United States Patent

US010346327B2

(12) (10) Patent No.: US 10,346,327 B2
Casas, Jr. et al. 45) Date of Patent: *Jul. 9, 2019
(54) TIMER PLACEMENT OPTIMIZATION 9,092,143 Bl 7/2015 Bappe
2011/0023040 Al* 1/2011 Hendry GO6F 9/3879
(71) Applicant: International Business Machines) | 718/102
Corporation, Armonk, NY (US) 2011/0153822 AL* 6/2011 Rajancccco..... GOGF 9/5055
709/225
(72) Inventors: Juan M. Casas, Jr., Round Rock, TX (Continued)
(US); Nikhil Hegde, Austin, TX (US); | |
Keerthi B. Kumar, Bangalore (IN); FOREIGN PATENT DOCUMENTS
Shailaja Mallya, Bangalore (IN)
EP 2602964 6/2013
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Adamczyk et al., Achieving High Resolution Timer Events in
patent 1s extended or adjusted under 35 Virtualized Environment, Institute of Informatics, PLoS One 10(7),
U.S.C. 154(b) by 7 days. Jul. 15, 2015, pp. 1-25.
This patent is subject to a terminal dis- (Continued)
claimer.
(21) Appl. No.: 15/465,704 Prfmary Lxaminer — Hyun Nam
(74) Attorney, Agent, or Firm — Liecberman &
(22) Filed: Mar. 22, 2017 Brandsdorfer, LLC
(65) Prior Publication Data
57 ABSTRACT
US 2018/0276155 Al Sep. 27, 2018 (57)
A system and computer program product are provided for
(51) Int. Cl. optimized timer placement. A request to apply a new timer
GO6F 13/24 (2006.01) OF pavsiier. 2 PPy @ L
COGF /00 500 6. 01 in a computer system 1s recerved and an interrupt time for
(01) the new timer 1s extracted from the new timer. A timer list
(52) US. Cl. 1s accessed for each processor in the system responsive to
CPC s, GO6F 13/24 (2013.01); GO6L 9/00 the received request. A range for placement of the new timer
(2013.01) 1s established with respect to each of the accessed timer lists.
: : : P
(38) Field of Classification Search A timer expiry delay 1s calculated between proximal pro-
None o _ cessor mterrupts and the extracted interrupt time based on
See application file for complete search history. the established range placement. Proximity of the extracted
_ interrupt time within the existing processor interrupts 1s
(56) References Cited determined and one of the processors is selected based on

U.S. PATENT DOCUMENTS

5,297,275 A 3/1994 Thayer
6,937,603 B1* 82005 Miao HO4L 29/06027

370/395.62

the calculation and the determined proximity. The new timer
1s placed on the selected processor.

17 Claims, 7 Drawing Sheets

11U~\RlUser8pace

4130 « FomTTTTTT 120~
M Application(sy] M Eibranies

"

Qs 150~
143 A\
\ LE:E:E;E:E;E;E;E;E;E;E;E;E;E;E;E;E;E;Kﬁfhéi;E;E;E;E;E;E;E;E;E;E;E;E;E;E:E:E:E:E
:15_2 j"'154
Rty Handler r Scheduiar (700
HAM
170 180 190
‘fﬁﬂ-\ N N N
Tearesod Poamrd Prses
AT 0 PRBAST H PIST
ATer f o [186s0 96t
o{%é;}fTth 3¥éégf71}j fmiagi}fTéJ
UM P L
] A e
R

Hul

US 10,346,327 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2012/0159221 Al1* 6/2012 Guddeti GO6F 1/3228
713/323

2014/0052882 Al 2/2014 Waters et al.

OTHER PUBLICATIONS

Oikawa et al., Linux/RK: A Portable Resource Kernel in Linux,
Real-Time and Multimedia Laboratory School of Computer Sci-
ence, Proceedings of the IEEE Real-Time Systems Symposium

Work-In-Progress. vol. 2. 1998, pp. 1-4.

Anonymous, Timers, Timer Resolution, and Development of Effi-
cient Code, Microsofit Corporation, Jun. 16, 2010, pp. 1-11.
Takano et al., High-Resolution Timer-Based Packet Pacing Mecha-
nism on the Linux Operation System, IEICE Transactions on
Communications, vol. E94-B, No. 8, 2011, pp. 2199-2207, Abstract.
Sugaya et al., Accounting System: A Fine-grained CPU Resource
Protection Mechanism for Embedded System, Proceedings of the
Ninth IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing, 2006, pp. 1-10.
Gleixner et al., Hrtimers and Beyond: Transforming the Linux Time
Subsystems, Proceedings of the Linux Symposium, vol. 1, Jul.
19-22, 2006, pp. 333-346.

Goel et al., Supporting Time-Sensitive Applications on General-

Purpose Operating Systems, CSETech, OHSU Digital Commons,
Paper 53, Jan. 2002, pp. 1-14.

* cited by examiner

U.S. Patent

Jul. 9, 2019

Sheet 1 of 7

US 10,346,327 B2

11(]\‘

1401

User S

pace

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

0S

160\ ‘

100

U.S. Patent Jul. 9, 2019 Sheet 2 of 7 US 10,346,327 B2

2137, T . S— :
_ Find timer lists where
new timer can fitin |

l

206 ‘:
_ Access category of the
new timer :

......................... 10
Round off iow resolution | = 0 N\
timer to next boundary ‘ |

| Calculate a timer expiry

12~ _
212 | delay between proximal
processor interrupts and
extracted mterrupt time

244 ' Determine proximity of
"\ the extracted interrupt
time with existing

' Are there | Select the timer list with ,

216 | |
%y maiching >——~——+ the largest timer expiry

interrupts 2. delay
LYSS 9 4\
~No 3

______ tSelect matching timer list

aic*hes_’?/ : ;
Yes 220
D N

222 Aré ’{hére

226\\ Perform load balancing { Qutput: Place timer with
N and select timer list » processor with selected (&
based on load balancing | timer list

200

U.S. Patent Jul. 9, 2019 Sheet 3 of 7 US 10,346,327 B2

302~ Muiltiple matching timer interrupts
are identified

| Are any Of the Tl oo
304 ST - N
_ / matching 1-g§erra:pts xNO | Select any processor with
~ corresponaing 10 a ' matching timer interrupt
*--__ high resolution /
TYes
308 —.
206~ [B , S T e N Y
JUb~ | Selectonly a processor with a — PR |
\4 matching high resolution timer p——es P+ Output: PIaC?;Lﬁzgglth selected
________________ interrupt _pmmesser

300

FIG. 3

U.S. Patent Jul. 9, 2019 Sheet 4 of 7 US 10,346,327 B2

410
CPU 1
412 414
15 25
ms mS
422 424 426
; ; ;
10 20 30 420
mns ms ims
@ i @ : & (,

16 22
ms ms
442 444
fﬁ%SO
£
New timer
CPU 2 at 18ms
400/

FIG. 4

U.S. Patent Jul. 9, 2019 Sheet 5 of 7 US 10,346,327 B2

510

CPU 1

528 | | 524 530 526
_ ; % -/
| 522 20 520
: ms
f A * 2
10 g
ms
—~ 550 554
.,
9 16
s ms

544

New timer
at 11ms

#//’ 540

500

CPU 2

FIG. 5

U.S. Patent Jul. 9, 2019 Sheet 6 of 7 US 10,346,327 B2

610 cpu 1
612 614
9 22
ms ms
CLZ ol4 G226
; / .
10 20 620 30
ms ms ms
—t ® N e
8 15
ms ms
642 044
oh{)
040
cpruz
New timer *
at 9ms
600/

FIG. 6

U.S. Patent Jul. 9, 2019 Sheet 7 of 7 US 10,346,327 B2

710~ CPU 1
??2 714
9 22
ms ms
;22 724 726
10 20 290) 30
ms Ims \ ms
+—@- @ o>
9 16
ms ms
742 744
f
New timer
at 9ms
700j

FIG. 7

US 10,346,327 B2

1
TIMER PLACEMENT OPTIMIZATION

BACKGROUND

The present embodiments relate to timer placement. More
specifically, the embodiments relate to placement of appli-
cation timers 1n a computer system.

Computer operating systems typically provide a mecha-
nism which allows software to schedule an event to occur at
some future time. This mechanism 1s referred to as a timer,
which functions to interrupt a processor at one or more
defined points in timer. A periodic mterrupt 1s known as a
system clock tick. In one embodiment, the operating system
measures time 1n clock ticks that originates with system
boot. The interrupt 1s a signal that prompts the operating
system to stop work on one process and start work on
another process.

In addition to the periodic interrupt, timers may be
configured for non-periodic events. Applications often
require the use of such non-periodic timers to track events
such as database queries, application request, etc. These
timers can be standard, e.g. low, or high resolution depend-
ing on real-time requirements of an associated application.
The resolution, accuracy, or permissible error in the duration
of the timer may vary with the task being performed. Often
a higher degree of timer accuracy 1s desired. An example
that requires a high resolution timer 1s computer animation
sequencing. The animation may be playing at various frames
per second, but 1 order to provide a viewer perception of a
smooth flowing motion, the animation may require to play
at least 60 frames per second. With too low of a resolution,
the viewer can detect an undesirable, irregular, jerky motion
in the computer animation sequence. Accordingly, different
levels of precision 1 timer duration may be necessary
depending on the underlying instruction(s).

SUMMARY

A system and computer program product are provided for
optimized timer placement. More specifically, embodiments
relate to optimized placement of application timers in a
computer system while accounting for timer resolution and
load balancing.

In one aspect, a computer system including processors in
communication with memory and an operating system 1s
provided to manage timer placement. The operating system
receives a request to apply a new timer 1n a computer
system. Receiving the request includes extracting an inter-
rupt time for the new timer. The operating system accesses
a timer list for each processor 1n the system responsive to the
received request. A range for placement of the new timer 1s
established with respect to each of the accessed timer lists.
A timer expiry delay 1s calculated between proximal pro-
cessor mterrupts and the extracted interrupt time based on
the established range placement. The operating system
determines proximity of the extracted interrupt time within
the existing processor imterrupts and selects one of the
processors based on the calculation and the determined
proximity. The new timer 1s placed on the selected processor.

In another aspect, a computer program product 15 pro-
vided including a computer readable storage medium with
embodied program code that 1s configured to be executed by
a processor. The processor receives a request to apply a new
timer 1n a computer system. Recerving the request includes
extracting an interrupt time for the new timer. The processor
accesses a timer list for each processor in the system
responsive to the received request. A range for placement of

10

15

20

25

30

35

40

45

50

55

60

65

2

the new timer 1s established with respect to each of the
accessed timer lists. A timer expiry delay 1s calculated
between proximal processor interrupts and the extracted
interrupt time based on the established range placement. The
processor determines proximity of the extracted interrupt
time within the existing processor mterrupts and selects one
of the processors based on the calculation and the deter-
mined proximity. The new timer 1s placed on the selected
Processor.

These and other features and advantages will become
apparent from the following detailed description of the
presently preferred embodiment(s), taken i1n conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which 1s regarded as embodiments 1s
particularly pointed out and distinctly claimed 1n the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken 1n conjunction
with the accompanying drawings 1n which:

FIG. 1 depicts a block diagram illustrating a computer
system that supports timer placement optimization.

FIG. 2 depicts a flow chart 1llustrating a process for timer
placement optimization.

FIG. 3 depicts a flow chart 1llustrating a process for load
balancing of timers.

FIG. 4 depicts a block diagram illustrating a use case
scenario ol timer placement.

FIG. 5 depicts a block diagram illustrating another use
case scenario ol timer placement.

FIG. 6 depicts a block diagram illustrating another use
case scenario ol timer placement.

FIG. 7 depicts a block diagram illustrating another use
case scenario of timer placement.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present embodiments, as generally described and 1llustrated
in the Figures herein, may be arranged and designed in a
wide variety of diflerent configurations. Thus, the following
detailed description of the embodiments of the apparatus,
system, and method of the present embodiments, as pre-
sented 1n the Figures, 1s not intended to limit the scope of the
embodiments, as claimed, but 1s merely representative of
selected embodiments.

Reference throughout this specification to “a select
embodiment,” ‘“one embodiment,” or ‘“an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment 1s 1included 1n
at least one embodiment of the present embodiments. Thus,
appearances of the phrases “a select embodiment,” “in one
embodiment,” or “in an embodiment” in various places
throughout this specification are not necessarily referring to
the same embodiment.

The illustrated embodiments will be best understood by
reference to the drawings, wherein like parts are designated
by like numerals throughout. The following description 1s
intended only by way of example, and simply illustrates
certain selected embodiments of devices, systems, and pro-
cesses that are consistent with the embodiments as claimed
herein.

An mterrupt 1s an event that alters the sequence 1n which

the processor executes instructions. More specifically, the

US 10,346,327 B2

3

interrupt may be requested by a currently running program,
¢.g. planned, or caused by an event that might or might not
be related to the currently running program, e.g. unplanned.
At a defined time, the interrupt alerts the processor to a
condition requiring interruption of the current program code
the processor 1s executing. There are different categories of
interrupts, icluding a periodic timer interrupt, a standard
resolution interrupt (also referred to herein as low resolution
interrupt), and high resolution interrupt. The periodic timer
interrupt takes place on select intervals on a periodic basis.
The high resolution timer 1s a mechanism for scheduling a
timer event on currently available hardware with precise
timed scheduling and allowing for good resolution. The
standard resolution timer 1s less accurate than the high
resolution timer.

Placement of a new timer requires evaluation and plan-
ning. It 1s desirable to keep the number of interrupts to a
mimmum 1n order to reduce overhead. As the frequency of
interrupts increases, the overhead increases, 1.e. the time
consumed by the system to service all of the interrupts
increases proportionally. At the same time, accuracy of timer
placement 1s reflective of the event, such as a real-time event
requiring the use of a high resolution timer. Referring to
FIG. 1, a block diagram (100) 1s provided illustrating a
computer system that supports timer placement optimiza-
tion. As shown, there are three layers to the system including,
user space (110), operating system (140) and hardware
(160). The user space includes a collection of user applica-
tions, such as libraries (120) and managers (130). The
operating system (140) 1s positioned between the user space
(110) and the hardware (160). The core of the operating
system (140) 1s referred to as the kernel (150) which
includes core code that manages hardware and soltware
resources. The kernel (150) 1s shown herein with an interrupt
handler (152) and a scheduler (154). The interrupt handler
(152) manages requests for I/O operations, and the scheduler
(154) determines order of processing programs. The kernel
(150) may also include a manager of the address space 1n
memory or storage. Kernel services may be requested by the
operating system (140) or by application programs (112) 1n
the user space (110). The hardware (160) executes the
soltware of the user space (110) and the operating system
(140).

As shown, the hardware layer (160) includes physical
devices, including processors (170), (180), and (190), and
memory (162). In one embodiment, the processor(s) may be
referred to herein as processing unit(s). Each of the proces-
sors (170), (180), and (190) are in communication with the
memory (162) across a bus (164). Although only three
processors are shown herein, this quantity should not be
considered limiting. Each processor 1s shown with a timer
list, 1dentifying existing processor interrupts. Processor P,
(170) 1s shown with processor list (172), processor P,, (180)
1s shown with processor list (182), and processor P, (190)
1s shown with processor list (192). Each of the processor
lists 1s shown herein with a plurality of timers, including
timers (174)-(178) in for processor P,, timers (184)-(188)
for processor P,, and timers (194)-(198) for processor P,.
The quantity of timers shown herein 1s for illustrative
purposes and should not be considered limiting,

The process of timer placement strategy i1s shown and
described 1n FIGS. 2-3, and use case examples are shown
and described in FIGS. 4-7. Timer selection includes selec-
tion ol a processor, identification and selection of the timer
resolution, and 1identification and selection of the timer
interrupt time on the select processor for the selected timer
and associated timer resolution. After each of these param-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

cters has been resolved, placement of the timer on the
selected processor takes place. Accordingly, the kernel (150)
manages timer selection and placement.

Retferring to FIG. 2, a tlowchart (200) 1s provided 1illus-
trating a process for processing a request for application of
a new timer 1 a computer system. It 1s understood that each
processor 1n the system 1s configured with one or more
interrupts, including periodic interrupts, and 1n one embodi-
ment one or more non-periodic interrupts. As shown 1n FIG.
1, each processor 1s configured with a data structure or a list,
herein after referred to as the data structure, identiiying each
interrupt assigned to the associated processor. Following
receipt of a request for application of the new timer (202),
the kernel, or in one embodiment an application 1n commu-
nication with the kernel, conducts a review of the data
structure(s) to ascertain an appropriate or strategic time for
placement of the new timer (204). There are a variety of
factors employed with placement of a new interrupt on a
processor. These factors include, but are not limited to,
frequency of interrupts, resolution of the new interrupt,
resolution of existing interrupts, and load balancing. Accord-
ingly, prior to selection and placement of the new timer, each
of these factors need to be evaluated.

The 1nitial assessment of the request 1s directed at the
resolution of the new timer. As described herein, the timer
may be configured as the high resolution timer or the
standard resolution timer. At the same time, each existing
interrupt on each of the processors 1s defined as either high
or standard resolution. In one embodiment, each periodic
interrupt 1s categorized as a standard resolution interrupt.
Following step (204), the resolution of the new timer 1is
assessed (206). I the timer 1s standard resolution, the timer
1s rounded to the next interrupt boundary (208), which 1s an
cvent that separates the time counter of the processor into
periodic intervals. In one embodiment, the boundary repre-
sents a 10 millisecond interval. It 1s understood that the high
resolution timer 1s not rounded to the next interrupt bound-
ary as rounding will affect the accuracy of the timer and
result mn a change of resolution. Accordingly, the nitial
assessment 1s directed at the new timer, and more specifi-
cally the resolution characteristic of the new timer.

Following either step (208) for the identification of the
standard timer or following step (206) for identification of
the high resolution timer, the timer interrupt of the new timer
1s extracted and compared with the timer interrupts of the
existing timers in each of the identified timer lists (210).
More specifically, at step (210) two existing interrupts that
are proximal to the new timer are extracted from each of the
timer lists so that one of the existing interrupts 1s prior to the
interrupt of the new timer and one of the existing interrupts
1s aiter the iterrupt of the new timer. A timer expiry delay
1s assessed for each of the processors and their associated
existing interrupt (212). The timer expiry delay 1s the
difference between the respective proximal existing inter-
rupts and the new timer iterrupt. The assessment of the
timer expiry delay 1s directed to determining proximity of
the extracted interrupts to the existing interrupts (214).
Accordingly, the timer expiry delay 1s performed for each
proximal interrupt 1n each timer list.

It 1s understood that the timer expiry delay may return a
value indicating that there 1s an opening for placement of the
timer, or 1n one embodiment may not return a value, e.g.
zero. If the timer expiry delay calculation 1s ‘zero’, there 1s
a timer interrupt from at least one of the processors that
exists at the same time interval, also referred to herein as a
match. Following step (214), 1t 1s determined 1f there are any
matching interrupts, e.g. no timer expiry delay, (216). If

US 10,346,327 B2

S

there are no matching interrupts, the processor associated
with the timer list featuring the largest timer expiry delay 1s
selected (218), and the new timer 1s placed with the selected
Processor (220) However, if at step (216) it 1s determined
that there 1s at least one matching interrupt, 1t i1s then
determined 11 there are at least two processors with interrupt
that match the new timer (222). If there 1s only one processor
with a matching interrupt, then the processor with the
matching timer interrupt 1s selected (224) followed by a
return to step (220). Placement of the timer interrupt on the
selected processor includes amending the associated data
structure to include the new timer interrupt. Sumilarly, 1f at
step (222) multiple interrupt matches are identified, the
application performs a load balancing procedure 1n order to
determine which processor to select for placement of the
new timer (226). Detail of the load balancing are shown and
described 1n FIG. 3. Accordingly, selection of a processor
includes evaluating the lists for an interrupt match, and 1n
the event no match 1s found, a processor with the largest
timer expiry delay 1s selected.

Selection of a new timer for placement requires balance.
In one embodiment, there i1s a need to reduce frequency of
interrupts on select processors to enable proper function and
execution of applications. Referring to FIG. 3, a tlowchart
(300) 1s provided illustrating a procedure for load balancing
timer placement when multiple matching timer interrupts are
identified. As shown, two or more matching timer interrupts
are 1dentified (302). It 1s then determined if any of the
matching interrupts correspond to a high resolution timer
(304). If at least one of the matching interrupts corresponds
to a high resolution timer, then the processor corresponding
to the timer list with the matching high resolution timer 1s
selected (306), and the timer 1s placed with the selected
processor (308). However, 11 at step (304) it 1s determined
that none of the matching interrupts correspond to a high
resolution timer, then any one of the processors correspond-
ing with a timer list with a matching timer interrupt may be
selected (310), followed by a return to step (308). Accord-
ingly, as demonstrated priority of timer assignment priori-
tizes selection of a processor with a matching high resolu-
tion timer with respect to a standard resolution timer, and
prioritizes selection of a processor with a matching standard
resolution timer with respect to a processor with a timer
expiry delay.

Placement of a new timer for a new processor mterrupt 1s
directed by the kernel, or in one embodiment an application
local to the kernel, as shown and described in FIG. 1. The
processes shown and described 1n FIGS. 2 and 3 are directed
at an optimal time placement strategy with respect to high
resolution and standard resolution timers. Existing proces-
sors may be configured with a combination of interrupts,
including periodic interrupts that take place at defined
intervals, one or more standard resolution timers, and/or one
or more high priority resolution timers. Prior to selection and
placement of the new timer, the kernel evaluates all the timer
lists, together with characteristics and requirements of the
new timer. This evaluation entails balancing interrupts
across all of the processors and either overlapping the new
timer with an existing interrupt or placing the new timer
suliciently spaced apart from existing interrupts.

Referring to FIG. 4, a block diagram (400) 1s provided
illustrating a use case example of timer placement. In this
example, all current timer interrupts are high resolution
timers. Optimal placement of the new timer 1s directed at
preventing the high resolution timer from expiring too close
to an existing timer. More specifically, the timer expiry delay
between two consecutive iterrupts on a processor 1s not a

10

15

20

25

30

35

40

45

50

55

60

65

6

minimal value, thereby ensuring that a particular processor
1s not repeatedly iterrupted. In this example, an application
1s requesting for the new timer (450) at 18 ms from current
time. In this example, two processors are shown, including
CPU, (410) and CPU, (440). A time line (420) 1s provided

with multiple boundaries placed at 10 ms intervals, 1nclud-
ing 10 ms (422), 20 ms (424), and 30 ms (426). Also shown

on the time line 1s the existing timer interrupts of the
processors, CPU, (410) and CPU, (440). CPU, (420) has
two timer interrupts shown at 15 ms (412) and at 25 ms
(414). CPU, (440) has two timer interrupts shown at 16 ms
(442) and at 22 ms (444). Timer interrupts (442) and (444)
are the interrupts that are closest before and after the new
timer interrupt (450), respectively. The two timer interrupts
(412) and (414) are selected for calculation due to the
established range for placement of the new timer with
respect to the timer list for CPU, (410). The same notion
applies to timer interrupts (442) and (444) with respect to the
timer list of CPU, (440). In this example, the new timer 1s
a high resolution timer and, accordingly, 1s not rounded to
the next boundary of 20 ms (424).

The timer expiry delays are calculated. In order to assess
the timer expiry delay, the absolute value 1s computed from
either proximal interrupt for each timer list. For CPU, (410),
the timer expiry delay between the new timer interrupt (450)
and mterrupt (412) 1s 18 ms-15 ms=3 ms. The timer expiry
delay between interrupt (414) and the new timer interrupt
(450) 1s 25 ms-18 ms=7 ms. A set of timer expiry delays 1s
formed as {3, 7}, also referred to herein as the absolute
difference. The same calculations are performed for the
timer interrupts of CPU, (440). The timer expiry delay
between the new timer interrupt (450) and interrupt (442) 1s
18 ms-16 ms=2 ms. The timer expiry delay between inter-
rupt (444) and the new timer interrupt (450) 1s 22 ms-18
ms=4 ms. The absolute difference for CPU, (440) is thus {2,
4}. Based on the calculated set, it is determined that the
value “3” 1s the minimum timer expiry delay in the absolute
difference of CPU, (410) and the value “2” 1s the minimum
timer expiry delay in the absolute difference of CPU, (440).
A mimmum set 1s formed from the two minimum timer
expiry delay values, i.e. {3, 2}, and the maximum value of
the minimum set 1s selected, 1.e. “3”. Due to the fact that the
value “3” 1s obtained from the absolute difference of CPU,
(410), CPU, 1s chosen as the processor for placement of the
new timer. By placing the new timer (450) in CPU, (410)
instead of CPU, (440), the application ensures that the new
timer (450) 1s not placed too close to any other mterrupts of
timers managed by the processor(s). Accordingly,, in the
example (400), CPU, (410) has more time in between the
two proximal 1nterrupts (412) and (414) than CPU, (440)
has between interrupts (442) and (444).

Referring to FIG. § a block diagram (300) 1s provided
illustrating another a use case example of timer placement.
In this example, an application 1s requesting for the new
timer (550) at 11 ms from current time. In this example, two
processors are shown, including CPU, (510) and CPU,
(540). A time line (520) 1s provided with multiple boundaries
placed at 10 ms tervals, including 10 ms (522), 20 ms
(524), and 30 ms (526). Also shown on the time line (520)
1s the existing timer interrupts of the processors, CPU, (510)
and CPU, (540). CPU, (510) has two timer interrupts,
including interrupt (512) shown at 9 ms (528) and interrupt
(514) shown at 22 ms (530). The timer interrupt (512) at 9
ms (522) 1s a standard resolution timer interrupt and as such
1s rounded to the next boundary (522), thus placing 1t the 10
ms boundary (522). CPU, (540) also has two proximal timer
interrupts listed in its corresponding timer list—a high

US 10,346,327 B2

7

resolution timer interrupt (542) at 9 ms and a standard
resolution timer interrupt (544) at 16 ms. The standard
resolution timer interrupt (544) 1s rounded to the next
boundary at 20 ms (524). The two timer interrupts (512) and
(514) are selected for calculation due to the established
range for placement of the new timer (5350) with respect to

the timer list for CPU, (510). The same notion applies to
timer interrupts (542) and (544) with respect to the timer list

of CPU, (540). In this example, the new timer (550) 1s a high

resolution timer and, accordingly, 1s not rounded to the next
boundary of 20 ms (524). However, timer interrupt (512) for

CPU, (510) and timer interrupt (544) for CPU, (540) pertain
to standard resolution timers. The interrupts (512) and (544)
are thus rounded to the next boundary at (522) and (524),
respectively.

The timer expiry delays are calculated. In order to calcu-
late the timer expiry delay, the absolute value 1s computed
from either proximal 1nterrupt for each timer list. For CPU,

(510), the timer expiry delay between the new timer inter-
rupt (550) and interrupt (512) at (522) 1s 11 ms-10 ms=1 ms.
The timer expiry delay between interrupt (544) at (524) and
the new timer interrupt (350) 1s 22 ms-11 ms=11 ms. A set
of timer expiry delays, 1.e. absolute difference, for CPU,
(510) is formed as {1, 11}. The same calculations are
performed for the timer interrupts of CPU, (550). The timer
expiry delay between the new timer interrupt (550) and
interrupt (542) 1s 11 ms-9 ms=2 ms. The timer expiry delay
between interrupt (544) and (524) and the new timer inter-
rupt (550) 1s 20 ms-11 ms=9 ms. The absolute difference for
CPU, (540) is thus {2, 9}. Based on the calculated set, it is
determined that the value 17 1s the mimimum timer expiry
delay 1n the absolute difference of CPU, (510) and the value
“2” 1s the mimmum timer expiry delay in the absolute
difference of CPU, (540). A minimum set 1s formed from the
two minimum timer expiry delay values, i.e. {1, 2}, and the
maximum value of the minimum set 1s selected, 1.e. “2”. Due
to the fact that the value “2” 1s obtained from the absolute
difference of CPU, (540), CPU, (540) 1s selected as the
processor for placement the new timer (550). By placing the
new timer in CPU, (540) mstead of CPU, (510), the appli-
cation ensures that the new timer (550) 1s not placed too
close to any other interrupts of timers managed by the
processor(s). Accordingly, in the example (500), CPU, (540)
has more time 1n between the two proximal interrupts (542)
and (544) than CPU, (510) has between interrupts (512) and
(514).

Referring to FIG. 6, a block diagram (600) 1s provided
illustrating another a use case example of timer placement.
In this example, an application 1s requesting for the new
timer (650) at 9 ms from the current time. A time line (620)
1s provided with multiple boundaries placed at 10 ms
intervals, including 10 ms (622), 20 ms (624), and 30 ms
(626). Also shown on the time line (620) 1s the existing timer
interrupts of the processors, CPU, (610) and CPU, (640).
CPU, (610) has two timer interrupts (612) and (624), shown
at 9 ms and at 22 ms, respectively. Both timer interrupts
(612) and (614) are high resolution timer interrupts. CPU,
(640) also has two timer interrupts (642) and (644), shown
at 8 ms and at 15 ms, respectively. The two timer interrupts
(612) and (614) are selected for calculation due to the
established range for placement of the new timer with
respect to the timer list for CPU, (610). The same notion
applies to timer interrupts (642) and (644) with respect to the
timer list of CPU, (640). In this example, the new timer 1s
a high resolution timer and, accordingly, 1s not rounded to
the next boundary, shown 1n this example at 10 ms (622).

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The timer expiry delay 1s calculated. In order to calculate
the timer expiry delay, the absolute value 1s computed from
the either proximal interrupt for each timer list. For CPU,
(610), the timer expiry delay between the new timer inter-
rupt (650) and nterrupt (612) 1s 9 ms-9 ms=0 ms. The timer
expiry delay between interrupt (614) and the new timer
interrupt (6350) 1s 22 ms-9 ms=15 ms. An absolute diflerence
for CPU, (610) is formed as {0, 15}. The same calculations
are performed for the timer interrupts of CPU,, (640). The
timer expiry delay between the new timer interrupt (650)
and interrupt (642) 1s 9 ms-8 ms=1 ms. The timer expiry
delay between interrupt (644) and the new timer interrupt
(650) 1s 15 ms-9 ms=6 ms. The absolute difference for CPU,
(640) is thus {1, 6}. Based on the calculated set, it is
determined that the value “0” results 1n a match within the
absolute difference of CPU, (610). It 1s determined that there
are no other matches other than the timer expiry of interrupt
(612) 1n the timer list of CPU, (610). Due to the fact that the
match 1s obtained from the absolute difference of CPU,
(610), CPU, 1s chosen as the processor for placement of the
new timer. By placing the new timer in CPU, (610) instead
of CPU, (640), the application ensures timer placement
optimization by utilizing an interrupt time that 1s already
assigned to another timer.

Referring to FIG. 7, a block diagram (700) 1s provided
illustrating yet another user case example of timer place-
ment. In this example, an application 1s requesting for the
new timer (750) at 9 ms from the current time. A time line
(720) 1s provided with multiple boundanes placed at 10
millisecond 1ntervals, including 10 ms (722), 20 ms (724),
and 30 ms (726). Time line (720) also illustrates existing
timer 1nterrupts of the processors, CPU, (710) and CPU,
(740). CPU, (710) has two timer interrupts (712) and (714),
shown at 9 ms and 22 ms, respectively. Interrupt (712) 1s a
standard resolution timer and interrupt (722) 1s a high
resolution timer. CPU, (740) also has two timer interrupts
(742) and (744), shown at 9 ms and 16 ms, respectively.
Both timer interrupts (742) and (744) are high resolution
timer nterrupts. Since the new timer (750) co-incides with
two timers, one high resolution and one standard resolution,
CPU, (740) with the matching high resolution timer 1is
selected for placement of the new timer (750).

Upon determining that there are multiple matches from
the absolute difference calculations, the application per-
forms a load balancing between the two matching timer lists
in order to select the optimal processor to place the timer.
For load balancing, the application determines whether any
of the matching interrupts pertain to a high resolution timer.
In the example (700), the timer interrupt (712) for CPU,
(710) 1s a standard resolution interrupt, while the timer
interrupt (742) tor CPU, (740) 1s a high resolution interrupt.
Precedence 1s given to high resolution interrupts, if any, for
placement of the new timer. Accordingly, the timer 1s placed
with CPU, (740) at the matching timer interrupt (742), since
timer (742) 1s the only high resolution timer interrupt to
match with the new timer (750).

The present embodiments shown and described herein
may be a system, a method, and/or a computer program
product. The computer program product may include a
computer readable storage medium (or media) having com-
puter readable program instructions thereon for causing a
processor to carry out aspects of the present embodiments.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, but 1s not limited to, an electronic storage
device, a magnetic storage device, an optical storage device,

US 10,346,327 B2

9

an electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, 1s not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
clectromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present embodiments may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic

10

15

20

25

30

35

40

45

50

55

60

65

10

circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present embodiments.

As will be appreciated by one skilled 1n the art, the aspects
may be embodied as a system, method, or computer program
product. Accordingly, the aspects may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.), or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module,” or “system.” Furthermore, the aspects
described herein may take the form of a computer program
product embodied 1n one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

The embodiments are described above with reference to
flow chart illustrations and/or block diagrams of methods,
apparatus (systems), and computer program products. It will
be understood that each block of the flow chart 1llustrations
and/or block diagrams, and combinations of blocks 1n the
flow chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flow chart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including mstructions which
implement the function/act specified in the flow chart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions, which execute on
the computer or other programmable apparatus, provide
processes for implementing the functions/acts specified in
the flow chart and/or block diagram block or blocks.

The flow charts and block diagrams in the Figures 1llus-
trate the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments. In this
regard, each block in the flow charts or block diagrams may
represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, 1n some alternative implementations, the func-
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flow
chart 1llustration(s), and combinations of blocks in the block
diagrams and/or flow chart illustration(s), can be imple-

US 10,346,327 B2

11

mented by special purpose hardware-based systems that
perform the specified functions or acts, or combinations of
special purpose hardware and computer instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not mtended to be
limiting. As used herein, the singular forms *“a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used 1n this specification, specily the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The embodiments described herein may be implemented
in a system, a method, and/or a computer program product.
The computer program product may include a computer
readable storage medium (or media) having computer read-
able program instructions thereon for causing a processor to
carry out the embodiments described herein.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmissions, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

The embodiments are described herein with reference to
flow chart 1llustrations and/or block diagrams of methods,
apparatus (systems), and computer program products. It will
be understood that each block of the flow chart illustrations
and/or block diagrams, and combinations of blocks 1n the
flow chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flow chart and/or block diagram block or blocks.
These computer readable program instructions may also be
stored 1n a computer readable storage medium that can direct
a computer, a programmable data processing apparatus,
and/or other devices to function 1n a particular manner, such
that the computer readable storage medium having instruc-
tions stored therein comprises an article of manufacture
including nstructions which implement aspects of the func-
tion/act specified in the flow chart and/or block diagram
block or blocks.

It will be appreciated that, although specific embodiments
have been described herein for purposes of illustration,
various modifications may be made without departing from
the spirit and scope of the specific embodiments described
herein. Accordingly, the scope of protection 1s limited only
by the following claims and their equivalents.

Aspects of the present embodiments are described herein
with reference to flowchart illustrations and/or block dia-
grams ol methods, apparatus (systems), and computer pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

gram products according to embodiments. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer readable program instructions.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present embodiments has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the embodiments 1n the form disclosed.

Indeed, executable code could be a single instruction, or
many instructions, and may even be distributed over several
different code segments, among different applications, and
across several memory devices. Similarly, operational data
may be 1dentified and 1illustrated herein within the tool, and
may be embodied 1n any suitable form and organized within
any suitable type of data structure. The operational data may
be collected as a single dataset, or may be distributed over
different locations including over diflerent storage devices,
and may exist, at least partially, as electronic signals on a
system or network.

Furthermore, the described features, structures, or char-
acteristics may be combined in any suitable manner 1n one
or more embodiments. In the following description, numer-
ous specific details are provided, such as examples of agents,
to provide a thorough understanding of the disclosed
embodiments. One skilled 1n the relevant art will recognize,
however, that the embodiments can be practiced without one
or more of the specific details, or with other methods,
components, materials, etc. In other instances, well-known
structures, materials, or operations are not shown or
described 1n detail to avoid obscuring aspects of the embodi-
ments.

The corresponding structures, matenals, acts, and equiva-
lents of all means or step plus function elements 1n the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present embodiments has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the embodiments 1n the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the embodiments. The embodiment was chosen
and described 1n order to best explain the principles of the
embodiments and the practical application, and to enable
others of ordinary skill 1n the art to understand the embodi-
ments for various embodiments with various modifications
as are suited to the particular use contemplated. Timer
placement optimization automatically optimizes the selec-
tion ol a functioning processor for placement of a timer, as
requested by a running application. The embodiments
recited 1n this application function to decrease the amount of
interrupts handled by each processor, ensures that sequential
interrupts are optimally spaced, and that the processing load

US 10,346,327 B2

13

placed on a set of processors 1s evenly distributed. Accord-
ingly, computer system functioning 1s enhanced by the
optimized placement of timers across a set ol processors.

It will be appreciated that, although specific embodiments
have been described herein for purposes of illustration,
various modifications may be made without departing from
the spirit and scope of the embodiments. In particular, the
quantity ol processors and corresponding processor lists
should not be considered limiting. Each processor in the
system may be a single-core or multi-core processor. In one
embodiment, the application and the operating system may
be stored on diflerent servers or client machines. Accord-
ingly, the scope of protection of these embodiments 1is
limited only by the following claims and their equivalents.

What 1s claimed 1s:

1. A computer system comprising;:

two or more processors in communication with memory;

an operating system in communication with the proces-

sors, the operating system to:

receive a request to apply a new timer 1n a computer
system, including to extract an interrupt time for the
new timetr;

establish a range for placement of the new timer;

calculate a timer expiry delay between proximal pro-
cessor 1nterrupts and the extracted interrupt time
based on the established range placement;

determine proximity of the extracted imterrupt time
within the existing processor interrupts; and

select one of the processors based on the calculation
and the determined proximity; and

place the new timer by the operating system on the
selected processor.

2. The computer system of claim 1, wherein calculating
the timer expiry delay comprising the operating system to:

select a set of proximal existing interrupt times for each

processor timer list;

calculate an absolute difference between each existing

timer interrupt time of the selected set of proximal
existing interrupt time and the extracted interrupt time;
and

compare the absolute difference of each set of proximal

existing interrupt times, wherein the processor selec-
tion 1s responsive to the comparison.

3. The computer system of claim 2, further comprising the
operating system to:

detect a resolution of the new timer;

responsive to detection of a standard resolution:

round the new timer to a next processor boundary on
the each processor 1n the system:;

calculate the absolute difference with respect to the
processor boundary; and

select the processor with a largest calculated absolute
difference.

4. The computer system of claim 2, wherein the absolute
difference calculation returns at least one timer list with an
existing interrupt matching the new timer interrupt time, and
turther comprising the operating system to select the pro-
cessor with the matching interrupt time.

5. The computer system of claim 2, wherein the absolute
difference calculation returns at least two timer lists each
with an existing timer having a matching interrupt and at
least one of the matching mterrupts 1s a high resolution
timer, and further comprising:

the operating system to select the processor with the

matching high resolution timer.

6. The computer system of claim 2, further comprising the
operating system to:

5

10

15

20

25

30

35

40

45

50

55

60

65

14

detect a resolution of the new timer; and

responsive to detection of a high resolution and the
absolute difference calculation returning a non-match-
ing interrupt, select the processor with a largest calcu-
lated absolute difference.

7. A computer program product comprising a computer
readable storage medium having program code embodied
therewith, the program code executable by a processor to:

recerve a request to apply a new timer 1n a computer

system, including to extract an interrupt time for the
new timer:;

establish a range for placement of the new timer;

calculate a timer expiry delay between proximal processor

interrupts and the extracted interrupt time based on the
established range placement;

determine proximity of the extracted interrupt time within

the existing processor mterrupts;

select one of the processors based on the calculation and

the determined proximity; and

place the new timer on the selected processor.

8. The computer program product of claim 7, wherein
calculating the timer expiry delay comprises the processor
to:

select a set of proximal existing interrupt times for each

processor timer list;

calculate an absolute difference between each existing

timer interrupt time of the selected set of proximal
existing interrupt time and the extracted mterrupt time;
and

compare the absolute difference of each set of proximal

existing interrupt times, wherein the processor selec-
tion 1s responsive to the comparison.

9. The computer program product of claim 8, further
comprising the processor to:

detect a resolution of the new timer;

responsive to detection of a standard resolution:

round the new timer to a next processor boundary on
the each processor 1n the system:;

calculate the absolute difference with respect to the
processor boundary; and

select the processor with a largest calculated absolute
difference.

10. The computer program product of claim 8, wherein
the absolute difference calculation returns at least one timer
list with an existing interrupt matching the new timer
interrupt time, and further comprising the processor to select
the processor with the matching interrupt time.

11. The computer program product of claim 8, wherein the
absolute difference calculation returns at least two timer lists
cach with an existing timer having a matching interrupt and
at least one of the matching interrupts 1s a high resolution
timer, and further comprising the processor to select the
processor with the matching high resolution timer.

12. The computer program product of claim 8, further
comprising the processor to:

detect a resolution of the new timer; and

responsive to detection of a high resolution and the

absolute difference calculation returning a non-match-
ing nterrupt, select the processor with a largest calcu-
lated absolute difference.

13. The computer program product of claim 7, further
comprising the processor to balance placement of the new
timer with respect to the existing processor mterrupts in the
system, wherein the balancing includes the processor to
account for distribution of periodic and non-periodic timer
events and mitigate frequent interrupts.

.

US 10,346,327 B2
15

14. The computer system of claim 1, further comprising
the operating system to access a timer list for each processor
in the system responsive to the received request, wherein
cach timer list indicates existing processor interrupts.

15. The computer system of claim 14, further comprising 5
the operating system to establish a range for placement of
the new timer.

16. The computer program product of claim 7, further
comprising program code to access a timer list for each
processor in the system responsive to the received request, 10
wherein each timer list indicates existing processor inter-
rupts.

17. The computer program product of claim 16, further
comprising program code to establish a range for placement
of the new timer. 15

	Front Page
	Drawings
	Specification
	Claims

