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MACHINE LEARNING BASED SOUND
FIELD ANALYSIS

FIELD

The disclosure herein relates to sound field analysis, and
in particular to machine based learning for sound field
analysis.

BACKGROUND

A number of applications 1n multichannel audio require
accurate sound field analysis such as multichannel speech
enhancement for telephony, multichannel speech enhance-
ment for robust automatic speech recognition (ASR), and
spatial sound reproduction. However, device geometry and
the number of microphones 1included in the device can limit
the performance of conventional digital signal processing
(DSP) algorithms for sound field analysis. Traditional multi-
source localization often does not perform consistently well
for arbitrary microphone arrays.

As part of DSP for sound field analysis, conventional
techniques may calculate a direction of arrival (DOA) which
denotes the direction from which a propagating wave arrives
at the microphone array. However, DOA typically cannot be
resolved above spatial aliasing frequencies using traditional
DSP methods, and typically cannot be resolved at low
frequencies due to acoustic noise and low spatial resolution.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an”
or “one” embodiment in this disclosure are not necessarily
to the same embodiment, and they mean at least one. Also,
in the interest of conciseness and reducing the total number
of figures, a given figure may be used to illustrate the
features of more than one embodiment, and not all elements
in the figure may be required for a given embodiment.

FIG. 1 illustrates an example for explaining a portable
device including a microphone array according to an
example embodiment.

FIG. 2 illustrates a mobile phone hand set for explaining,
an example portable device, overlaid with some example
beams, according to an example embodiment.

FIG. 3 15 a block diagram for explaining traiming a deep
neural network (DNN) to be used 1n sound field analysis
according to an example embodiment.

FIG. 4 1s a block diagram for explaining using a trained
DNN to encode a sound field into a set of parameters,
according to an example embodiment.

FIG. 5 1s a block diagram for explaiming using a trained
DNN for spatial sound reproduction, according to an

example embodiment.

FIG. 6 shows comparison results between a conventional
direction of arrival (DOA) estimator and a DNN DOA
estimator according to an example embodiment.

FIGS. 7A and 7B show comparison results between a
Steered-Response Power Phase Transform (SRP-PHAT)
method and a DNN DOA estimator according to an example
embodiment.

FIG. 8 1s a tlow chart for explaiming training of a DNN
according to an example embodiment.
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FIG. 9 illustrates an example for explamning one imple-
mentation of a portable device including a microphone array
according to an example embodiment.

DETAILED DESCRIPTION

Several embodiments of the invention with reference to
the appended drawings are now explained. Whenever
aspects are not explicitly defined, the scope of the mnvention
1s not limited only to the parts shown, which are meant
merely for the purpose of illustration. Also, while numerous
details are set forth, 1t 1s understood that some embodiments
of the mvention may be practiced without these details. In
other 1nstances, well-known circuits, structures, and tech-
niques have not been shown in detail so as not to obscure the
understanding of this description.

Generally, an embodiment herein aims to obtain an efli-
cient and accurate sound field analysis, using a trained deep
neural network (DNN), for reproduction on a speaker system
or other device. In one embodiment, impulse responses of a
device are measured, and a database of sound files 1s
generated by convolving source signals with the impulse
responses ol the device. The sound files from the database
are transformed into time-frequency domain. One or more
sub-band directional features are estimated at each sub-band
of the time-frequency domain. The one or more sub-band
directional features may include a Steered-Response Power
Phase Transtorm (SRP-PHAT), inter-microphone phase dii-
terences, and/or diffuseness. A deep neural network (DNN)
1s trained for each sub-band based on the estimated one or
more sub-band directional features and a target directional
feature. In one embodiment, the DNN 1s trained with single
or multi-source audio signals utilizing real microphone array
recordings, where the target direction feature includes a
direction of arrival (DOA) of the single or multi-source
audio signals. This traiming enables the DNN to learn the
mapping of an interaction of the audio signals with physical
teatures of the device and acoustic environment to a respec-
tive direction of arrival (DOA) of the target directional
feature. In another embodiment, the DNN 1s trained with
single and multi-source audio signals utilizing real micro-
phone array recordings, where the target directional feature
includes directions of arrival (DOAs) of the simultaneously
active single and multi-source audio signals. This training
enables the DNN to learn the mapping of an interaction of
the audio signals with physical features of the device and
acoustic environment to simultaneously active source loca-
tions.

FIG. 1 illustrates an example for discussing a portable
device including a microphone array according to a first
example embodiment. Portable device 100 may be any
clectronic device that includes two or more microphones
(e.g., a microphone array), such as a tablet computer or a
mobile phone handset. Device 100 1s portable and thus can
be easily handled, positioned and moved by the user. Device
100 can also operate 1n many different environments. The
housing 25a of device 100 contains a number of micro-
phones 1 (two microphones 1a and 15 are illustrated 1n FIG.
1). In one embodiment, the housing of the device 100 may
also contain one or more loudspeakers 15 (two loudspeakers
15a and 13556 are illustrated 1n FIG. 1). In general, micro-
phones 1 are used to pick up signals from sound sources in
the environment 1 and around the device 100. The loud-
speakers 13 are used to play back signals from sound sources
outside the surrounding environment. Display 35a displays
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images captured by a camera. In one embodiment, display
35a displays an interface generated to instruct a user on
device placement.

Microphones 1 (or individually, microphones 1la, 15,)
may be itegrated within the housing 25q of the device 100, 5
and may have a fixed geometrical relationship to each other.

In the example depicted 1n FIG. 1, the microphones can be
positioned on different surfaces, e.g. microphone 1a can be
on the front (screen) surface of the device and microphone

15 may be on the back surface of the device. This 1s just one 10
example arrangement; however 1t should be understood that
other arrangements of microphones that may be viewed
collectively as a microphone array whose geometrical rela-
tionship may be fixed and “known” at the time of manufac-
ture are possible, e.g. arrangements of two or more micro- 15
phones 1n the housing of a mobile electronic device (e.g.,
mobile phone) or a computer (e.g., a tablet computer).
Another example arrangement 1s discussed 1 connection
with FIG. 2.

In one embodiment, beamforming may also be applied to 20
the microphone signals. The signals from the microphones 1
are digitized, and made available simultaneously or parallel
in time, to a digital processor (e.g., processor 902 of FI1G. 9)
that can utilize any suitable combination of the microphone
signals 1n order to produce a number of acoustic pick up 25
beams. The microphones 1 including their mndividual sen-
sitivities and directivities may be known and considered
when configuring or defining each of the beams, such that
the microphones 1 are treated as a microphone array.

FIG. 2 illustrates another example of a portable device 30
with some example beams (beam 1, beam 2, beam 3). In the
example of FIG. 2, the portable device 1s implemented as a
mobile phone handset 200 having three microphones inte-
grated within the housing, namely a bottom microphone 1g
and two top microphones 1e, 1f. The microphone 1e may be 35
referred to as a top reference microphone whose sound
sensitive surface 1s open on the rear face of the handset,
while the microphone 1/ has its sound sensitive surface open
to the front and 1s located adjacent to an earpiece speaker 16.
The handset also has a loudspeaker 15¢ located closer to the 40
bottom microphone 1g as shown. The handset also includes
a display. In the embodiment of FIG. 2, microphones 1e, 1f
and 1¢ have a fixed geometrical relationship to each other.
The mobile phone handset 200 may use any one or more of
three microphones 1le, 1f, 1g to produce one or more 45
respective microphone signals that are used to produce one
or more acoustic pick up beams. Although FIG. 2 shows
three microphones integrated within the housing of the
portable device, 1n other embodiments, other numbers of
microphones are possible, such as four or more. Other 50
arrangements ol microphones that may be viewed collec-
tively as a microphone array or cluster whose geometrical
relationship may be fixed and “known” at the time of
manufacture are possible, e.g. arrangements of two or more
microphones 1n the housing of a computer (e.g., a tablet 55
computer).

Three example beams are depicted mn FIG. 2 (namely,
beam 1, beam 2, beam 3), which may be produced using a
combination of at least two microphones, for example the
bottom microphone 1g and the top reference microphone le. 60
In one embodiment, each audio channel or “beam” can be
defined as a linear combination of the raw signals available
from the multiple microphones. The beams may be com-
puted as a combination (e.g. weighted sum) of two or more
microphone signals from two or more of the microphones. 65
More generally, the weighting can be implemented by a
linear filter, where different filters run on the two micro-

4

phones before the outputs are summed to produce a beam.
Various beams of other shapes and using other combinations
of the microphones (including ones that are not shown) are
possible.

In the embodiments of FIGS. 1 and 2, all of the processing
1s performed by the portable device 100. However, 1n other
embodiments, the portable device can be communicatively
coupled to a processing device (not shown), either wire-
lessly or via a wire. The processing device may perform
some or all of the processing.

FIG. 3 1s a block diagram for explaining training of a deep
neural network (DNN) to be used 1n sound field analysis,
using a database sound files, according to an example
embodiment. As 1illustrated i FIG. 3, impulse responses of
a device (e.g., portable device 100 or portable device 200)
(301) are provided to generate a database of sound files
(303). The impulse responses of the device can be measured
in anechoic environment, 1n a reverberant environment or
simulated. The measurement grid may be a dense spherical
orid. Also, provided to generate the database are sound
source signals (302) such as music, speech, noise, etc. In one
embodiment, the database of sound files 1s generated (303)
by convolving the source signals with the measured impulse
responses ol the hardware of the device of interest. All of the
sound files from the database are transformed into the
time-frequency domain (304). Sub-band directional features
are then estimated at each sub-band of the time-frequency
domain (3035 and 306). A separate DNN 1s trained for each
sub-band given the input sub-band directional teatures (307
and 308) and a target directional feature (309) such as a
direction of arrival (DOA) that 1s provided from the data-
base.

The embodiment depicted 1 FIG. 3 can provide a deep
learning method for instantaneous sub-band direction of
arrival estimation, which 1s described in more detail below.
Input features for the sub-band directional features can be
common spatial coherence measures such as SRP-PHAT
spectrum and inter-channel covariance. Output features can
be directional class labels, with, for example, one class per
direction. In one embodiment, the DNN 1s trained with
single or multi-source audio signals utilizing real micro-
phone array recordings, where the target direction feature
includes a direction of arrival (DOA) of the single or
multi-source audio signals. This training enables the DNN to
learn the mapping of an interaction of the audio signals with
physical features of the device and acoustic environment to
a respective direction of arrival (DOA) of the target direc-
tional feature. Fach sub-band may be treated independently
with a separate DNN. In another embodiment, the DNN 1s
trained with single and multi-source audio signals utilizing
real microphone array recordings, where the target direc-
tional feature includes directions of arrival (DOAs) of the
simultaneously active single and multi-source audio signals.
This training enables the DNN to learn the mapping of an
interaction of the audio signals with physical features of the
device and acoustic environment to simultaneously active
source locations

The 1nventors herein have found that localization can be
allected at the higher frequencies by the fact that the beam
patterns can be aliased 1n a way that 1s similar to time
domain sampling. For example, in time domain sampling, 1f
sampling 1s performed slower than necessary, this can result
in different signals capable of mapping to the sampling rate.
However, 11 sampling 1s performed faster, a better recon-
struction of the signal with less ambiguity results. This can
be analogous to space sampling. In space sampling, 1f there
are, for example, two microphones (samples or beams) and
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they are far apart, calculating the spectrum Irom these
microphones might also run mto the ambiguity of different
signals which can map to the space sampling. However, 11
the microphones are positioned closer together, a better
sample of the space might be provided.

In one embodiment, to perform a direction estimation, a
time of arrival 1s used. A sound wave front hits one micro-
phone belfore another microphone resulting in a time differ-
ence. Based on the time difference and knowledge of the
spacing of the microphones, 1t 1s possible to calculate an
angle. The mventors have found two potential problems with
the foregoing. If the microphones are placed very close
together, no aliasing results since there 1s no anomaly within
the speech frequency ranges. This depends on the wave-
length of interest for estimating the direction. For purposes
of the disclosure herein, a full band from 20 Hz to 20 KHz
1s of interest. Generally, a small spacing between micro-
phones 1s better for high frequencies. However, 1t the
microphones are too close together, resolution can be lost at
the lower frequencies.

Using the physics of the device can help to exploit
machine learning. In particular, the way sound interacts with
the device can cause a certain acoustic signature (direct path
and sound diffraction) for that particular device for a given
sound direction. This diflraction 1s the interaction of sound
with the device at that particular frequency and impinging,
from a certain direction. The difiraction can be measured
and with prior knowledge of how a particular frequency
interacts with that device, the system 1s trained to look at
other features that are particular to the device (which do not
just take 1nto account the microphone spacing).

In one embodiment, the device 1s characterized by taking
measurements on the device. Based on those measurements
and response of the device to signals that come from
different directions, mapping can be performed back to a
situation, for example, alter training a certain system. If the
system 15 placed into a test session, mapping can be per-
formed back to one of those locations with new test data.

As described above, provided 1n an embodiment herein 1s
a deep neural network based solution which addresses the
alias problem using a more sophisticated method which 1s
deep learning. The deep learning will learn the specific
pattern when the sources come from a certain direction. The
spatial spectrum (pattern) can be determined by the mea-
sured 1mpulse responses.

When determining DOA using SRP-PHAT, a probability
1s compared to the angle over a window of time. The highest
probability 1s then chosen at the peak of the function of
probability versus angle to determine the DOA. In some
situations, there can be two peaks 1n a mirrored 1image. In
these situations, there are typically not two sources at
exactly those positions. However, from the perspective of
the feature that 1s used to determine the DOA at that
frequency, there might be a pattern having two peaks of a
single source coming from one of the peaks (direction).
Alternatively, mstead of producing probabilities at discrete
locations, the DNN may be designed and trained to produce
the XYZ Cartesian coordinates that correspond to the target
DOA.

The embodiments described herein can provide a system
that can 1ncorporate knowledge of multiple diflerent acous-
tic conditions and multiple different devices mto the deter-
mination of the DOA, such that the system can work on
different hardware platforms. For a particular frequency 1n
the anechoic chamber, the probability of a source coming,
from a specific direction can come from this irregular shape
(e.g., below aliasing the peak 1s very clear with one peak,
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and above aliasing there are patterns with multiple peaks). In
the latter case, 1t 1s diflicult to discern between the two peaks
or the signal may bounce back and forth between peaks over
time.

In contrast to conventional methods which perform DOA
estimation for a full band, the embodiments described herein
aim to perform a DOA estimation for every time-irequency
bin imndependently. For DOA estimation for full band, the
process 1s simple. Frequencies that work well for the full
band are determined, and estimates at these frequencies are
used to discern the full band direction of arrival. However,
this 1s an average across frequencies which 1s not very
granular so 1t does not work well to capture multiple sources
that occupy diflerent parts of the spectral content of the
audio signal. This method 1s therefore not suflicient to
localize multiple sources. In contrast, the embodiments
herein aim to capture the acoustic scene 1n all directions for
all audio sources 1 a given acoustic scene ol interest, not
just speech sources. To do this, each sub-band 1n the range
from 20 Hz to 20 KHz is treated independently.

As one example of using the complexity of analyzing an
acoustic scene, 1I two people are speaking at the same time,
it 15 possible to tell which person 1s speaking. Because their
spectra or energy distribution of their speech signals are not
completely overlapped 1n the frequency domain, they are 1n
different frequencies. It 1s assumed that the time 1s divided
into small segments (e.g., a few tens of milliseconds) and
FFT and analysis are performed per frequency bin on the
small audio segments. For those particular frequency bins,
since each bin 1s operated on separately, each has different
characteristics. The energy of one of the two people 1s not
present 1 a frequency bin, while the other person’s energy
will be present in the frequency bin. When the analysis 1s
performed, the spectra can be seen. Pathological cases may
exist with very similar vocal characteristics and when the
two people say the exact same thing at the same time. In
these cases, the energy may potentially be overlapping at the
exact same time frequencies. Because people typically say
different things and have different vocal characteristics, 1t’s
very rare for a time frequency bin to be jointly dominated by
both speakers. Therefore, a given bin 1s typically dominated
by one source. This generalizes to audio sources other than
speech.

Referring back to FIG. 3, in one embodiment, each time
frequency bin for each sub-band receives an instantaneous
DOA estimate that 1s independent of the other bins. The
instantaneous DOA estimate 1s obtained rather than a
smoothed out estimate because the active sources are chang-
ing 1n a dynamic scene from one time instance to another
and the DOA of the instant moment 1s desired, not the
average over, for example, 100 ms. The system or DNN 1s
therefore trained to, using the current time instance features
based on time of arrival or some measurements of the
device, predict the DOA for each time-frequency bin.

One of the sub-band features mput mto the DNN may
include the SRP-PHAT feature. This feature calculates the
energy (or spatial spectrum) at a certain number of directions
to calculate the probability that the source comes from a
particular direction. If there are 360 degrees around the
device, and sampling 1s performed, for example, at a reso-
lution of 5 degrees, there will be 72 candidate locations. Of
course, other degrees of resolution may be used and the
embodiments are not limited to 5 degrees. Thus, 1n this
example, SRP-PHAT {features as input features per Ire-
quency sub-band will total 72 because the probability will
have 72 locations. Known techniques calculate the SRP-
PHAT {feature and pick the peak or the max across all angles
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to decide on a DOA. In embodiments described herein, the
SRP-PHAT features are calculated and instead of picking a
peak, a DNN predicts the probability of the angle for a
different set of quantized angles. This can provide the
advantage of being much more accurate than the conven-
tional technique. For each time-frequency bin (time slice),

an SRP-PHAT 1s calculated and the SRP-PHAT provides
values of coarseness/fineness or how many degrees you are
skipping around, for example, on a horizontal plane around
the device. Thus, instead of just taking one of those values,
all 72 values for each bin for that time slice are provided as
an mput feature to the DNN. Again, this can be performed
tor all of the time-frequency bins.

With respect to the target directional features (309) shown

in FIG. 3, the number can be similar to the input features. In
the example discussed above, 1f there are 72 inputs then
there are 72 outputs and those are the angles.
In other embodiments, the number of input features can be
different than the number of output features. In a case where
the DNN 1nterpolates or extrapolates, there are fewer input
features than the output features. The interpolation or
extrapolation 1s utilized based on a computational tradeotl of
efliciency versus accuracy. For example, instead of having
72 output target values, more values can be utilized for more
accuracy or fewer values can be utilized with extrapolation
for efliciency.

In one embodiment, the DNNs are trained before the
devices are shipped and they are static and do not change
over time. Tramning of the DNNs may mvolve taking a
device, playing a sound from a given angle and getting a
sound source. This 1s captured on a particular device and the
particular angle 1s documented. This 1s an example of
training the DNN {for that particular angle. This training 1s
repeated for all angles of interest for each time-frequency
bin.

In conventional methods, 1t 1s not straight forward to pick
the max of the spatial spectrum for multiple source local-
ization. Typically, the known techmiques build/use heuristics
for scenarios with two peaks. This approach can easily fail
when something 1s done wrong. In the embodiments
described herein, the DNN 1s trained to discern between one
source and two peaks and two sources and two peaks. In
doing so, the DNN 1s trained for the high frequencies and the
low frequencies, decoupling the two as higher and lower.
Here, the DNN 1s provided with input features and estimates
the source. The DNN 1s trained to perform cleaner DOA
picks. In one example, low frequencies typically have one
peak and the DNN 1s trained to pick one point corresponding,
to the peak. In another example, with high frequencies there
can be two peaks, so the DNN 1s trained to pick one point
at peak for DOA. In a third example, two input sources can
have multiple peaks and the DNN 1s trained to pick the two
DOAs.

In a situation where higher resolution or 3D sound 1s
desired, a number of mput features for the DNN exponen-
tially multiplies. It may be beneficial to have a system where
the features input mmto the DNN are very small (low in
number). The complexity of the process that uses up the
CPU depends on the sizes of the first and hidden layers.
Larger layers leads to larger matrix multiplies on every time
frequency bin, which means more complexity.

In one embodiment, other input features for the sub-band
directional features can be used that are much lower 1n
dimensionality. These input features do not produce prob-
ability as a function of angle. Rather, these input features are
indicative of the direction but not directly mapped.
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In one example, using 4 microphones, when going from
observed signals on the microphones to 72 features, it 1s
possible to know the time of arrival differences between the
microphones for a given angle. Then, the relative time or
arrival difference between the microphones 1s used to find
the angle that looks closest to that observed time of arrival
difference and that angle 1s mapped as a probability.

In the above example, the relative phase (observed rela-
tive time of arrival) 1s fed to the DNN, being non-linearly
related to the angle and dependent on the mic array. The
phase to angle 1s not unwrapped for the DNN. Rather, the
DNN 1s given the raw phase and 1t learns mapping {rom
phase to angle for that particular device. This can provide a
reduced amount of input features because, for example, with
four microphones there are 6 pairs of phase diflerences
between the microphones (e.g., 1-2, 1-3, 1-4, etc.). By virtue
of the foregoing arrangement, 1t 1s possible for the DNN to
infer the DOA probability by looking at the phase difler-
ences or inter-mic correlations. This can be performed for
cach time-frequency bin.

In one embodiment, the mput feature may include dif-
fuseness. If 1 a reverberant environment, and speaking, a
given time frequency bin might be mostly directional energy
but part of that can be reverberant and coming from many
different directions at one time. Knowing the ratio of direc-
tional to difluse signals 1n that time frequency bin 1s a usetul
parameter that can be used to re-synthesize the audio scene.
This 1s difluseness of the time-irequency bin. Reverb 1s one
example of diffuseness. Another example 1s babble (e.g.,
loud environment). In babble, for example, the bin may be
100% diffuse coming from all angles simultaneously.
Instead of trying to nitpick which 1s most probable direction,
the time-frequency bin 1s determined to be mostly diffuse
energy. A rendering unit (e.g., rendering unit 505 of FIG. 5)
1s delivered this information and does something different
about how 1t plays back the signal.

For DNN, difluseness can be measured and provided as an
input feature to the DNN. The DNN can then use these
parameters as mput features to re-synthesize the audio for a
different speaker or for headphones.

The diffuseness value can also be calculated for the DNN
as an 1nput feature with other features such as SRP-PHAT.
Diffuseness can be estimated using a traditional technique.
Based ofl the microphone geometry it can be assumed what
a diffuse sound field looks like versus a directional one.

During training of the DNN, mitial estimates of diffuse-
ness or DOA are provided to the DNN, and the DNN
predicts a more robust, more accurate estimate. The DNN
can be trained to learn the interactions of all of these mput
features together, then 1t can come up with a more reliable
estimate. With DNN, 1t 1s possible to combine multiple
features because it 1s exposed to a great number of examples,
and therefore learns the combination of those features. For
example, the DNN may select a DOA differently based on
a different diffuseness level.

In one embodiment, diffuseness can be used as an output
feature as well, by using 1t to play back the captured audio
scene. The DNN can be taught to come up with a diffuseness
target value so that 1t 1s possible, when recording the traiming
data, to know the true value of how diffuse that sound field
1s. Thus, with a DNN, it 1s possible to predict true value of
the diffuseness. This 1s not just used as an iput feature, but
can also get passed onto a sound reproduction system.

FI1G. 4 1s a block diagram for explaining utilizing a trained
DNN to encode a sound field mto a set of parameters,
according to an example embodiment. As illustrated 1n FIG.
4, microphone mput signals (e.g., X,-X,) are transformed 1n
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the time-frequency domain (401). Sub-band features are
estimated (402) utilizing the time-frequency representation
of the microphone array signals. The estimated sub-band
features are then fed into the DNN model (403). The
estimated sub-band sound field descriptors produced by the
DNN model 403 together with a subset or a downmixed
version (405) of the microphone array input signal can be
encoded and transmitted (404).

FI1G. 5 1s a block diagram for explaining utilizing a traimned
DNN 1for spatial sound reproduction, according to an
example embodiment. As 1llustrated in FIG. 5, microphone
input signals (e.g., X,-X,) are transformed in the time-
frequency domain (501). Sub-band features (502) are esti-
mated utilizing the time-frequency representation of the
microphone array signals. The estimated sub-band features
are then fed mto the DNN model (503). The estimated
sub-band sound field parameters (506) are then fed 1nto the
rendering engine (505). The rendering engine 505 mixes all
or part ol the microphone array mput signal with the
estimate parameters to provide loudspeaker (509) or head-
phone (508) signals. The output signal from the rendering
unit 505 are transformed back to time domain with an
inverse time-frequency transtform (504) and can be fed
directly to headphones 308 or loudspeakers 509.

In one embodiment, when taking a video of a person, as
a video recorder the user knows the person 1s 1n front of the
camera, and indicates that they only want to capture audio
in front of the device. In each time frequency, a mask can be
built for a certain angle. It a signal 1s beyond outside of the
certain angle, then it 1s attenuated by over suppressing. This
1s an application of the trained DNN where there 1s a very
focused directional pickup which can be more focused than
obtainable with a standard beamformer.

FIG. 6 shows comparison results for a single source
between a conventional direction of arrival (DOA) estimator
and a DNN DOA estimator according to an example
embodiment. Here, a traditional DOA estimator (SRP-
PHAT) 1s compared with a DNN DOA estimator using
SRP-PHAT spatial spectrum as input features. As shown 1n
FIG. 6, DNN-DOA clearly outperforms SRP-PHAT at all
sub-band frequencies.

FIGS. 7A and 7B show comparison results for both single
and multiple source localization between a SRP-PHAT
method and a DNN DOA estimator according to an example
embodiment. As evidenced by FIG. 7A, another advantage
of DNN 1s full-band localization for multiple sources. Here,
the DNN model can resolve two sources which are closely
positioned. In contrast, the SRP-PHAT 1s unable to detect
two sources 1n this case. As shown in FIG. 7B, the DNN
model can detect a source where the SRP-PHAT does not
provide any peak. This provides a good indication that the
DNN approach can potentially model the complexity of the
SRP-PHAT spectrum and detect the DOA accurately.

Turning to FIG. 8, a flow diagram 1s 1illustrated for
explaining training of a DNN for use 1n a portable device
(e.g., portable device 100 of FIG. 1 or portable device 200
of FIG. 2) performing sound field analysis, according to an
example embodiment. In this regard, the following embodi-
ments may be described as a process 800, which 1s usually
depicted as a flowchart, a tlow diagram, a structure diagram,
or a block diagram. Although a flowchart may describe the
operations as a sequential process, many of the operations
can be performed 1n parallel or concurrently. In addition, the
order of the operations may be re-arranged. A process 1s
terminated when its operations are completed. A process
may correspond to a method, a procedure, etc. Process 800
may be performed by processing logic that includes hard-
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ware (e.g. circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium),
or a combination thereof.

In the embodiment of FIG. 8, at block 801, impulse
responses of the portable device 100 are measured. At block
802, a database of sound files 1s generated by convolving
source signals with the impulse responses of the portable
device 100. At block 803, the sound files from the database
are transformed into time-irequency domain. At block 804,
one or more sub-band directional features are estimated at
cach sub-band of the time-frequency domain. The one or
more sub-band directional features may include one or more
of a SRP-PHAT, inter microphone phases, and difluseness.
At block 805, a deep neural network (DNN) 1s trained for
cach sub-band based on the estimated one or more sub-band
directional features and a target directional feature. In one
embodiment, the DNN 1s trained with single or multi-source
audio signals utilizing real microphone array recordings so
that the DNN can learn the mapping of an audio signal’s
interaction with physical features of the device and acoustic
environment to a respective direction of arrival (DOA) of
the target directional feature. In another embodiment, the
DNN 1s trained with single and multi-source audio signals
utilizing real microphone array recordings so that the DNN
can learn the mapping of an audio signal’s interaction with
physical features of the device and acoustic environment to
simultaneously active source locations.

In another embodiment, alternative sound field descrip-
tors are defined as output classes of the DNN to learn sound
field characteristics specific to hardware of interest per
sub-band. According to one embodiment, the sound field
descriptors include one or more of difluseness, inter-channel
(e.g., inter-microphone) level differences (ILD) and inter-
channel time differences (I'TD) as a function of the angle.

FIG. 9 1s an example implementation 900 of the portable
device described above, that has a programmed processor
902. In particular, device 900 1s one example of the device
100 according to the example embodiment depicted 1n FIG.
1. The components shown may be integrated within a
housing such as that of a mobile phone (e.g., see FIG. 2.)
These include a number microphones 930 (930a, 9305,
930c¢, . .. ) which may have a fixed geometrical relationship
to each other and whose operating characteristics can be
considered when configuring the processor 902 to act as a
beamiormer when the processor 902 accesses the micro-
phone signals produced by the microphones 930, respec-
tively. The microphone signals may be provided to the
processor 902 and/or to a memory 906 (e.g., solid state
non-volatile memory) for storage, 1n digital, discrete time
format, by an audio codec 901. Microphones 930 may also
have a fixed geometrical relationship to loudspeakers 923
and 925. A sensor 903 (e.g., still camera, video camera,
accelerometer, etc.), provides nformation regarding the
position and ornientation of the portable device and to assist
in repositiomng of the device. Communications transmitter
and receiver 904 {facilitates communication with other
devices.

The memory 906 has stored therein instructions that when
executed by the processor 902 compute a configuration of,
but not limited to, beamforming, traiming a DNN, audio
rendering, and using a database. The instructions that pro-
gram the processor 902 to perform all of the processes
described above are all referenced 1n FIG. 9 as being stored
in the memory 906 (labeled by their descriptive names,
respectively.) These mstructions may alternatively be those
that program the processor 902 to perform the processes, or
implement the components described above. Note that some
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of these circuit components, and their associated digital
signal processes, may be alternatively implemented by hard-
wired logic circuits (e.g., dedicated digital filter blocks,
hardwired state machines.)

FIG. 9 1s merely an example of particular implementa-
tions and 1s merely to illustrate the types of components that
may be present in the audio system. While the system 900
1s 1llustrated with various components of a data processing
system, they are not intended to represent any particular
architecture or manner of mterconnecting the components;
as such details are not germane to the embodiments herein.
It will also be appreciated that network computers, handheld
computers, mobile phones, servers, and/or other data pro-
cessing systems which have fewer components or perhaps
more components may also be used with the embodiments
herein. Accordingly, the processes described herein are not
limited to use with the hardware and software of FIG. 9.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. It should
be borne 1n mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the
above discussion, i1t 1s appreciated that throughout the
description, discussions utilizing terms such as those set
forth 1n the claims below, refer to the action and processes
of an audio system, or similar electronic device, that
manipulates and transforms data represented as physical
(electronic) quantities within the system’s registers and
memories into other data similarly represented as physical
quantities within the system memories or registers or other
such information storage, transmission or display devices.

The processes and blocks described herein are not limited
to the specific examples described and are not limited to the
specific orders used as examples herein. Rather, any of the
processing blocks may be re-ordered, combined or removed,
performed in parallel or 1n serial, as necessary, to achieve the
results set forth above. The processing blocks associated
with implementing the audio system may be performed by
one or more programmable processors executing one or
more computer programs stored on a non-transitory com-
puter readable storage medium to perform the functions of
the system. All or part of the audio system may be 1mple-
mented as, special purpose logic circuitry (e.g., an FPGA
(field-programmable gate array) and/or an ASIC (applica-
tion-specific integrated circuit)). All or part of the audio
system may be implemented using electronic hardware
circuitry that include electronic devices such as, for
example, at least one of a processor, a memory, a program-
mable logic device or a logic gate. Further, processes can be
implemented 1 any combination hardware devices and
soltware components.

While certain embodiments have been described and
shown 1n the accompanying drawings, 1t 1s to be understood
that such embodiments are merely illustrative of and not
restrictive on the broad invention, and the invention 1s not
limited to the specific constructions and arrangements
shown and described, since various other modifications may
occur to those of ordinary skill 1n the art. For example, 1t will
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be appreciated that aspects of the various embodiments may
be practiced 1n combination with aspects of other embodi-
ments. The description 1s thus to be regarded as 1llustrative
instead of limiting.

The mvention claimed 1s:

1. A method for performing machine based learming for
sound field analysis for a device, the method comprising:

measuring impulse responses of the device;

generating a database of sound files by convolving source

signals with the impulse responses of the device to
produce the sound files;

transforming the sound files from the database into time-

frequency domain;

estimating one or more sub-band directional features at

cach sub-band of the transformed sound files from the
database 1n the time-frequency domain; and

training a deep neural network (DNN) for each sub-band

based on the estimated one or more sub-band direc-
tional features and a target directional feature.

2. The method of claim 1, wherein the one or more
sub-band directional features include one or more of a
Steered-Response Power Phase Transform (SRP-PHAT),
inter microphone phases, and diffuseness.

3. The method of claim 1, wherein the DNN 1s trained
with a single or multi-source audio signal utilizing real
microphone array recordings, and wherein the target direc-
tional feature comprises a direction of arrival (DOA) of the
single or multi-source audio signal.

4. The method of claim 1, wherein the DNN 1s trained
with single and multi-source audio signals utilizing real
microphone array recordings, and wherein the target direc-
tional feature comprises directions of arrival (DOAs) of the
simultaneously active single and multi-source audio signals.

5. The method of claim 1, further comprising:

defining alternative sound field descriptors as output

classes of the DNN to learn sound field characteristics
specific to hardware of 1nterest per sub-band.

6. The method of claim 5, wherein the alternative sound
field descriptors include one or more of difluseness, nter-
channel level differences (ILD) and inter-channel time dii-
ferences (I'TD) as a function of the angle.

7. The method of claim 5, further comprising;:

using deep learning of the alternative sound field descrip-

tors as features to encode a captured audio signal from
a hardware microphone array into a set ol parameters.
8. The method of claim 1 further comprising:
using the tramned DNN to map a microphone signal to a
loudspeaker or headphone signal for sound reproduc-
tion.

9. The method of claim 1, wherein the target directional
feature 1ncludes one or more of class probabilities per
quantized angle, XY coordinates and XYZ coordinates.

10. An audio system comprising:

a Processor;

memory having stored therein instructions for performing

machine based learning for sound field analysis for a

device, the instructions when executed by the processor

cause the processor to:

measure 1impulse responses of the device;

generate a database of sound files by convolving source
signals with the impulse responses of the device to
produce the sound files;

transform the sound files from the database 1nto time-
frequency domain;

estimate one or more sub-band directional features at
cach sub-band of the transformed sound files from
the database in the time-frequency domain; and
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train a deep neural network (DNN) for each sub-band
based on the estimated one or more sub-band direc-

tional features and a target directional feature.

11. The audio system of claim 10, wherein the one or
more sub-band directional features include one or more of a

Steered-Response Power Phase Transform (SRP-PHAT),

inter microphone phases, and difluseness.

12. The audio system of claim 10, wherein the DNN 1s
trained with a single or multi-source audio signal utilizing
real microphone array recordings, and wherein the target
directional feature comprises a direction of arrival (DOA) of
the single or multi-source audio signal.

13. The audio system of claim 10, wherein the DNN 1s
trained with single and multi-source audio signals utilizing,

real microphone array recordings, and wherein the target
directional feature comprises directions of arrival (DOAs) of
the simultaneously active single and multi-source audio
signals.

14. The audio system of claim 10, wherein the processor
1s Turther caused to: define alternative sound field descriptors
as output classes of the DNN to learn sound field charac-
teristics specific to hardware of interest per sub-band.

15. The audio system of claim 14, wherein the alternative
sound field descriptors include one or more of diffuseness,
inter-channel level differences (ILD) and inter-channel time
differences (ITD) as a function of the angle.

16. The audio system of claim 14, wherein the processor
1s further caused to: use deep learning of the alternative
sound field descriptors as features to encode a captured
audio signal from a hardware microphone array into a set of
parameters.

17. The audio system of claim 10, wherein the processor
1s further caused to:

use the tramned DNN to map a microphone signal to a

loudspeaker or headphone signal for sound reproduc-
tion.

18. The audio system of claim 10, wherein the target
directional feature includes one or more of class probabili-
ties per quantized angle, XY coordinates and XY Z coordi-
nates.

19. A non-transitory computer-readable storage medium
storing executable program instructions for performing
machine based learning for sound field analysis for a device,
the program instructions when executed by a processor
cause the processor to perform a method comprising:

measuring impulse responses of the device;

generating a database of sound files by convolving source

signals with the impulse responses of the device to
produce the sound files;
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transforming the sound files from the database 1nto time-
frequency domain;

estimating one or more sub-band directional features at
cach sub-band of the transformed sound files from the
database 1n the time-irequency domain; and

training a deep neural network (DNN) for each sub-band
based on the estimated one or more sub-band direc-
tional features and a target directional feature.

20. The non-transitory computer-readable storage

medium according to claim 19, wherein the one or more

sub-band directional features include one or more of a
Steered-Response Power Phase Transform (SRP-PHAT),
inter microphone phases, and diffuseness.

21. The non-transitory computer-readable storage
medium according to claim 19, wherein the DNN 1is trained
with a single or multi-source audio signal utilizing real
microphone array recordings, and wherein the target direc-
tional feature comprises a direction of arrival (DOA) of the
single or multi-source audio signal.

22. The non-transitory computer-readable storage
medium according to claim 19, wherein the DNN 1s trained
with single and multi-source audio signals utilizing real
microphone array recordings, and wherein the target direc-
tional feature comprises directions of arrival (DOAs) of the
simultaneously active single and multi-source audio signals.

23. The non-transitory computer-readable storage
medium according to claim 19, further comprising:

defining alternative sound field descriptors as output

classes of the DNN to learn sound field characteristics
specific to hardware of interest per sub-band.

24. The non-transitory computer-readable storage
medium according to claim 23, wherein the alternative
sound field descriptors include one or more of difluseness,
inter-channel level differences (ILD) and inter-channel time
differences (ITD) as a function of the angle.

25. The non-transitory computer-readable
medium according to claim 23, further comprising:

using deep learning of the alternative sound field descrip-

tors as features to encode a captured audio signal from
a hardware microphone array into a set of parameters.

26. The non-transitory computer-readable storage
medium according to claim 19, further comprising:

using the trained DNN to map a microphone signal to a

loudspeaker or headphone signal for sound reproduc-
tion.

27. The non-transitory computer-readable storage
medium according to claim 19, wherein the target direc-
tional feature includes one or more of class probabilities per
quantized angle, XY coordinates and XYZ coordinates.
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