US010346343B2

a2y United States Patent 10) Patent No.: US 10,346,343 B2

Suresh et al. 45) Date of Patent: Jul. 9, 2019
(54) HARDWARE ACCELERATOR FOR (2013.01); HO4L 9/0618 (2013.01); HO4L
PLATFORM FIRMWARE INTEGRITY 9/3239 (2013.01); GO6F 2212/1052 (2013.01);
CHECK GOGF 2212/402 (2013.01)

_ _ (38) Field of Classification Search
(71) Applicant: %{‘Jtsf)l Corporation, Santa Clara, CA USPC oo 713/192

See application file for complete search history.

(72) Inventors: Vikram Suresh, Hillsboro, OR (US);
Sudhir Satpathy, Hillsboro, OR (US);

Sanu Mathew, Hillsboro, OR (US); U.S. PATENT DOCUMENTS
Neeraj Upasani, Portland, OR (US)

(56) References Cited

6,401,208 B2 6/2002 Davis et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 7,199,608 B1* 4/2007 Trumberger HO3K 19/17732

(US) 326/38
(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PUBIICATIONS
U.S.C. 1534(b) by 251 days.

International Search Report and Written Opinion for PCT/US2017/

(21) Appl. No.: 15/192,739 033858, 16 pages, dated Aug. 11, 2017.
(22) Filed: Jun. 24, 2016 Primary Examiner — Christopher J Brown
74) Att Agent, or Firm — L tein Sandler LLP
(65) Prior Publication Data (74) Attorney, Agent, ov Firm owenstein Sandler
US 2017/0373839 A1 Dec. 28, 2017 (57) ABSTRACT
Encryption of a BIOS using a programmable logic device
(51) Int. CI. H (PLD) 1s described. A PLD may include a static random-
HO4L 9/00 (2006'03“) access memory area including programmable logic 1n a
GOOF 13/42 (2006'03‘) Lookup Table to receive a request to authenticate a basic
GO6t 21/44 (2013'0j) input/output system (BIOS) executing on a processor
GOOL 12/1007 (201 6'0;") coupled to the PLD. The PLD may calculate a hash value of
GO6E 12/14 (2006'0;*) a message associated with the BIOS using a Secure Hash
GO6l 13/16 (2006'03") Algorithm (SHA). The PLD may also include a random-
GO6E 21757 (2013'03‘) access memory area including a first embedded random
GO6F 21/76 .(2013'0“) access memory block (EBR) to store a first portion of a
(Continued) 256-bit message digest associated with the message, a fifth
(52) U.S. Cl portion of the 256-bit message digest, and second, third,
CPC GOoF 13/4282 (2013.01); GO6F 12/1009 fourth, sixth, seventh, and eighth EBRs to store second,

(2013.01); GO6F 12/1408 (2013.01); GO6F third, fourth, sixth, seventh, and eighth portions of the
13/1668 (2013.01); GO6F 21/44 (2013.01); 256-bit message digest, respectively.
GO6F 21/575 (2013.01); GO6F 21/76

(2013.01); GO6F 21/79 (2013.01); GO9C 1/00 24 Claims, 16 Drawing Sheets
fﬂﬂ\\
PROGRAMMABLE LOGIC DEVICE 101
STATIC RANDOM ACCESS RANDOM ACCESS MEMORY
MEMORY 102 108
LOOKUP TABLE 103 =
EMBEDDED RANDOM
PROGRAMMABLE ACCESS MEMORY
LOGIC i BLOCKS 106
104 i
READ ONLY MEMORY 107
PROCESSOR 110
BASIC INPUT/OUTPUT
SYSTEM 111
PROCESSOR
MEMORY EEHFAGE - BUS 120 >| MEMORY 130

US 10,346,343 B2

Page 2
(51) Int. CL
GOolF 21/79 (2013.01)
G09C 1/00 (2006.01)
HO4L 9/32 (2006.01)
HO4L 9/06 (2006.01)
(56) References Cited
U.S. PATENT DOCUMENTS
8,275,125 B2 9/2012 Vyayarangan
8,438,377 B2 5/2013 Senda
9,361,449 B2* 6/2016 Sugano GO6F 21/44
2006/0020810 A1* 1/2006 Waltermann GO6F 21/121
713/179
2011/0087872 Al* 4/2011 Shah HO4L 9/3236
713/2
2012/0324238 Al 12/2012 Senda
2014/0365755 A1 12/2014 Liu et al.
2016/0027015 Al1* 1/2016 Redpath G06Q 20/4012
705/72

* cited by examiner

U.S. Patent Jul. 9, 2019 Sheet 1 of 16 US 10,346,343 B2

100\‘

PROGRAMMABLE LOGIC DEVICE

f 105 i

9 MEMORY 102 %

EMBEDDED RANDOM
ACCESS MEMORY
BLOCKS 106

PROGRAMMABLE
LOGIC
104

READ ONLY MEMORY 107 |

. SYSTEM 111 |

PROCESSOR

MEMORY INTERFACE | | BUS 120

| MEMORY 130

FIG. 1

¢ 9l

U << WSIYYYS

US 10,346,343 B2

Sheet 2 of 16

Jul. 9, 2019

U << JYSNYPIYS

U.S. Patent

PULI UIAI

U.S. Patent Jul. 9, 2019 Sheet 3 of 16 US 10,346,343 B2

A new 308, E new 310} {AIn-1:0].B,C,E[n-1:0],F,G}
WrAddr 318 306 WrAddr 316 324
2n 6n

32/n log,(192/6n)

Data Data

A E reg EBR
302

State reg EBR

320

Q Q

304 322
1 64 log,(192/6n)
RdAddr RotRight >>n RdAddr
312 326 328 6n
(B,C,D.F,G,H}
64
tALES

SHA Round (LUT)

A new E_new

314 316

FIG. 3

7 Old

US 10,346,343 B2

sSpyg u-7¢

[0:u-Zc]Ssm mou

¥0v
39y SSIN dwog

N
Yo
Sy
= _ _ -
- [o: 1~u]3swr mau
~—
&
W
=
75
43 —
¢0
S\
Yo
—
“ JNPIAYIS
=) [-(u/Z€) 01 1 3PAD
e JFUSSIN
= b U << ysnpoy
-

“ ” 00
| | 3.1 ssu
or | mlaal et | v1] st

(SAIOAD W03 U /7€ AIIAQ) [1]8oa 3sw = [1+1]394 3swa

U.S. Patent

US 10,346,343 B2

&

— 2
&

T &

'

P

&

- Z1S 110g

peay

&N

—

—

g |

=

= APPVIM

(u/z15)380]

U.S. Patent

vle(q

IPPVPYU

805

(snq 718)
b 830 SSW

L} A

vieq

G Ol

JI[MPIYIS
ASBSSIN

05

(snq 71¢)
7 894 3Su

905
(S3q T15)
¢ 83X ssu

ereq

u i

8IS mdinQ JIMPIYOIS SSTA

M) ISBSSII\] MIN

SEIAN m:-wg
1PPVPH 1PPVPYU
01S
(u/718)%80] 110 "
peay "

IPPVPA

A

(snq z1$)
[894 ssu

ereq

(u/715)*s0]

US 10,346,343 B2

Sheet 6 of 16

Jul. 9, 2019

U.S. Patent

9 Ol

ug++9
r——————
AN AN ST AA 9T A
appvry | IPPVPA IPPYVPA | 1PPVPH
- (w (W
43 V'ou Z1S)80 C¢ Voulz15) S0y

(snqzrs) | | (snq z18) (snq z1s) | | (snq z18)

g 894 dswi|{ |/ Soa @sw| |9 Sou Ssw| |¢ B4 Ssw
vle(q Kl vye(q e

8} 9 8 9 8 9 8 9

pu.

HIAD
. 4

ARLIY AJOUWRA]
SUIYSeH 10} ISBSSIIAl
ISUVSSITA] MIN

909
(2 PIYIS S\ m»?.b
SSIA

¢09
LMPIYOQ
ABBSSIIA

IPPVIM. | IPPVIAL IPPVIMA | JPPVIM

|
IPPVPY m_ﬁm_uﬂﬁm 1PPVPYU A.Mw_uﬂ_um |

|

r£> V' ulzis)@Boyy ¢ boou) Tis)sol
m 0O O

- (s31q Z1S) (s1q Z19) (s31q 719)

O
(snq 719)

|
Nq e |
] 894 3swi

vjeq |

§ 894 3sw ¢ 891 ssui| |7 83X 3sw
vIR(Q v1e(q v)e(g

8 9 8 9 8 9 8 9
APPVIM IPPVIA IPPVIA IPPVIMN

b09 AvAIY ?@E@E

(13[NPaYIS SSIA] Wo.)) Sunysey 10y ISBSSIIA|

|

|

|

|

|

pu.l _
|

|

SSIN ASBSSIIA] MIN "
i

US 10,346,343 B2

Sheet 7 of 16

Jul. 9, 2019

U.S. Patent

d

0L

L 9Ol

(LOT) punoy VHS

MU T ‘Adu vy}

¥ [enIu]

ug

1PPVPYU

(s11q-957)

tC B4\

394 AeI§ Nuj

(u/gC1)*30]

(u/gT1)30]
IPPVI

V. Ol

O

¢0.

(NOY 1q-8+07)
831 1Y

(u/8$07)*30]
IPPVPA

US 10,346,343 B2

Sheet 8 of 16

808

(WOY 19-8+07)
JUBISUO) punoy

Jul. 9, 2019

U.S. Patent

8 Ol

(4§

(q9d 1q-9¢7)
33y Ae1§ [eniu]

018
(ypredeyep nq-u)
aANNOY VHS

908

(Mgd 1q-T1sx1)
SIY IBBSSIN

708
(ypederep 3gq-u)
YT TNATHDS ADOVSSAIN VHS

Y,

r08

(A4 d 19-761-+19-¥9)
39) 9)1¥1S SUDJI0AA

puno.
1se|

U.S. Patent Jul. 9, 2019 Sheet 9 of 16 US 10,346,343 B2

900
\

. Start >

wy

-

Receive a request to authenticate a BIOS 910
executing on a processor coupledtoa "
programmable logic device

w

Map a first portion of a message digest | _— 920

registers to a first RAM area

h 4

Map a second portion of a message digest | _— 930
registers to a second RAM area

AAEArArara -

Calculate, in view of the first RAM area ang

the second RAM area, a hash value ofa —"

message associated with the BIOS using a
secure hash algorithm 256

94(

FIG. 9

US 10,346,343 B2

Sheet 10 of 16

Jul. 9, 2019

U.S. Patent

ZA
HWWOD

$$920y AMOWSN

09071 (s)8isn|D uonnosx3
7901 (Shun 2901

(ShHun uofnIeX3

_ .
] 9001
| 1

i

0r0L 3UM) 8poIs(]

(Shiun seji4 Jesibay [eaisAyd

[T S
| 7001 UM JOJR90||y/AWBUSY _IIL 0501

« 7G0]
L un juswaimney

Jun suIbug uopnoex3

001

8€01 Yoo UORONASU|

9¢0f Hun 1L Uogonasy|

Jiuf) pu U0l

¢t0!

pEQL HUM 9Yoe?) UOKONISU|

Jlun UoRIIPald youelg

d0l 9lI4
| arT I R L o
mcm.mww_._ _ amm,_&, A 901 mmmm »&Emz CIOF mm 0L0¢ .w..%._.ﬂ 900/ @c“_w%%owo
“co_Emoxu v_omom_.cm__o,_? abe)s aynoex= 10B3Y 1315165 3|NpPayYos " UIBUBY, "20|Iv | 8pooa(6U5
I D s————————————————————————————— " — —_ - - wrkon s o wn o oo wowsn s oo ls———— s o o
YOl 9l
v/01L o
9/01 HUM |yve)) ele(] 080! 0.0 |
JIUn 8Yoen) 71 7701 IByojeeid ereq | yun Aowaspy|
Hun gl eled |

200! 000+
yoied _\m:.%q.i
060/
8100

US 10,346,343 B2

Sheet 11 of 16

Jul. 9, 2019

U.S. Patent

Ll 9Ol
aydIen | 19A81 01 ayden | |oA87 0}
147 8LL1 437
QU NGNS L
0Ll HIOMBN 8011
ssedAg / 9|14 181S109 44 NIOMIaN sSedAg / o] J81sibay abojy; L)
NS NS Y S SO S— Y009 X
- e] |
9011 J3Npayds rOL] i) 18|NP8YIS
d4 ajdug 19|NpayYIS 4 [eIBuUSL)/MO|S J8|npsyos i1se AIOWBIN
5 E0LL
~ ouIbu3g Jepip jo In
anant) dOn Julod Buneojd/1ebayu) ¥ OND\NMW@E U 49RI0 S0 110
Jsueuay 18)sibay/101eo0|y
A0 L | J0SS920.4
"oy 0tLL
%mww M_o: ayoen aoel|
ZCIT -
NOY 8CL1
9POV0IDINN 18p0o8(g uononasu
L0LL I
pu3 JUOL 9CH

1821891 UuonINASyl

US 10,346,343 B2

Sheet 12 of 16

Jul. 9, 2019

U.S. Patent

0ECt

eje(] puy 9poy

0771 9beinlg eleq

0ccl

¢l 9ld

444
9SNO/PIROgASY

¢t
S9OIAS(] WO

veelk
AIOWAIN

44
O/l olpny

9ict

0871 10S5820i4

31z
abpug sNg

pLCL

se0IA9(O/

(671
4/] Q 57T :
2671 Salyaely) Hod-yoiH
ceel
AJOWB|\

771 10$$820id

v/%m }

US 10,346,343 B2

Sheet 13 of 16

pECL
AJOWBN

Jul. 9, 2019

U.S. Patent

r49

c8tt

969
A/l
m% w%
06S| lesdiyn
EIRE: l AR
d-d
08C1 1055900Id 0/€1 10SS820I1d

PIEL

cLE})

$99IA9(O]

el
AOWSIA

v/oom }

US 10,346,343 B2

11ed)
Jiun Aejdsig
&
—
-~
-
.4
y—
2
&
i
7 9L7]
(Shiun Jejjosuod SNg
&N
—
—
g\
o
=
pu

OLvl

Jun Jueby WoisAS

U.S. Patent

Pl ©Old

452 0cvl EE:@M,FEES
NG HUM IAVES Kloway pajesBbaju

207 (S)hun josuuoolaiul

9071
(Shiun 8yde) paleys

VFOFL
(shun
ayoen

veor) 9109

LIVl
108883014 uoneaddy

8crl

;;;;;;;;;;;;;J
9777 _

_
I
747 "

_

_
3077 i
_

0cvl
(S)10SS9201d BIPAN

./ 007l
diyn) e uo WojsAS

US 10,346,343 B2

CoG]
4IM 8'208
&
e
-~
-
\r,
e
2 055 L
- Sdo
&N
e
~ -
! C/G]
< WBPOY O
=
p—
0/G1
oojeN|g

U.S. Patent

1A

Gl Ol
530]
I0JJU0Y) JOMO

GIG 1L 006G

Use|l NV H(

CHeL 073T | e 0ECT
19]|CA0D) Skl JIRJIONUOD INYHAS NOY 1004 NIS

TICT
198UUO02IBU|

05T ”
oUyoe) ¢

6051

HUry) edelisil] 5N

380Gl [0UCY |YIEY ']

10G1
9109

9051
8109

v/oom /

U.S. Patent Jul. 9, 2019 Sheet 16 of 16 US 10,346,343 B2

1600

TPROCESSING DEVICE 1602]
S STATIC MEMORY |
E % 1606
| | PROCESSING LOGIC |
1626 i — -
{ S - VIDEO DISPLAY

UNIT 1608

i """" MAIN MEMORY 1604

T - |
 PROCESSING | [| ALPHA-NUMERIC
LOGIC - » INPUTDEVICE |
E 1626 % | 1608

“\ e |

DATASTORAGEDEVICE | .
1618 CURSOR CONTROL
B e DEVICE
| MACHINE-READABLE e1a
MEDIUM 1624
| | PROCESSING LOGIC | SIGNAL
1626 e GENERATION
N ; DEVICE 5
e ’ 1616 ;
S GRAPHICS
NETWORK | i PROCESSING UNIT
INTERFACE DEVICE }= 1627 E
1622 5 —
E 1
| % |
% z VIDEO PROCESSING
VA B UNIT |
: | 1628]
NETWORK i
1620 | B
AUDIO PROCESSING
UNIT

1632

US 10,346,343 B2

1

HARDWARE ACCELERATOR FOR
PLATFORM FIRMWARE INTEGRITY
CHECK

The present disclosure pertains to the field of processors >
and, 1n particular, to SHA-256 encryption of a Basic Input/
Output System (BIOS) by a programmable logic device.

BACKGROUND

10

A basic mput/output system (BIOS) 1s a type of firmware
used to perform hardware mmitialization during the startup of
computer systems. The BIOS may also provide runtime
services for operating systems (OS) and programs. BIOS
firmware may be built into personal computers. The BIOS
may additionally provide an abstraction layer for the hard-
ware, allowing for a consistent way for application programs
and operating systems to interact with devices connected to
the computer. 20

15

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure will be
understood more fully from the detailed description given -5
below and from the accompanying drawings of various
embodiments of the disclosure. The drawings, however,
should not be taken to limit the disclosure to the specific
implementations, but are for explanation and understanding
only. 30

FIG. 1 1s a block diagram illustrating a computing system
that implements a hardware accelerator for platform firm-
ware 1tegrity check according to one embodiment.

FI1G. 2 1s a block diagram 1llustrating microarchitecture of
an n-bit SHA-256 message digest according to one embodi- 35
ment.

FI1G. 3 1s a block diagram 1llustrating memory mapping of
state registers according to one embodiment.

FI1G. 4 1s a block diagram 1llustrating microarchitecture of
a SHA-256 message scheduler with an n-bit datapath 40
according to one embodiment.

FIG. 5 1s a block diagram 1illustrating memory mapping,
for message registers according to one embodiment.

FIG. 6 1s a block diagram illustrating dual message
memory array for message expansion and collection accord- 45
ing to one embodiment.

FIG. 7A 1s a block diagram illustrating on-chip ROM
block for storing round constants according to one embodi-
ment.

FIG. 7B 1s a block diagram illustrating memory mapping 50
ol an 1nitial state register according to one embodiment.

FI1G. 8 1s a block diagram 1llustrating microarchitecture of
SHA-256 with memory mapping for a PLD according to one
embodiment.

FIG. 9 illustrates a diagram of a method of performing 55
BIOS authentication operations according to one embodi-
ment.

FIG. 10A 1s a block diagram illustrating a micro-archi-
tecture for a processor that implements BIOS authentication
operations according to one embodiment. 60

FIG. 10B 1s a block diagram illustrating an in-order
pipeline and a register renaming stage, out-of-order 1ssue/
execution pipeline according to one embodiment.

FIG. 11 1llustrates a block diagram of the micro-architec-
ture for a processor that includes logic circuits to perform 65
BIOS authentication operations according to one embodi-
ment.

2

FIG. 12 1s a block diagram of a computer system accord-
ing to one embodiment.

FIG. 13 1s a block diagram of a computer system accord-
ing to another embodiment.

FIG. 14 15 a block diagram of a system-on-a-chip accord-
ing to one embodiment.

FIG. 15 illustrates another implementation of a block
diagram for a computing system according to one embodi-
ment.

FIG. 16 1illustrates another implementation of a block
diagram for a computing system according to one imple-
mentation.

DESCRIPTION OF EMBODIMENTS

Processors may implement BIOS authentication to pre-
vent anything being read from the hard disk, such as the
operating system, until the user has confirmed they have tle
correct password or other credentials. To improve the efli-
ciency of BIOS authentication, embodiments of the present
disclosure enable a programmable logic device to map BIOS
authentication operations and storage to on-chip Embedded
Block Random Access Memory (EBR). Although the opera-
tions described herein refer to EBRs for the sake of conve-
nience, 1t should be noted that other types of memory
including, but not limited to, Random Access Memory
(RAM), embedded-RAM, or on-chip-RAM may be inter-
changeably used 1n place of EBRs.

BIOS authentication may be performed wvia ofi-chip
implementation of the Secure Hash Algorithm (SHA). SHA-
256 1s one of a set of cryptographic hash functions designed
by the National Security Agency (NSA). Cryptographic hash
functions are mathematical operations run on digital data; by
comparing the computed “hash” (the output from execution
of the algorithm) to a known and expected hash value, a
computer can determine the data’s integrity.

When a message 1s input to a hash algorithm, the result 1s
an output called a message digest. The message digests may
range 1n length from 160 to 312 bits, depending on the
algorithm. The message digest has a one-to-one relationship
with the original message, and even the smallest of changes
to the original message will result 1n a large change to the
message digest. In the context of BIOS authentication, the
ongmal BIOS code may be run through SHA-2356 to deter-
mine a correct message digest. Upon subsequent boots, the
BIOS code may be run through SHA-256 and the resulting
message digest can be compared against the original, correct
message digest to verily that the BIOS code has not been
tampered with.

A generic sequence of events beginning with the booting
of a computer may include booting the:

1. Basic Input/Output System (BIOS)

2. Master boot record (MBR) partition table

3. Pre-boot authentication (PBA)

4. Operating system (OS)

At the time the BIOS boots and the authentication of the
BIOS 1s to be performed, the operating system may not yet
have booted, and therefore the OS may not be capable of
performing the authentication. Thus, BIOS authentication
may be performed by a micro-controller interfaced with the
BIOS memory. This solution can be performance intensive
and may result 1n large latency. Instead, an off-chip pro-
grammable logic device (PLD) may be used to perform
BIOS authentication as set for in the embodiments described
herein. Performing BIOS authentication via a PLD advan-
tageously allows for a device, such as a Field Programmable
Gate Array (FPGA) or a Complex Programmable Logic

US 10,346,343 B2

3

Device (CPLD), to perform the authentication on the pro-
cessor 1tself. PLDs have Look Up Table (LUT) modules that
are used to perform logic. Since SHA-2356 operations are
dominated by sequential logic, directly mapping the SHA-
256 resources to a PLD may result in heavy utilization of the
PLD’s Look Up Table (LUT) modules. The embodiments

described herein may address mapping of SHA-256 opera-
tions and resources to PLDs by utilizing the LUT modules
of a PLD to calculate and compare the calculated hash value
of a BIOS, while embedded random access memory blocks
(EBR) of a random access memory (RAM) area of the PLD
are utilized to store SHA-256 resources. In one embodiment,
the calculated hash value of the BIOS may be stored in a
ROM of the PLD. In other embodiments, the calculated hash
value may be stored 1n other areas of the PLD, such as a
SRAM area, RAM area, or in LUTS.

The embodiments described herein may address mapping,
of SHA-2356 operations and resources to PLDs by utilizing
the LUT modules of a PLD to calculate and compare the
calculated hash value of a BIOS, while random access
memory blocks (EBR) of a random access memory (RAM)
area of the PLD are utilized to store SHA-256 resources. By
utilizing the RAM area of a PLD, LUT utilization 1s reduced
and BIOS authentication 1s more eflicient.

FIG. 1 1s a block diagram illustrating a computing system
that implements a hardware accelerator for platform firm-
ware ntegrity check according to one embodiment. The
computing system 100 1s formed with a processor 110 that
includes a basic mput/output system (BIOS) and a memory
interface 112. The computing system 100 may be any device
or combination of devices, but the description of various
embodiments described herein 1s directed to processing
devices and programmable logic devices.

System 100 includes a memory interface 112 and memory
130. In one embodiment, memory interface 112 may be a
bus protocol for communication from processor 110 to
memory 130. Memory 130 includes a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, or other
memory device. Memory 130 stores instructions and/or data
represented by data signals that are to be executed by the
processor 110. The processor 110 1s coupled to the memory
130 via a processor bus 110. A system logic chip, such as a
memory controller hub (MCH) may be coupled to the
processor bus 110 and memory 130. An MCH can provide
a high bandwidth memory path to memory 130 for mstruc-
tion and data storage and for storage of graphics commands,
data and textures. The MCH can be used to direct data
signals between the processor 110, memory 130, and other
components 1n the system 100 and to bridge the data signals
between processor bus 110, memory 130, and system 1/O,
for example. The MCH may be coupled to memory 130
through a memory interface (e.g., memory mtertace 112). In
some embodiments, the system logic chip can provide a
graphics port for coupling to a graphics controller through
an Accelerated Graphics Port (AGP) interconnect. The sys-
tem 100 may also include an I/O controller hub (ICH). The
ICH can provide direct connections to some I/O devices via
a local I/0 bus. The local I/O bus 1s a high-speed 1I/O bus for
connecting peripherals to the memory 130, chipset, and
processor 110. Some examples are the audio controller,
firmware hub (flash BIOS), wireless transceiver, data stor-
age, legacy 1/O controller containing user input and key-
board interfaces, a serial expansion port such as Universal
Serial Bus (USB), and a network controller. The data storage

10

15

20

25

30

35

40

45

50

55

60

65

4

device can include a hard disk drive, a floppy disk drive, a
CD-ROM device, a flash memory device, or other mass
storage device.

System 100 1s representative of processing systems based
on the PENTIUM III™, PENTIUM 4™ Xeon™, Itanium,
XScale™ and/or StrongARM™ microprocessors available
from Intel Corporation of Santa Clara, Calif., although other
systems (including PCs having other microprocessors, engi-
neering workstations, set-top boxes and the like) may also be
used. In one embodiment, system 100 executes a version of
the WINDOWS™ operating system available from Micro-
soit Corporation of Redmond, Wash., although other oper-
ating systems (UNIX and Linux for example), embedded
soltware, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present disclosure are not limited
to any specific combination of hardware circuitry and soft-
ware.

Embodiments described herein are not limited to com-
puter systems. Alternative embodiments of the present dis-
closure can be used i1n other devices such as handheld
devices and embedded applications. Some examples of
handheld devices include cellular phones, Internet Protocol
devices, digital cameras, personal digital assistants (PDAs),
and handheld PCs. Embedded applications can include a
micro controller, a digital signal processor (DSP), system on
a chip, network computers (NetPC), set-top boxes, network
hubs, wide area network (WAN) switches, or any other
system that can perform one or more 1nstructions in accor-
dance with at least one embodiment.

In this 1llustrated embodiment, processor 110 includes one
or more execution units. One embodiment may be described
in the context of a single processor desktop or server system,
but alternative embodiments may be included 1n a multi-
processor system. System 100 may be an example of a *hub’
system architecture. The computer system 100 includes a
processor 110 to process data signals. The processor 110, as
one 1llustrative example, includes a complex instruction set
computer (CISC) microprocessor, a reduced instruction set
computing (RISC) microprocessor, a very long instruction
word (VLIW) microprocessor, a processor implementing a
combination of instruction sets, or any other processor
device, such as a digital signal processor, for example. The
processor 110 1s coupled to a processor bus 110 that trans-
mits data signals between the processor 110 and other
components in the system 100. Other elements of system
100 may include a graphics accelerator, memory controller
hub, I/O controller hub, wireless transceiver, Flash BIOS,
Network controller, Audio controller, Serial expansion port,
I/O controller, etc.

In one embodiment, the processor 110 includes a Level 1
(L1) internal cache memory. Depending on the architecture,
the processor 110 may have a single internal cache or
multiple levels of internal caches. Other embodiments
include a combination of both internal and external caches
depending on the particular implementation and needs.

For another embodiment of a system, BIOS authentica-
tion can be implemented by a system on a chip (SoC). One
embodiment of a SoC includes of a processor and a memory.
The memory of the SoC may be a flash memory. The flash
memory can be located on the same die as the processor and
other system components. Additionally, other logic blocks
such as a memory controller or graphics controller can also
be located on a SoC.

System 100 1ncludes a programmable logic device (PLD)
101 operatively coupled to the processor 110. In one
embodiment, PLD 101 may be a field-programmable gate
array (FPGA). In other embodiments, PLD 101 may be a

US 10,346,343 B2

S

complex programmable logic device (CPLD), Generic array
logic (GAL), programmable logic array (PLA), or other type
of PLD. In one embodiment, processor 110 and PLD 101

may be included on a single circuit board, each in their
respective locations.

PLD 101 1s an mtegrated circuit used to build reconfigu-
rable digital circuits. The PLD 101 can be an electronic
component used in connection with other components or
other integrated circuits, such as processor 110. In general,
PLDs can have undefined functions at the time of manufac-
turing and can be programmed or reconfigured before use.
The PLD 101 can be a combination of a logic device and a
memory device. The memory of the PLD 101 can store a
pattern that was given to the integrated circuit during
programming. Data can be stored in the integrated circuit

using various technologies, such as antifuses, Static Random
Access Memory (SRAM), EPROM cells, EEPROM cells,

flash memory, or the like. The PLD 101 can use any type of

PLD technology, but the embodiments herein are described
with respect to FGPA and CPLD technologies. FPGAs are

internally based on LUTs, whereas CPLDs have a macrocell
as the main building block of logic functions. A macrocell 1s
a higher-level logic function, such as flip-tflops, ALU func-

tions, registers, and the like.
In one embodiment, PL.LD 101 includes SRAM area 102,

RAM area 105, and read-only memory (ROM) 107.
Memory 107 may store instructions and/or data represented
by data signals that are to be executed by the PLD 101.
SRAM area 102 may include multiple lookup tables (LUTs).
In one embodiment, a lookup table 1s an array that replaces
runtime computation with an array indexing operation. For
example, lookup table 103 may include programmable logic
104 to perform BIOS authentication operations as described
herein. RAM area 105 may include embedded random
access memory blocks (EBRs) 106. In one embodiment,
EBRs 106 and ROM 107 may be used by PLD 101 to store
data associated with BIOS authentication operations, as
described herein.

In one embodiment, a SHA-256 algorithm may include a
256-bit message digest, which may be a constant initial hash
state (e.g., an 1nitial 512-bit state message) or a previous
hash (e.g., a prior 512-bit state message), depending on
which round the SHA-256 hashing operations are in. The
digest may be stored 1n a state register (State_Reg) in EBR
106 and may be updated with the output of the SHA round
every cycle. The 512-bit message to be hashed may be stored
in EBR 106 as 16 words 1n a message register (Msg_Reg).
It 1s worth mentioning that the message may be larger than
512 bits, and broken down into 512-bit portions on which to
operate. One 32-bit word of the original message may be
consumed by the SHA function programmable logic 104 1n
LUTs 103 1n rounds O through 15 (e.g., 16 rounds). At the
same time, a message schedule algorithm (e.g., 1n program-
mable logic 104) consumes four words of the message to
generate a new 32-bit message word. These new message
words may be used 1n SHA rounds 16 through 63 (for 64
rounds total) by a message scheduler to generate new 32-bit
message words for each subsequent round. A single-stage
pipelined architecture may take 64 cycles (rounds) to hash a
512-bit message to produce a 256-bit signature which may
be used as the 1nitial state of the next 512-bit state message
SHA-256 hashing rounds. It should be noted that the above
operations can be scaled down to operate on 16, 8, 4, or 2
bits at a time, 1nstead of 32. For simplicity, the operations
described herein will be described with respect to 32-bit
operations.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, the 256-bit digest 1n State_Reg (e.g.,
in EBR 106) may be divided into eight, 32-bit words, A-H,
which may either be the 1mitial state, default state, or the
output of the previous round. The words A and E may go
through 32-bit functions 20and X1 respectively, which per-
form a series of shift and rotate operations followed by an
XOR operation. Furthermore, “Maj” and “Ch” functions
(e.g., in programmable logic 104) may perform logic opera-
tions on words A through C, and E through G respectively.
The outputs of these functions are added with words D and
H, as well as the input message from the Msg_Reg and a
32-bit round constant (Kt). In one embodiment, the round
constant 1s stored in LUT 103. In one embodiment, the
addition is performed modulo 2°?. The round outputs
(A_new and E_new) update the words A and E of the
State_reg. The remaining words (B-D and F-H) may be
obtained by right shifting the state register by 32 positions
(e.g., B_new 1s A, C_new 1s B, efc.).

In one embodiment, a message scheduler similarly imple-
ments Tunctions o0 and ol on 32-bit words of Msg_Reg|[1]
and Msg_Reg[14] respectively, followed by a 2°% modulo
addition with Msg_Reg[15] and Msg_Reg[6]. The contents
of the Msg_Reg are shufted left by 32 positions with the new
message stored 1n Msg_Reg[0]. Additional details about the
above operations are further explained with respect to FIGS.
1-9 of this disclosure.

FIG. 2 1s a block diagram 1illustrating microarchitecture of
an n-bit SHA-256 message digest according to one embodi-
ment. In one embodiment, 1nitially 32-bit state registers A,
B and E, F are mapped to A0 202, A1 204, EO 206, and E1
208, respectively. An mitial 256-bit hash value may be
loaded into A0 202, A1 204, C 210, D 212, E0 206, E1 208,
(G 214, H 216. During even rounds, A1 may contain the word
B while AO contains the word A and during odd rounds A0
may contains the word B while Al contains the word A.
Similarly, during even rounds, E1 contains the word F while
EO contains the word E and during odd rounds EO may
contain the word F while E1 contains the word E. The inputs
to the SHA round may be selected between AO/Al and
EO/E1 depending on the round number. Each cycle, the SHA
round may generate n-bits of A_new 218 and E_new 220.

These bits may be stored in the most significant bit (MSB)
of A1/A0 and E1/EO respectively, depending on the round
number.

In one embodiment, the registers containing words C, D,
(G, H may be shifted right by n positions every cycle with the
lower n-bits of the current round word B and word F shifted
into the MSB of C and G respectively. The 32-bit registers
acting as A and E may be rotated right by n positions every
cycle. In one embodiment, the round logic generates a carry
out for n<32 (e.g., 222, 224), which 1s fed back into the SHA
round in the subsequent cycle. Since the round function
consumes n-bits each cycle, each SHA round may span for
32/n cycles. At the end of 32/n cycles, the carry output may
be discarded to adhere to modulo 2°* addition.

In one embodiment, the state registers A0 202, Al 204, C
210, D 212, EO 206, E1 208, G 214, H 216 are not directly
mapped 1nto individual memory blocks due to limitations in
the number of read/write access ports, but instead mapped to
two EBRs. One memory mapping embodiment of the state
registers 1s shown in FIG. 3.

FIG. 3 15 a block diagram illustrating memory mapping of
state registers according to one embodiment. In one embodi-
ment, the registers A and E (a first portion of a 256-bit
message digest register) are mapped to a 128-bit EBR 302,
with a 64-bit read port 304 and 2n-bit write port 306. Since
the states A and E go through the 2 functions 1n the message

US 10,346,343 B2

7

digest, the 32-bits of current A and E are used for the
generation of each n-bit state of A_new 308 and E_new 310.
The 64-bit read port 304 of the EBR 302 may be used to
access the current state of A and E from a single address (32
bits of A and 32 bits of E). The single bit read address 312
may be held constant for the entire 32/n clock cycles of each
message digest round (e.g., 1t can be held at O to access AO
and EO, and the next round it can be held at 1 to access Al
and E1). The new states of A and E, which are the n-bit wide
A_new 314 and E_new 316 outputs of the SHA round are
written back into the same location of A_E_reg each cycle
by incrementing the 32/n bit write address 318 to comple-
ment the read address 312. For example, i1 the read address
312 was 0, to read AO and EO, the write address 318 may be
1, to write to A_new and E_new to Al and E1. The 128-bit
EBR may be accessed as two 64-bit banks, with the current
32-bit states of A and E read from one bank and the new
32-bit states written 1nto the other bank across 32/n cycles 1n
cach digest round. For the next round of digest, the read
address may be mnverted and the recently written states of A
and E may be read as the current 32-bit states. The MSB of
the write address may also be complemented to over-write
the previous states. Combining the states A and E mnto a
single memory bank may reduce the number of EBRs
required for storing these states, as well as optimizes the
logic for address generation.

The remaining six states (B, C, D, F, G, H) may be
combined (into a second portion of the 256-bit message
digest register) and stored 1n a 192-bit EBR, State_reg 320,
with 6n-bit (e.g., s1x times the size of a data path associated
with the message digest) read 322 and 6n-bit write 324 ports.
The 6n-bit read and write may represent n bits of each of B,
C, D, F, G, H. The 192-bit EBR may be divided into 32/n
memory locations containing n-bit nibbles of B, C, D, F, G,
H. In one embodiment, n-bits of states B, C, D, F, G, and H
may be read through the 6n-bit read port 322 each cycle. The
n-bits of states Aand E, A_E_reg[n—1:0] and A_E_reg[31+n
:32], obtained after the rotate right operation 326, provide
32-bits of current state A and E across 32/n cycle and may
be combined, via hashing combination logic, with n-bits of
the current states of B, C, E, and G to generate the new states
of B through H. A[n-1:0], B, C, E[n-1:0], F, and G may
form the 6n-bit data that 1s written back into the previously
read location. This embodiment may implement the
ShiftRight>>n operation shown mn FIG. 2. Across 32/n
cycles 1n each message digest round, the current states of A,
B, C, E, F and G are shifted into B, C, D, F, G and H
respectively 1 the SHA round implemented by LUTs. The
write address 326 of State_reg 320 may be generated by
decrementing the read address 328 every cycle.

FI1G. 4 1s a block diagram 1llustrating microarchitecture of
a SHA-256 message scheduler with an n-bit datapath,
according to one embodiment. One embodiment of message
scheduler 402 logic for an n-bit SHA256 implementation 1s
as shown 1n FIG. 4. The message words Wt-15 and Wt-2
undergo o0 and ol functions respectively, mnvolving rotation
and shift operations. Each cycle, the n-bit message schedule
logic may consume 32-bits of Wt-15 and 32-bits of Wt-2 and
n-bits of Wt-16 and Wt-7. The contents of registers msg_reg
[15], msg_reg[14], msg_reg[6] and msg reg[l] may be
rotated right by n positions every cycle. This may provide
the n-least significant bits of Wt-16, Wt-7 and the appropri-
ately aligned 32-bits of Wt-135, and Wt-2 for the o functions.
In one embodiment, the n-bit output of the message sched-
uler 1s stored 1n a temporary register 404. The carry output
of register 406 generated (for n<32) every cycle 1s fed back
into the message scheduler 1n the subsequent cycles. Similar

10

15

20

25

30

35

40

45

50

55

60

65

8

to the SHA round, each message schedule operation may
consume 32/n cycles. In one embodiment, at the end of 32/n
cycles the carry register 406 1s cleared and the contents of
the msg_reg 400 are shifted left by 32 positions with the new
intermediate message Wt shifted into msg reg[0]. In one
embodiment, the carry and the temporary message register
may be implemented by LUTs. The mapping of message
register 400 to memory banks 1s shown 1n FIG. 5.

FIG. 5 1s a block diagram 1llustrating memory mapping,
for message registers according to one embodiment. In one
embodiment, a copy of the 512-bit content of the message
register 1s stored 1n four 512-bit EBR memory banks (ms-

_regs 502-508) to individually access Wt-16, Wt-15, Wt-7
and Wt-2. Since Wt-15 and Wt-2 go through the o functions
described previously, the EBRs used to access Wt-15 and
Wt-2 may have a 32-bit read port (e.g., 510 and 512). The
remaining two EBRs used to access Wt-16 and Wt-7 may
have an n-bit read port (e.g. 514 and 516). In one embodi-
ment, all four EBRs 502-508 have an n-bit write port 518 to
store the incoming new message of the BIOS page or a new
message double word generated by the scheduler. The read
addresses of the four EBRs are set initially to point to the
locations of the respective double words. The read address
of msg reg 1 and msg reg 3 may be incremented every
cycle to read n bits of Wt-16 and Wt-7 respectively. The read
address of msg_reg_2 and msg_reg 4 may be incremented
once every message schedule round (e.g., every 32/n cycles)
to read the next 32-bit double word of Wt-15 and Wt-2
respectively. The four EBRs may share a common write
address and update the state of current Wt-16 with the new
message every clock cycle.

FIG. 6 1s a block diagram illustrating dual message
memory array for message expansion and collection accord-
ing to one embodiment. The message scheduler 602 may
store an mcoming 512-bit block of the next message from
the BIOS. In one embodiment, two separate message
memory arrays are created to simultaneously perform new
message collection and expansion of existing messages.
When the message 604 1n array 1 1s expanded and consumed
by the SHA message digest, memory array 2 may receive the
next 512-block of message 606 to be hashed in the subse-
quent rounds. The two arrays may alternate between the two
operations every 64 rounds of hashing via a multiplexor 608.

FIG. 7A 1s a block diagram illustrating on-chip ROM
block for storing round constants according to one embodi-
ment. In one embodiment, the unique 32-bit round constants
for each of the 64 SHA rounds are mapped to an on-chip
embedded ROM 702. Since only n-bits of the constant are
utilized each cycle, the embedded ROM may be configured
as a 2048-bit ROM with a log 2(2048/n) bit address port and
an n-bit data port. Advantageously, mapping the round
constants to on-chip block memory completely eliminates
the desire for any logic to generate round constants, thereby
minimizing the LUT utilization.

FIG. 7B 1s a block diagram illustrating memory mapping,
of an mitial state register according to one embodiment. In
one embodiment, the initial state register stores the iitial
working state of the message digest, which 1s added to the
working state using hashing combination logic at the end of
64 rounds of SHA-256 to obtain the 256-bit nitial state for
the next round of hashing. The 256-bit mitial state register
may be mapped to a 256-bit initial state EBR 704 with 2n-bit
read/write ports. Advantageously, this allows the n-bits of A
and E, B and F, C and G, and D and H to be stored and
accessed together from the same location. Since the n-bit
SHA datapath takes 2048/n cycles to complete 64 rounds,
starting from cycle 1920/n, n-bits of the final D/H are

US 10,346,343 B2

9

generated by the SHA round digest 706. These may be added
708 to the D/H of the mitial state and written back into the
Init_State_reg 704. Over the next 128/n cycles, the final
working state A through H may be added to the initial state
2n-bits at a time to compute the mnitial state for the next
round ol hashing instead of waiting for all 64 SHA rounds
to complete before compute the new 1nitial state.

FI1G. 8 1s a block diagram 1llustrating microarchitecture of
SHA-256 with memory mapping for a PLD according to one
embodiment. In one embodiment, with the exception of the
registers required for round counter and address generation,
all sequential elements may be mapped to on-chip RAM
and/or ROM modules. The SHA message scheduler 802 may
be coupled to the message register 806, which in turn may
be coupled to SHA round 810. Working state register 804
and round constant 808 may also be coupled to SHA round
810. SHA round 810 may be coupled to initial state register,
which 1n turn may be coupled to working state register 804
via hashing combination logic 814 and mux 816, as shown
in FIG. 8.

FIG. 9 1llustrates a diagram of a method of performing
BIOS authentications operations according to one embodi-
ment. The method 900 may be performed by processing
logic that includes hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), soltware (e.g.,
instructions run on a processing device to perform hardware
simulation), or a combination thereotf. In one embodiment,
components of system 100 executing on the processor 110 or
programmable logic device 101 perform method 900.

Beginning at block 910, processing logic may receive a
request to authenticate a basic mput/output system (BIOS)
executing on a processor coupled to a programmable logic
device (PLD). In one embodiment, the request may be
received by the off-chip PLD. In one embodiment, the PLD
1s an FPGA or a CPLD. In other embodiments, various other
PLDs may be used. At block 920, processing logic may map
a 1irst portion of a message digest register to a first RAM
area. In one embodiment, the first RAM area may be an
embedded random access memory block (EBR). In one
embodiment, the first portion of the message digest register
corresponds to the A and E states of the SHA-256 encryp-
tion, as described above. In one embodiment, the first EBR
1s 128 bits 1 size with a 32-bit read port and an n-bit write
port. At block 930, processing logic may map a second
portion ol the message digest register to a second RAM area
(e.g., EBR). In one embodiment, the second portion of the
message digest register corresponds to the B, C, D, F, G, and
H states of the SHA-256 encryption. The second EBR may
be 192 bits 1n size with a 6n-bit read port and a 6n-bit read
port.

At block 940, processing logic calculates, in view of the
first EBR and the second EBR, a hash value of a message
associated with the BIOS using a Secure Hash Algorithm
256 (SHA-256). In one embodiment, the hash value 1is
calculated according to the operations described in FIGS.
2-8. In one embodiment, processing logic may compare the
calculated hash value to a first value stored 1n the PLD. The
first value stored 1n the PLD may be a previously determined
and authenticated hash wvalue associated with a correct
version of the BIOS. In one embodiment, it the calculated
hash value matches the first value stored in the PLD, the
BIOS 1s authenticated.

FIG. 10A 1s a block diagram illustrating a micro-archi-
tecture for a processor 1000 that implements BIOS authen-
tication operations, according to one embodiment. Specifi-
cally, processor 1000 depicts an n-order architecture core
and a register renaming logic, out-of-order 1ssue/execution

5

10

15

20

25

30

35

40

45

50

55

60

65

10

logic to be included 1n a processor according to at least one
embodiment of the disclosure. The embodiments of the
BIOS authentication operations described herein can be
implemented 1n processor 1000.

Processor 1000 includes a front end umt 1030 coupled to
an execution engine unit 1050, and both are coupled to a
memory unit 1070. The processor 1000 may include a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruc-
tion word (VLIW) core, or a hybrid or alternative core type.
As yet another option, processor 1000 may include a special-
purpose core, such as, for example, a network or commu-
nication core, compression engine, graphics core, or the like.
In one embodiment, processor 1000 may be a multi-core
processor or may be part of a multiprocessor system.

The front end unit 1030 includes a branch prediction unit
1032 coupled to an instruction cache unit 1034, which 1s
coupled to an instruction translation lookaside butler (TLB)
1036, which 1s coupled to an instruction fetch unit 1038,
which 1s coupled to a decode unit 1040. The decode unit
1040 (also known as a decoder) may decode instructions and
generate as an output one or more micro-operations, micro-
code entry points, microinstructions, other instructions, or
other control signals, which are decoded from, or which
otherwise retlect, or are dertved from, the original instruc-
tions. The decoder 1040 may be implemented using various
different mechanisms. Examples of suitable mechanisms
include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs),
microcode read only memories (ROMs), etc. The instruction
cache unit 1034 is further coupled to the memory unit 1070.
The decode umit 1040 1s coupled to a rename/allocator unit
1052 1n the execution engine unit 1050.

The execution engine umt 1050 includes the rename/
allocator unit 1052 coupled to a retirement unit 1054 and a
set of one or more scheduler unit(s) 1056. The scheduler
unit(s) 1056 represents any number of different schedulers,
including reservations stations (RS), central instruction win-
dow, etc. The scheduler unit(s) 1056 1s coupled to the
physical register file(s) unit(s) 1058. Each of the physical
register file(s) units 1058 represents one or more physical
register files, different ones of which store one or more
different data types, such as scalar integer, scalar floating
point, packed integer, packed floating point, vector integer,
vector floating point, etc., status (e.g., an 1struction pointer
that 1s the address of the next instruction to be executed), etc.
The physical register file(s) unit(s) 1038 1s overlapped by the
retirement unit 10354 to illustrate various ways 1 which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder bufler(s) and a retirement
register file(s), using a future file(s), a history bufler(s), and
a retirement register file(s); using a register maps and a pool
ol registers; etc.).

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various types of registers are suitable as long
as they are capable of storing and providing data as
described herein. Examples of suitable registers include, but
are not limited to, dedicated physical registers, dynamically
allocated physical registers using register renaming, combi-
nations of dedicated and dynamically allocated physical
registers, etc. The retirement unit 1054 and the physical
register file(s) unmit(s) 1058 are coupled to the execution
cluster(s) 1060. The execution cluster(s) 1060 includes a set
of one or more execution units 1062 and a set of one or more
memory access units 1064. The execution units 1062 may

US 10,346,343 B2

11

perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector integer, vector tloating point).

While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions, other embodiments may include only one execu-
tion unit or multiple execution units that all perform all
functions. The scheduler unit(s) 1056, physical register
file(s) unit(s) 1058, and execution cluster(s) 1060 are shown
as being possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.g.,
a scalar integer pipeline, a scalar floating point/packed
integer/packed tloating point/vector integer/vector floating
point pipeline, and/or a memory access pipeline that each
have their own scheduler unit, physical register file(s) unait,
and/or execution cluster—and 1n the case of a separate
memory access pipeline, certain embodiments are 1mple-
mented 1n which only the execution cluster of this pipeline
has the memory access unit(s) 1064). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order 1ssue/execution
and the rest 1n-order.

The set of memory access units 1064 1s coupled to the
memory unit 1070, which may include a data pretfetcher
1080, a data TLB unmit 1072, a data cache unit (DCU) 1074,
and a level 2 (L2) cache unit 1076, to name a few examples.
In some embodiments DCU 1074 1s also known as a first
level data cache (L1 cache). The DCU 1074 may handle
multiple outstanding cache misses and continue to service
incoming stores and loads. It also supports maintaining
cache coherency. The data TLB unit 1072 is a cache used to
improve virtual address translation speed by mapping virtual
and physical address spaces. In one exemplary embodiment,
the memory access units 1064 may include a load unit, a
store address unit, and a store data unit, each of which 1s
coupled to the data TLB umt 1072 1n the memory unit 1070.
The L2 cache unit 1076 may be coupled to one or more other
levels of cache and eventually to a main memory.

In one embodiment, the data prefetcher 1080 specula-
tively loads/prefetches data to the DCU 1074 by automati-
cally predicting which data a program 1s about to consume.
Prefetching may refer to transferring data stored in one
memory location (e.g., position) of a memory hierarchy
(c.g., lower level caches or memory) to a higher-level
memory location that i1s closer (e.g., yields lower access
latency) to the processor before the data 1s actually
demanded by the processor. More specifically, prefetching
may refer to the early retrieval of data from one of the lower
level caches/memory to a data cache and/or prefetch buller
betore the processor 1ssues a demand for the specific data
being returned.

The processor 1000 may support one or more mnstructions
sets (e.g., the x86 1nstruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so 1n a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core 1s simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as 1n the Intel® Hyperthreading technology).

5

10

15

20

25

30

35

40

45

50

55

60

65

12

While register renaming 1s described in the context of
out-of-order execution, it should be understood that register
renaming may be used 1n an in-order architecture. While the
illustrated embodiment of the processor also includes a
separate instruction and data cache units and a shared 1.2
cache umt, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (LL1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that 1s external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 10B 1s a block diagram illustrating an in-order
pipeline and a register renaming stage, out-of-order issue/
execution pipeline implemented by processor 1000 of FIG.
10A according to some embodiments of the disclosure. The
solid lined boxes 1n FIG. 10B 1llustrate an 1n-order pipeline,
while the solid lined boxes 1n combination with the dashed
lined boxes 1llustrate a register renaming, out-of-order issue/
execution pipeline. In FIG. 10B, a processor pipeline 1001
includes a fetch stage 1002, a length decode stage 1004, a
decode stage 1006, an allocation stage 1008, a renaming
stage 1010, a scheduling (also known as a dispatch or 1ssue)
stage 1012, a register read/memory read stage 1014, an
execute stage 1016, a write back/memory write stage 1018,
an exception handling stage 1022, and a commit stage 1024.
In some embodiments, the ordering of stages 1002-1024
may be different than illustrated and are not limited to the
specific ordering shown in FIG. 10B.

FIG. 11 1llustrates a block diagram of the micro-architec-
ture for a processor 1100 that includes logic circuits to
perform BIOS authentication operations, according to one
embodiment. In some embodiments, BIOS authentication
instructions 1 accordance with one embodiment can be
implemented to operate on data elements having sizes of
byte, word, doubleword, quadword, etc., as well as
datatypes, such as single and double precision integer and
floating point datatypes. In one embodiment the in-order
front end 1101 1s the part of the processor 1100 that fetches
instructions to be executed and prepares them to be used
later 1n the processor pipeline. The embodiments of the
BIOS authentication operations disclosed herein can be
implemented 1n processor 1100.

The front end 1101 may include several units. In one
embodiment, the instruction prefetcher 1126 fetches mstruc-
tions from memory and feeds them to an instruction decoder
1128 which 1n turn decodes or interprets them. For example,
in one embodiment, the decoder decodes a received instruc-
tion into one or more operations called “micro-instructions™
or “micro-operations” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the mstruction 1nto an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations 1n accordance with one embodiment. In
one embodiment, the trace cache 1130 takes decoded uops
and assembles them into program ordered sequences or
traces 1in the vop queue 1134 for execution. When the trace
cache 1130 encounters a complex mstruction, the microcode
ROM 1132 provides the uops needed to complete the
operation.

Some 1nstructions are converted mto a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, 1f more than four micro-ops
are needed to complete an instruction, the decoder 1128
accesses the microcode ROM 1132 to do the mnstruction. For
one embodiment, an instruction can be decoded 1nto a small

US 10,346,343 B2

13

number of micro ops for processing at the instruction
decoder 1128. In another embodiment, an instruction can be
stored within the microcode ROM 1132 should a number of
micro-ops be needed to accomplish the operation. The trace
cache 1130 refers to an entry point programmable logic
array (PLA) to determine a correct micro-instruction pointer

for reading the micro-code sequences to complete one or
more instructions 1n accordance with one embodiment from

the micro-code ROM 1132. After the microcode ROM 1132

finishes sequencing micro-ops for an instruction, the front
end 1101 of the machine resumes fetching micro-ops from
the trace cache 1130.

The out-of-order execution engine 1103 1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of builers to smooth out and
reorder the tlow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buflers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
cach uop 1n one of the two uop queues, one for memory
operations and one for non-memory operations, in front of
the 1nstruction schedulers: memory scheduler, fast scheduler
1102, slow/general floating point scheduler 1104, and simple
floating point scheduler 1106. The uvop schedulers 1102,
1104, 1106, determine when a uop 1s ready to execute based
on the readiness of their dependent input register operand
sources and the availability of the execution resources the
uops need to complete their operation. The fast scheduler
1102 of one embodiment can schedule on each half of the
main clock cycle while the other schedulers can only sched-
ule once per main processor clock cycle. The schedulers
arbitrate for the dispatch ports to schedule uops for execu-
tion.

Register files 1108, 1110, sit between the schedulers 1102,
1104, 1106, and the execution units 1112, 1114, 1116, 1118,
1120, 1122, 1124 in the execution block 1111. There 1s a
separate register file 1108, 1110, for integer and floating
point operations, respectively. Each register file 1108, 1110,
ol one embodiment also includes a bypass network that can
bypass or forward just completed results that have not yet
been written 1nto the register file to new dependent uops. The
integer register file 1108 and the floating point register file
1110 are also capable of communicating data with the other.
For one embodiment, the integer register file 1108 1s split
into two separate register liles, one register file for the low
order 32 bits of data and a second register file for the high
order 32 bits of data. The floating point register file 1110 of
one embodiment has 128-bit wide entries because tloating
point 1nstructions typically have operands from 64 to 128
bits 1n width.

The execution block 1111 contains the execution units
1112, 1114, 1116, 1118, 1120, 1122, 1124, where the mstruc-
tions are actually executed. This section includes the register
files 1108, 1110, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 1100 of one embodiment includes a number
of execution units: address generation unit (AGU) 1112,
AGU 1114, fast ALU 1116, fast ALU 1118, slow ALU 1120,
floating point ALU 1122, floating point move unit 1124. For
one embodiment, the floating point execution blocks 1112,
1114, execute floating point, MMX, SIMD, and SSE, or
other operations. The floating point ALU 1112 of one
embodiment includes a 64 bit by 64 bit tfloating point divider
to execute divide, square root, and remainder micro-ops. For

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiments of the present disclosure, 1nstructions mvolv-
ing a floating point value may be handled with the floating
point hardware.

In one embodiment, the ALU operations go to the high-
speed ALU execution units 1116, 1118. The fast AL Us 1116,
1118, of one embodiment can execute fast operations with an
cllective latency of half a clock cycle. For one embodiment,
most complex integer operations go to the slow ALU 1110
as the slow ALU 1110 includes iteger execution hardware
for long latency type of operations, such as a multiplier,
shifts, flag logic, and branch processing. Memory load/store
operations are executed by the AGUs 1112, 1114. For one
embodiment, the integer ALUs 1116, 1118, 1120, are
described in the context of performing integer operations on
64 bit data operands. In alternative embodiments, the ALUs
1116, 1118, 1120, can be implemented to support a variety
of data bits including 16, 32, 128, 256, etc. Similarly, the
floating point units 1112, 1114, can be implemented to
support a range of operands having bits of various widths.
For one embodiment, the floating point units 1112, 1114, can
operate on 128-bits wide packed data operands 1n conjunc-
tion with SIMD and multimedia instructions.

In one embodiment, the uvops schedulers 1102, 1104,
1106, dispatch dependent operations before the parent load
has finished executing. As uops are speculatively scheduled
and executed i processor 1100, the processor 1100 also
includes logic to handle memory misses. If a data load
misses 1n the data cache, there can be dependent operations
in flight 1n the pipeline that have leit the scheduler with
temporarily incorrect data. A replay mechanism tracks and
re-executes 1nstructions that use incorrect data. Only the
dependent operations need to be replayed and the indepen-
dent ones are allowed to complete. The schedulers and
replay mechanism of one embodiment of a processor are
also designed to catch instruction sequences for text string
comparison operations.

The processor 1100 also includes logic to implement
BIOS authentication operations according to one embodi-
ment. In one embodiment, the execution block 1111 of
processor 1100 may include a microcontroller (MCU), to
perform BIOS authentication operations according to the
description herein.

The term “registers” may refer to the on-board processor
storage locations that are used as part of istructions to
identily operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers ol an
embodiment should not be limited 1n meaning to a particular
type of circuit. Rather, a register of an embodiment 1s
capable of storing and providing data, and performing the
functions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data.

For the discussions herein, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMX™ registers (also referred to as ‘mm’ reg-
isters 1n some 1nstances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available 1n both integer and
tfloating point forms, can operate with packed data elements
that accompany SIMD and SSE instructions. Siumilarly, 128

US 10,346,343 B2

15

bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained 1n the same register file or diflerent register
files. Furthermore, 1n one embodiment, floating point and
integer data may be stored 1n different registers or the same
registers.

Embodiments may be implemented in many diflerent
system types. Referring now to FIG. 12, shown 1s a block
diagram of a multiprocessor system 1200 1n accordance with
an 1mplementation. As shown 1n FIG. 12, multiprocessor
system 1200 1s a point-to-point interconnect system, and
includes a first processor 1270 and a second processor 1280
coupled via a point-to-point interconnect 1250. As shown 1n
FIG. 12, each of processors 1270 and 1280 may be multicore
processors, including first and second processor cores,
although potentially many more cores may be present in the
processors. The processors each may include hybrnid write
mode logics 1n accordance with an embodiment of the
present. BIOS authentication operations discussed herein
can be implemented in the processor 1270, processor 1280,
or both.

While shown with two processors 1270, 1280, 1t 1s to be
understood that the scope of the present disclosure 1s not so
limited. In other implementations, one or more additional
processors may be present 1n a given processor.

Processors 1270 and 1280 are shown including integrated
memory controller units 1272 and 1282, respectively. Pro-
cessor 1270 also includes as part of 1ts bus controller units
point-to-point (P-P) interfaces 1276 and 1288; similarly,
second processor 1280 includes P-P interfaces 1286 and
1288. Processors 1270, 1280 may exchange information via
a point-to-point (P-P) interface 1250 using P-P interface
circuits 1278, 1288. As shown in FIG. 12, IMCs 1272 and
1282 couple the processors to respective memories, namely
a memory 1232 and a memory 1234, which may be portions
of main memory locally attached to the respective proces-
SOIS.

Processors 1270, 1280 may each exchange immformation
with a chipset 1290 via individual P-P interfaces 1252, 1254
using point to point interface circuits 1276, 1294, 1286,
1298. Chipset 1290 may also exchange imnformation with a
high-performance graphics circuit 1238 via a high-perfor-
mance graphics interface 1239.

A shared cache (not shown) may be included 1n either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache 11 a processor 1s placed into a low power mode.

Chipset 1290 may be coupled to a first bus 1216 via an
interface 1292. In one embodiment, first bus 1216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present disclo-
sure 1s not so limited.

As shown 1 FIG. 12, various I/O devices 1214 may be
coupled to first bus 1216, along with a bus bridge 1218
which couples first bus 1216 to a second bus 1220. In one
embodiment, second bus 1220 may be a low pin count
(LPC) bus. Various devices may be coupled to second bus
1220 including, for example, a keyboard and/or mouse
1222, communication devices 1227 and a storage umt 1228
such as a disk drive or other mass storage device which may
include instructions/code and data 1230, i1n one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

16

Further, an audio I/O 1224 may be coupled to second bus
1220. Note that other architectures are possible. For
example, 1mstead of the point-to-point architecture of FIG.
12, a system may implement a multi-drop bus or other such
architecture.

Referring now to FIG. 13, shown 1s a block diagram of a
third system 1300 1n accordance with an embodiment of the
present disclosure. Like elements in FIGS. 11 and 12 bear
like reference numerals, and certain aspects of FIG. 12 have

been omitted from FIG. 12 1n order to avoid obscuring other
aspects of FIG. 13.

FIG. 13 1illustrates that the processors 1370, 1380 may
include integrated memory and I/O control logic (“CL”)
1372 and 1382, respectively. For at least one embodiment,
the CL 1372, 1382 may include integrated memory control-
ler units such as described herein. In addition. CLL 1372,
1382 may also include 1I/O control logic. FIG. 13 1illustrates
that the memories 1332, 1334 are coupled to the CL 1372,
1382, and that I/O devices 1314 are also coupled to the
control logic 1372, 1382. Legacy /O devices 1315 are

coupled to the chipset 1390. Operations discussed herein can
be implemented in the processor 1370, processor 1380, or
both.

FIG. 14 1s an exemplary system on a chip (SoC) 1400 that
may include one or more of the cores 1402. Other system
designs and configurations known 1n the arts for laptops,
desktops, handheld PCs, personal digital assistants, engi-
neering workstations, servers, network devices, network
hubs, switches, embedded processors, digital signal proces-
sors (DSPs), graphics devices, video game devices, set-top
boxes, micro controllers, cell phones, portable media play-
ers, hand held devices, and various other electronic devices,
are also suitable. In general, a huge variety of systems or
clectronic devices capable of incorporating a processor
and/or other execution logic as disclosed herein are gener-
ally suitable.

FIG. 14 15 a block diagram of a SoC 1400 1n accordance
with an embodiment of the present disclosure. Dashed lined
boxes are features on more advanced SoCs. In FIG. 14 an
interconnect unit(s) 1402 1s coupled to: an application
processor 1417 which includes a set of one or more cores
1402A-N, cache unit(s) 1404A-N, and shared cache unit(s)
1406; a system agent unit 1410; a bus controller unit(s)
1416; an integrated memory controller unit(s) 1414; a set or
one or more media processors 1420 which may include
integrated graphics logic 1408, an 1image processor 1424 for
providing still and/or video camera functionality, an audio
processor 1426 for providing hardware audio acceleration,
and a video processor 1428 for providing video encode/
decode acceleration; a static random access memory
(SRAM) unit 1430; a direct memory access (DMA) unit
1432; and a display unit 1440 for coupling to one or more
external displays. BIOS authentication operations discussed
herein can be implemented by SoC 1400.

Turning next to FIG. 15, an embodiment of a system
on-chip (SoC) design 1n accordance with embodiments of
the disclosure 1s depicted. As an 1illustrative example, SoC
1500 15 included 1n user equipment (UE). In one embodi-
ment, UE refers to any device to be used by an end-user to
communicate, such as a hand-held phone, smartphone, tab-
let, ultra-thin notebook, notebook with broadband adapter,
or any other similar communication device. A UE may
connect to a base station or node, which can correspond 1n
nature to a mobile station (MS) 1n a GSM network. BIOS
authentication operations discussed herein can be imple-

mented by SoC 1500.

US 10,346,343 B2

17

Here, SoC 1500 includes 2 cores—1506 and 1507. Simi-
lar to the discussion above, cores 1506 and 1507 may
conform to an Instruction Set Architecture, such as a pro-
cessor having the Intel® Architecture Core™, an Advanced
Micro Devices, Inc. (AMD) processor, a MIPS-based pro-
cessor, an ARM-based processor design, or a customer
thereol, as well as their licensees or adopters. Cores 1506
and 1507 are coupled to cache control 1508 that 1s associated
with bus interface unit 1509 and L2 cache 1510 to commu-
nicate with other parts of system 1500. Interconnect 1511
includes an on-chip interconnect, such as an IOSF, AMBA,
or other interconnects discussed above, which can 1mple-
ment one or more aspects of the described disclosure.

Interconnect 1511 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1530 to interface with a SIM card, a boot ROM 1535
to hold boot code for execution by cores 1506 and 1507 to
initialize and boot SoC 1500, a SDRAM controller 1540 to
interface with external memory (e.g. DRAM 1560), a flash
controller 1545 to interface with non-volatile memory (e.g.
Flash 1563), a peripheral control 1550 (e.g. Serial Peripheral
Interface) to interface with peripherals, power control 15535
to control power, video codecs 1520 and Video interface
1525 to display and recerve mput (e.g. touch enabled mput),
GPU 1515 to perform graphics related computations, etc.
Any of these interfaces may incorporate aspects of the
embodiments described herein.

In addition, the system 1illustrates peripherals for commu-
nication, such as a Bluetooth module 1570, 3G modem
1575, GPS 1580, and Wi-F1 1585. Note as stated above, a
UE 1includes a radio for communication. As a result, these
peripheral communication modules may not all be included.
However, 1n a UE some form of a radio for external
communication should be included.

FIG. 16 1llustrates a diagrammatic representation of a
machine 1n the example form of a computing system 1600
within which a set of instructions, for causing the machine
to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device 1n a client-server network environment, or as a
peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specily actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein. The embodiments of
the page additions and content copying can be implemented
in computing system 1600.

The computing system 1600 includes a processing device
1602, main memory 1604 (¢.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 1626 (¢.g., tlash memory,
static random access memory (SRAM), etc.), and a data
storage device 1618, which communicate with each other
via a bus 1630.

Processing device 1602 represents one or more general-
purpose processing devices such as a miCroprocessor, cen-

10

15

20

25

30

35

40

45

50

55

60

65

18

tral processing umt, or the like. More particularly, the
processing device may be complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of 1struction sets. Processing device 1602 may also be one
or more special-purpose processing devices such as an
application specific imtegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one embodiment,
processing device 1602 may include one or processor cores.
The processing device 1602 1s configured to execute the
processing logic 1626 for performing the BIOS authentica-
tion operations discussed herein. In one embodiment, pro-
cessing device 1602 can be part of a computing system.
Alternatively, the computing system 1600 can include other
components as described herein. It should be understood
that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so
in a variety of ways including time sliced multithreading,
simultaneous multithreading (where a single physical core
provides a logical core for each of the threads that physical
core 1s simultaneously multithreading), or a combination
thereof (e.g., time sliced fetching and decoding and simul-
taneous multithreading thereafter such as in the Intel®
Hyperthreading technology).

The computing system 1600 may further include a net-
work interface device 1622 communicably coupled to a
network 1620. The computing system 1600 also may include
a video display unit 1608 (e.g., a liqud crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 1610 (e.g., a keyboard), a cursor control device 1614
(e.g., a mouse), a signal generation device 1616 (e.g., a
speaker), or other peripheral devices. Furthermore, comput-
ing system 1600 may include a graphics processing unit
1622, a video processing unit 1628 and an audio processing,
unmit 1632. In another embodiment, the computing system
1600 may include a chipset (not 1llustrated), which refers to
a group ol integrated circuits, or chips, that are designed to
work with the processing device 1602 and controls commu-
nications between the processing device 1602 and external
devices. For example, the chipset may be a set of chips on
a motherboard that links the processing device 1602 to very
high-speed devices, such as main memory 1604 and graphic
controllers, as well as linking the processing device 1602 to
lower-speed peripheral buses of peripherals, such as USB,
PCI or ISA buses.

The data storage device 1618 may include a computer-
readable storage medium 1624 on which 1s stored software
1626 embodying any one or more of the methodologies of
functions described herein. The software 1626 may also
reside, completely or at least partially, within the main
memory 1604 as instructions 1626 and/or within the pro-
cessing device 1602 as processing logic 1626 during execu-
tion therecolf by the computing system 1600; the main
memory 1604 and the processing device 1602 also consti-
tuting computer-readable storage media.

The computer-readable storage medium 1624 may also be
used to store structions 1626 utilizing the processing
device 1602 and/or a software library containing methods
that call the above applications. While the computer-read-
able storage medium 1624 1s shown 1n an example embodi-
ment to be a single medium, the term “computer-readable
storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the

US 10,346,343 B2

19

one or more sets of instructions. The term “‘computer-
readable storage medium”™ shall also be taken to include any
medium that 1s capable of storing, encoding or carrying a set
ol 1nstruction for execution by the machine and that cause
the machine to perform any one or more of the methodolo-
gies of the present embodiments. The term “computer-
readable storage medium™ shall accordingly be taken to
include, but not be limited to, solid-state memories, and
optical and magnetic media.

The following examples pertain to further embodiments.

Example 1 1s a programmable logic device (PLD) com-
prising: a static random-access memory (SRAM) area com-
prising programmable logic in a Lookup Table (LUT) to
receive a request to authenticate a basic mput/output system
(BIOS) executing on a processor coupled to the PLD,
wherein the programmable logic 1s to: calculate a hash value
ol a message associated with the BIOS using a Secure Hash
Algorithm (SHA); and a random-access memory (RAM)
area, the RAM area comprising: a {irst RAM area to store a
first portion of a message digest associated with the message
and a fifth portion of the message digest associated with the
message; and a second RAM area to store a second portion
of the message digest, a third portion of the message digest,
a Tfourth portion of the message digest, a sixth portion of the
message digest, a seventh portion of the message digest, and
an eighth portion of the message digest, the message digest
associated with the message.

In Example 2, the subject matter of Example 1, wherein
the message digest comprises eight 32-bit words, and
wherein each portion of the message digest corresponds to
one of the 32-bit words.

In Example 3, the subject matter of Example 1, wherein
the programmable logic comprises hashing combination
logic to combine a message digest with a 512-bit state
message to calculate the hash value of the message associ-
ated with the BIOS.

In Example 4, the subject matter of Example 1, wherein
the first RAM area comprises an Embedded block RAM
(EBR), and wherein the EBR 1s a 128-bit EBR with a 32-bit
read port and a size of a write port corresponding to a size
ol a datapath associated with the message digest.

In Example 5, the subject matter of Example 4, wherein
the size of the datapath 1s 32-baits.

In Example 6, the subject matter of Example 1, wherein
the second RAM area comprises an Embedded block RAM
(EBR), and wherein the EBR 1s a 192-bit EBR with a 32-bit
read port and a size of a write port corresponding to six times
a si1ze ol a datapath associated with the message digest.

In Example 7, the subject matter of Example 1, the RAM
area further comprising: a set of four Embedded block RAM
(EBR) to store four portions of a message to be hashed; an
embedded read-only memory (ROM) to access a round
constant; and an initial state EBR to store an 1nitial state of
the message digest.

In Example 8, the subject matter of Example 1, wherein
the programmable logic device 1s disposed on a circuit board
and 1s coupled to a processor also disposed on the circuit
board.

In Example 9, the subject matter of Example 1, wherein
the programmable logic device 1s an off-chip programmable
logic device comprising at least one of a field programmable
gate array (FPGA) or a complex programmable logic device
(CPLD).

Example 10 1s a method comprising: receiving, by an
ofl-chip programmable logic device, a request to authent-
cate a basic mput/output system (BIOS) executing on a
processor coupled to a programmable logic device (PLD);

10

15

20

25

30

35

40

45

50

55

60

65

20

mapping, by the off-chip programmable logic device, a first
portion of a message digest register to a first RAM area;
mapping, by the off-chip programmable logic device, a
second portion of the message dlgest register to a second
RAM area; and Calculatmg, by the off-chip programmable
logic dewce in view of the first RAM area and the second
RAM area, a hash value of a message associated with the
BIOS using a Secure Hash Algorithm (SHA).

In Example 11, the subject matter of Example 10, wherein
the message digest register 1s 256-bits, the first RAM area 1s
a 128-bit Embedded block RAM (EBR), and the second
RAM area 1s a 192-bit EBR.

In Example 12, the subject matter of Example 10, turther
comprising: mapping four portions of a message register to
a first set of four Embedded block RAM (EBR), respec-
tively, the first set of four EBRSs to store a first message; and
allocating a second set of four EBRs to store a second
message.

In Example 13, the subject matter of Example 12, further
comprising: allocating a read only memory (ROM) to store
round constants; and allocating a 256-bit EBR to store a
256-bit 1nitial state.

In Example 14, the subject matter of Example 10, wherein
the ofl-chip programmable logic device comprises at least
one of a field programmable gate array (FPGA) or a complex
programmable logic device (CPLD).

Example 15 1s a system, comprising: a circuit board; a
processor disposed 1n a first location of the circuit board; an
ofl-chip programmable logic device (PLD) operatively
coupled to the processor, disposed in a second location of the
circuit board, wheremn the off-chip programmable logic
device 1s to: receive a request to authenticate a basic
input/output system (BIOS) executing on the processor
operatively coupled to the PLD; map a first portion of a
message digest register to a first RAM area; map a second
portion of the message digest register to a second RAM area;
and calculate, in view of the first RAM area and the second
RAM area, a hash value of a message associated with the
BIOS using a Secure Hash Algorithm (SHA).

In Example 16, the subject matter of Example 135, wherein

the message digest register 1s 256-bits, the first RAM area 1s
a 128-bit Embedded block RAM (EBR), and the second

EBR 1s a 192-bit EBR.

In Example 17, the subject matter of Example 135, wherein
the PLD 1s further to: map four portions of a message
register to a first set of four Embedded block RAM (EBR),
respectively, the first set of four EBRs to store a first
message; and allocate a second set of four EBRs to store a
second message.

In Example 18, the subject matter of Example 17, wherein
the PLD 1s further to: allocate a read only memory (ROM)
to store round constants; and allocate a 256-bit EBR to store
a 256-bit mitial state.

In Example 19, the subject matter of Example 135, wherein
the PLD 1s further to combine a message digest with a
512-bit state message to calculate the hash value of the
message associated with the BIOS.

In Example 20, the subject matter of Example 135, wherein
the PLD comprises at least one of a field programmable gate
array (FPGA) or a complex programmable logic device
(CPLD).

Example 21 1s an apparatus comprising: means for recerv-
ing a request to authenticate a basic input/output system
(BIOS) executing on a processor coupled to a programmable
logic device (PLD); means for mapping a {irst portion of a
message digest register to a first RAM area; means for
mapping a second portion of the message digest register to

US 10,346,343 B2

21

a second RAM area; and means for calculating, 1n view of
the first RAM area and the second RAM area, a hash value
ol a message associated with the BIOS using a Secure Hash
Algorithm (SHA).

In Example 22, the subject matter of Example 21, further
comprising: means for mapping four portions of a message
register to a first set of four Embedded block RAM (EBR),
respectively, the first set of four EBRs to store a first
message; and means for allocating a second set of four EBRs
to store a second message.

In Example 23, the subject matter of Example 22, further
comprising: means for allocating a read only memory
(ROM) to store round constants; and means for allocating a
256-bit EBR to store a 256-bit 1nitial state.

In Example 24, the subject matter of Examples 10-14, an
apparatus comprising means for performing the method of
any one ol claims 10 to 14.

In Example 23, the subject matter of Examples 10-14, an
apparatus comprising a processor configured to perform the
method of any one of claims 10 to 14.

In Example 26, the subject matter of Examples 10-14, a
machine readable medium including code, when executed,
to cause a machine to perform the method of any one of
claims 10-14.

Example 27 1s a machine readable medium including
code, when executed, to cause a machine to: receive a
request to authenticate a basic mput/output system (BIOS)
executing on the processor operatively coupled to the PLD;
map a first portion of a message digest register to a first
RAM area; map a second portion of the message digest
register to a second RAM area; and calculate, 1n view of the
first RAM area and the second RAM area, a hash value of
a message associated with the BIOS using a Secure Hash
Algorithm (SHA).

In Example 28, the subject matter of Example 27, includ-
ing code, when executed, to cause a machine to: map four
portions of a message register to a first set of four Embedded
block RAM (EBR), respectively, the first set of four EBRs
to store a first message; and allocate a second set of four
EBRs to store a second message.

In Example 29, the subject matter of Example 27, includ-
ing code, when executed, to cause a machine to: map four
portions ol a message register to a first set of four Embedded
block RAM (EBR), respectively, the first set of four EBRs
to store a first message; and allocate a second set of four
EBRs to store a second message.

In Example 30, the subject matter of Example 29, includ-
ing code, when executed, to cause a machine to: allocate a
read only memory (ROM) to store round constants; and
allocate a 256-bit EBR to store a 256-bit 1initial state.

In Example 31, the subject matter of Example 27, includ-
ing code, when executed, to cause a machine to combine a
message digest with a 512-bit state message to calculate the
hash value of the message associated with the BIOS.

While embodiments of the present disclosure have been
described with respect to a limited number of embodiments,
those skilled 1n the art will appreciate numerous modifica-
tions and variations therefrom. It 1s intended that the
appended claims cover all such modifications and variations
as fall within the true spirit and scope of this present
disclosure.

In the description herein, numerous specific details are set
torth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific pro-

10

15

20

25

30

35

40

45

50

55

60

65

22

cessor pipeline stages and operation etc. 1n order to provide
a thorough understanding of embodiments of the present
disclosure. It will be apparent, however, to one skilled 1n the
art that these specific details need not be employed to
practice embodiments of the present disclosure. In other
instances, well known components or methods, such as
specific and alternative processor architectures, specific
logic circuits/code for described algorithms, specific firm-
ware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating
techniques/logic and other specific operational details of
computer system have not been described in detail 1n order
to avoid unnecessarily obscuring embodiments of the pres-
ent disclosure.

The embodiments are described with reference to BIOS
authentication operations in specific integrated circuits, such
as 1n computing platforms or microprocessors. The embodi-
ments may also be applicable to other types of integrated
circuits and programmable logic devices. For example, the
disclosed embodiments are not limited to desktop computer
systems or portable computers, such as the Intel® Ultra-
books™ computers. And may be also used 1n other devices,
such as handheld devices, tablets, other thin notebooks,
systems on a chip (SoC) devices, and embedded applica-
tions. Some examples of handheld devices include cellular
phones, Internet protocol devices, digital cameras, personal
digital assistants (PDAs), and handheld PCs. Embedded
applications typically include a microcontroller, a digital
signal processor (DSP), a system on a chip, network com-
puters (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform the functions and operations taught below. It 1s
described that the system can be any kind of computer or
embedded system. The disclosed embodiments may espe-
cially be used for low-end devices, like wearable devices
(e.g., watches), electronic implants, sensory and control
infrastructure devices, controllers, supervisory control and
data acquisition (SCADA) systems, or the like. Moreover,
the apparatuses, methods, and systems described herein are
not limited to physical computing devices, but may also
relate to software optimizations for energy conservation and
ciliciency. As will become readily apparent in the descrip-
tion below, the embodiments of methods, apparatuses, and
systems described herein (whether 1n reference to hardware,
firmware, software, or a combination thereof) are vital to a
‘oreen technology’ future balanced with performance con-
siderations.

Although the embodiments herein are described with
reference to a processor, other embodiments are applicable
to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present disclosure can be applied to other types of circuits or
semiconductor devices that can benefit {from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present disclosure are applicable to any
processor or machine that performs data manipulations.
However, embodiments of the present disclosure are not
limited to processors or machines that perform 512 bit, 256
bit, 128 bit, 64 bit, 32 bit, or 16 bit data operations and can
be applied to any processor and machine 1n which manipu-
lation or management of data is performed. In addition, the
description herein provides examples, and the accompany-
ing drawings show various examples for the purposes of
illustration. However, these examples should not be con-
strued 1n a limiting sense as they are merely intended to

US 10,346,343 B2

23

provide examples of embodiments of the present disclosure
rather than to provide an exhaustive list of all possible
implementations of embodiments of the present disclosure.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present disclosure
can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform func-
tions consistent with at least one embodiment of the disclo-
sure. In one embodiment, functions associated with
embodiments of the present disclosure are embodied 1n
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that 1s programmed with the instructions to perform the
steps of the present disclosure. Embodiments of the present
disclosure may be provided as a computer program product
or soltware which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present disclosure. Alternatively, opera-
tions of embodiments of the present disclosure might be
performed by specific hardware components that contain
fixed-function logic for performing the operations, or by any
combination of programmed computer components and
fixed-function hardware components.

Instructions used to program logic to perform embodi-
ments of the disclosure can be stored within a memory 1n the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, tlash memory, or a
tangible, machine-readable storage used 1n the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium sutable for storing or transmit-
ting electronic mstructions or information in a form readable
by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s
useful 1n simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices 1n the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specilying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored 1n any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium

10

15

20

25

30

35

40

45

50

55

60

65

24

to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design 1s transmitted, to the extent that
copying, bullering, or re-transmission of the electrical signal
1s performed, a new copy 1s made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarnly, an article,
such as information encoded 1nto a carrier wave, embodying
techniques of embodiments of the present disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, 1n one embodiment, refers to the hardware, which
1s specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, 1n
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, 1n yet
another embodiment, the term module (1n this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over-
lap. For example, a first and a second module may share
hardware, software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term
logic includes hardware, such as transistors, registers, or
other hardware, such as programmable logic devices.

Use of the phrase ‘configured to,” 1n one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or desigming an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereotf that 1s not
operating 1s still ‘configured to” perform a designated task 1f
it 1s designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate 1s one coupled 1n some manner that
during operation the 1 or 0 output i1s to enable the clock.
Note once again that use of the term ‘configured to” does not
require operation, but mstead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element 1s designed to
perform a particular task when the apparatus, hardware,
and/or element 1s operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and
or ‘operable to,” in one embodiment, refers to some appa-
ratus, logic, hardware, and/or element designed in such a
way to enable use of the apparatus, logic, hardware, and/or
clement 1n a specified manner. Note as above that use of to,
capable to, or operable to, in one embodiment, refers to the
latent state of an apparatus, logic, hardware, and/or element,
where the apparatus, logic, hardware, and/or element 1s not
operating but 1s designed 1n such a manner to enable use of
an apparatus in a specified manner.

A value, as used herein, includes any known representa-
tion ol a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values 1s also referred to as 1°s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one

US 10,346,343 B2

25

embodiment, a storage cell, such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values 1n
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held in a
computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or 1nitial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, 1n one embodiment, refer
to a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, 1.e. reset, while an updated value potentially includes
a low logical value, 1.e. set. Note that any combination of
values may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (1.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-
transitory machine-accessible medium includes randome-ac-
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
inirared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive mformation there from.

Instructions used to program logic to perform embodi-
ments of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy

diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only

Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium sutable for storing or transmit-
ting electronic mnstructions or information in a form readable
by a machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s imncluded 1n at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” 1n various places
throughout this specification are not necessarily all referring,
to the same embodiment. Furthermore, the particular fea-

5

10

15

20

25

30

35

40

45

50

55

60

65

26

tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the disclosure as set
forth 1n the appended claims. The specification and drawings
are, accordingly, to be regarded in an 1llustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
embodiment and other exemplarily language does not nec-
essarily refer to the same embodiment or the same example,
but may refer to different and distinct embodiments, as well
as potentially the same embodiment.

Some portions of the detailed description are presented in
terms ol algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled 1n the data processing arts to most eflec-
tively convey the substance of their work to others skilled in
the art. An algorithm 1s here and generally, conceived to be
a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transtferred, combined, com-
pared and otherwise manipulated. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers or the like. The blocks described herein
can be hardware, software, firmware or a combination
thereof.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “storing,” “decoding,” “1dentifying,” receiving,” “map-
ping,” calculating,” “comparing,” or the like, refer to the
actions and processes of a computing system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (e.g., electronic) quanti-
ties within the computing system’s registers and memories
into other data similarly represented as physical quantities
within the computing system memories or registers or other
such information storage, transmission or display devices.

The words “example” or “exemplary” are used herein to

mean serving as an example, mstance or illustration.
Any aspect or design described herein as “example’ or
“exemplary” 1s not necessarily to be construed as
preferred or advantageous over other aspects or
designs. Rather, use of the words “example” or “exem-
plary” 1s intended to present concepts 1 a concrete
fashion. As used in this application, the term “or” 1s
intended to mean an inclusive “or” rather than an
exclusive “or.” That 1s, unless specified otherwise, or
clear from context, “X includes A or B” 1s intended to
mean any of the natural inclusive permutations. That 1s,
1f X includes A:; X includes B; or X includes both A and
B, then “X includes A or B” 1s satisfied under any of the
foregoing instances. In addition, the articles “a” and
“an” as used in this application and the appended
claims should generally be construed to mean “one or
more” unless specified otherwise or clear from context
to be directed to a singular form. Moreover, use of the
term “an embodiment” or “one embodiment” or “an

US 10,346,343 B2

27

implementation” or “one implementation™ throughout
1s not intended to mean the same embodiment or
implementation unless described as such. Also, the
terms ““first,” “second,” “third,” “fourth,” etc. as used
herein are meant as labels to distinguish among difler-
ent elements and may not necessarily have an ordinal
meaning according to their numerical designation.

What 1s claimed 1s:

1. A programmable logic device (PLD) comprising: a
static random-access memory (SRAM) area comprising
programmable logic embodied within one of lookup table
(LUT) modules or macrocells, the programmable logic to:
receive a request to authenticate a basic imput/output system
(BIOS) executing on a processor coupled to the PLD,
wherein the PLD 1s off-chip from the processor; and calcu-
late, 1n response to the request, a hash value of a message
associated with derived from code of the BIOS using a
secure hash algorithm (SHA) wherein to calculate comprises
to execute a plurality of rounds of the SHA on the message;
and a random-access memory (RAM) area, the RAM area
comprising: a first RAM area to store a {first portion of a
message digest associated with the message and a fifth
portion of the message digest associated with the message,
wherein the message digest comprises one of a constant
initial hash state for a first round and a previous hash state
for a subsequent round of the plurality of rounds of the SHA;
and a second RAM area to store a second portion of the
message digest, a third portion of the message digest, a
fourth portion of the message digest, a sixth portion of the
message digest, a seventh portion of the message digest, and
an eighth portion of the message digest, wherein the mes-
sage digest 1s associated with the message; and wherein,
upon completion of the plurality of rounds of the SHA, the
programmable logic 1s to: retrieve the first portion through
the eighth portion of the message digest stored in the RAM
area with which to calculate the hash value; and authenticate
the BIOS via comparison of the hash value with an original
hash value.

2. The programmable logic device of claim 1, wherein the
message digest comprises eight 32-bit words, and wherein
cach portion of the message digest corresponds to one of the
32-bit words.

3. The programmable logic device of claim 1, wherein the
programmable logic comprises hashing combination logic to
combine a message digest with a 512-bit state message to
calculate the hash value of the message associated with the
BIOS.

4. The programmable logic device of claim 1, wherein the
first RAM area comprises an embedded block RAM (EBR),
and wherein the EBR 1s a 128-bit EBR with a 32-bit read
port and a size of a write port corresponding to a size of a
datapath associated with the message digest.

5. The programmable logic device of claim 4, wherein the
s1ize of the datapath 1s 32-bits.

6. The programmable logic device of claim 1, wherein the
second RAM area comprises an embedded block RAM
(EBR), and wherein the EBR 1s a 192-bit EBR with a 32-bit
read port and a size of a write port corresponding to six times
a si1ze ol a datapath associated with the message digest.

7. The programmable logic device of claim 1, wherein the
RAM area further comprising comprises: a set ol four
embedded block RAM (EBRs) to store four portions of the
message to be hashed; an embedded read-only memory
(ROM) to access a round constant; and an 1nitial state EBR
to store the constant initial hash state of the message digest.

10

15

20

25

30

35

40

45

50

55

60

65

28

8. The programmable logic device of claim 1, wherein the
programmable logic device 1s disposed on a circuit board
and 1s coupled to a processor also disposed on the circuit
board.

9. The programmable logic device of claim 1, wherein the
programmable logic device 1s at least one of a field pro-
grammable gate array (FPGA) device or a complex pro-
grammable logic device (CPLD).

10. A method comprising: receiving, by programmable
logic embodied within one of lookup table (LUT) modules
or macrocells of an off-chip programmable logic device
(PLD), a request to authenticate a basic input/output system
(BIOS) executing on a processor coupled to the ofi-chip
PLD; mapping, by the programmable logic, a first portion of
a message digest register to a first embedded block random
access memory (EBR) RAM area of the ofl-chuip PLD;
mapping, by the programmable logic, a second portion of
the message digest register to a second EBR RAM area of
the off-chip PLD; calculating, by the programmable logic in
view of using a first set of hash states stored in the first EBR
RAM area and a second set of hash states stored in the
second EBR RAM area, a hash value of a message associ-
ated with, which 1s derived from code of the BIOS2 using by
executing a plurality of rounds of a secure hash algorithm
(SHA) on the first set of hash states and the second set of
hash states; storing, 1n the first EBR, a combination of the
first set of hash states between each round of the plurality of
rounds of the SHA; storing, in the second EBR, a combi-
nation of the second set of hash states between each round
of the plurality rounds of the SHA; and authenticating, by
the programmable logic, the BIOS via comparison of the
hash value with an original hash value.

11. The method of claim 10, wherein the message digest
register 1s 256-bits, the first RAM area EBR 1s a 128-bit
Embedded block RAM (EBR) EBR, and the second RAM
arca EBR 1s a 192-bit EBR.

12. The method of claim 10, further comprising: mapping
four portions of a message register to a first set of four
embedded block RAM (EBR) EBRs, respectively, the first
set of four EBRs to store a first message; and allocating a
second set of four EBRs to store a second message.

13. The method of claim 12, further comprising: allocat-
ing a read only memory (ROM) to store round constants; and
allocating a 256-bit EBR to store a 256-bit 1nitial hash state.

14. The method of claim 10, wherein the off-chip pro-
grammable logic device comprises at least one of a field
programmable gate array (FPGA) or a complex program-
mable logic device (CPLD), a circuit board; a processor
disposed 1 a first location of the circuit board; and an
ofl-chip programmable logic device (PLD) operatively
coupled to the processor, disposed in a second location of the
circuit board, wherein programmable logic of the off-chip
PLD 1s to: receive a request to authenticate a basic mput/
output system (BIOS) executing on the processor opera-
tively coupled to the ofi-chip PLD; map a first portion of a
message digest register to a first embedded block random
access memory (EBR) RAM area of the ofi-chip PLD; map
a second portion of the message digest register to a second
EBR RAM area of the ofl-chup PLD; calculate, in view of
using a set of first hash states stored in the first RAM area
first EBR and a set of second hash states stored 1n the second
EBR RAM area, a hash value of a message associated with,
which 1s derived from code of the BIOS2 using via execu-
tion of a plurality of rounds of a secure hash algorithm
(SHA) on the first set of hash states and the second set of
hash states; store, 1n the first EBR, a combination of the first
set of hash states between each round of the plurality of

US 10,346,343 B2

29

rounds of the SHA; store, 1n the second FBR, a combination
of the second set of hash states between each round of the
plurality rounds of the SHA; and authenticate the BIOS via
comparison of the hash value with an original hash value.
15. A system comprising:
a circuit board;
a processor disposed 1n a first location of the circuit board;
and
an off-chip programmable logic device (PLD) operatively
coupled to the processor, disposed 1n a second location
of the circuit board, wherein programmable logic of the
off-chip PLD 1s to:
receive a request to authenticate a basic mput/output
system (BIOS) executing on the processor opera-

tively coupled to the off-chip PLD;

map a {irst portion of a message digest register to a first
embedded block random access memory (EBR) of
the off-chip PLD;

map a second portion of the message digest register to
a second EBR of the off-chip PLD;

calculate, using a set of first hash states stored in the
first EBR and a set of second hash states stored 1n the
second EBR, a hash value of a message, which 1s
derived from code of the BIOS, via execution of a
plurality of rounds of a secure hash algorithm (SHA)
on the first set of hash states and the second set of
hash states:

store, 1n the first EBR, a combination of the first set of
hash states between each round of the plurality of
rounds of the SHA;

store, 1n the second FBR, a combination of the second
set ol hash states between each round of the plurality
rounds of the SHA; and

authenticate the BIOS via comparison of the hash value
with an original hash value.

16. The system of claim 15, wherein the message digest
register 1s 256-bits, the first RAM area EBR 1s a 128-bit
Embedded block RAM (EBR) EBR, and the second RAM
area EBR 1s a 192-bit EBR.

17. The system of claim 15, wherein the ofi-chip PLD 1s
turther to: map four portions of a message register to a first
set of four embedded block RAM (EBR) EBRs, respec-
tively, the first set of four EBRs to store a first message; and
allocate a second set of four EBRs to store a second
message.

10

15

20

25

30

35

40

30

18. The system of claim 17, wherein the off-chip PLD 1s
further to: allocate a read only memory (ROM) to store
round constants; and allocate a 256-bit EBR to store a
256-bit 1nitial hash state.

19. The system of claim 15, wherein the ofi-chip PLD 1s
further to combine a message digest with a 512-bit state

message to calculate the hash value of the message associ-
ated with the BIOS.

20. The system of claim 15, wherein the PLD comprises
at least one of a field programmable gate array (FPGA) or a
complex programmable logic device (CPLD).

21. A programmable logic device (PLD) comprising: a
first embedded block random access memory (EBR); a
second EBR; and ofl-chip programmable logic coupled to
the first EBR, to the second EBR, and to a processor, the
processor to execute a basic mput/output system (BIOS),
wherein the ofi-chip programmable logic 1s to: receive a
request, from the processor, to authenticate the BIOS; map
a first portion of a message digest register to the first EBR;
map a second portion of the message digest register to the
second EBR; calculate, using a first set of hash states stored
in the first EBR and a second set of hash states stored in the
second EBR, a hash value of a message, which 1s derived
from code of the BIOS, via execution of a plurality of rounds
of a secure hash algorithm (SHA) on the first set of hash
states and the second set of hash states; store, in the first
EBR, a combination of the first set of hash states between
cach round of the plurality of rounds of the SHA; store, 1n
the second EBR, a combination of the second set of hash
states between each round of the plurality rounds of the
SHA ; and authenticate the BIOS via comparison of the hash
value with an original hash value.

22. The programmable logic device of claim 21, wherein
the message digest register 1s 256-bits, the first EBR 1s a
128-bit EBR, and the second EBR 1s a 192-bit EBR.

23. The programmable logic device of claim 21, wherein
the off-chip programmable logic 1s further to: map four
portions of a message register to a first set of four EBRs,
respectively, the first set of four EBRs to store a first
message; and allocate a second set of four EBRs to store a
second message.

24. The programmable logic device of claim 23, wherein
the off-chip programmable logic 1s further to: allocate a read
only memory (ROM) to store round constants; and allocate
a 256-bit EBR to store a 256-bit 1initial hash state.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

