by operation
210, against the set of clock tree design constraints.

Within operation 204, the method 200 continues with
operation 210 determiming whether the clock tree according
to the first node clustering or the clock tree according to the
second node clustering satisfies a set of clock tree design
constraints. The set of clock tree design constraints can
include, without limitation, slew within the clock tree and a
set of latencies within the clock tree.

Within operation 204, the method 200 continues with
operation 212 generating the clock tree according to one of
the first node clustering or the second node clustering based
on the determination by operation 210. In particular, 1n
response to operation 210 determining that only the clock
tree according to the first node clustering satisfies the set of
clock tree design constraints, operation 212 may generate
the clock tree according to the first node clustering. Alter-
natively, 1 response to operation 210 determining that only
the clock tree according to the second node clustering
satisiies the set of clock tree design constraints, operation
212 may generate the clock tree according to the second
node clustering.

Additionally, operation 210 may determine that both the
clock tree according to the first node clustering and the clock
tree according to the second node clustering satisiy the set
of clock tree design constraints. In such 1nstances, operation
212 may determine which one of the first node clustering or
the second node clustering will cause lower power usage by
the clock tree. In response to operation 212 determining that
the first node clustering will provide lower power usage by
the clock tree, operation 212 may generate the clock tree
according to the first node clustering. Otherwise, 1n response
to operation 212 determining that the second node clustering,
will provide lower power usage by the clock tree, operation
212 may generate the clock tree according to the second
node clustering. The generated clock tree may be stored to
memory, and one or more subsequent operations may build
upon the clock tree as generated by operation 212. Accord-
ingly, the generated clock tree by operation 212 may only
represent a portion of the overall clock tree to be generated.

Referring now to FIG. 3, the flowchart illustrates the
example method 300 for generating a clock tree for a circuit
design, according to some embodiments. Like the method
200 of FIG. 2, the method 300 of FIG. 3 may be performed
as part of a routing processing applied to a circuit design.
Additionally, the method 300 may be performed after a
determination that an option for bufler-only clock tree
generation or an option for inverter-only clock tree genera-
tion (e.g., in the EDA software system) 1s not enabled. An
operation of the method 300 may be performed by a hard-
ware processor. According to some embodiments, the
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method 300 involves selecting between driver types when
creating new drivers during clock tree generation.

The method 300 as illustrated begins with operation 302
determining whether different driver types (e.g., inverters or
buflers) can be used in clock tree generation. For instance,
operation 302 may review a set of settings, within an EDA
soltware system that 1s performing method 300, to deter-
mine whether or not an option for bufler-only clock tree
generation or an option for inverter-only clock tree genera-
tion 1s enabled. As shown, 1f operation 302 determines that
different driver types can be used in the clock generation, the
method 300 proceeds to operation 304. If operation 302
determines otherwise, the method 300 proceeds to the end of
the method 300, which 1s represented by operation 314.

For some embodiments, operations 304-312 are per-
formed when creating a new dniver 1n the clock tree while
building the clock tree from the bottom up, from the clock
sinks at the bottom leaf level to the clock source at the top
root level. Accordingly, when a new driver 1s to be created
at a position within the clock tree, at operation 304, a node
clustering solution is created at the position for each driver
type available. For example, where the driver types include
an inverter or a buller, operation 304 may create one node
clustering solution at the position using inverters and
another node clustering solution at the position using bui-
fers.

From operation 304, the method 300 continues to opera-
tion 306, where each node clustering solution created at
operation 304 1s checked against a set of clock tree design
constraints. As shown, this includes operation 306 checking
cach node clustering solution for slew (operation 316) and
checking each node clustering solution for a set of latencies
(operation 318).

From operation 306, the method 300 continues with
operation 308 determining whether one node clustering
solution satisfies the set of clock tree design constraints. If
no, the method 300 proceeds to operation 310, where the
node clustering solution that results in the lowest power
consumption 1s selected for the clock tree. If yes, the method
300 continues with operation 312 selecting the only node
clustering solution to satisty the set of clock tree constraints.
After operation 310 or operation 312, the method 300
continues to operation 314, which represents the end of the
method 300.

Referring now to FIG. 4, the flowchart illustrates the
example method 400 for generating a clock tree for a circuit
design, according to some embodiments. Like the method
200 of FIG. 2, the method 400 may be performed as part of
a routing processing applied to a circuit design. An operation
of the method 400 may be performed by a hardware pro-
cessor. According to some embodiments, the method 400
involves transforming, or otherwise reconfiguring, at least a
portion of a clock tree that was generated using only one
type of driver (e.g., only buflers or only inverters).

The method 400 as illustrated begins with operation 402
generating a clock tree for a circuit design using a plurality
of drivers of a first driver type. For instance, operation 402
may produce an inverter-only clock tree, or a builer-only
clock tree. Additionally, operation 402 may generate the
clock tree from the bottom up.

The method 400 continues with operation 404 transiorm-
ing the clock tree generated by operation 402 and doing so
from the bottom leaf level to the top root level of the clock
tree. In particular, operation 404 includes operations 406-
412, which are performed for each particular node 1n the
clock tree, starting from the bottom leaf level of the clock
tree to the top root level of the clock tree.
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Within operation 404, operation 406 determine a set of
available transforms, for the current particular node, that
convert at least a portion of the clock tree from using a set
of drivers of the first driver type to a set of drivers of a
second drniver type. For some embodiments, the first dniver
type comprises a type of bufler and the second dniver type
comprises a type of mverter. Alternatively, for some embodi-
ments, the first driver type comprises a type of inverter and
the second driver type comprises a type of builer.

Transformations included by the set of available trans-
forms may vary between embodiments. For istance, the set
of available transforms may include a transform that
involves: converting a set of bullers to a set of inverters by
converting each bufler 1n the set of buflers to an 1nverter,
where each buller in the set of buflers 1s a child of the current
particular node; and inserting a new inverter between the
current particular node and the set of inverters. With respect
to the current particular node being processed by operation
404, this transform may further involve a preliminary opera-
tion of 1identifying a set of bullers where each bufler in the
set of bullers 1s a child of the current particular node. An
example of such a transform 1s illustrated by transformation
700 of FIG. 7, which 1s later described herein 1n greater
detaul.

In another instance, the set of available transforms may
include a transform that involves: converting a set of builers
to a set of 1inverters by converting each bufler in the set of
buflers to an inverter, where the set of buflers comprises a
parent builer and a set of child buflers that are children of the
parent bufler, and where the parent bufler 1s a child of the
current particular node. With respect to the current particular
node being processed by operation 404, this transform may
turther involve a preliminary operation of identifying a set
of buflers comprising a parent bufler and a set of child
buflers that are chuldren of the parent builer, and where the
parent bufler 1s a child of the current particular node. An
example of such a transform 1s illustrated by transformation
702 of FIG. 7, which 1s later described herein 1n greater
detaul.

In another instance, the set of available transforms may
include a transform that involves: converting a set of imvert-
ers to a set of buflers by converting each inverter in the set
of inverters to a bufler, where each inverter in the set of
inverters 1s a child of a parent inverter, and where the parent
inverter 1s a child of the current particular node; removing
the parent inverter; and coupling the current particular node
to the set of bullers. With respect to the current particular
node being processed by operation 404, this transform may
turther involve a preliminary operation of identifying a set
ol inverters where each mverter in the set of 1nverters 1s a
chuld of a parent inverter, and where the parent inverter 1s a
chuld of the current particular node. Examples of such a
transform are illustrated by transtormation 600 of FIG. 6 and
by transformation 800 of FIG. 8, which are later described
herein 1n greater detail.

In another instance, the set of available transforms may
include a transform that involves: converting a set of imvert-
ers to a set of buflers by converting each inverter in the set
of iverters to a buller, where the set of inverters comprises
a parent inverter and a set of child inverters that are children
of the parent inverter, and where the parent inverter 1s a child
of the current particular node. With respect to the current
particular node being processed by operation 404, this
transform may further involve a preliminary operation of
identifying a set ol inverters where the set of inverters
comprises a parent inverter and a set of child inverters that
are children of the parent inverter, and where the parent
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inverter 1s a child of the current particular node. Examples
of such a transform are illustrated by transformation 802 of
FIG. 8, which are later described herein 1n greater detail.

After operation 406, operation 408 identifies a set of
candidate transforms 1n the set of available transforms
where, 11 performed on the clock tree, each candidate
transform causes the clock tree to satisiy a set of clock tree
design constraints. As noted herein, the set of clock ftree
design constraints can include, without limitation, slew
within the clock tree and a set of latencies within the clock
tree.

After operation 408, operation 410 1dentifies an accept-
able transform, 1n the set of candidate transforms where, 1f
performed on the clock tree, the acceptable transform causes
the clock tree to satisiy a set of user-defined criteria for the
circuit design. For some embodiments, the set of user-
defined criteria include a criterion that performing (e.g.,
applying) the acceptable transform on the clock tree causes
the clock tree to use lower power than performing any other
candidate transform 1n the set of candidate transforms on the
clock tree. The set of user-defined criteria may include other
such criteria.

After operation 410, operation 412 performs (e.g.,
applies) the acceptable transform on the clock tree. After
operations 406-412 are repeated for each particular node 1n
the clock tree generated by operation 402, the clock tree
resulting from operation 404 may comprise at have at least
a portion that (when compared to the clock tree of operation
402) was transtormed using a driver of a first driver type to
using a driver of a second driver type.

Referring now to FIG. 5, the flowchart illustrates the
example method 500 for generating a clock tree for a circuit
design, according to some embodiments. Like the method
200 of FIG. 2, the method 500 may be performed as part of
a routing processing applied to a circuit design. An operation
of the method 500 may be performed by a hardware pro-
cessor. According to some embodiments, the method 500
involves transforming, or otherwise reconfiguring, at least a
portion of a clock tree that was generated using only one
type of driver (e.g., only buflers or only inverters).

The method 500 as illustrated begins with operation 502
generating a clock tree using a first driver type (e.g., inverter
or builer). As noted herein, operation 502 may produce an
inverter-only clock tree, or a buller-only clock tree. Addi-
tionally, operation 502 may generate the clock tree from the
bottom up.

The method 500 continues with operations 3504-514
which, according to some embodiments, are performed for
cach portion (e.g., particular node) of the clock tree (gen-
erated by operation 502) from the bottom up, starting from
the bottom leal level of the clock tree to the top root level
of the clock tree.

For the current particular node, operation 504 determines
a possible transform from the first driver type to a second
driver types for a current portion of the clock tree. From
operation 502, the method 500 continues with operation 506
trying the possible transform determined at operation 502.
From operation 506, the method 500 continues with opera-
tion 508 checking the clock tree, resulting from operation
506, against a set of clock tree design constraints. As shown,
this includes operation 508 checking slew (operation 516)
and checking a set of latencies (operation 518) of the clock
tree resulting from operation 506.

From operation 3508, the method 300 continues with
operation 510 determining whether the clock tree resulting
from operation 506 satisfies the set of clock tree design
constraints. If yes, the method 500 continues to operation
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514 where the current possible transform 1s accepted and the
clock tree resulting from operation 506 stays as-1s. If no, the
method 500 continues with operation 312 undoing the
current possible transform, thereby restoring the clock tree
to a version prior to operation 3506.

Though not shown, for some embodiments, operation 504
may determine a plurality of possible transtorms from the
first driver type to the second driver type for the current
portion of the clock tree. In some such embodiments, each
possible transform, in the plurality of possible transiorms,
may be tried on the clock tree by operations 504-510 (e.g.,
in parallel or in sequence). Of those possible transforms tried
on the clock tree, the transform that satisfies the set of clock
tree design constraints and meets a set of user-defined
criteria may be selected as the accepted transform. For
instance, the set of user-defined criteria may include select-
ing as the accepted transiform the possible transform that
results 1n the most reduction of the clock tree’s power
consumption when compared against the pre-transform
clock tree.

FIGS. 6-8 illustrate diagrams 1llustrating example trans-
formations that may be applied when generating a clock tree,
according to some embodiments. As noted herein, one or
more of the example transformations illustrated by FIGS.
6-8 may be applied by the method 400 of FIG. 4 or the
method 500 of FIG. 5.

FIG. 6 illustrates an example transformation 600, where
the transformation 600 transtorms a portion 600A of a clock
tree, which use 1nverters, to a portion 600B that use buflers.
In particular, the transformation 600 may convert each child
inverter of the portion 600A to a buller and then remove the
parent inverter of the portion 600A.

FIG. 7 1llustrates examples transformations 700 and 702,
where the transformation 700 transforms a portion 700A of
a clock tree to a portion 700B of the clock tree, and the
transformation 702 transforms a portion 702A of a clock tree
to a portion 702B of the clock tree. Each of the transior-
mations 700, 702 transforms a portion of a clock tree, which
uses butlers, to a portion that uses inverters. In particular, the
transformation 700 may convert each bufller of the portion
700A to an inverter and then, above the iverter(s) resulting
from the conversion, adding a new parent imnverter above the
inverter(s) resolving from the conversion. With respect to
the transformation 702, the transformation 702 may convert
cach buller to an inverter.

FIG. 8 1llustrates examples transformations 800 and 802,
where the transformation 800 transforms a portion 800A of
a clock tree to a portion 800B of the clock tree, and the
transformation 802 transforms a portion 802A of a clock tree
to a portion 802B of the clock tree. Each of the transior-
mations 800, 802 transforms a portion of a clock tree, which
use verters, to a portion that use buflers. In particular, the
transformation 800 may convert each child mverter of the
portion 800 A to a bufler and then remove the parent inverter
of the portion 800A. With respect to the transformation 802,
the transformation 802 may convert each inverter to a butler.

FIG. 9 1s a block diagram 900 illustrating an example of
a software architecture 902 that may be operating on an
EDA computer and may be used with methods for clock tree
generation with buflers and inverters, according to some
example embodiments. The software architecture 902 can be
used as an EDA computing device to implement any of the
methods described above. Aspects of the software architec-
ture 902 may, 1n various embodiments, be used to store
circuit designs, and to generate clock trees with buflers and
inverters 1n an EDA environment to generate circuit designs,
from which physical devices may be generated.
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FIG. 9 1s merely a non-limiting example of a software
architecture 902, and 1t will be appreciated that many other
architectures can be implemented to facilitate the function-
ality described herein. In various embodiments, the software
architecture 902 1s implemented by hardware such as a
machine 1000 of FIG. 10 that includes processors 1010,
memory 1030, and I/O components 1050. In this example,
the software architecture 902 can be conceptualized as a
stack of layers where each layer may provide a particular
functionality. For example, the software architecture 902
includes layers such as an operating system 904, libraries
906, software frameworks 908, and applications 910. Opera-
tionally, the applications 910 imvoke application program-
ming interface (API) calls 912 through the software stack
and receive messages 914 1n response to the API calls 912,
consistent with some embodiments. In various embodi-
ments, any client device, any server computer of a server
system, or any other device described herein may operate
using clements of the software architecture 902. An EDA
computing device described herein may additionally be
implemented using aspects of the soitware architecture 902,
with the software architecture 902 adapted for operating to
perform routing a net of a circuit design 1n any manner
described herein.

In one embodiment, an EDA application of the applica-
tions 910 performs clock tree generation with buflers and
iverters according to embodiments described herein using
various modules within the software architecture 902. For
example, 1n one embodiment, an EDA computing device
similar to the machine 1000 includes the memory 1030 and
the one or more processors 1010. The processors 1010 also
implement a clock tree synthesis (CTS) with buflers and
inverters module 942 for generating a clock tree using
buffers and inverters in accordance with various embodi-
ments described herein.

In various other embodiments, rather than being 1mple-
mented as modules of the one or more applications 910, the
CTS with buflers and inverters module 942 may be 1mple-
mented using elements of the libraries 906, the operating
system 904, or the software frameworks 908.

In various implementations, the operating system 904
manages hardware resources and provides common ser-
vices. The operating system 904 includes, for example, a
kernel 920, services 922, and drivers 924. The kernel 920
acts as an abstraction layer between the hardware and the
other soltware layers, consistent with some embodiments.
For example, the kernel 920 provides memory management,
processor management (e.g., scheduling), component man-
agement, networking, and security settings, among other
functionality. The services 922 can provide other common
services for the other software layers. The drivers 924 are
responsible for controlling or interfacing with the underlying,
hardware, according to some embodiments. For instance, the
drivers 924 can include display drivers, signal-processing
drivers to optimize modeling computation, memory drivers,
serial communication drivers (e.g., Universal Serial Bus
(USB) dnivers), WI-FI® drivers, audio drivers, power man-
agement drivers, and so forth.

In some embodiments, the libraries 906 provide a low-
level common infrastructure utilized by the applications
910. The libraries 906 can include system libraries 930 such
as libraries of blocks for use in an EDA environment or other
libraries that can provide functions such as memory alloca-
tion functions, string manipulation functions, mathematic
functions, and the like. In addition, the libraries 906 can
include API libraries 932 such as media libraries (e.g.,
libraries to support presentation and manipulation of various
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media formats such as Joint Photographic Experts Group
(JPEG or JPG), or Portable Network Graphics (PNG)),
graphics libraries (e.g., an OpenGL framework used to
render 1n two dimensions (2D) and three dimensions (3D) in
a graphic context on a display), database libraries (e.g.,
SQLite to provide various relational database functions),
web libraries (e.g., WebKit to provide web browsing func-
tionality), and the like. The libraries 906 may also include
other libraries 934.

The software frameworks 908 provide a high-level com-
mon infrastructure that can be utilized by the applications
910, according to some embodiments. For example, the
soltware frameworks 908 provide various graphic user inter-
tace (GUI) functions, high-level resource management,
high-level location services, and so forth. The software
frameworks 908 can provide a broad spectrum of other APIs
that can be utilized by the applications 910, some of which
may be specific to a particular operating system 904 or
platform. In various embodiments, the systems, methods,
devices, and 1nstructions described herein may use various
files, macros, libraries, and other elements of an EDA design
environment to implement clock tree generation with buflers
and mverters as described herein. This includes analysis of
input design files for an mtegrated circuit design, along with
any element of hierarchical analysis that may be used as part
of or along with the embodiments described herein. While
netlist files, library files, SDC files, and view definition files
are examples that may operate within the software architec-
ture 902, 1t will be apparent that other files and structures
may provide a similar function, 1n various embodiments.

Certain embodiments are described herein as including
logic or a number of components, modules, elements, or
mechamisms. Such modules can constitute erther software
modules (e.g., code embodied on a machine-readable
medium or 1n a transmission signal) or hardware modules. A
“hardware module” 1s a tangible unit capable of performing
certain operations and can be configured or arranged 1n a
certain physical manner. In various example embodiments,
one or more computer systems (e.g., a standalone computer
system, a client computer system, or a server computer
system) or one or more hardware modules of a computer
system (e.g., a processor or a group ol processors) are
configured by software (e.g., an application or application
portion) as a hardware module that operates to perform
certain operations as described herein.

In some embodiments, a hardware module 1s 1mple-
mented mechanically, electronically, or any suitable combi-
nation thereol. For example, a hardware module can include
dedicated circuitry or logic that 1s permanently configured to
perform certain operations. For example, a hardware module
can be a special-purpose processor, such as a field-program-
mable gate array (FPGA) or an application-specific inte-
grated circuit (ASIC). A hardware module may also 1include
programmable logic or circuitry that 1s temporarily config-
ured by software to perform certain operations. For example,
a hardware module can include solftware encompassed
within a general-purpose processor or other programmable
processor. It will be appreciated that the decision to 1mple-
ment a hardware module mechamically, in dedicated and
permanently configured circuitry, or in temporarily config-
ured circuitry (e.g., configured by software) can be driven by
cost and time considerations.

Accordingly, the phrase “module” should be understood
to encompass a tangible entity, be that an enftity that 1s
physically constructed, permanently configured (e.g., hard-
wired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner or to perform certain operations
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described herein. Considering embodiments 1n which hard-
ware modules are temporarily configured (e.g., pro-
grammed), each of the hardware modules need not be
configured or instantiated at any one instance in time. For
example, where a hardware module comprises a general-
purpose processor configured by solftware to become a
special-purpose processor, the general-purpose processor
may be configured as respectively diflerent special-purpose
processors (e.g., comprising different hardware modules) at
different times. Software can accordingly configure a par-
ticular processor or processors, for example, to constitute a
particular hardware module at one instance of time and to
constitute a diferent hardware module at a different instance
of time.

Hardware modules can provide information to, and
recerve information from, other hardware modules. Accord-
ingly, the described hardware modules can be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporanecously, communications can be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments 1n which multiple hard-
ware modules are configured or instantiated at different
times, communications between or among such hardware
modules may be achieved, for example, through the storage
and retrieval of information in memory structures to which
the multiple hardware modules have access. For example,
one hardware module performs an operation and stores the
output of that operation in a memory device to which 1t 1s
communicatively coupled. A further hardware module can
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules can also
initiate communications with mput or output devices, and
can operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors constitute processor-implemented modules
that operate to perform one or more operations or functions
described herein. As used herein, “processor-implemented
module” refers to a hardware module 1implemented using
One Or mMore processors.

Similarly, the methods described herein can be at least
partially processor-implemented, with a particular processor
or processors being an example of hardware. For example,
at least some of the operations of a method can be performed
by one or more processors or processor-implemented mod-
ules. Moreover, the one or more processors may also operate
to support performance of the relevant operations in a “cloud
computing” environment or as a “soltware as a service”
(SaaS). For example, at least some of the operations may be
performed by a group of computers (as examples of
machines 1000 including processors 1010), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate intertaces (e.g., an API). In
certain embodiments, for example, a client device may relay
or operate 1n communication with cloud computing systems,
and may access circuit design information 1n a cloud envi-
ronment.

The performance of certain of the operations may be
distributed among the processors, not only residing within a
single machine 1000, but deployed across a number of
machines 1000. In some example embodiments, the proces-
sors 1010 or processor-implemented modules are located 1n
a single geographic location (e.g., within a home environ-
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ment, an oflice environment, or a server farm). In other
example embodiments, the processors or processor-imple-
mented modules are distributed across a number of geo-
graphic locations.

FIG. 10 1s a diagrammatic representation of the machine
1000 1n the form of a computer system within which a set of
instructions may be executed for causing the machine 1000
to perform any one or more of the methodologies discussed
hereimn, according to an example embodiment. FIG. 10
shows components of the machine 1000, which 1s, according
to some embodiments, able to read instructions from a
machine-readable medium (e.g., a machine-readable storage
medium) and perform any one or more of the methodologies
discussed herein. Specifically, FIG. 10 shows a diagram-
matic representation of the machine 1000 1n the example
form of a computer system, within which instructions 1016
(e.g., software, a program, an application, an applet, an app,
or other executable code) for causing the machine 1000 to
perform any one or more of the methodologies discussed
herein can be executed. In alternative embodiments, the
machine 1000 operates as a standalone device or can be
coupled (e.g., networked) to other machines. In a networked
deployment, the machine 1000 may operate 1n the capacity
of a server machine or a client machine 1n a server-client
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 1000
can comprise, but not be limited to, a server computer, a
client computer, a personal computer (PC), a tablet com-
puter, a laptop computer, a netbook, or any machine capable
of executing the instructions 1016, sequentially or other-
wise, that specily actions to be taken by the machine 1000.
Further, while only a single machine 1000 1s 1llustrated, the
term “machine” shall also be taken to include a collection of
machines 1000 that individually or jointly execute the
instructions 1016 to perform any one or more of the meth-
odologies discussed herein.

In various embodiments, the machine 1000 comprises
processors 1010, memory 1030, and I/O components 1050,
which can be configured to communicate with each other via
a bus 1002. In an example embodiment, the processors 1010
(e.g., a central processing unit (CPU), a reduced 1nstruction
set computing (RISC) processor, a complex instruction set
computing (CISC) processor, a graphics processing unit
(GPU), a digital signal processor (DSP), an ASIC, a radio-
frequency integrated circuit (RFIC), another processor, or
any suitable combination thereol) include, for example, a
processor 1012 and a processor 1014 that may execute the
instructions 1016. The term “‘processor” 1s intended to
include multi-core processors 1010 that may comprise two
or more independent processors 1012, 1014 (also referred to
as “cores”) that can execute the instructions 1016 contem-
poraneously. Although FIG. 10 shows multiple processors
1010, the machine 1000 may include a single processor 1012
with a single core, a single processor 1012 with multiple
cores (e.g., a multi-core processor 1012), multiple proces-
sors 1010 with a single core, multiple processors 1010 with
multiple cores, or any combination thereof.

The memory 1030 comprises a main memory 1032, a
static memory 1034, and a storage unit 1036 accessible to
the processors 1010 via the bus 1002, according to some
embodiments. The storage unit 1036 can include a machine-
readable medium 1038 on which are stored the instructions
1016 embodying any one or more of the methodologies or
tfunctions described herein. The instructions 1016 can also
reside, completely or at least partially, within the main
memory 1032, within the static memory 1034, within at least
one of the processors 1010 (e.g., within the processor’s
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cache memory), or any suitable combination thereof, during
execution thereof by the machine 1000. Accordingly, 1n
vartous embodiments, the main memory 1032, the static
memory 1034, and the processors 1010 are considered
machine-readable media 1038.

As used herein, the term “memory” refers to a machine-
readable medium 1038 able to store data temporarily or
permanently and may be taken to include, but not be limited
to, random-access memory (RAM), read-only memory
(ROM), bufler memory, flash memory, and cache memory.
While the machine-readable medium 1038 1s shown, 1n an
example embodiment, to be a single medium, the term
“machine-readable medium™ should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store the instructions 1016. The term “machine-readable
medium™ shall also be taken to include any medium, or
combination of multiple media, that 1s capable of storing
istructions (e.g., the mstructions 1016) for execution by a
machine (e.g., the machine 1000), such that the instructions
1016, when executed by one or more processors ol the
machine (e.g., the processors 1010), cause the machine to
perform any one or more of the methodologies described
herein. Accordingly, a “machine-readable medium” refers to
a single storage apparatus or device, as well as “cloud-
based” storage systems or storage networks that include
multiple storage apparatus or devices. The term “machine-
readable medium™ shall accordingly be taken to include, but
not be limited to, one or more data repositories 1n the form
of a solid-state memory (e.g., flash memory), an optical
medium, a magnetic medium, other non-volatile memory
(e.g., erasable programmable read-only memory (EPROM)),
or any suitable combination thereof. The term “machine-
readable medium” specifically excludes non-statutory sig-
nals per se.

The I/O components 1050 include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. In general, 1t will be appreciated
that the I/O components 1050 can include many other
components that are not shown in FIG. 10. The I/O com-
ponents 1050 are grouped according to functionality merely
for sismplitying the following discussion, and the grouping 1s
in no way limiting. In various example embodiments, the
I/O components 1050 include output components 1052 and
mput components 1054. The output components 1052
include visual components (e.g., a display such as a plasma
display panel (PDP), a light emitting diode (LED) display, a
liquid crystal display (LCD), a projector, or a cathode ray
tube (CRT)), acoustic components (e.g., speakers), haptic
components (e.g., a vibratory motor), other signal genera-
tors, and so forth. The mmput components 1054 include
alphanumeric 1input components (e.g., a keyboard, a touch
screen configured to receive alphanumeric mput, a photo-
optical keyboard, or other alphanumeric input components),
point-based 1input components (e.g., a mouse, a touchpad, a
trackball, or other pointing 1nstruments), tactile input com-
ponents (e.g., a physical button, a touch screen that provides
location and force of touches or touch gestures, or other
tactile mput components), audio mput components (e.g., a
microphone), and the like.

In some embodiments, outputs from an EDA computing
device may include design documents, files for additional
steps 1n a design flow, or outputs for circuit fabrication. As
described herein, “constraints,” “requirements,” “design ele-
ments,” and other aspects of a circuit design refer to select-
able values that are set as part of the design of a circuit. Such
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design constraints, requirements, or elements may be
adjusted by a system operator or circuit designer to suit the
particular goals of a project or circuit that results from the
operations described herein.

Communication can be implemented using a wide variety
of technologies. The I/O components 1050 may include
communication components 1064 operable to couple the
machine 1000 to a network 1080 or devices 1070 via a
coupling 1082 and a coupling 1072, respectively. For
example, the communication components 1064 include a
network interface component or another suitable device to
interface with the network 1080. In further examples, the
communication components 1064 include wired communi-
cation components, wireless communication components,
cellular communication components, near field communi-
cation (NFC) components, BLUETOOTH® components
(e.g., BLUETOOTH® Low Energy), WI-FI® components,
and other communication components to provide commu-
nication via other modalities. The devices 1070 may be
another machine or any of a wide variety of peripheral
devices (e.g., a peripheral device coupled via a USB).

In various example embodiments, one or more portions of
the network 1080 can be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area
network (WAN), a wireless WAN (WWAN), a metropolitan
area network (MAN), the Internet, a portion of the Internet,
a portion of the public switched telephone network (PSTN),
a plain old telephone service (POTS) network, a cellular
telephone network, a wireless network, a WI-FI® network,
another type of network, or a combination of two or more
such networks. For example, the network 1080 or a portion
of the network 1080 may include a wireless or cellular
network, and the coupling 1082 may be a Code Division
Multiple Access (CDMA) connection, a Global System for
Mobile communications (GSM) connection, or another type
of cellular or wireless coupling.

Furthermore, the machine-readable medium 1038 1s non-
transitory (in other words, not having any transitory signals)
in that 1t does not embody a propagating signal. However,
labeling the machine-readable medium 1038 ““non-transi-
tory” should not be construed to mean that the machine-
readable medium 1038 1s incapable of movement; the
machine-readable medium 1038 should be considered as
being transportable from one physical location to another.
Additionally, since the machine-readable medium 1038 1s
tangible, the machine-readable medium 1038 may be con-
sidered to be a machine-readable device.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed 1n the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

Although an overview of the inventive subject matter has
been described with reference to specific example embodi-
ments, various modifications and changes may be made to
these embodiments without departing from the broader
scope of embodiments of the present disclosure.
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The embodiments 1llustrated herein are described in sui-
ficient detail to enable those skilled 1n the art to practice the
teachings disclosed. Other embodiments may be used and
derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The detailed description, therefore,
1s not to be taken 1n a limiting sense, and the scope of various
embodiments 1s defined only by the appended claims, along
with the full range of equivalents to which such claims are
entitled.

As used herein, the term “or” may be construed 1n either
an mclusive or exclusive sense. The terms “a” or “an” should
be read as meaning “at least one,” “one or more,” or the like.
The use of words and phrases such as “one or more,” “at
least,” “but not limited to,” or other like phrases shall not be
read to mean that the narrower case 1s itended or required
in mstances where such broadening phrases may be absent.

Boundaries between various resources, operations, mod-
ules, engines, and data stores are somewhat arbitrary, and
particular operations are illustrated 1n a context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within a scope of various
embodiments of the present disclosure. In general, structures
and functionality presented as separate resources in the
example configurations may be implemented as a combined
structure or resource. Similarly, structures and functionality
presented as a single resource may be implemented as
separate resources.

T'hese and other variations, modifica-
tions, additions, and improvements fall within a scope of
embodiments of the present disclosure as represented by the
appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

The description above includes systems, methods,
devices, instructions, and computer media (e.g., computing
machine program products) that embody illustrative
embodiments of the disclosure. In the description, for the
purposes ol explanation, numerous specific details are set
forth in order to provide an understanding of various
embodiments of the iventive subject matter. It will be
evident, however, to those skilled in the art, that embodi-
ments of the inventive subject matter may be practiced
without these specific details. In general, well-known
instruction instances, protocols, structures, and techniques
are not necessarily shown 1n detail.

What 1s claimed 1s:

1. A method comprising:

recerving, by a hardware processor, a request to generate,
for a circuit design, a clock tree that includes a bottom
leaf level comprising a plurality of clock sinks of the
circuit design and that includes a top root level com-
prising a clock signal source of the circuit design;

in response to the request, generating, by the hardware
processor, the clock tree from the bottom leaf level to
the top root level, the generating including creating a
new driver at a position 1n the clock tree by:

generating a first node clustering by clustering a first set
of nodes of the clock tree, at a particular level of the
clock tree, under a new buller created at the position;

generating a second node clustering by clustering a sec-
ond set of nodes of the clock tree, at the particular level,
under a new 1nverter created at the position;

determining whether the clock tree according to the first
node clustering or the clock tree according to the
second node clustering satisfies a set of clock tree
design constraints; and
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based on the determining whether the clock tree according
to the first node clustering or the clock tree according
to the second node clustering satisfies the set of clock
tree design constraints, generating the clock tree
according to one of the first node clustering or the
second node clustering.

2. The method of claim 1, wherein the generating the
clock tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that only the clock tree accord-

ing to the first node clustering satisfies the set of clock
tree design constraints, generating the clock ftree
according to the first node clustering.

3. The method of claim 1, wherein the generating the
clock tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that only the clock tree accord-

ing to the second node clustering satisfies the set of
clock tree design constraints, generating the clock tree
according to the second node clustering.

4. The method of claim 1, wherein the generating the
clock tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that both the clock tree accord-

ing to the first node clustering and the clock ftree
according to the second node clustering satisiy the set
of clock tree design constraints:

determining which one of the first node clustering or the

second node clustering will cause lower power usage
by the clock tree;

in response to determining that the first node clustering

will provide lower power usage by the clock tree,
generating the clock tree according to the first node
clustering; and

in response to determining that the second node clustering,

will provide lower power usage by the clock ftree,
generating the clock tree according to the second node
clustering.

5. The method of claim 1, wherein the set of clock tree
design constraints includes slew within the clock tree.

6. The method of claim 1, wherein the set of clock tree
design constraints includes a set of latencies within the clock
tree.

7. A device comprising:

a memory storing instructions; and

a hardware processor communicatively coupled to the

memory and configured by the instructions to generate
a clock tree for a circuit design, the clock tree including
a bottom leaf level comprising a plurality of clock sinks
of the circuit design, the clock tree including a top root
level comprising a clock signal source of the circuit
design, the clock tree being generated from the bottom
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leal’ level to the top root level, and the generating
including creating a new driver at a position 1n the
clock tree by:
generating a first node clustering by clustering a first set
of nodes of the clock tree, at a particular level of the
clock tree, under a new buller created at the position;

generating a second node clustering by clustering a sec-
ond set of nodes of the clock tree, at the particular level,
under a new 1nverter created at the position;

determiming whether the clock tree according to the first
node clustering or the clock tree according to the
second node clustering satisfies a set of clock tree
design constraints; and

based on the determining whether the clock tree according

to the first node clustering or the clock tree according
to the second node clustering satisfies the set of clock
tree design constraints, generating the clock ftree
according to one of the first node clustering or the
second node clustering.

8. The device of claim 7, wherein the generating the clock
tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that only the clock tree accord-

ing to the first node clustering satisfies the set of clock
tree design constraints, generating the clock ftree
according to the first node clustering.

9. The device of claim 7, wherein the generating the clock
tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that only the clock tree accord-

ing to the second node clustering satisfies the set of
clock tree design constraints, generating clock tree
according to the second node clustering.

10. The device of claim 7, wherein the generating the
clock tree according to one of the first node clustering or the
second node clustering comprises:

in response to determining that both the clock tree accord-

ing to the first node clustering and the clock tree
according to the second node clustering satisiy the set
of clock tree design constraints:

determining which one of the first node clustering or the

second node clustering will cause lower power usage
by the clock tree;

in response to determining that the first node clustering

will provide lower power usage by the clock ftree,
generating the clock tree according to the first node
clustering; and

in response to determining that the second node clustering,

will provide lower power usage by the clock tree,
generating the clock tree according to the second node
clustering.
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