US010346739B1

a2y United States Patent 10) Patent No.: US 10,346,739 B1
Dockendort et al. 45) Date of Patent: Jul. 9, 2019

(54) METHOD AND APPARATUS FOR (56) References Cited
LEARNING, PREDICTION, AND RECALL OF

SPATIOTEMPORAL PATTERNS U.S. PATENT DOCUMENTS

7,430,546 B1* 9/2008 Surl .........ccoovviiinnn, GOO6N 3/08
(71) Applicant: HRL Laboratories, LL.C, Malibu, CA - 706/ 14
(US) 8,037,010 B2  10/2011 Jaros et al.
8,041,653 B2 10/2011 Nugent
(72) Inventors: Karl P. Dockendorf, Jacksonville, FL (Continued)
(US); Narayan Srinivasa, Oak Park,
CA (US) OTHER PUBLICATTONS
(73) Assignee: HRL Laboratories, LLC, Malibu, CA Vassilis Cutsuridis, Michael Hasselmo, “Dynamics and Function of
(US) a CA1l Model of the Hippocampus during Theta and Ripples”, from

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I,

( *) Notice: Subject to any disclaimer, the term of this LNCS 6352, 2010, pp. 230-240*’i‘
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 154(b) by 491 days. Primary Examiner — Luis A Sitiriche

(74) Attorney, Agent, or Firm — Tope-McKay &

(21)  Appl. No.: 14/204,232 Ascirioton

(22) Filed: Mar. 11, 2014 (37) ABSTRACT

Described 1s a system for learning, prediction, and recall of
spatiotemporal patterns. An mput spatiotemporal sequence

Related U.S. Application Data 1s learned using a recurrent spiking neural network by first
(60) Provisional application No. 61/780,466, filed on Mar, ~ Processing the imput spatiotemporal sequence using the
13 2013, recurrent spiking neural network. The recurrent spiking
| neural network comprises neurons having excitatory synap-
(51) Int. CL tic connections and inhibitory synaptic connections. Bal-
GO6E 1/00 (2006.01) anced 1nhibitory connectivity exists between neurons having
GO6E 3/00 (2006.01) excitatory synaptic connections. The recurrent spiking neu-
GO6F 15/18 (2006.01) ral network uses distinct forms of synaptic plasticity for
GO6G 7/00 (2006.01) excitatory synaptic connections and inhibitory synaptic con-
GO6N 3/08 (2006.01) nections, such that excitatory synaptic connections
(52) U.S. CL. strengthen and inhibitory synaptic connections weaken. In
@ L GRS GO6N 3/08 (2013.01)  another aspect, the system 1s able to recall the learned
(58) Field of Classification Search spatiotemporal sequence and predict a future spatiotemporal
CPC GO6N 3/049: GO6N 3/063: GO6N 3/08: sequence through activation of the recurrent spiking neural
G11C 11/54; GI1C 15/00; G11C 8/10 ~ Betwork:
See application file for complete search history. 21 Claims, 9 Drawing Sheets
Fre-play 2. identify neuronal ensemble | Replay
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - that spike for given pallem  peemeemeemesmenenenes s
j{ | after learning ¥
. $

Stirulate few newrons in |
> he ensembie at the end

Shmulate few neurons inthe

- - . | Input patiern sequence |
ensemble at the beginning of | PP - .

I t0 D¢ tested

patlern seguenc g 5 of patiem sequence
“““ Y S ’
{ t Meastire spiking activity of
2434 N CA3 neyron gnsemble for e

the duration of seguence

“Lag
208
} 5_".1' H
2*&?;,.,; Compare the spiking aciivity :
- with partial stimulation and fulf ¢
514 f stimutation .2;1&
1!‘..;"'1, '\L’ i"-J
I /ﬁ\‘\\j-ijmz o +
i Accuraie ” yes _,_,—// Bood ‘\-\‘k yus .}j ACCUTate
Pra-play S Match ? ",f“’/. | Repiay
.................. \\w’"
Rl
\inf
_‘.I"r}__,f 248

Poor Pre-play |
or Repiay



US 10,346,739 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

1/2009 Tamas ................ GO1N 33/5058
435/29

2009/0017486 Al*

OTHER PUBLICATIONS

Yousheng Shu, Andrea Hasenstaub & David A. McCormick, “Turn-
ing on and ofl recurrent balanced cortical activity”, Nature, vol. 423,

May 15, 2003: pp. 288-293.*

M. Steriade and F. Amzica, “Dynamic Coupling Among Neocortical
Neurons During Evoked and Spontaneous Spike-Wave Seizure
Activity”, Journal of Neurophysiology, vol. 72, No. 5, Nov. 1994,
pp. 2051-2069.*

Daniel Bush, Andrew Philippides, Phil Husbands, Michael O’Shea,
“Dual Coding with STDP 1n a Spiking Recurrent Neural Network
Model of the Hippocampus™, PLOS Computational Biology, vol. 6,
Issue 7, Jul. 2010, pp. 1-17.*

CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth,
tamaras(@cs.sfu.ca School of Computing Science, Simon Fraser
University Jan. 3, 2009 (Year: 2009).*

Dan, Y. and Poo, M. (2004). Spike timing-dependent plasticity of
neural circuits. Neuron, 44(1):23-30.

De Almeida, L., Idiart, M., and Lisman, J. (2007). Memory retrieval
time and memory capacity of the ca3 network: role of gamma
frequency oscillations. Learning & Memory, 14(11):795-806.
Diba, K. and Buzsaki, G. (2007). Forward and reverse hippocampal
place-cell sequences during ripples. Nature neuroscience, 10(10):1241.
Fleischer, J., Gally, J., Edelman, G., and Krichmar, J. (2007).
Retrospective and prospective responses arising in a modeled
hippocampus during maze navigation by a brain-based device.
Proceedings of the National Academy of Sciences, 104(9):3556.
Fortin, N., Agster, K., and Eichenhaum, H. (2002). Critical role of
the hippocampus 1n memory for sequences of events. nature neu-
roscience 5(5):458-462.

Izhikevich, E. (2003). Simple model of spiking neurons. Neural
Networks, IEEE Transactions on, 14(6):1569-1572.

Nessler, B., Pfeifter, M., and Maass, W. (2010). Stdp enables spiking
neurons to detect hidden causes of their inputs. Proc. of NIPS 2009:
Advances 1n Neural Information Processing Systems.

Nolan, C., Wyelh, G., Milford, M., and Wiles, J. (2011). The race
to learn: spike timing and stdp can coordinate learning and recall 1n
ca3. Hippocampus, 21(6):647-660.

O’Keefe, J. and Recce, M. (1993). Phase relationship between
hippocampal place units and the eeg theta rhythm. Hippocampus,
3(3):317-330.

Phister, J. and Gerstner, W. (2008). Beyond pair-based stdp: a
phenomenogical rule for spike triplet and frequency effects.

Van Strien, N., Cappaert, N., and Witter, M. (2009). The anatomy
of memory: an interactive overview of the parahippocampal-
hippocampal network. Nature Reviews Neuroscience, 10(4):272-
282.

Plister, J. P., and Gerstner, W. (2006). Triplets of spikes in a model
ofspike timing-dependent plasticity. J. Neurosci. 26, 9673-9682.
Caporale, N., and Dan, Y. (2008). Spike timing-dependent plastic-
ity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25-46.
Lisman, J., Talamini, L., and Raffone, A. (2005). Recall of memory
sequences by interaction of the dentate and CA3: a revised model
of the phase precession. Neural Netw. 18, 1191-1201.
Buonomano, D. (2005). A learning rule for the emergence of stable
dynamics and timing in recurrent networks. J. Neurophysiol. 94,
2275-2283.

Rall, W. (1962) Electrophysiology of a dendritic neuron model.
Biophysical Journal 2: 145-167.

Markram, H., Gerstner, W., and Sjostrom, P. (2012). Spiketiming-
dependent plasticity: a comprehensive overview. Front Synaptic
Neurosci. 4:2,

Moser, Edvard I, Kropil, Emilo, and Moser, May-Britt (2008). Place
cells, grid cells, and the brain’s spatial representation system.
Annual Review of Neuroscience. 31: 69-89.

Dockendorf, K. and Srinivasa, N. (2013). Learning and prospective
recall of noisy spike episodes. Front. Comput. Neurosci. 7:80.
Taub, A.-H., Katz, Y., and Lamp:1 I. (2013). Cortical balance of
excitation and mhibition 1s regulated by the rate of synaptic activity.
J. Neurosci. 33(36): 14359-68.

* cited by examiner



US 10,346,739 B1
o
{”‘",
Iy

iswsaged
BIOW

s poyoipasd Apagoadsold

aouenbes wened aius syl s

Sheet 1 of 9

rATAa 801

”.{_-\-.. ] . R R R R R R R R R R R R R R R R R R R R R R R R R R R

| Aponsed ondeuAs uo peseq
IOMISU JUBLNDA
gy Buisn sindui 5580044 .
HoMaU
€377 10} ARATIBLIUOD
DUE ‘siejaiuried

Jul. 9, 2019

SO}IOS Jo uLoj By
QouUsNDas weyed gy

wiomey ‘suibuans
ofdeuds vl 19

U.S. Patent
>

Y



& Did

IR

017 ARIU-84d 1004

QL

US 10,346,739 B1

Apid-sid
BBy

feidey | 3 Uoe

SIEINOY | sak sak

M LOIBINUAS
| {in} pue uogenwas ferped yim
A

7N

joe Bupyds oy) sredwo) [ 4, -

Sheet 2 of 9

gl ~ - - o
L4 aouanbes jo uoyeinp sy

10} BIGISSUS UCINBU £ ¢
10 Apagoe Buppds sunseapy

m
__________________________________ 07
pa}sol 8g O} __

aousnbes wisped ndul

PO&

_ .
souenbes uaped
10 BuiuuiBag sy} 1B siguissus |
Y} Ul SUCINGU MB} SIBINUILS |

.,

souenbss weyed Jo
DUS 8] 1€ BjquIasus ay) }
Ui SUOINSU M8} SIBINULS |

Jul. 9, 2019

Guiuies; joye
wisyed usaib Jog owids 1y

2GQUIgSUR {BUliNgU \@mmmg 067

.,

U.S. Patent



U.S. Patent Jul. 9, 2019 Sheet 3 of 9 US 10,346,739 B1

50

44
44}

103
10
ing (ms)

G, A

-103
10
pre-post tin

230

A}

Biam ondeuds w aBuryn



US 10,346,739 B1

Sheet 4 of 9

Jul. 9, 2019

U.S. Patent

o

LK
r

1-I*

r

-

a & 2
[

r o Ta W oa

L R
s bk rd F

. Y b m R a -
r . P
LT Vet .-.....-.-..-.
LFCRE NE LAt S
. . -,
Al s e g
& - . . T
-
"
.
o
N
L]
R
+ .
-
] .
o
.o
-
o
-i
u
A
..— ..
. T
. L ]
'.

C e -
L ‘I..I..I..""'"h

TR e e

L | .I'
*
L]
E
Frxroroxr A -h.-...ﬁ
R A STy .

L
LR AL AL P -m
1]

e L

.

= h

LR
-

& & & N A, - -l'.

~ k
[y

LI B R R |

o
4
- "l'-i-i-i_.‘ -

L S L T P P

L L L ]

} Bunun 1sod-gad

iy e .l.l.l*:!._

-

.l.i-
"

L]

ook

L]
b

L]
bl

L]
b

“k kN gy

LI L T T |

L]

Frrrrrrgy

igigd
L b KR ]

"

i
L]
L~L~L~L~L~L~

3
F r - rxrxrxra

f#############

4

e e Sy

n,
‘-
¥

L

i . e . . iy . dp. iy Ay . iy i dy.

i

s

2y2 1yhis

3



€ DA

{sw) Bupwug ysod-aad

US 10,346,739 B1

00% O0F ODE 00Z 00L O 00 002 00§ O0P 00%-

u_
AL
......-.-... ........................................................................... n SEFEaFaTAaSTAFETFAESTASAYTETFAETFATAS S FET S AT AA AT AT AT AR AT AR AT AT AR AT AR A A - .
e ; 3 : " 23 : : ' ; ] .
L
L

"

‘.

)

J. o W v m s

¥ " .
- .. ] |, A,

] * d

J. - .

[ ] 1

‘.

"

‘.

"

‘. -

"

‘. ‘- . . .

v : el
.._..I" l.ll -

‘.

)

‘.

"

)

Sheet 5 of 9

L

‘-

L

L

() SN

' . . . o
L " . .

‘- .

L

‘-

L

*-

L

L

-
L

*-

L

*-

L

‘-

' . . . . - . .

¥ * .

* . o,
.

L e 2

L3 . .

L

‘-

L

*-

L

L

Jul. 9, 2019
-

| 500
L §1°0

U.S. Patent

abueyo Jybiam



" e

— B -

-'p'm

ELL AL LB

‘I*I*l *

LE R

U.S. Patent

{

LI

L

v

Jul. 9, 2019

-

T

W i & —_—

=‘mTmy

o

- gl

3

va.

*I *I * r I.*I *I -

ot

-'m"m"r

N

T

‘e
o -

o

L]

S

» m mtutyt

L SIS

R

Ty,

C agngmrom,

- -
I.I-I

Tl e T

L

rodedeor

i

[ ]
L .
-

P
L]

Ll e

LA !""-

P

» -

LIE I

LI N

-

ouou, LS

L L LI

"y

.'..'I-

L

bl T

ru., gy -

A e

o

Attt .

Sheet 6 of 9

LN

bl il

It

hetet.

“wiwd.

-

&

" e

+ W

LI I

[
- e ..-.'.'

rimin

N ]

-,

wiuta

-. *. *.

-

Bl

-

LI I

'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-.-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-"-'-‘ﬁ‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'-‘-'l

mm e et e e e e e

135

:
i

15

14.5

14

US 10,346,739 B1

econds




U.S. Patent

Jul. 9, 2019 Sheet 7 of

LA

el . .- LI L]

O

L i}

o )
g L e
--:'l- .k [ ]

. -
Tt iy . I al

wl, ' -'m
L. LTl

i s
e u- nys v

-
»u -."h*_‘ - Jl‘i"l- '-:.‘:i" :

—'m oy
. -
- ¥ o . ¥ . »

[N N

254

L K | [ ]
e

. ¥
Pt e,
i e wn LI N R

e JeHa e il
. ﬁ- hnf "-"‘b".t-f*'-.q- N
¥, M

. £
e o

'

ry

-
]

ALt

I‘-‘-T .
.'.- 1.:'.".:‘." -
e ety
T
Ly Ty Y
"-r"-".{"'-"-r"-r"'q-l

LO A DM v L4

LR AY

| ]
| ]
]
v
.|.':
L

by

.*. . ‘.#

\--.'-..-.-n..-..-.-n.'u.-..-..-..-..-..-..-.-.'-..-.-n..k.k-h'u.u-h.b.;-..-..-.-n.'-..-.

20

e s M. M Al AL -
L !'-;*..".IJ"". -, -

W N Bh

- -

- o T N

W et

‘1“-'-"- by ©

Vo4

'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.'a.\.\.h.\.\.'«.\.\.'«.\‘*

.
]
1

*

- _'I*:lr" . ‘;:._ , iy
. i il - a,
o, ol W Akl A #'un )
SR T Ty
B, e SN S
e .
s el g
e

oM N ™

o Al Xl

l"_‘-’

AN S I

L]
4

* 3

x s Ww e * -
T = S A A A
e B .:l I.".I.'-l.""l.'l' g T =
- -
i

- i T

R O St
) T l-l-ll"'!-dll

1
-.-n..-..-.-n.'-..-..h.-..-.-n..-..-.-.'-..-.-n..-..-.-n.'u.-..-..-..-.-n..-..-."-.'-..-.-k.-..-.-n.'u.u-h.k.k-k.k.k-h'k.k.h.-..-.-n..-..-.-.'-..-.-

'-t-
- ::-"-“-H"-"“'I."llh Ay-,
]

L TR A .

L] LAl aa W 4
'.i,hﬂ:l‘i‘-‘-‘.‘-‘-‘-l -'_-t‘.:"'.-' -
ar

.,‘.,E,..,‘.,‘.,..,;

[ ]

FIael

r Ly

A

ol L) ¥ ..I. . -

P . . . . . . . . . . . . . . . . . . . - . . . . . . . . . P . . - . .
r - - ] 4
.#_#.#i##.##.##_##.##.#-ir.-ir-ir.##.##.#:i.-ir#.##_##.##.##_##.Jr#.##_##l-ll'f#.#-ir.-ir-#'.-ir-ir.-ir-#'_-ir#.##.##_##.4'#.##_###########-‘r-ir-ir-ir-ilr-ir-#".#'#-ir-ir-ir-ir####-‘r###-‘r######################## U e ey

HtE
sid
&0
{3
20

SUOINAN pajIog

2

1

US 10,346,739 B1

Seconds

Seconds




9 "Old

US 10,346,739 B1

AR

(OHUOD

Aedsi(y 08N

Sheet 8 of 9

209 sng eje(y/ssauppy

oS Hun o

Jul. 9, 2019

aoRLAILY Asoaiy - Aowspy
_ ~ NeOA-UON  epmeon

U.S. Patent

JAISBa0




U.S. Patent Jul. 9, 2019 Sheet 9 of 9 US 10,346,739 B1

FIG. 7




US 10,346,739 Bl

1

METHOD AND APPARATUS FOR
LEARNING, PREDICTION, AND RECALL OF
SPATIOTEMPORAL PATTERNS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This 1s a Non-Provisional patent application of U.S.

Provisional Application No. 61/780,466, filed 1n the United
States on Mar. 13, 2013, entitled, “Method and Apparatus
for Learning, Prediction, and Recall of Spatiotemporal Pat-
terns.”

GOVERNMENT LICENSE

RIGHTS

This 1nvention was made with government support under
U.S. Government Contract Number SYNAPSE HRILOO11-
09-C-001. The government has certain rights in the mnven-
tion.

BACKGROUND OF THE INVENTION

(1) Field of Invention

The present invention relates to a system for learning,
prediction, and recall of spatiotemporal patterns and, more
particularly, to a system for learning, prediction, and recall
of spatiotemporal patterns using a spiking model of the
hippocampus.

(2) Description of Related Art

Simulated neuronal networks (also known as neural net-
works) have been shown to process data, learn patterns, and
demonstrate various biologic phenomena. Fleischer’s work
(see the List of Incorporated Cited Literature References,
Literature Reference No. 4) with hippocampal rate models
and Darwin X and XI shows the generation of some pro-
spective and retrospective firing. Fleischer’s work shows
that there 1s a strong difference between rate and spiking
models, but there 1s no mention of pattern encoding or
queued recall of spike trains. In addition, Nolan’s work (see
Literature Reference No. 8) with a spiking hippocampal
model demonstrates that a Cornu Ammonis 3 (CA3) net-
work can learn to spike 1n advance of dentate gyrus (DG)
activity. However, the work lacks recurrent collaterals 1n
CA3 and does not link sequences or recall them.

Furthermore, 1n U.S. Pat. No. 8,037,010, entitled, “Spa-
tio-Temporal Learning Algorithms 1n Hierarchical Temporal
Networks™ (hereinafter referred to as the 010 patent) and
U.S. Pat. No. 8,041,633, entitled, “Method and System for
a Hierarchical Temporal Memory Utilizing a Router Hier-
archy and Hebbian and Anti-Hebbian Learning™ (hereinafter
referred to as the 653 patent), a hierarchical temporal
memory (HTM) 1s used for learning and identifying (or
categorizing) spatiotemporal patterns. However, HIM sys-
tems do not recall patterns 1 a self-governed series of
activity spikes.

Previous work in machine learning and recall demon-
strates auto-associative pattern completion after deliberate
calculation of synaptic weights for a non-temporal pattern.
In de Almeida’s work (see Literature Reference No. 2), the
pattern completing ability of a recurrent spiking CA3 net-
work 1s demonstrated by the precalculation of a fixed weight
matrix and partial pattern presentation. Moreover, the hier-
archical networks described 1n U.S. patent application Ser.

No. 13/160,406, entitled, “Recall System Using Spiking
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2

Neuron Networks™ can learn to identily patterns, but not
reconstruct a sequence ol patterns.

Each of the prior methods described above exhibit limi-
tations that make them incomplete. Thus, a continuing need
exists for a method for learning patterns online that can be
activated such that the network activity self-propagates,
reigniting previously stored patterns.

SUMMARY OF THE

INVENTION

The present mmvention relates to system for learning,
prediction, and recall of spatiotemporal patterns. The system

comprises one or more processors and a memory having
istructions such that when the instructions are executed, the

one or more processors perform multiple operations. The
system learns at least one input spatiotemporal sequence
using a recurrent spiking neural network by first processing
the at least one input spatiotemporal sequence having a
beginning and an end using the recurrent spiking neural
network. The recurrent spiking neural network comprises a
plurality of neurons having synaptic connections comprising
excitatory synaptic connections and inhibitory synaptic con-
nections. Balanced inhibitory connectivity exists between
neurons having excitatory synaptic connections. The recur-
rent spiking neural network uses distinct forms of synaptic
plasticity for excitatory synaptic connections and inhibitory
synaptic connections, such that excitatory synaptic connec-
tions strengthen and inhibitory synaptic connections
weaken.

In another aspect, the system recalls the at least one
learned spatiotemporal sequence and predicts at least one
future spatiotemporal sequence through activation of the
recurrent spiking neural network.

In another aspect, an eflective pairing between any at least
one ensemble of coactive neurons and another neuron scales
from net imhibitory to net excitatory depending on the
ensemble of coactive neurons.

In another aspect, the system reactivates at least one
ensemble of coactive neurons at the beginning or the end of
the at least one spatiotemporal sequence after learning has
occurred to demonstrate prediction and recall of the at least
one spatiotemporal sequence.

In another aspect, the spiking neural network associates
cach neuron with at least one ensemble of coactive neurons.

In another aspect, the system uses neurons with diflerent
ensembles for each spatiotemporal sequence to increase the
number of spatiotemporal sequences that can be learned.

In another aspect, the system implements an inhibitory
synapse rule, wherein an ensemble of coactive neurons
reduces their inhibitory coupling, and neurons that fire
independently have strong inhibitory connectivity. The sys-
tem further implements an excitatory synapse rule, wherein
synapses that contribute to activation of a neuron are
strengthened, and synapses that are activated while the
neuron 1s rebounding are weakened.

In another aspect, the present invention also comprises a
method for causing a processor to perform the operations
described herein.

Finally, in yet another aspect, the present invention also
comprises a computer program product comprising com-
puter-readable mstructions stored on a non-transitory com-
puter-readable medium that are executable by a computer
having a processor for causing the processor to perform the

operations described herein.

BRIEF DESCRIPTION OF THE

DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the tollowing detailed descrip-
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tions of the various aspects of the invention in conjunction
with reference to the following drawings, where:

FI1G. 1 15 a flow diagram of the training process according,
to the principles of the present invention;

FIG. 2 1s a flow diagram 1illustrating testing of pre-play
and replay functions according to the principles of the
present mvention;

FIG. 3A 1s a plot showing a couplet rule for changing the
synaptic weights based on the timing difference between a
pair ol spikes, one pre-synaptic and one post-synaptic
according to the principles of the present invention;

FIG. 3B 1s a plot showing an extension to the couplet rule
illustrated 1n FIG. 3A which considers both pre-post and
post-pre timing difference eflfects on the change 1n excitatory
synaptic weights according to the principles of the present
imnvention;

FIG. 3C 1s a plot showing how the mhibitory synaptic
weights are aflected by the timing difference between pre-
and post-synaptic spikes according to the principles of the
present ivention;

FIG. 4 1s plot showing sample spiking activity of input
neurons according to principles of the present ivention;

FIG. 5 1s a plot of behavior timescale episode activity of
simulated CA3 neurons according to principles of the pres-
ent 1nvention:

FIG. 6 1s an 1illustration of a data processing system
according to principles of the present invention; and

FIG. 7 1s an illustration of a computer program product
according to principles of the present invention.

DETAILED DESCRIPTION

The present invention relates to a system for learning,
prediction, and recall of spatiotemporal patterns and, more
particularly, to a system for learning, prediction, and recall
of spatiotemporal patterns using a spiking model of the
hippocampus. The following description 1s presented to
enable one of ordinary skill 1in the art to make and use the
invention and to incorporate it 1n the context of particular
applications. Various modifications, as well as a vanety of
uses, 1n different applications will be readily apparent to
those skilled 1n the art, and the general principles defined
herein may be applied to a wide range of embodiments.
Thus, the present invention 1s not mtended to be limited to
the embodiments presented, but 1s to be accorded with the
widest scope consistent with the principles and novel fea-
tures disclosed herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, 1t will be
apparent to one skilled 1n the an that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures
and devices are shown in block diagram form, rather than 1n
detail, 1n order to avoid obscuring the present invention.

The reader’s attention 1s directed to all papers and docu-
ments which are filed concurrently with this specification
and which are open to public inspection with this specifi-
cation, and the contents of all such papers and documents are
incorporated herein by reference. All the features disclosed
in this specification, (including any accompanying claims,
abstract, and drawings) may be replaced by alternative
features serving the same, equivalent or similar purpose,
unless expressly stated otherwise. Thus, unless expressly
stated otherwise, each feature disclosed 1s one example only
of a generic series of equivalent or similar features.
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Furthermore, any element 1n a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, 1s not to be
interpreted as a “means” or “step” clause as specified 1n 35
U.S.C. Section 112, Paragraph 6. In particular, the use of
“step of” or “act of” 1n the claims herein 1s not itended to
invoke the provisions of 35 U.S.C. 112, Paragraph 6.

Please note, 11 used, the labels left, right, front, back, top,
bottom, forward, reverse, clockwise and counter-clockwise
have been used for convenience purposes only and are not
intended to 1imply any particular fixed direction. Instead,
they are used to reflect relative locations and/or directions
between various portions of an object. As such, as the
present invention 1s changed, the above labels may change
their orientation.

Betfore describing the invention in detail, first a list of
cited literature references used 1n the description 1s provided.
Next, a description of various principal aspects of the
present invention 1s provided. Subsequently, an introduction
provides the reader with a general understanding of the
present nvention. Finally, specific details of the present
ivention are provided to give an understanding of the
specific aspects.

(1) List of Incorporated Cited Literature References

The following references are cited throughout this appli-
cation. For clarity and convenience, the references are listed
herein as a central resource for the reader. The following
references are hereby incorporated by reference as though
fully included herein. The references are cited 1n the appli-
cation by referring to the corresponding literature reference
number, as follows:

1. Dan, Y. and Poo, M. (2004). Spike timing-dependent
plasticity of neural circuits. Neuron, 44(1):23-30.
2. De Almeida, L., Idiart, M., and Lisman, J. (2007).

Memory retrieval time and memory capacity of the ca3

network: role of gamma frequency oscillations. Learning
& Memory, 14(11):795-806.

3. Diba, K. and Buzsaki, G. (2007). Forward and reverse
hippocampal place-cell sequences during ripples. Nature
neuroscience, 10(10):1241.

4. Fleischer, 1., Gally, J., Edelman, G., and Krichmar, I.
(2007). Retrospective and prospective responses arising
in a modeled hippocampus during maze navigation by a
brain-based device. Proceedings of the National Academy
of Sciences, 104(9):3536.

5. Fortin, N., Agster, K., and Eichenbaum, H. (2002).
Critical role of the hippocampus 1n memory for sequences
ol events. nature neuroscience, 5(5):458-462.

6. Izhikevich, E. (2003). Simple model of spiking neurons.
Neural Networks, IEEE Transactions on, 14(6):13569-
1572.

7. Nessler, B., Pleifler, M., and Maass, W. (2010). Stdp
enables spiking neurons to detect hidden causes of their
inputs. Proc. of NIPS 2009: Advances in Neural Infor-
mation Processing Systems.

8. Nolan, C., Wyeth, G., Milford, M., and Wiles, I. (2011).
The race to learn: spike timing and stdp can coordinate
learning and recall i ca3. Hippocampus, 21(6):647-660.

9. O’Keete, J. and Recce, M. (1993). Phase relationship
between hippocampal place units and the eceg theta
rhythm. Hippocampus, 3(3):317-330.

10. Pfister, J. and Gerstner, W. (2008). Beyond pair-based
stdp: a phenomenogical rule for spike triplet and fre-
quency elfects.
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11. Van Strien, N., Cappaert, N., and Witter, M. (2009). The
anatomy of memory: an interactive overview of the

parahippocampal-hippocampal network. Nature Reviews

Neuroscience, 10(4):272-282.

12. Pfister, J. P., and Gerstner, W. (2006). Triplets of spikes
in a model of spike timing-dependent plasticity. J. Neu-
rosci. 26, 9673-9682.

13. Caporale, N., and Dan, Y. (2008). Spike timing-depen-
dent plasticity: a Hebbian learning rule. Annu. Rev. Neu-
rosci. 31, 25-46.

14. Lisman, J., Talamin, L., and Raffone, A. (2003). Recall
of memory sequences by interaction of the dentate and
CA3: a revised model of the phase precession. Neural
Netw. 18, 1191-1201.

15. Buonomano, D. (2005). A learning rule for the emer-

gence of stable dynamics and timing in recurrent net-

works. J. Neurophysiol. 94, 2275-2283.

16. Rail, W. (1962b) Electrophysiology of a dendritic neuron
model. Biophys. J. 2:145-167.

1’7. Markram, H., Gerstner, W., and Sjostrom, P. (2012).
Spiketiming-dependent plasticity: a comprehensive over-
view. Front Synaptic Neurosci. 4:2.

18. Moser, Edvard 1, Kropil, Emilo, and Moser, May-Britt
(2008). Place cells, grid cells, and the brain’s spatial
representation system. Annual Review of Neuroscience.
31: 69-89.

19. Dockendort, K. and Srintvasa, N. (2013). Learning and
prospective recall of noisy spike pattern episodes. Front.
Comput. Neurosci. 7:80.

20. Taub, A. H., Katz, Y., and Lampl 1. (2013). Cortical
balance of excitation and inhibition 1s regulated by the

rate of synaptic activity. J. Neurosci. 33(36): 14359-68.

(2) Principal Aspects

The present invention has three “principal” aspects. The
first 1s a system {for learning, prediction, and recall of
spatiotemporal patterns. The system 1s typically 1n the form
of a computer system, computer component, or computer
network operating software or in the form of a “hard-coded”
instruction set. This system may take a variety of forms with
a variety of hardware devices and may include computer
networks, handheld computing devices, cellular networks,
satellite networks, and other communication devices. As can
be appreciated by one skilled 1n the art, this system may be
incorporated into a wide variety of devices that provide
different functionalities. The second principal aspect 1s a
method for learning, prediction, and recall of spatiotemporal
patterns. The third principal aspect 1s a computer program
product. The computer program product generally repre-
sents computer-readable instruction means (1nstructions)
stored on a non-transitory computer-readable medium such
as an optical storage device, e.g., a compact disc (CD) or
digital versatile disc (DVD), or a magnetic storage device
such as a floppy disk or magnetic tape. Other, non-limiting
examples of computer-readable media include hard disks,
read-only memory (ROM), and flash-type memories.

The term “instructions” as used with respect to this
invention generally indicates a set of operations to be
performed on a computer, and may represent pieces of a
whole program or individual, separable, software modules.
Non-limiting examples of “instructions™ include computer
program code (source or object code) and “hard-coded”
clectronics (1.e., computer operations coded into a computer
chip). The “mnstructions” may be stored on any non-transi-
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tory computer-readable medium such as a floppy disk, a
CD-ROM, a flash drive, and in the memory of a computer.

(3) Introduction

The hippocampus of mammals has been shown to be
instrumental i the formation of new spatiotemporal memo-
ries (see Literature Reference No. 5). Moreover, 1t has been
demonstrated that the hippocampal Cornu Ammonis 3
(CA3) subfield exhibits the phenomena of phase procession
(see Literature Reference No. 9). During phase procession,
the upcoming sequences ol activity are anticipated during
the following gamma cycles of a theta cycle. CA3 1s known
to contain many recurrent connections and receive large
synapses from the dentate gyrus (DG) subfield (see Litera-
ture Reference No. 11). Together, with a specific ratio of
scalings and the appropriate synapse weight update rules,
this architecture can be simulated to generate encoding and
recall of spatiotemporal sequences.

While functional rate models and some simple spiking
models exist for these regions (1.e., CA3 and DI), truly
functional spiking models of this architecture have remained
clusive. The present invention 1s a spiking recurrent network
that 1s capable of completing coactive patterns and replay or
pre-play of spatio-temporal patterns, respectively. In a recur-
rent neural network, connections between neurons form a
directed cycle, allowing the network to exhibit dynamic
temporal behavior. Recurrent neural networks can use their
internal memory to process sequences of mnputs.

Previous works have demonstrated auto-associative pat-
tern completion after deliberate calculation of synaptic
weilghts for a non-temporal pattern (see Literature Reference
Nos. 14 and 15). The present invention learns patterns online
(1.., when data 1s presented without the need to store the
data offline) and can then be activated 1n such a way that the
network activity self-propagates, reigniting previously
stored patterns. Patterns can be retrieved in forward or
reverse order. The invention described herein enables the
learning and cued recall of patterns using spiking neural
networks.

(4) Specific Details

(4.1) Spiking Network Architecture and Neurons

The model according to the principles of the present
invention 1s comprised of a plurality of spiking neurons
(such as those proposed 1n Literature Reference No. 6) with
axonal delays and synaptic connections. A small version of
the network may contain all-to-all recurrent connectivity;
however, larger versions use increasingly sparse number of
connections due to an absolute upper bound on the number
of mputs under which the simulated neurons function in the
appropriate regime. All-to-all connectivity 1mplies that
every neuron 1s connected to every other neuron in the
network. With sparse connections (as with all-to-all connec-
tivity), 1t 1s 1mportant to have balanced inhibitory connec-
tivity between neurons that have excitatory connections so
that the eflective pairing between any group ol coactive
neurons (1.e., an ensemble) and another neuron scales from
net ihibitory to net excitatory depending on the active
ensemble. Literature Reference No. 20 provides a descrip-
tion of balanced inhibitory connectivity. One non-limiting
implementation of this 1s a network that has an inhibitory
connection between each neuron that possesses an excitatory
connection with additional imnhibitory connections onto that
neuron such that the postsynaptic neuron may be net inhib-
ited by other neurons when the presynaptic neuron is active
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in ensembles without the postsynaptic neuron even if the
direct connection expressed 1s net excitatory.

A network with the aforementioned properties can then
associate positively or, by default, negatively each neuron
with each ensemble. As a result, these networks exhibit the
powerlul property of rapid learning or recall of spike pat-
terns whether they code for sequential spatial, sensory,
and/or other data. These networks can be scaled up 1 size
and, as a result, store more patterns as long as the balance 1s
maintained between excitation and inhibition in the network.
However, as the network 1s scaled up, the sparseness 1n the
recurrent connectivity increases, and, as a result, the size of
ensembles must increase to ensure a connection between
cach ensemble and 1ts constituent neurons. One possible
way to allow for additional scale up 1s the use of non-point
neurons, such as compartmental models which are described
in Literature Reference No. 16, which can function with a
higher degree of impinging neurons.

FIG. 1 1s a flow diagram depicting the traming process for
the model of the present invention. Initial synaptic strengths,
network parameters, and connectivity for the CA3 recurrent
network are set 1n a first step 100. In a second step 102, the
system receives an input pattern sequence in the form of
spikes, wherein spikes represent the output of neurons
processing the output of a sensor. In a third step 104, the
inputs are processed using the CA3 recurrent network based
on synaptic plasticity (described below). In a fourth step
106, the system determines whether the entire pattern
sequence 1s prospectively predicted (described below). It
not, a first feedback loop 108 returns the process to the third
step 104. If the entire pattern sequence 1s predicted, then, 1n
a fifth step 110, the system determines whether there are
more patterns to predict. If there are more patterns to predict,
a second feedback loop 112 returns the process to the second
step 102. If 1t 1s determined that there are no more patterns
to predict, then the training process stops 114.

FIG. 2 1s a flow diagram illustrating the testing of the
pre-play and replay functions according to the principles of
the present invention. First, the system 1dentifies a neuronal
ensemble that spikes for a given pattern after learning 200.
Next, the system receives an mput pattern sequence to be
tested 202. For the pre-play function, a few neurons in the
neuronal ensemble at the beginning of the input pattern
sequence are stimulated 204. For the replay function, a few
neurons in the neuronal ensemble at the end of the input
pattern sequence are stimulated 206. Following neuron
stimulation, the spiking activity of the CA3 neuronal
ensemble 1s measured for the duration of the sequence 208.
The spiking activity 1s then compared with partial stimula-
tion and full stimulation 210. Based on the comparison, the
system determines whether there 1s a good match 212. If
there 1s a good match, then the output 1s an accurate pre-play
214 and/or replay 216. If a good match does not exist, then
there 1s a poor pre-play and/or replay 218.

(4.2) Synapses and Synaptic Plasticity

For the fixed network to learn, synaptic plasticity 1s
required. Two diflerent forms of plasticity are used for the
model of the present invention: one for excitatory and one
for inhibitory synapses. The imnhibitory synapse rule 1s sym-
metrical (but does not strictly have to be), and functionally
implements a rule where coactive neurons reduce their
inhibitory coupling, but neurons that fire independently have
strong inhibitory connectivity. Complementary to the inhibi-
tory weight changes, excitatory changes are asymmetric (but
do not strictly have to be) and strengthen synapses that
contribute to the activation of the neuron and weaken those
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that are activated while the neuron 1s rebounding unless the
postsynaptic neuron activates again.

FIG. 3A shows couplet (or pair-based) excitatory spike-
timing-dependent plasticity (STDP) rule for changing the
synaptic weights based on the timing difference between a
pair of spikes (or couplet), one pre-synaptic and one post-
synaptic. Along the x-axis 1s the timing diflerence (pre-post),
while the y-axis represents the change 1n excitatory synaptic
weilght. This 1s a single curve that passes through the origin
with a big discontinuity in the middle. The portion of the
curve that 1s above zero on the right represents the “rule for
potentiation” which states that if the pre-synaptic spike
occurs earlier than the post-synaptic spike, then the synapse
will potentiate (or increase 1 weight) as dictated by the
portion of the curve above zero on the right. The situation 1s
exactly reversed for the other case. The “rule for depression™
which states that if the pre-synaptic spike occurs aiter the
post-synaptic spike, then the synapse will depress (or
decrease 1n weight) 1s dictated by the portion of the curve
below zero on the left. If the Ipre-postl 1s very large then
there 1s no weight change. The couplet rule 1s described 1n
Literature Reference No. 17.

FIG. 3B depicts a plot of an extension rule (1.e., triplet
excitatory STDP rule) of the couplet rule plot 1n FIG. 3A.
The triplet excitatory STDP rule considers both pre-post and
post-pre timing diflerence eflects on the change in excitatory
synaptic weights. Unlike the previous rule, the weight
changes according to this rule 1s a function of both the
pre-post as well as the post-pre timing differences, thus
generating a three-dimensional plot. If the |pre-postl and

[post-prel are very large, then there 1s no weight change. The
triplet rule 1s described 1n Literature Reference No. 10.

The plot 1n FIG. 3C illustrates the ihibitory STDP rule
and shows how the mhibitory synaptic weights are aflected
by the timing difference between pre- and post-synaptic
spikes. The above two rules (depicted 1n FIGS. 3A and 3B)
are for synapses of the excitatory kind. The plot shown 1n
FIG. 3C describes the STDP rule for synapses that are
inhibitory, where the rules for changing the inhibitory
weights are described. In particular, it the pre-post or
post-pre timing difference 1s within a certain value (as
dictated by the big bump in the middle), then the synapses
are potentiated, and 1f not, they are depressed (the two deep
wells on either side). It the |pre-postl 1s very large then there
1s no weight change. The inhibitory rule i1s described 1n
Literature Reference No. 1.

The exact time constants or amplitudes associated with
these rules are not required for proper learning and function.
The exact form of excitatory plasticity represented in FIGS.
3A-3C 1s not strictly required. Any rule that associates
causal or information transfer relationships will work. How-
ever, the exact implementation will aflect the nuances of
pattern learning and recall. As non-limiting examples, FIGS.
3A and 3B show couplet- and triplet-based STDP learning
rules, respectively. The triplet-based rule forms more sym-
metric connections between a pair of neurons (see Literature
Retference No. 10), whereas the couplet-based rule learns
only to increase the forward relationship (see Literature
Retference No. 17). As a result, the triplet-based rule can
recall patterns 1n reverse order, whereas the couplet-based
rule can only recall in the forward direction.

Due to the confluence of inhibitory connectivity and
sparseness of the representation, rapid plasticity 1n general
and very rapid inhibitory plasticity may be exhibited without
sacrificing the stability of the network or previously learned
representations.
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(4.3) Pattern Sequences

The 1nput format has significant effect on the encoding of
the sequences and subsequent recall. The mput neurons are
connected to very few CA3 neurons (1.e., spiking neurons).
In the data presented in the present application, one-to-one
input neuron to CA3 neuron connections are used. However,
learning still occurs if each input neuron 1s connected to a
handful of CA3 neurons. The synaptic iputs to this CA3
network (1.e., recurrent spiking network) are large (approxi-
mately five times the maximum allowed weight of recurrent
synapses) and fixed (but this need not be the case) so that a
spatiotemporal pattern can be strongly forced onto the
downstream recurrent network model. This strong influence
results 1n the recurrent CA3 network having a high likeli-
hood to spike 1n a similar manner as the upstream 1nputs. As
the synapses make plastic adjustments reflective of the spike
association bias, the excitatory synapses strengthen, and the
inhibitory synapses weaken. Once that occurs, the patterns
have been learned.

Patterns are presented simultaneously for each active
spatiotemporal memory neuron or, to bias forward learning,
they are presented 1n subsequent gamma cycles. The use of
gamma and theta frequency modulation forces short, high
frequency bursts that activate subsequent nodes prospec-
tively (see Literature Reference Nos. 2 and 14). The net
inhibitory eflect of on-going firing limits prospective firing
to a handful of future spatiotemporal neurons. FIG. 4 shows
sample spiking activity of input neurons. Notice the noise
added to timings and variance in the number of spikes per
theta cycle. In other words, the spike patterns are not exactly
the same 1n terms of which time they occur.

The diversity and size of the number of neurons in
ensembles aflects the number of patterns that can be stored.
First, using neurons with diflerent ensembles for each spa-
tiotemporal pattern increases the number of patterns that can
be learned versus using defined ensembles 1n diflerent
orders. In other words, by manually separating the neurons
that process each spatiotemporal input, 1t mimimizes overlap
and, thus, improves the signal to noise ratio, as described 1n
Literature Reference No. 19. Also, given a fixed pattern
length and size, increasing the network size increases the
number of patterns that can be stored. In experimental
studies of the present invention, randomly selected neurons
were used to express artificial spatiotemporal patterns. How-
ever, this need not be the case.

(4.4) Recall and Reverse Replay

In the hippocampus, patterns of place cell activity are
pre-played 1n forward order or replayed 1n reverse order at
the beginning and end, respectively, of a linear track (see
Literature Reference No. 3). Place cells are cells found in the
CAl region of the hippocampus that are known to respond
to specific locations i the environment (see Literature
Retference No. 18). Similarly, the present invention demon-
strates pre-play and replay of spiking activity of neuron
ensembles. This 1s accomplished by reactivating the
ensemble at the beginning or end of the spatiotemporal
sequence aiter learning has occurred. The ensemble 1s
reactivated by short gamma frequency bursts (e.g., 1-4
spikes) from each (or many of the) neuron in the 1mitial or
end segment of the ensemble. This could be considered
reminiscent of the downstream spiking activity due to the
sensory mput at the beginming or end of a linear track. The
exact duration or frequency of input 1s not required but 1s the
preferred method for biologic plausibility.

The pre-play of activity, as illustrated 1n FIG. 5, can be
viewed as a full recall of a previous memory. A spiking
network that can perform 1free recall of the ensemble
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sequence has yet to be demonstrated 1n a simulated network.
The recall of previous memories based on partial patterns
means that the results of various behaviors can be predicted
given a similar sensory match to other experiences. The left
side of FIG. 5 depicts behavior timescale episode activity of
simulated CA3 neurons. Solid lines indicate the beginning
of directly mnput driven activity, and to the left of the solid
lines 1s prospective firing. On the right side 1s an example of
torward recall of the episode to the left on a compressed
timescale given an 1nitial, short, gamma frequency burst of
input to the first few neurons. For each solid line, the spikes
for a given neuron on the right side of the solid line represent
the recall activity of a pattern for that neuron. The reason for
the partial pattern 1s that this spiking activity 1s evoked by a
brief burst of spikes as inputs to a neuron ensemble, where
the entire ensemble 1s not stimulated and only part of 1t
stimulated. The entire ensemble starts to fire after this mitial
stimulation.

Neurons are sorted based on the time at which they emat
a spike during the testing period. The significance of FIG. 5
1s that 1t shows that the network neurons are capable of both
recall and prospective firing based on just partial stimulation
of the neuronal ensemble, thereby showing that the network
has learned the spatio-temporal pattern sequence robustly
such that 1t can both predict and recall 1t.

Storage memories are widely used in computer architec-
tures. As computers push toward neurocomputational para-
digms, the need for a spatiotemporal memory becomes
apparent. In the near-term, dense analog storage of spatio-
temporal sequences as synaptic weights has the potential for
a wide variety of tasks. Moreover, the completion of patterns
has application in error correction and denoising of audio,
video, or communication signals. Using the pre-play (or
recall) feature of the present invention, prediction of the
future based on past experiences could be performed, which
1s usetul for prognostics, behavior prediction, or motion 1n
scene understanding.

An example of a computer system 600 1n accordance with
one aspect 1s shown 1 FIG. 6. The computer system 600 1s
configured to perform calculations, processes, operations,
and/or functions associated with a program or algorithm. In
one aspect, certain processes and steps discussed herein are
realized as a series of instructions (e.g., software program)
that reside within computer readable memory units and are
executed by one or more processors of the computer system
600. When executed, the instructions cause the computer
system 600 to perform specific actions and exhibit specific
behavior, such as described herein.

The computer system 600 may include an address/data
bus 602 that i1s configured to communicate information.
Additionally, one or more data processing units, such as a
processor 604, are coupled with the address/data bus 602.
The processor 604 1s configured to process information and
instructions. In one aspect, the processor 604 1s a micropro-
cessor. Alternatively, the processor 604 may be a difierent
type of processor such as a parallel processor, or a field
programmable gate array.

The computer system 600 1s configured to utilize one or
more data storage units. The computer system 600 may
include a volatile memory unit 606 (e¢.g., random access
memory (“RAM?”), static RAM, dynamic RAM, etc.)
coupled with the address/data bus 602, wherein a volatile
memory unit 606 1s configured to store information and
instructions for the processor 604. The computer system 600
further may include a non-volatile memory unit 608 (e.g.,
read-only memory (“ROM”), programmable ROM
(“PROM?”), erasable programmable ROM (“EPROM”),
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clectrically erasable programmable ROM “EEPROM”),
flash memory, etc.) coupled with the address/data bus 602,
wherein the non-volatile memory unit 608 1s configured to
store static information and instructions for the processor
604. Alternatively, the computer system 600 may execute
instructions retrieved from an online data storage umt such
as 1 “Cloud” computing. In an embodiment, the computer
system 600 also may include one or more interfaces, such as
an 1nterface 610, coupled with the address/data bus 602. The
one or more interfaces are configured to enable the computer
system 600 to interface with other electronic devices and
computer systems. The communication interfaces imple-
mented by the one or more interfaces may include wireline
(e.g., serial cables, modems, network adaptors, etc.) and/or
wireless (e.g., wireless modems, wireless network adaptors,
etc.) communication technology.

In one aspect, the computer system 600 may include an
mput device 612 coupled with the address/data bus 602,
wherein the mput device 612 1s configured to communicate
information and command selections to the processor 600.
In accordance with one aspect, the mput device 612 1s an
alphanumeric input device, such as a keyboard, that may
include alphanumeric and/or function keys. Alternatively,
the mput device 612 may be an mput device other than an
alphanumeric input device. In one aspect, the computer
system 600 may include a cursor control device 614 coupled
with the address/data bus 602, wherein the cursor control
device 614 1s configured to communicate user input infor-
mation and/or command selections to the processor 600. In
one aspect, the cursor control device 614 i1s implemented
using a device such as a mouse, a track-ball, a track-pad, an
optical tracking device, or a touch screen. The foregoing
notwithstanding, 1n one aspect, the cursor control device 614
1s directed and/or activated via mput from the mput device
612, such as in response to the use of special keys and key
sequence commands associated with the input device 612. In
an alternative aspect, the cursor control device 614 1is
configured to be directed or guided by voice commands.

In one aspect, the computer system 600 further may
include one or more optional computer usable data storage
devices, such as a storage device 616, coupled with the
address/data bus 602. The storage device 616 1s configured
to store information and/or computer executable instruc-
tions. In one aspect, the storage device 616 1s a storage
device such as a magnetic or optical disk drive (e.g., hard
disk drive (“HDD), floppy diskette, compact disk read only
memory (“CD-ROM™), digital versatile disk (“DVD”)).
Pursuant to one aspect, a display device 618 1s coupled with
the address/data bus 602, wherein the display device 618 1s
configured to display video and/or graphics. In one aspect,
the display device 618 may include a cathode ray tube
(“CRT”), liqud crystal display (“LCD”), field emission
display (“FED”), plasma display, or any other display device
suitable for displaying video and/or graphic images and
alphanumeric characters recognizable to a user.

The computer system 600 presented herein 1s an example
computing environment in accordance with one aspect.
However, the non-limiting example of the computer system
600 1s not strictly limited to being a computer system. For
example, one aspect provides that the computer system 600
represents a type of data processing analysis that may be
used 1n accordance with various aspects described herein.
Moreover, other computing systems may also be imple-
mented. Indeed, the spirit and scope of the present technol-
ogy 1s not limited to any single data processing environment.
Thus, 1 one aspect, one or more operations of various
aspects of the present technology are controlled or imple-
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mented using computer-executable instructions, such as
program modules, being executed by a computer. In one
implementation, such program modules include routines,
programs, objects, components and/or data structures that
are configured to perform particular tasks or implement
particular abstract data types. In addition, one aspect pro-
vides that one or more aspects of the present technology are
implemented by utilizing one or more distributed computing
environments, such as where tasks are performed by remote
processing devices that are linked through a communica-
tions network, or such as where various program modules
are located 1n both local and remote computer-storage media
including memory-storage devices.

An 1llustrative diagram of a computer program product
embodying the present invention 1s depicted 1n FIG. 7. As a
non-limiting example, the computer program product i1s
depicted as either a floppy disk 700 or an optical disk 702.
However, as mentioned previously, the computer program
product generally represents computer readable code (1.e.,
instruction means or mstructions) stored on any compatible
non-transitory computer readable medium.

What 1s claimed 1s:

1. A system for learning, prediction, and recall of spa-
tiotemporal patterns, the system comprising:

one or more processors and a non-transitory memory

having mstructions encoded thereon such that when the
instructions are executed, the one or more processors
perform operations of:
receiving a noisy signal having a plurality of spatiotem-
poral sequences;
learning an mput spatiotemporal sequence of the noisy
signal online using a recurrent spiking CA3 neural
network by:
processing the mput spatiotemporal sequence having
a beginning and an end using the recurrent spiking
CA3 neural network based on synaptic plasticity;
determining whether the entire spatiotemporal
sequence 1s prospectively predicted; and
determining whether there are additional spatiotem-
poral sequences to predict;
enabling pre-play and/or replay of the spatiotempo-
ral sequence, allowing the spatiotemporal
sequence to be activated from the beginning or
end of the spatiotemporal sequence such that the
spatiotemporal sequence can be retrieved in a
forward or a reverse order; and
performing cued recall of a previously learned spa-
tiotemporal sequence based on a partial spatiotem-
poral sequence using the pre-play and/or replay of
the spatiotemporal sequence,
wherein the recurrent spiking CA3 neural network
comprises a plurality of neurons having synaptic
connections comprising excitatory synaptic connec-
tions and inhibitory synaptic connections;
wherein balanced 1nhibitory connectivity exists
between neurons having excitatory synaptic connec-
tions; and
wherein the recurrent spiking CA3 neural network uses
distinct forms of synaptic plasticity for excitatory
synaptic connections and inhibitory synaptic connec-
tions, such that excitatory synaptic connections
strengthen and 1nhibitory synaptic connections
weaken;
completing a pattern 1n a spatiotemporal sequence of
the noisy signal using the learned input spatiotem-
poral sequence; and
denoising the noisy signal using the completed pattern.
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2. The system as set forth 1n claim 1, wherein the one or
more processors further perform operations of:

completing coactive patterns 1n  spatiotemporal
sequences;

generalizing recall based on similarity to other experi-
ences; and

predicting at least one future spatiotemporal sequence
through activation of the recurrent spiking CA3 neural
network.

3. The system as set forth in claim 2, wherein an effective
pairing between any at least one ensemble of coactive
neurons and another neuron scales from net inhibitory to net
excitatory depending on the ensemble of coactive neurons.

4. The system as set forth 1n claim 3, wherein the one or
more processors further perform an operation of reactivating
at least one ensemble of coactive neurons at the beginning
or the end of the at least one spatiotemporal sequence after
learning has occurred to demonstrate prediction and recall of
the at least one spatiotemporal sequence.

5. The system as set forth 1n claim 4, wherein the recurrent
spiking CA3 neural network associates each neuron with at
least one ensemble of coactive neurons.

6. The system as set forth 1n claim 3, wherein the one or
more processors further perform an operation of using
neurons with different ensembles for each spatiotemporal
sequence to 1ncrease the number of spatiotemporal
sequences that can be learned.

7. The system as set forth 1n claim 1, wherein the one or
more processors further perform operations of:

implementing an inhibitory synapse rule, wherein an

ensemble of coactive neurons reduces their mnhibitory
coupling, and neurons that fire independently have
strong inhibitory connectivity; and

implementing an excitatory synapse rule, wherein syn-

apses that contribute to activation of a neuron are
strengthened, and synapses that are activated while the
neuron 1s rebounding are weakened.

8. A computer-implemented method for learning, predic-
tion, and recall of spatiotemporal patterns, comprising:

an act ol causing one or more processors to execute

instructions stored on a non-transitory memory such
that upon execution, the one or more processors per-
forms operations of:
receiving a noisy signal having a plurality of spatiotem-
poral sequences;
learning an 1nput spatiotemporal sequence of the noisy
signal online using a recurrent spiking CA3 neural
network by:
processing the iput spatiotemporal sequence having
a beginning and an end using the recurrent spiking
CA3 neural network based on synaptic plasticity;
determining whether the entire spatiotemporal
sequence 1s prospectively predicted; and
determiming whether there are additional spatiotem-
poral sequences to predict;
enabling pre-play and/or replay of the spatiotemporal
sequence, allowing the spatiotemporal sequence to
be activated from the beginning or end of the spa-
tiotemporal sequence such that the spatiotemporal
sequence can be retrieved 1n a forward or a reverse
order; and
performing cued recall of a previously learned spa-
tiotemporal sequence based on a partial spatiotem-
poral sequence using the pre-play and/or replay of
the spatiotemporal sequence,
wherein the recurrent spiking CA3 neural network
comprises a plurality of neurons having synaptic

10

15

20

25

30

35

40

45

50

55

60

65

14

connections comprising excitatory synaptic connec-
tions and inhibitory synaptic connections;

wherein balanced inhibitory connectivity exists
between neurons having excitatory synaptic connec-
tions; and

wherein the recurrent spiking CA3 neural network uses
distinct forms of synaptic plasticity for excitatory
synaptic connections and inhibitory synaptic connec-
tions, such that excitatory synaptic connections
strengthen and 1nhibitory synaptic connections
weaken,

completing a pattern 1n a spatiotemporal sequence of
the noisy signal using the learned input spatiotem-
poral sequence; and

denoising the noisy signal using the completed pattern.

9. The method as set forth 1n claim 8, wherein the one or
more processors further perform operations of:

completing coactive patterns 1 spatiotemporal
sequences;

generalizing recall based on similarity to other experi-
ences; and

predicting at least one future spatiotemporal sequence
through activation of the recurrent spiking CA3 neural
network.

10. The method as set forth in claim 9, wherein an
ellective pairing between any at least one ensemble of
coactive neurons and another neuron scales from net inhibi-
tory to net excitatory depending on the ensemble of coactive
neurons.

11. The method as set forth in claim 10, wherein the one
or more processors further perform an operation of reacti-
vating at least one ensemble of coactive neurons at the
beginning or the end of the at least one spatiotemporal
sequence after learning has occurred to demonstrate predic-
tion and recall of the at least one spatiotemporal sequence.

12. The method as set forth in claim 11, wherein the
recurrent spiking CA3 neural network associates each neu-
ron with at least one ensemble of coactive neurons.

13. The method as set forth in claim 12, wherein the one
or more processors further perform an operation of using
neurons with different ensembles for each spatiotemporal
sequence to 1ncrease the number of spatiotemporal
sequences that can be learned.

14. The method as set forth 1n claim 8, wherein the one or
more processors further perform operations of:

implementing an inhibitory synapse rule, wherein an

ensemble of coactive neurons reduces their inhibitory
coupling, and neurons that fire independently have
strong inhibitory connectivity; and

implementing an excitatory synapse rule, wherein syn-

apses that contribute to activation of a neuron are
strengthened, and synapses that are activated while the
neuron 1s rebounding are weakened.

15. A computer program product for learning, prediction,
and recall of spatiotemporal patterns, the computer program
product comprising computer-readable instructions stored
on a non-transitory computer-readable medium that are
executable by a computer having a processor for causing the
processor to perform operations of:

recerving a noisy signal having a plurality of spatiotem-

poral sequences;

learning an input spatiotemporal sequence of the noisy

signal online using a recurrent spiking CA3 neural

network by:

processing the mput spatiotemporal sequence having a
beginning and an end using the recurrent spiking
CA3 neural network based on synaptic plasticity;
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determining whether the entire spatiotemporal
sequence 1s prospectively predicted; and
determining whether there are additional spatiotempo-
ral sequences to predict;
enabling pre-play and/or replay of the spatiotemporal
sequence, allowing the spatiotemporal sequence to
be activated from the beginning or end of the spa-
tiotemporal sequence such that the spatiotemporal
sequence can be retrieved 1n a forward or a reverse
order; and
performing cued recall of a previously learned spa-
tiotemporal sequence based on a partial spatiotem-
poral sequence using the pre-play and/or replay of
the spatiotemporal sequence,
wherein the recurrent spiking CA3 neural network com-
prises a plurality of neurons having synaptic connec-
tions comprising excitatory synaptic connections and
inhibitory synaptic connections;
wherein balanced inhibitory connectivity exists between
neurons having excitatory synaptic connections; and
wherein the recurrent spiking CA3 neural network uses
distinct forms of synaptic plasticity for excitatory syn-
aptic connections and mhibitory synaptic connections,
such that excitatory synaptic connections strengthen
and inhibitory synaptic connections weaken;
completing a pattern 1n a spatiotemporal sequence of the
noisy signal using the learned mnput spatiotemporal
sequence; and
denoising the noisy signal using the completed pattern.
16. The computer program product as set forth 1 claim
15, further comprising nstructions for causing the processor
to perform operations of:
completing coactive
sequences;
generalizing recall based on similarity to other experi-
ences; and

patterns 1 spatiotemporal
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predicting at least one future spatiotemporal sequence
through activation of the recurrent spiking CA3 neural
network.

17. The computer program product as set forth i claim
16, wherein an eflective pairing between any at least one
ensemble of coactive neurons and another neuron scales
from net inhibitory to net excitatory depending on the
ensemble of coactive neurons.

18. The computer program product as set forth in claim
17, turther comprising instructions for causing the processor
to perform an operation of reactivating at least one ensemble
of coactive neurons at the beginning or the end of the at least
one spatiotemporal sequence after learning has occurred to
demonstrate prediction and recall of the at least one spa-
tiotemporal sequence.

19. The computer program product as set forth i claim
18, wherein the recurrent spiking CA3 neural network
associates each neuron with at least one ensemble of coact-
1ve neurons.

20. The computer program product as set forth 1n claim
19, turther comprising instructions for causing the processor
to perform an operation of using neurons with different
ensembles for each spatiotemporal sequence to increase the
number of spatiotemporal sequences that can be learned.

21. The computer program product as set forth 1n claim
15, turther comprising 1nstructions for causing the processor
to perform operations of:

implementing an inhibitory synapse rule, wherein an

ensemble of coactive neurons reduces their inhibitory
coupling, and neurons that fire independently have
strong inhibitory connectivity; and

implementing an excitatory synapse rule, wherein syn-

apses that contribute to activation of a neuron are
strengthened, and synapses that are activated while the
neuron 1s rebounding are weakened.
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