12 United States Patent

Lutz

US010346130B2

US 10,346,130 B2
Jul. 9, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(51)

(52)

(58)

HANDLING FLOATING POINT
OPERATIONS

Applicant: ARM Limited, Cambridge (GB)

Inventor: David Raymond Lutz, Austin, TX
(US)

Assignee: ARM Limited, Cambridge (GB)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 18 days.

Appl. No.: 15/593,574

Filed: May 12, 2017

Prior Publication Data

US 2018/0329682 Al Nov. 15, 2018

Int. CIL.

GO6F 7/483 (2006.01)

GO6lF 7/485 (2006.01)

GO6F 5/01 (2006.01)

U.S. CL

CPC GO6F 5/012 (2013.01); GO6F 7/483

(2013.01); GOGF 7/485 (2013.01)

Field of Classification Search

CPC GO6F 7/485
See application file for complete search history.

110

CirgUits

100~

'
- 4
+
'
+*
T L
[[
' '
' '
a L
4 4
-
[' O] () O] O] ')
) [
b .
[[

W\ Diffetence /

 Combining cirouits |

rrr

(56) References Cited

U.S. PATENT DOCUMENTS

5,197,023 A * 3/1993 Nakayama GOO6F 7/485
708/496

7,043,516 B1* 5/2006 Wolrich GOOF 7/485
708/505

2010/0042665 Al* 2/2010 Ahmed GOO6F 7/485
708/209

2013/0282777 AL* 10/2013 GUO .cooovvvvvvriiiiiinns GOO6F 7/483
708/201

* cited by examiner

Primary Examiner — Chuong D Ngo
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A data processing apparatus includes difference circuitry
that calculates a difference between exponents of a first
floating-point operand and a second floating-point operand.
Shift circuitry generates a fractional string by shifting frac-
tional bits of a selected operand of the first floating-point
operand and the second floating-point operand based on the
difference. Logic circuitry generates an integer-bit string
representing an integer-bit of the selected operand having
been shifted based on the diflerence. Combining circuitry
combines the fractional string and the integer-bit string to
produce a significand string representing the selected oper-
and having been shifted based on the difference. The logic
circuitry generates the integer-bit string using operations
other than shifting.

15 Claims, 7 Drawing Sheets

.

rr

: j;” i 53
C G

aa

;;

W_

U.S. Patent Jul. 9, 2019 Sheet 1 of 7 US 10,346,130 B2

b
w w T T mom E@EE@E@E@E@mE@E 188082 m=@032m32@88887777%"T"."TT P TT T T, N R®E®u E®E@m@BE@E@EEEEEBEEETLLTLRLLTLR m " amEEmETirLLTALLLTATTTTTOOOFCr R N EEREBEREEEEEEEEEETLILIALLIATTT YT TN R DR oEE
] *
. "
4 *
P L] +
. *
WA W W W R M ‘} B WM R AN A W A MR T A W B R R A R W W
] +
" L | *
. r
. *
T =T VT M A T o o - i e R R e e e mm mm m A m o mdw A wd Ak r F F R R e ke B e e r o m m o mom mE EoE e ey

e rrerrrd b rdtrrrtrrrdtrdror+h b

fference
CIFCLIS

rwr s kb rwerrF+rtr+or+r+al

+ 4 & & & & F &2 A FF FF 5§ =R EE Rk gL L L L

-

+ + + v + v + v b b b b s 5 =k
=

rr T rTrTrTFroTrTa

r rrr+trTrt+t+Trk+

Fy vy s s s=sgsnssnsssssrrrrrrrrr FrrkFrrrrrr

+ v+ v+ v+ w kT sl

% & &k koL S, [N E E E E EEEEEEEEE S EEEE%®E®®%S LS, BB EEEEEEEE

+ v v
- r* - === == E®

T T TTOCrEr EFrraas

+* + + o+ FFFFFFFEFASFFFFFF YRR Rkt FFESAFFFF

+ + v b F =k

100-

expa_ge_exph ~180

170

A vy v F+r b b b ¥ b bhn rd b rrasrrrdrr+drdrdEr+r+dsrdsFras+se+shb b Fh s s b b gs s rerdorrrdesrdrdEr+r o+

sxe o

r + r + + ¥ ¥+ +

kP A A N B N B B . B B .

U.S. Patent Jul. 9, 2019 Sheet 2 of 7 US 10,346,130 B2

~expa_zero| | ~rs_a3] ~rs_af2]| | ~rs_a[l]

190

180" | ‘

- ~rs_aill]

M -
L
:
-
. \,_‘
+
+
* L}
-

-
- L]

150"

]
-
.
.
-
-
x *
. * *
P
) .-'-". 4
*
"I

L Ol

US 10,346,130 B2

ALINDHD

O UOBEINOED, eubisAues
:
f ;
:
er) ... + m
E SHITMLD AN
= i uonessush A
7 Ote”] g dnoug :
A -
~ ARINOAD 14
A ozefl MOS 0GE-
=
-

lll

U.S. Patent

T dxs OLE

++++++++++++++++++++++

SOUBIBLIC]

Sepes 1dxs

/ AINOIO BPY N\

m%m

Ve

US 10,346,130 B2

Sheet 4 of 7

Jul. 9, 2019

U.S. Patent

P Ol

G2L4IHS N0
44 Ol

?;1‘;
] a
3 ;
; :
2 -
b "
§ y
5 .
§ .
; i
: i
} N
} H
5 -
§ 1
- "
; ;
£ ,) Gl m g1 &
& } % R
TR0 P TTIT OTTIT OTTIT OTTTT OO0O0 0000 O000 0000 L 000D 0000 OTCO 0000 ™
. 3 b : S S t) P f b { w b $ 3 w:u_w L.CF‘ m_*LLﬁ.\ it
LAY ; b L ‘s L. Lo s [booLa AW WA TR VY. R WA RN AV EVEERVEVEEAN, PAVEY. Y Lo V)
\ N o JPIAN AN /
g PR VY PR -(-J\\...-....-...-..t-\t n iiiiiiiiiiiiiiiiiiiiiiii tww»&\-\.-...\11111!&11\1\1\1\111\\1 .__.....f._-.__. \\\\\\\\\\\\\\\\\\\\\ 1){\. 1111111111111111111111111 # | ereRRRARRRARERRRRRRRRLEREE, -:.._.4\\ 1111111111111111111111111111 .-..tlﬂ;._tn.....t\......
:
) , ! (} | !
; b
5
. “ W,
;;;;;;;;;;;;;;;;;;;;;;;;;;;

W
*
)
¥
L]
X
¥
|
¥
¥
%
¥
&
X
K
)
K
¥
*x
L)
*
¥
»
]
¥
ﬂé
L)
&
X
;
¥
]
]
¥
¥
¥
]
¥
¥
¥
¥
]
¥
]
%
¥
%
¥
k
¥
K
¥
x
¥
*
]
R
3
¥
k
%
K
X
K
%
]
¥
&
¥
k
]
»
¥
.
)
*
]
X

SLE Q3L4IHS 1IN0 SiiE 800
TWLLIN

U.S. Patent Jul. 9, 2019 Sheet 5 of 7 US 10,346,130 B2

777

opbi116:0

A bit shift for

“|+++ ZEErG exp , .
+ i -er‘_#.irm
- -
" #"‘.‘ ?
2 -
- 'J-.'_p-
U S S S ++: +++++++++++++++++ . R i

creating signdt

{
3
;
‘
1
!

130, 3140

bl L F B

cands

-y

nifted

-

520~

+++

4> sovfl,§ feeeeenmenen

+
++

e n
&3
S
g

rounding
selechon

2
7
s
3

li"'":"""""'""""i R

averfiow, round

S. Patent ul. 9, 2019 Sheet 6 of 7 S 10.346.130 B2

~600

{alculate
giiferance

510~

+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+

+ + + + + F + F FFFFFFFAFEFFFEFFEFFFFAF

+ + + + + + + + + + + +++++ ottt ottt ottt ettt

820 Generate
fractional string

+* + F + + F ¥ FFFFFFFFFFFFFEFFEFFF

LN L N D R R L B B L N L L L D L L N L L I L B L

anerate integertit string
without using shifting

+ + + + + + + + + F + + F At
* + + F F F FFFFFFFFFFEFFFEFFFFFFF

+ + + + + + + + + F FF FFFFFFEFFFEFFFEFFEAFEFFEFEFFEAFEFAFEAFEFFEAFEFFEAFEFFEAFEFAFEAFEFEAFEAFEFEFEFEFEFEAFEFEAFEAFEFEFEAFEFFEEF

Combineg

+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+

+ + + + + + + F + F FFFFFFFEFFEFFFEFEFFF

+ + + + F FFFFFFFFFFEFFEFEAFEFEFFEFEFEFEFEFEFEFEFEFEFEFEAFEEFEFEEFEFEEEFEEF

S. Patent ul. 9, 2019 Sheet 7 of 7 S 10.346.130 B2

Caiculate exponents
difference

* + + + + + okt
* + + + + + okt

* + + ¥ + F F FFFFFFFFEFFEFEFFFEEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEFEFEFEEFFEEFFEF R

+ + + + + + + + F F FF FFFFFFEFFFEFFFEFEFEFEFFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEEFEEEEFEEFEEF

separate core dils

N0 ¢roups

* + + + +

L I N L N L R A I L D L O L L L D O D O L L L

engrate group
DS

+ + + + + + + + + & + + F F FFFFFEFFFFFAFEFFEFEFFEFEFFEAFEAFFEFEFFEAFEFFEFEFFEAFEFFEFEFEFEAFEFFEFEFFEFE

L AL I DO DO DL DO BOL DOE DO DAL DL DON DOK DOE DO DON BOL DO DO BOL DO DO BN B
L AL I DO DO DL DO BOL DOE DO DAL DL DON DOK DOE DO DON BOL DO DO BOL DO DO BN B

Dietermine inhibit
Signal

* + + ¥+ F o FFFFFFFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEEFFEFEFEFEFFF

US 10,346,130 B2

1

HANDLING FLOATING POINT
OPERATIONS

TECHNICAL FIELD

The present disclosure relates to data processing. In
particular, the present disclosure has relevance to the field of
floating-point operations.

DESCRIPTION

A floating-point operand represents a number as a sig-
nificand multiplied by a base number (typically two), raised
to the power of an exponent. The exponent and the signifi-
cand are represented using a number of bits in the operand.
Adding or subtracting two floating-point operands together
can 1nvolve firstly aligning the decimal points of the num-
bers by equalising the exponents. This can be non-trivial.
Furthermore, 1t may be necessary to analyse bits that are
shifted as a consequence of the alignment. However, the
time taken to perform this analysis can be time consuming.
These problems are exacerbated 11 subnormal 1inputs, where
the integer-bit 1s 0, are also to be considered.

SUMMARY

Viewed from a first example configuration, there 1s pro-
vided a data processing apparatus comprising: difference
circuitry to calculate a diflerence between exponents of a
first tloating-point operand and a second floating-point oper-
and; shift circuitry to generate a fractional string by shifting
fractional bits of a selected operand of said first tloating-
point operand and said second floating-point operand based
on said difference; logic circuitry to generate an 1nteger-bit
string representing an integer-bit of said selected operand
having been shifted based on said diflerence; and combiming,
circuitry to combine said fractional string and said integer-
bit string to produce a significand string representing said
selected operand having been shifted based on said differ-
ence, wherein said logic circuitry 1s to generate said integer-
bit string using operations other than shifting.

Viewed from a second example Conﬁguratlon there 1s
provided a data processing apparatus comprising: difference
circuitry to calculate a diflerence between exponents of a
first tloating-point operand and a second floating-point oper-
and, wherein a sigmificand associated with one of said first
floating-point operand and said second tloating-point oper-
and comprises one or more core bits and one or more
outshifted bits; splitter circuitry to separate said core bits of
said first floating-point operand 1nto a plurality of groups of
bits, each of said groups of bits comprising contiguous bits
from said core bits; a plurality of group bit generation
circuits, to output a plurality of group bits by performing a
logical OR on said plurality of groups of bits, and on said
outshifted bits; and calculation circuitry to set a carry signal
based on a result of a logical OR of at least of subset of said
plurality of group bits, wherein said at least a subset 1s based
on said difference.

Viewed from a third example configuration, there 1s
provided a method of data processing comprising: calculat-
ing a diflerence between exponents of a first floating-point
operand and a second floating-point operand; generating a
fractional string by shifting fractional bits of a selected
operand of said first tloating-point operand and said second
floating-point operand based on said diflerence; generating
an 1nteger-bit string representing an 111teger—b1t of said
selected operand having been shifted based on said differ-

10

15

20

25

30

35

40

45

50

55

60

65

2

ence; and combining said fractional string and said integer-
bit string to produce a significand string representing said
selected operand having been shifted based on said differ-
ence, wherein said integer-bit string 1s generated using
operations other than shifting.

Viewed from a fourth example configuration, there 1is
provided a method of data processing comprising: calculat-
ing a difference between exponents of a first floating-point
operand and said a floating-point operand, wherein a sig-
nificand associated with one of said first floating-point
operand and said second floating-point operand comprises
one or more core bits and one or more outshifted bits;
separating said core bits of said first floating-point operand
into a plurality of groups of bits, each of said groups of bits
comprising contiguous bits from said core bits; output a
plurality of group bits by performing a logical OR on said
plurality of groups of bits, and on said outshifted bits; and
setting an 1nhibit carry signal based on a logical OR of at
least a subset of said plurality of group bits, wherein said at
least a subset 1s based on said difference.

BRIEF DESCRIPTION OF THE

DRAWINGS

The present invention will be described further, by way of
example only, with reference to embodiments thereof as
illustrated 1n the accompanying drawings, in which:

FIG. 1 illustrates a data processing apparatus 100 1n
accordance with one embodiment:;

FIG. 2 illustrates appropriate logic circuitry for determin-
ing a bit of the integer-bit string;

FIG. 3 illustrates a data processing apparatus in accor-
dance with one embodiment;

FIG. 4 illustrates an example of the makeup of sigs), the
corresponding group bits, and the calculation of the carry
signal.

FIG. 5 illustrates tloating-point addition circuitry 500 1n
accordance with one embodiment.

FIG. 6 illustrates a method of data processing 1n accor-
dance with one embodiment; and

FIG. 7 1illustrates a method of data processing in accor-
dance with one embodiment.

DESCRIPTION OF

EXAMPLE EMBODIMENTS

Betore discussing the embodiments with reference to the
accompanying figures, the following description of embodi-
ments 15 provided.

In accordance with one example configuration there 1s
provided a data processing apparatus comprising: difference
circuitry to calculate a diflerence between exponents of a
first tloating-point operand and a second floating-point oper-
and; shift circuitry to generate a fractional string by shifting
fractional bits of a selected operand of said first floating-
point operand and said second floating-point operand based
on said difference; logic circuitry to generate an integer-bit
string representing an integer-bit of said selected operand
having been shifted based on said difference; and combining
circuitry to combine said fractional string and said integer-
bit string to produce a significand string representing said
selected operand having been shifted based on said differ-
ence, wherein said logic circuitry 1s to generate said integer-
bit string using operations other than shifting.

The first floating-point operand and the second floating-
point operand are both floating-point numbers. Accordingly,
they both have a separate exponent and significand as well
as a sign bit. The difference circuitry takes the exponents of
cach of the first floating-point operand and the second

US 10,346,130 B2

3

floating-point operand and calculates a difference between
those values. The shiit circuitry takes the fractional/signifi-
cand bits of one of the first floating-point operand and
second floating-point operand and generates a shifted frac-
tional string based on the diflerence between the exponents.
The fractional bits are part of the significand, which also
includes an integer-bit (either zero or one). Logic circuitry
generates an 1teger-bit string that represents an integer-bit
of the selected one of the first floating-point operand and
second floating-point operand. Again, the 1integer-bit string
represents the integer-bit of the selected operand having
been shifted based on a difference between the exponents as
calculated by the difference circuitry. Combining circuitry
then combines the fractional string and the mteger-bit string,
in order to produce an overall significand string that repre-
sents the selected one of the first floating-point operand and
the second floating-point operand having been shifted based
on the diflerence between the exponents. In this way, the
shift circuitry and the logic circuitry separate out different
parts of the significand (the fractional bits and the integer-
bit) and each perform an operation that corresponds with the
fractional bits or the integer-bit having been shifted based on
the difference between the exponents. By separating the
generation of the significand string out into two separate
processes, the overall determination of the significand string,
can proceed more efliciently. In addition, the logic circuitry
1s to generate the integer-bit string using operations other
than shifting. Shifting operations can be time consuming and
can require a large number of logic gates 1n order to proceed.
Accordingly, the logic circuitry generates the integer-bit
string using operations other than shifting. The generation of
the significand string 1s used in order to align the signifi-
cands of the first tloating-point operand and the second
floating-point operand. Once the two significands have been
aligned, 1t 1s possible to perform addition or subtraction
between the two values.

In some embodiments, said logic circuitry 1s to generate
said 1integer-bit string by performing, for each bit position 1n
said 1nteger-bit string, an associated computation using bits
of said difference to determine a value for that bit position
within said integer-bit string, said associated computation
being different for different bit positions. The integer-bit
string can be generated by, for each bit 1n the integer-bit
string, performing a separate computation using bits of the
exponent difference to determine a value for that bit posi-
tion. The computation may differ for each of the diflerent bit
positions within the integer-bit string. In particular, the
computation may vary by different mputs being provided,
1.e. by varying the bits of the exponent diflerent or by
performing additional computations to those bits.

In accordance with some embodiments, said associated
computation for each bit position 1n said integer-bit string 1s
at least logically equivalent to a computation that uses each
bit of the exponent value at most once. The difference
calculated between the two exponent values may be
expressed as a number of bits. In these embodiments, the
computation that 1s performed for each bit position 1n the
integer-bit string uses each of those bits once or 1s logically
equivalent (once redundant operations are removed or sim-
plified) to a computation 1n which each of those bits 1s used
once.

In some embodiments said associated computation for
cach bit position 1 said integer-bit string performs a
sequence of logical operations on said bits of said difference.
The computation that 1s performed for each bit position 1n
the integer-bit string may consist or comprise a sequence of
logical operations based on the bits of the difference calcu-

10

15

20

25

30

35

40

45

50

55

60

65

4

lated between the two exponents. In particular, in some
embodiments, said sequence of logical operations comprises
one or more of AND, OR and NOT operations.

In some embodiments, said logic circuitry 1s to operate at
least partly in parallel with said difference circuitry. The
difference circuitry may output one bit of the exponent
difference at a time. In this way, the logic circuitry can begin
to operate once a first bit of the diflerence has been output.
The overall output of the difference circuitry and the overall
computation performed by the logic circuitry are therefore
substantially in parallel. In particular, the behaviour of each
of the circuitries overlaps at least partly. In some other
embodiments, the logic circuitry and the difference circuitry
operates completely 1n parallel.

In some embodiments, said logic circuitry has a logic
depth no greater than a logic depth of said difference
circuitry, and as such, the introduction of the logic circuitry
does not add additional delay to the operation of the difler-
ence circuitry. Consequently, the number of elements on the
“critical path” can be kept low, and therefore the overall
delay caused by performing the calculation of the signifi-
cand string can be kept low.

In some embodiments, said difference circuitry outputs
said difference as a plurality of bits in order from least
significant to most significant; and at least one of said shift
circuitry and said logic circuitry generate said fractional
string and said integer-bit string respectively based on a
subset of least significant bits from said plurality of bits. The
shift circuitry and/or the logic circuitry may therefore gen-
crate the fractional string and/or integer-bit string respec-
tively based on only a small number of least significant bits
representing the difference between the exponents of the first
floating-point operand and the second floating-point oper-
and. In other words, the difference circuitry may only
initially output a small number of bits representing this
difference. This small number of bits may be used by shift
circuitry and/or the logic circuitry. In this way, the shait
circuitry and/or the logic circuitry may react quickly, before
the entire difference between the two exponents 1s fully
calculated.

In some embodiments, said subset of least significant bits
from said plurality of bits comprises 4 bits. In such embodi-
ments, the difference that 1s used by the shifting circuitry and
the logic circuitry can have a maximum value of 15.

In some embodiments, said shifting circuitry is to gener-
ate said fractional string in response to a first bit being output
by said difference circuitry. Consequently, once the differ-
ence circuitry starts to output bits representing the difference
between the two exponents, the shifting circuitry is able to
begin generating the fractional string. The fractional string
and the difference circuitry may therefore operate at least
partially in parallel. This can therefore reduce the overall
time required for the data processing apparatus to function.

In some embodiments, said logic circuitry takes as inputs
said difference and an 1ndication of whether said integer-bit
of said selected operand 1s zero. If the integer-bit of the
selected operand 1s zero, then the mnput operand may be
subnormal. This represents a floating-point number that 1s
not 1 normalised format and may be treated diflerently for
the purposes of computation.

In some embodiments, said shift circuitry 1s further to
expand said fractional string during said shifting, based on
said difference. It 1s often common, during shifting, to
discard bits that extend beyond the reach of the mitial value.
For example, in the case of an integer, 11 the values are right
shifted sufliciently such that they go past the decimal point,
those numbers are typically lost (possibly after rounding 1s

US 10,346,130 B2

S

performed depending on the underlying architecture). In
these embodiments, when the bits are shifted, the value 1s
expanded such that the bits are kept. Consequently, a value
that was 1nitially ten bits long, if shifted four times, would
result 1n being fourteen bits long. Since the exponent dif-
ference determines the extent to which shifting occurs, the
expansion of the fractional string 1s based on the diflerence.

In some embodiments, one of said first floating-point
operand and said second floating-point operand comprises a
larger number of bits. A larger operand can result from a
multiply-accumulate operation in which a value or set of
values 1s multiplied and added together. This operation can
result 1n large numbers, and consequently the result may
need to be expressed in a larger number of bits.

In some embodiments, said data processing apparatus
comprises: a set of circuits comprising said difference cir-
cuitry, said shift circuitry, said logic circuitry, and said
combining circuitry; and a further set of circuits comprising
turther difference circuitry, further shift circuitry, further
logic circuitry, and further combining circuitry, wherein said
difference circuitry and said further difference circuitry are
to subtract an exponent of said selected operand from an
exponent of said other operand; and said selected operand 1s
different between said set of circuits and said further set of
circuits. In such embodiments, each of the sets of circuits
and the further set of circuits determines a different exponent
difference by varying whether the exponent of the first
floating-point operand is subtracted from the exponent of the
second floating-point operand or vice versa. Accordingly,
rather than determine which of the first floating-point oper-
and or second floating-point operand 1s larger, the set of
circuits and further set of circuits collectively perform
calculations based on both possibilities. Once the differences
have been fully calculated, 1t 1s possible to determine which
of the two values 1s larger, and therefore one of the calcu-
lations performed by either the set of circuits or further set
of circuits can be discarded. In this way, both possibilities
are determined, rather than waiting for a determination of
how the calculation should be performed. This results 1n the
apparatus operating more quickly than 11 the larger of the
two exponents was determined beforehand.

In some embodiments, said data processing apparatus
comprises: selection circuitry to select from said significand
strings produced by said set of circuits and said significand
string produced by said further set of circuits, wherein 1n
response to said set of circuits having a smaller selected
operand than 1n said set of further circuits, said selection
circuitry selects said significand string produced by said set
of circuits, otherwise said selection circuitry selects said
significand string produced by said further set of circuits.
The selection circuitry therefore selects the significand
string produced by either the set of circuits or the further set
of circuits. This determination i1s based on which of the
operands 1s determined to be smaller. In general, this will be
determined based on the exponent difference between the
two floating-point operands. Since the selection takes place
after the signmificand strings have been produced, 1t will be
known at this time which of the two operands 1s larger. Since
the information regarding which exponent 1s larger 1s not
needed upiront 1t 1s possible for the data processing appa-
ratus to operate more quickly without waiting for that
information to become available.

In accordance with a second example configuration there
1s provided a data processing apparatus comprising: difler-
ence circultry to calculate a diflerence between exponents of
a first tloating-point operand and a second floating-point
operand, wherein a significand associated with one of said

10

15

20

25

30

35

40

45

50

55

60

65

6

first floating-point operand and said second floating-point
operand comprises one or more core bits and one or more
outshifted bits; splitter circuitry to separate said core bits of
said first floating-point operand 1nto a plurality of groups of
bits, each of said groups of bits comprising contiguous bits
from said core bits; a plurality of group bit generation
circuits, to output a plurality of group bits by performing a
logical OR on said plurality of groups of bits, and on said
outshifted bits; and calculation circuitry to set a carry signal
based on a result of a logical OR of at least of subset of said
plurality of group bits, wherein said at least a subset 1s based
on said difference.

The outshifted bits may be, for example, bits that were
shifted beyond the original size of the significand and were
kept rather than being discarded. This shifting could be, for
example, based on the diflerence between the exponents as
calculated by the different circuitry. In any event, the splitter
circuitry separates the core bits (1.e. the non outshifted bits)
into a plurality of groups of bits. Each of the groups of bits
comprises contiguous bits 1n the core bits. A plurality of
group bit generation circuits then generates a group bit for
cach of the groups by performing a logical OR on the bits
that make up each of those groups. In addition, a group bit
generation circuit calculates a group bit for the bits making
up the outshifted bits. The calculation circuitry calculates the
carry signal by performing a logical OR on at least a subset
of the plurality of group bits that have been calculated by the
group bit generation circuits. The at least subset 1s based on
the difference calculated by the difference circuitry. The
difference circuitry will affect the amount of shifting that
occurs. However, the bits that are shifted past the limit of the
significand (1.e. those bits that would eventually be dis-
carded) can aflect the calculation of the difference between
the first floating-point operand and the second floating-point
operand. In particular, the difference may be calculated by
adding the inverse of one of the operands and adding one. It
1s therefore necessary to know whether all of the outshifted
bits including those bits that will eventually shifted out, are
zero. If all such bits are zero, then when inverted those bits
are inverted, they will become ones. At that point the
addition of a further one causes a “carry” which must be
adjusted for. By performing a logical OR on groups of bits,
it 1s possible to make the determination of whether such a
carry will occur 1n parallel and therefore determine whether
a carry signal should be set or not more quickly than 1f a
logical OR 1s performed on a bit by bit basis.

In some embodiments, said groups of bits are formed by
splitting off 16 bits of said core bits starting from least
significant bits of said core bits. If the diflerence indicates
that turther shifting will take place as multiples of sixteen,
then the bits can be treated 1n groups of 16 1 order to more
quickly perform the computation when necessary.

In some embodiments, each of said plurality of group bit
generation circuits performs said logical OR substantially 1n
parallel. By performing the logical OR substantially in
parallel, the overall logical OR of all of the bits can be
calculated more quickly than 1f these determined on a bit by
bit basis.

In some embodiments, said data processing apparatus
comprises: adder circuitry to perform an addition based on
core bits except those represented by said plurality of group
bits, and a second operand, wherein said adder circuitry is to
also add a value ‘1’ based on said carry signal. The difler-
ence between two values can be calculated using addition
circuitry. This 1s performed by taking the ones compliment
(1.e. the mversion) of one of the values and adding 1t to the
other value together with the value 1. In this case, the

US 10,346,130 B2

7
addition of the value 1 has no eflect unless all of the
outshifted bits are also one, in which case a carry occurs. The
carry signal can be calculated quickly by performing a small
number of OR operations as necessary based on the group
bits that have been determined (potentially 1n parallel).

Particular embodiments will now be described with ref-
erence to the figures.

Floating- pomt (FP) 1s a usetul way of approximating real
numbers using a small number of bits. The IEEE 754-2008
FP standard proposes multiple different formats for FP
numbers. Some of these imnclude binary 64 (also known as
double precision, or DP), binary 32 (also known as single
precision, or SP), and binary 16 (also known as half preci-
sion, or HP). The numbers 64, 32, and 16 refer to the number
of bits required for each format.

FP numbers are quite similar to the “scientific notation”™
taught 1n science classes, where instead of negative two
million we'd write —2.0x10°. The parts of this number are
the sign (1n this case negative), the significand (2.0), the base
of the exponent (10), and the exponent (6). All of these parts
have analogs 1n FP numbers, although there are differences,
the most important of which 1s that the constituent parts are
stored as binary numbers, and the base of the exponent 1s
always 2.

More precisely, FP numbers all consist of a sign bit, some
number of biased exponent bits, and some number of
fraction bits. In particular, the formats we are interested 1n
consist of the following bits:

format sS1gn exponent fraction exponent bias
DP [63:0] 63 62:52 (11 bits) 51:0 (52 bits) 1023
SP [31:0] 31 30:23 (8 bits) 22:0 (23 bits) 127
HP [15:0] 15 14:10 (5 bits) 9:0 (10 bits) 15

The sign 1s 1 for negative numbers and O for positive
numbers. Every number, including zero, has a sign.

The exponent 1s biased, which means that the true expo-
nent differs from the one stored 1n the number. For example,
biased SP exponents are 8-bits long and range from O to 255.
Exponents 0 and 235 are special cases, but all other expo-
nents have bias 127, meaning that the true exponent 1s 127
less than the biased exponent. The smallest biased exponent
1s 1, which corresponds to a true exponent of —126. The
maximum biased exponent 1s 254, which corresponds to a
true exponent of 127. HP and DP exponents work the same
way, with the biases indicated in the table above.

SP exponent 255 (or DP exponent 204’7, or HP exponent
31) 1s reserved for infinities and special symbols called
NaNs (not a number). Infinities (which can be positive or
negative) have a zero fraction. Any number with exponent
255 and a nonzero fraction 1s a NaN. Infinity provides a
saturation value, so 1t actually means something like “this
computation resulted 1n a number that 1s bigger than what we
can represent in this format.” NaNs are returned for opera-
tions that are not mathematically defined on the real num-
bers, for example division by zero or taking the square root
ol a negative number.

Exponent zero, 1n any of the formats, 1s reserved for
subnormal numbers and zeros. A normal number represents
the value:

158" 1 fractionx2¢

where ¢ 1s the true exponent computed from the biased
exponent. The term 1.fraction 1s called the significand, and
the 1 1s not stored as part of the FP number, but i1s instead
inferred from the exponent. All exponents except zero and

10

15

20

25

30

35

40

45

50

55

60

65

8

the maximum exponent indicate a significand of the form
1 fraction. The exponent zero indicates a significand of the
form O.fraction, and a true exponent that 1s equal to 1-bias
for the given format. Such a number 1s called subnormal
(historically these numbers were referred to as denormal, but
modern usage prefers the term subnormal).

Numbers with both exponent and fraction equal to zero
are Zeros.

The following table has some example numbers 1n HP
format. The entries are in binary, with *“_” characters added
to 1ncrease readability. Notice that the subnormal entry (4th
line of the table, with zero exponent) produces a different
significand than the normal entry in the preceding line.

5-bit

s1gn exponent 10-bit fraction 11-bit significand wvalue

0 01111 000000 0000 1000000 0000 1.0 x 2°
1 01110 10_0000_0000 110_0000_ 0000 -1.1 x 271
0 00001 100000 0000 110 0000 0000 1.1 x 274
0 00000 100000 0000 0100000 _ 0000 oxxz—l“
1 11111 00__0000__ 0000 —infinity

0 11111 00 1111 0011 NaN

A large part of the complexity of FP implementation 1is
due to subnormals, therefore they are often handled by
microcode or soitware.

The FP way of handling signs 1s called sign-magnitude,
and 1t 1s different from the usual way integers are stored 1n
the computer (two’s complement). In sign-magnitude rep-
resentation, the positive and negative versions of the same
number differ only 1n the sign bit. A 4-bit sign-magnitude
integer, consisting of a sign bit and 3 significand bits, would
represent plus and minus one as:

+1=0001

-1=1001

In two’s complement representation, an n-bit integer 1 1s
represented by the low order n bits of the binary n+1-bit
value 2”41, so a 4-bit two’s complement integer would
represent plus and minus one as:

+1=0001

-1=1111

The two’s complement format 1s practically universal for
signed integers because 1t simplifies computer arithmetic.

FIG. 1 illustrates a data processing apparatus 100 1n
accordance with one embodiment. A {first floating-point
operand a 110 and a second tloating-point operand b 120 are
provided. The first floating-point operand 110 1s made up of
64 bits and the second tloating-point operand 120 1s made up
of 117 bits. The bits of each operand include an exponent, a
significand, and a sign. In this embodiment, the second
floating-point operand 120 1s expressed using more bits than
the first floating-point operand 110. This may be as a result
of the second floating-point operand being used as part of a
fused multiply-add operation. In this embodiment, 11 one of
the operands was to be added or subtracted to/from the other
operand, it 1s firstly necessary to align the two operands so
that the decimal points and exponents match. To do this, the
smaller number 1s right shifted a number of times until it
represents the same exponent as the larger number. How-
ever, 1n this embodiment, rather than determining which
number 1s smaller, the circuitry 1s paired up to calculate both
possibilities simultaneously. Once these have been calcu-

US 10,346,130 B2

9

lated, 1t will be known which operand was smaller, and the
result obtained from the larger operand can be discarded.

The two operands 110, 120 are provided to a pair of
difference circuits 130. The difference circuits 130 calculate
the difference between the exponents expa, expb of the first
floating-point operand 110 and the second floating-point
operand 120. However, one of the difference circuits calcu-
lates expa—expb and the other calculates expb-expa. The
difference circuits 130 are to start outputting bits of the result
as soon as each bit 1s ready, from least significant bit to most
significant bit. The results are passed to a pair of shift
circuits 140.

Each of the shift circuits 140 takes a partial result from the
difference circuits 130 and uses this information to right shiit
the fractional bits of one of the first floating-point operand
a 110 and the second floating-point operand b 120. In
particular, the partial difference of expa—expb 1s used to right
shift the fractional bits of the second floating-point operand
b 120 while the partial difference of expb-expa 1s used to
right shift the 1fractional bits of the first floating-point
operand a 110. At least one of the values expa-expb or
expb-expa will be non-negative. The fractional bits corre-
spond to the bits of the significand after the decimal point.
Consequently, for a sigmificand 1.011011110, the fractional
bits would constitute those bits that represent 0.011011110.
Since the output of the difference circuits 130 comes one bit
at a time, the shifting also occurs one bit at a time. For
example, 11 the least significant bit of expa—expb 1s °1’ then
a one bit right shift occurs to the fractional bits of the second
floating-point operand b 120. I the next least significant bit
of expa—expb 1s ‘1’ then a two bit right shift occurs to the
fractional bits of the first floating-point operand a 110. In this
embodiment, the first four bits output by the diflerence
circuits 130 are considered, which produces a maximum of
15 shiits to the right for the fractional bits. While performing
this shifting, the size of the data type 1s expanded to match.
Consequently, there may be up to 15 more fractional bits at
the end of the process than there were originally so that bits
are not lost during the shifting. The output of the shifting 1s
a pair of fractional bit strings, one produced by each of the
shifting circuits.

Logic circuits 150 are provided to generate an integer-bit
string. In contrast to the shifting string that deals with the
fraction bits, the logic circuits 150 deal with the integer-bit
(s), also known as the T bit. The output of the logic circuits
150 therefore corresponds with the integer-bits having been
shifted a number of time 1n dependence on the partial result
of the exponent difference (1.e. the four least significant bits)
output by the diflerence circuits. Again, an integer-bit string
1s generated in respect of both the first tloating-point oper-
and 110 and the second floating-point operand 120. The
logic circuits 150 operate without performing a bit shait
operation. By avoiding the use of shifting, the integer-bit
strings can be generated more quickly. The behaviour of
these circuits 1s discussed 1n more detail with respect to FIG.
2.

Having calculated the fractional string and the integer-bit
string, combining circuits 155 are then used to combine the
fractional string and the integer-bit string to produce a pair
of significand strings. Each of the significand strings corre-
sponds with one of the floating-point operands 110, 120
having been shifted based on the partial difference produced
from the difference circuits. Such combining circuits 1535
can be implemented by performing a logical OR on the two
components. A multiplexer 160 acts as selection circuitry to
select one of the significand strings. The selection 1s made
based on a signal from the difference circuits 130 as to

10

15

20

25

30

35

40

45

50

55

60

65

10

whether exponent a or exponent b 1s smaller. The significand
string corresponding with the partial shifting of the smaller
floating-point operand 1s kept while the other 1s discarded.
Note that 1t 1s not mnitially known which of the two expo-
nents 1s larger. However, by the time the integer-bit strings
and fractional strings are generated and used to generate the
significand strings, such information 1s available from the
difference circuits 130.

In this embodiment, further shifting circuitry 170 1s
provided 1n order to complete the right shift, thereby align-
ing the two operands. The right shiit 1s completed by the use
of the full exponent difference produced by the difference
circuits 130. Again, although this information 1s not initially
available, it becomes available by the time 1t 1s needed by the
turther shifting circuitry 170.

Accordingly, 1t can be seen that by the use of partial
exponent difference information, and the use of logic cir-
cuitry 1n which shifting 1s not used in order to generate an
integer-bit string, it 1s possible to perform alignment of two
floating-point operands more quickly, in preparation for
addition or subtraction of those operands.

The logic circuitry produces a 16-bit integer-bit string by
performing a number of logic operations (specifically AND,
OR, or NOT operations) on bits of the exponent diflerence
and an indicator of whether the biased exponent of the
selected floating-point operand 1s zero. For example, 1t
rs_al3:0] represents the low-order four bits of expa-expb and
iI expa_zero indicates that the biased exponent of the first
floating-point operand a 1s zero then the 16 bit integer-bit
string can be calculated with the following logic:

jloca|105|=~exp a_zero&~rs_a[3|&~rs_a
|1]&~rs_a|0]

|2]|&~rs_a

jloca[104]=~exp a_zero&~rs_al[3]|&~rs_a
[1]&rs_a|0]

|2]|&~rs_a

jloca[103]=~exp a_zero&~rs_a|[3]|&~rs_a
|1]|&~rs_a|0]

|12]|&rs_a

jloca|102|=~exp a_zero&~rs_a[3|&~rs_a
[1]&rs_al0]

|12]|&rs_a

jloca[101]=~exp a_zero&~rs_a|3]|&rs_a
|1]|&~rs_a|0]

|2|&~7s_a

jloca[100])=~exp a_zero&~rs_al3|&rs_a
|[1]&rs_al0]

|2]|&~Fs_a

jloca[99]|=exp a_zero&~rs_a
&~rs_al0]

|3 |&rs_a|2]|&rs_all]

jloca|98|=exp a_zero&~rs_a
&rs_al0]

|3 |&rs_a|2]|&rs_all]

jloca|9T7|=exp a_zero&rs_al|3|&~rs_a
&~rs_al0]

|2]|&~rs_a|l]

jloca|96]=exp a_zero&rs_al3|&~rs_a
&rs_al0]

|2|&~rs_all]

jlocal[95]|=~exp a_zero&rs_al3|&~rs_a
&~rs_al0]

|2|&rs_a|l]

jloca[94|=exp a_zero&rs_a|3|&~rs_a
&rs_a|0]

|12|&rs_all]

jloca|93]|=~exp a_zero&rs_al3|&rs_a
&~rs_al0]

|2]|&~rs_a|l]

jlocal|92|=exp a_zero&rs_a[3]|&rs_a|2]&~rs_a[l]
&rs_al0]

US 10,346,130 B2

11

jloca|91|=~exp a_zero&rs_al3|&rs_al2]|&rs_a

&~rs_a|U]

[1]

jloca|90]|=~exp a_zero&rs_al3|&rs_al2]|&rs_a
&rs_a|0]

[1]

FIG. 2 1illustrates appropriate logic circuitry 150 for
determining one of these bits (e.g. jloca[105]). The circuitry
can be made up from a number of AND gates 180, 190, 200,
210 and a number of NOT gates (to mvert the inputs as
appropriate). Having calculated each of the bits, the bits can
be combined together using OR gates. Although such cir-
cuitry may have to wait to determine the value of expa_zero,
the much lower logic depth makes 1t possible for the
integer-bit string to be produced at a similar time to the
fractional string. The fractional string and integer-bit string
can be combined using OR gates.

FIG. 3 illustrates a data processing apparatus 300 in
accordance with one embodiment. Difference circuitry 310
determines the difference between the exponents of a
smaller tloating-point exponent exps and a larger floating-
point exponent expl, exp_diil. In this embodiment, exp_diil
represents the entire difference between the two exponents
rather than merely the least signmificant bits of the difference.

The value ‘sigs’ represents the significand of the smaller
exponent exps. The signmificand has been at least partially
aligned. In other words, sigs 1s the significand that would
result 1f the smaller of a first floating-point operand and a
second tloating-point operand were right shifted a maximum
of 16 times 1n order to bring the exponents of the two
floating-point operands closer together (or to make them
match). Such a significand could be the output of the
multiplexer 160 1n FIG. 1.

As a consequence of the alignment, some of the bits that
make up the significand of sigs may have been outshifted.
These are bits that might ordinarily be disregarded due to
being shifted beyond the capacity of the data type. For
example, 1f a significand 1s limited to 33 bits (as 1s the case

in a double precision floating-point number) then 1f a 53-bit
significand 1s right shifted once, there would be one out-
shifted bit. Rather than being discarded, these bits are
temporarily kept. The remaiming bits are referred to as core
bits. In this embodiment, 1t 1s assumed that there 1s a
maximum of 16 outshifted bits.

The value ‘sigs’ 1s passed to split circuitry 320, which
splits the bits into a number of groups of contiguous bits.
The first group 1s made up of all the outshifted bits. Other
groups are made by splitting the remaining contiguous bits
of sigs 1nto groups of 16 bits. A set of group bit generation
circuits 330 1s provided. For each group of bits, a group bit
1s generated by performing a logical OR over the bits in that
group. In some embodiments, the group bit corresponding to
the outshifted bits may already have been calculated.

Note that 1n this embodiment, the group bit generation
circuits operate substantially in parallel. For example, the
operation of at least some of the group bit generation circuits
overlap each other.

Approximately simultaneously, shift circuitry 350 per-
forms additional right shifting on the value sigs i order to
complete the alignment of sigs with sigl, the unshifted
significand of the larger of the two floating-point operands
This shifting 1s performed based on exp_difl, the diflerence
between the exponents of the two tloating-point operands as
calculated by the difference circuitry 310. In this embodi-
ment, since a partial alignment of sigs has already been
performed based on the four least significant bits of exp_didl,

10

15

20

25

30

35

40

45

50

55

60

65

12

the shift circuitry 350 need only perform a 16-bit, 32-bit
and/or 64-bit shift. In other words, the shift will be a
multiple of 16.

At this point, 1t 1s necessary to consider whether or not the
addition of opa and opb 1s an unlike-sign addition (USA) or
a like-sign addition (LSA). In a like-sign addition (adding a
positive number to a positive number, or a negative number
to a negative number), the operation 1s performed by simply
adding the numbers together. For example, the operation
(+2)+(+3) mvolves adding ‘2’ to 3’ to get *5°. Similarly, the
operation (—2)+(-3) 1s achieved by adding ‘2’ to ‘3’ and to
get °5” and then making the result negative to give *-5°. In
either case, because the signs are the same, the eflective
operation 1s an addition operation. In an unlike-sign addition
(adding a positive number to a negative number, or a
negative number to a positive number), the operation
becomes an eflective subtraction. For example, the operation
(-2)+(+3) mvolves subtracting ‘2° from ‘3° to give ‘1°.
Similarly, the operation (2)+(-3) mvolves subtracting 3’
from ‘2’ to give ‘=1’. Hence, even 11 the underlying intent 1s
to perform an addition, it could be calculated by actually
performing a subtraction.

However, 1n practice, a subtraction can also be performed
by performing an addition. In particular, for two operands
ops and opl having different signs, the addition of ops and
opl, which 1s equivalent to opl-ops 1s computed as opl+
~ops+1. In other words, the value ops 1s inverted (ones
complement) and added to opl, together with the value 1°.
The addition of the value °1° can be achieved by a carry-in
at addition circuitry. In the present case, 1t 1s likely that the
additional +1 will be subsumed within the outshifted bits.
However, if all of the outshifted bits are mitially O then when
these are mverted they will all become 1. In this case, the
addition of 1 to those outshifted bits will cause a carry into
the core bits. This 1n turn necessitates adding 1 to the core
bits that form the final significand.

As previously explained, the shift circuitry 350 performs
the final alignment of the smaller significand sigs. This 1s
then provided to invert circuitry 360 that imnverts this value,
il appropriate. In particular, the value 1s mverted 1f an USA
1s taking place. The output 1s then provided to addition
circuitry 370, together with the larger unshifted significand
s1g].

In the present embodiment, calculation circuitry 340 1s
provided to determine whether the outshifted bits (including
initial core bits that are subsequently outshifted by the shait
circuitry 350) are all 0. Rather than performing an OR over
all bits as they are shifted by the shift circuitry 350, which
would be time consuming, the present embodiment 1nstead
performs a logical OR over some of the group bits produced
by the group bit generation circuits 330. In particular, the
group bit representing the initially outshifted bits 1s ORed
together with group bits representing groups of bits that are
shifted by the shift circuitry 350. Since, in this embodiment,
the shift circuitry 350 will only perform a 16-bit, 32-bit, or
64-bit shift, a multiple of 16-bits will be shifted by the shift
circuitry 350. Consequently, by virtue of the group-bit
generation circuits calculating group bits of each group of 16
contiguous bits following the imitially outshifted bits, 1t 1s
only necessary to perform a logical OR over a small number
of group bits. This operation 1s performed by calculation
circuitry 340. For example, i1 7 bits are mitially outshifted
bits, and the exp_difl produced by the difference circuitry
310 indicates that a further shift of 48 bits 1s required, then
the group bits representing the first 7 bits, the following 16
bits, the 16 bits following those, and the 16 bits following
those (4 group bits 1n total) need be logically ORed by the

US 10,346,130 B2

13

calculation circuitry 340 1n order to determine whether any
of the bits that have been shifted 1s “1” or not. Even a single
‘1’ 1n those shifted bits will cause the °1° performed by the
addition to be subsumed. In the event of a fused multiply-
add operation being performed, this final logical OR addi-
tionally includes any sticky bit indication from the multi-
plier.

The resulting calculation performed by the calculation
circuitry 340 1s used to determine a carry signal, which
indicates whether or not a carry-in value (of 1) should be
added at the addition circuitry 370. In particular, i1 the result
of the final logical OR 1s ‘0’ and if a USA 1s occurring then
the carry signal 1s set to indicate that a *1” should be added.
Otherwise, a ‘1° 1s not added. It will be appreciated, of
course, that the inverse could also be indicated (i1.e. an
“inhibit carry signal” could be provided, with the reverse
requirements).

By calculating the group bits substantially in parallel and
by using such group bits to indicate whether a carry value of
1’ should be provided to addition circuitry 370, 1t 1s possible
to efliciently implement the addition of the sigmificands. The
group bits can also be used for the purposes of rounding, as
will be discussed with reference to FIG. 5.

FI1G. 4 1llustrates an example of the makeup of sigs, which
comprises 53 bits 1 this example (1.e. sigs corresponds to
the significand of a double precision floating-point number),
the corresponding group bits, and the calculation of the carry
signal. In this example, three bits have been mitially out-
shifted, e.g. from circuitry such as that shown in FIG. 1.
Three groups of 16 bits have then been formed by starting
from the lowest order bits of said core bits. A final group of
bits 1s formed from the remaining two bits. For each of these
five groups, a group bit 1s formed by performing a logical
OR on the bits within that group. This therefore provides five
group bits. Although three bits have initially been outshifted,
the alignment of sigs i1s not yet complete. Diflerence cir-
cuitry 310 then indicates that a further shaft of 32 bits should
occur, which will result 1n a further 32 bits being outshifted.
Rather than performing a logical OR over all 35 outshifted
bits, 1t 1s now only necessary to perform a logical OR over
the three group bits corresponding to the groups that have
been outshifted. The result of this 1s a °1°, meaning that the
carry signal will not be set. This 1s because at least one of the
outshifted values 1s a °1’°, meaning that when 1t 1s inverted,
it will become ‘0’°. Hence when the value ‘1’ 1s added, an
overtlow will not occur and the remaiming core bits (those
that have not been outshifted) will not be affected.

FIG. 5 1llustrates tloating-point addition circuitry 500 in
accordance with one embodiment. This embodiment incor-
porates the circuitry 1n the embodiment of FIG. 1 and the
circuitry in the embodiment of FI1G. 4, and adds circuitry for
handling rounding. The same reference numerals have been
provided where a feature 1n the embodiment of FIG. 5
corresponds with features from the embodiments of FIG. 1
or 4. Note that additional features shown in the embodiment
of FIG. 5 could be applicable either to the embodiment of
FIG. 1 or the embodiment of FIG. 4.

Subnormal compensation circuitry 510 1s provided to
handle the situation 1n which the biased exponents expa and
expb are zero. If the smaller exponent bit 1s zero, then the
smaller value 1s subnormal and the shifting perform by one
of the shift circuits 140 1s one bit too far to the right. This
1s fixed by performing a one bit left shift. Flush-to-zero (FZ)
mode causes subnormal 1mnputs to be treated as zeros. If this
mode 1s set then the entire fraction 1s zeroed as part of the
left shift. Note that 1n respect of the integer-bit calculation
performed by the logic circuit 150, a biased exponent of zero

10

15

20

25

30

35

40

45

50

55

60

65

14

implies that the corresponding integer-bit (the j bit) will also
be zero, meaning that the shifted value will always be zero
as well. It will appreciated that the circuitry of FIG. 1 can be
casily modified to incorporate such subnormal compensa-
tion circuitry 3510.

Unaligned sigmificand providing circuitry 520 provides
the unshifted larger significand of the first floating-point
operand 110 and second tloating-point operand 120. As with
the subnormal compensation circuitry 510, a flush-to-zero
mode makes it possible for subnormal inputs to be zeroed.
The unaligned significand providing circuitry can be pro-
vided as part of the embodiment shown 1n FIG. 1 or FIG. 3.

Early rounding compensation circuitry 530q, 33056 1s
provided to perform a one-bit leit shift on both sigl and sigs
(1.e. the smaller aligned significand and the unshifted larger
significand) so that only two rounding locations need to be
considered while performing rounding. In order to compen-
sate for the possible 1-bit left shift at the split circuitry 320
and the group bit generation circuitry 330 as well as the
calculation performed by the calculation circuitry 340, the
significands are padded with an extra bit by the early
rounding compensation circuitry. In the case of USAs,
padding occurs by adding a zero on the right, 1n the case of
L.SAs, padding occurs by adding a zero on the left. The early
rounding compensation circuitry 530a, 53056 can be pro-
vided as part of the embodiment shown 1 FIG. 3.

The result of the addition performed by the (e.g. 107-bit)
adder circuitry 370 1s referred to as fsum (far path sum). The
top 53-bits of this sum must be rounded by rounding
circuitry 340. There 1s a one bit uncertainty about which are
the top 53 bits, because the add performed by the adder
circuitry 370 could generate a carry out, causing significand
overflow. This 1s handled by adding the overtlow bit fsum
[106] at the overflow guard position, and the complement of
the overflow bit at the normal guard position. Accordingly,
there are four values to choose from: fsum[106:54], fsum
[105:53], and the possibly incremented version of those
53-bit values. Rounding selection circuitry 350 determines
which value to used based on the rounding computation and
whether the original fsum has overflowed (1.e. bit fsum

[106]). In addition, the sticky bit of fsum must be calculated
by fsum sticky bit calculation circuitry 560. This 1s calcu-
lated by the logical OR calculated by the calculation cir-
cuitry 340 with the bottom bits of fsum.

A final selection circuit 370 1s used to select between the
calculation performed by the circuitry mentioned above or
other circuits that may be used for other similar calculations.
For example, the above circuitry 1s particularly suitable for
tar path calculations, which are either LS As, or USAs where
the exponents differ by two or more. In other cases, near path
circuitry may be used. Furthermore, there may be special
case circuitry that handles special values of the floating-
point operands such as infinity and NalN. The final selection
circuit 570 1s therefore able to output a value from one of
these circuits.

FIG. 6 shows a flowchart 600 that illustrates a method of
data processing 1n accordance with one embodiment.

At a step 610, a diflerence between exponents of a first
floating-point operand and a second floating-point operand
1s determined. At a step 620, a fractional string 1s generated.
This occurs by shifting fractional bits of a selected operand
out of the first floating-point operand and the second float-
ing-point operand. The amount of shifting depends on the
difference between the exponents calculated 1n step 610. At
a step 630, an integer-bit string 1s generated. The integer-bit
string represents the integer-bit of the selected operand
having been shifted based on the difference calculated in

US 10,346,130 B2

15

step 610, except that no shifting actually takes place. Finally,
in a step 640, the fractional string and the integer-bit string
are combined (e.g. through an OR operation). The result 1s
a significand string that represents the operand having been
shifted based on the diflerence between the exponents that
was calculated 1n step 610.

FI1G. 7 1llustrates a flowchart 700 that illustrates a method
ol data processing in accordance with one embodiment.

At a step 710, a diflerence between exponents of a first
floating-point operand and a second floating-point operand
1s determined. At a step 720, core bits of the significand of
the first floating-point operand are separated 1nto a plurality
of groups of bits. Fach of the groups of bits comprise
contiguous bits from the core bits of the significand. At step
730, a plurality of group bits are generated. Each group bit
1s generated by performing a logical OR on the bits making
up that group. A turther group bit 1s generated by performing
a logical OR on the outshifted bits. At step 740, an inhibat
signal 1s determined. This 1s based on a logical OR of at least
a subset of the plurality of group bits. The group bits
included within the at least a subset of the plurality of group
bits 1s determined based on the difference calculated 1n step
710.

In the present application, the words “configured to . . . ™
are used to mean that an element of an apparatus has a
configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the
apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device
may be programmed to perform the function. “Configured
to” does not imply that the apparatus element needs to be
changed 1n any way 1n order to provide the defined opera-
tion.

Although illustrative embodiments of the invention have
been described 1n detail herein with reference to the accom-
panying drawings, 1t 1s to be understood that the invention
1s not limited to those precise embodiments, and that various
changes, additions and modifications can be effected therein
by one skilled 1n the art without departing from the scope
and spirit of the mnvention as defined by the appended
claims. For example, various combinations of the features of
the dependent claims could be made with the features of the
independent claims without departing from the scope of the
present mvention.

I claim:

1. A data processing apparatus comprising;:

difference circuitry to calculate a difference between

exponents of a first floating-point operand and a second
floating-point operand;

shift circuitry to generate a fractional string by shifting

fractional bits of a selected operand of said first tloat-
ing-point operand and said second floating-point oper-
and based on said diflerence;

logic circuitry to generate an integer-bit string represent-

ing an integer-bit of said selected operand having been
shifted based on said difference; and

combining circuitry to combine said fractional string and

said 1nteger-bit string to produce a significand string
representing said selected operand having been shifted
based on said difference,

wherein said logic circuitry 1s to generate said integer-bit

string using operations other than shifting.

2. A data processing apparatus according to claim 1,
wherein

said logic circuitry 1s to generate said integer-bit string by

performing, for each bit position in said integer-bit

5

10

15

20

25

30

35

40

45

50

55

60

65

16

string, an associated computation using bits of said
difference to determine a value for that bit position
within said integer-bit string, said associated computa-
tion being different for diflerent bit positions.
3. A data processing apparatus according to claim 1,
wherein
said associated computation for each bit position in said
integer-bit string 1s at least logically equivalent to a
computation that uses each bit of the exponent value at
most once.
4. A data processing apparatus according to claim 3,
wherein
said associated computation for each bit position 1n said
integer-bit string performs a sequence of logical opera-
tions on said bits of said diflerence.
5. A data processing apparatus according to claim 4,
wherein
said sequence of logical operations comprises one or more
of AND, OR and NOT operations.

6. A data processing apparatus according to claim 1,

wherein

said logic circuitry 1s to operate at least partly in parallel
with said difference circuitry.

7. A data processing apparatus according to claim 1,

wherein

said logic circuitry has a logic depth no greater than a
logic depth of said difference circuitry.

8. A data processing apparatus according to claim 1,

wherein

said difference circuitry outputs said difference as a plu-
rality of bits in order from least significant to most
significant; and

at least one of said shift circuitry and said logic circuitry
generate said fractional string and said integer-bit string
respectively based on a subset of least significant bits
from said plurality of bits.

9. A data processing apparatus according to claim 8,

wherein

said subset of least significant bits from said plurality of
bits comprises 4 bits.

10. A data processing apparatus according to claim 8,

wherein

said shifting circuitry 1s to generate said fractional string
in response to a first bit being output by said difference
circuitry.

11. A data processing apparatus according to claim 1,

wherein

said logic circuitry takes as 1nputs said difference and an
indication of whether said integer-bit of said selected
operand 1S zero.

12. A data processing apparatus according to claim 1,

wherein

said shift circuitry 1s further to expand said fractional
string during said shifting, based on said difference.

13. A data processing apparatus according to claim 1,

wherein

one of said first floating-point operand and said second
floating-point operand comprises a larger number of
bits.

14. A data processing apparatus according to claim 1,

comprising;

a set of circuits comprising said difference circuitry, said
shift circuitry, said logic circuitry, and said combining,
circuitry; and

a further set of circuits comprising further difference
circuitry, further shift circuitry, further logic circuitry,
and further combining circuitry, wherein

US 10,346,130 B2
17

said difference circuitry and said further difference cir-
cuitry are to subtract an exponent of said selected
operand from an exponent of said other operand; and

said selected operand 1s different between said set of
circuits and said further set of circuits. 5

15. A data processing apparatus according to claim 14,

comprising;

selection circuitry to select from said significand string
produced by said set of circuits and said sigmificand
string produced by said further set of circuits, wherein 10

in response to said set of circuits having a smaller selected
operand than 1n said set of further circuits, said selec-
tion circuitry selects said significand string produced by
said set of circuits,

otherwise said selection circuitry selects said significand 15
string produced by said further set of circuits.

"y

¥ ¥ H ¥ K

18

	Front Page
	Drawings
	Specification
	Claims

